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ABSTRACT

Cross-domain open-vocabulary object detection (COVD) poses a unique and un-
derexplored challenge, requiring models to generalize across both domain shifts
and category shifts. To tackle this, we propose MAP: a parameter-efficient Multi-
source domain-Adaptive Prompt tuning framework that leverages multiple labeled
source domains to improve detection in novel, unlabeled target domains with
unseen categories. MAP consists of two key components: Multi-Source Prompt
Learning (MSPL) and Unsupervised Target Prompt Learning (UTPL). MSPL disen-
tangles domain-invariant category semantics from domain-specific visual patterns
by jointly learning shared and domain-aware prompts. UTPL enhances general-
ization in the unlabeled target domain by enforcing prediction consistency under
text-guided style augmentations, introducing a novel entropy-minimization objec-
tive without relying on pseudo-labels. Together, these components enable effective
alignment of visual and textual representations across both domains and categories.
In addition, we present a theoretical analysis of the proposed prompts, examining
their behavior through the lenses of fidelity and distinction. Extensive experiments
on challenging COVD benchmarks demonstrate that MAP achieves state-of-the-art
performance with significantly fewer additional parameters.

1 INTRODUCTION

Object detection has witnessed significant progress with the emergence of large-scale vision-language
models (VLMs), which enable open-vocabulary detection (OVD) by leveraging textual supervision
to recognize a wide range of categories, including those unseen during training Phoo & Hariharan
(2022); Lin et al. (2022); Feng et al. (2022); Yao et al. (2022); Minderer et al. (2022); Zareian et al.
(2021); Zhou et al. (2022c); Arandjelović et al. (2023); Cheng et al. (2024). However, most existing
OVD methods assume that training and test data share the same underlying domain, which is often
unrealistic in practical scenarios where data distribution shifts are common. This motivates the task of
Cross-domain Open-Vocabulary Object Detection (COVD), where models must generalize to unseen
categories in a novel domain.

Prompt learning has recently emerged as a powerful and flexible strategy for adapting VLMs to
downstream tasks. Instead of fine-tuning the entire model, prompt learning optimizes a small set of
learnable tokens that guide the pre-trained model to focus on task-relevant features. This parameter-
efficient approach has shown strong performance in domain adaptation Wang et al. (2024b); Singha
et al. (2023; 2024); Li et al. (2024); Ge et al. (2023). In the context of COVD where models must
handle both domain and category shifts, prompt learning offers a natural and scalable solution, as it
enables the model to flexibly align textual and visual representations across diverse distributions. In
this work, we introduce Multi-Source Prompt Learning (MSPL) for the first time in COVD, leveraging
multiple labeled source domains to jointly capture class-specific and domain-specific knowledge.
By learning both domain-adaptive and class-aware prompts, MSPL enables effective visual-textual
alignment across domains and categories, and supports robust generalization to unseen target domains
with novel classes.

For target adaptation, previous methods rely heavily on pseudo labels generated from source-trained
models Chen et al. (2023); Yang et al. (2024a;b); Liu et al. (2025); Wang et al. (2024a). Such pseudo
labels are often unreliable due to domain and category shifts, especially in open-vocabulary settings
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Figure 1: Framework overview: (a) Multi-Source Prompt Learning (MSPL) disentangles domain-
invariant category semantics from domain-specific visual patterns by jointly learning shared and
domain-aware prompts. (b) Unsupervised Target Prompt Learning (UTPL) enhances generalization
in the unlabeled target domain by enforcing prediction consistency under text-guided style augmenta-
tions (c), introducing a novel entropy-minimization objective without relying on pseudo-labels. See
Appendix C for detailed loss illustration.

where unseen classes lack meaningful supervision. This limitation hinders robust generalization and
leads to error propagation. To address these challenges, we propose Unsupervised Target Prompt
Learning (UTPL), which eliminates the need for pseudo labels by enforcing prediction consistency
under style-guided augmentations through a novel entropy-based objective. Together with MSPL,
UTPL forms the core of our framework, Multi-source domain-Adaptive Prompt tuning (MAP), which
enables robust adaptation to novel domains and categories in the COVD setting.

Beyond the algorithmic design, we provide a theoretical analysis of the learnable prompts in MAP
by introducing two key properties: fidelity and distinction, to characterize their effectiveness. We
rigorously define these properties through an information-theoretic lens, connecting high-fidelity
prompts to low predictive entropy and high mutual information with latent labels, and high-distinction
prompts to mutual orthogonality across domains or classes. Furthermore, we propose a novel
definition of unsupervised fidelity, enabling the evaluation of prompt quality even in the absence of
labeled target data. This theoretical grounding helps to clarify why MAP is effective and provides a
principled framework for future developments in prompt-based domain adaptation.

Our main contributions are as follows: (1) We propose MAP, a novel framework for multi-source cross-
domain open-vocabulary object detection that integrates MSPL and UTPL to align visual–textual
representations across domains and categories. (2) We provide a theoretical analysis of prompt
fidelity and distinction, introducing a new formulation of unsupervised fidelity based on entropy and
mutual information. (3) We achieve state-of-the-art performance on standard COVD benchmarks
with minimal additional parameters.

2 RELATED WORKS

Open vocabulary object detection. Open-vocabulary detection was first proposed by Bansal et
al. Bansal et al. (2018), introducing the visual-semantic embeddings to replace the classification
layer of a closed vocabulary detector. This design has now become a common practice for many
subsequent open-vocabulary object detection works Phoo & Hariharan (2022); Lin et al. (2022); Feng
et al. (2022); Yao et al. (2022); Minderer et al. (2022); Zareian et al. (2021); Zhou et al. (2022c);
Arandjelović et al. (2023); Cheng et al. (2024). To name a few, ViLD Phoo & Hariharan (2022)
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uses a teacher-student framework to distill knowledge from a pre-trained open-vocabulary image
classification model (i.e., teacher model) and detect region boxes with the student model by aligning
the text and image embeddings. PromptDet Feng et al. (2022) scales up the OV detector with noisy
uncurated web images using the proposed regional prompt learning technique which aligns text
embedding with visual features. DetClip Yao et al. (2022) designs a concept dictionary with a
paralleled concept formulation to facilitate learning from heterogeneous datasets including detection,
grounding, and image-text pairs. YOLO-World Cheng et al. (2024) is built upon the YOLO backbone
and highly generalizable vision-language models; a vision-language path aggregation network is
further utilized to enhance the interaction between visual and semantic information. In this work, we
use several pre-trained open-vocabulary object detectors as backbones to evaluate their ability over
cross domain adaptation.

Domain adaptive prompt learning. Prompting origins in NLP tasks which prepend instructions to
the input to help train the language model Lester et al. (2021); Shin et al. (2020). With the emergence
of vision-language models such as CLIP Radford et al. (2021), ALIGN Jia et al. (2021), which
embed a shared visual-semantic space by learning from a large scale of image alt-text pairs using a
contrastive loss, domain-adaptive prompt learning has been used to address domain shifts between
the pre-trained VLMs and the downstream tasks Ge et al. (2023); Li et al. (2024); Chen et al. (2024);
Bai et al. (2024); Zhao et al. (2024); Wang et al. (2024b). One line of the work constructs domain
adaptive prompts by directly embedding domain information Ge et al. (2023); Li et al. (2024); Bai
et al. (2024). The other line of work aims to align source and target domains with a prompt-based
framework Chen et al. (2024); Cao et al. (2024); Bai et al. (2024). To facilitate multi-source adaptive
prompt learning (MSPL), MPA Chen et al. (2023) first trains individual prompt for a source and
target domain pair with a contrastive loss then utilizes auto-encoding to denoise the learned prompt
and align all the reconstructed prompts. SAP-CLIP Yang et al. (2024a) designs learnable prompts
with class context vectors and domain representation vectors based on CLIP to leverage textual
information of both class semantics and domain representations. APNE-CLIP utilizes negative textual
semantics and energy-based uncertainty to transfer knowledge from multiple source domains Yang
et al. (2024b). VAMP proposes a vision-aware multimodal prompt tuning framework to address
multi-source domain few-shot adaptation Liu et al. (2025). However, these multi-source prompt
learning methods heavily rely on pseudo labels generated by source-trained detectors, which are
often noisy and unreliable—especially under significant domain and category shifts. In this work,
we propose MAP (Multi-source domain-Adaptive Prompt tuning) that circumvents the reliance on
pseudo labels by introducing a novel unsupervised target prompt learning (UTPL) strategy.

3 METHODOLOGY

CLIP. The CLIP model Radford et al. (2021) consists of a visual encoder f and a text encoder g
that map images and text into a shared embedding space. To enable zero-shot classification, class
labels are converted into textual prompts, e.g., “a photo of a [CLASS]”. After tokenization, the
prompt pt is encoded into a text embedding z = g(pt). Given an image x with label y, the visual
encoder produces an embedding f(x). The probability of class k is then computed using cosine
similarity between the visual and text embeddings:

p(ŷ = k|x) = exp(cos(f(x), g(ptk))/T )∑
c = 1K exp(cos(f(x), g(ptc))/T )

, (1)

where K is the number of categories, cos(·, ·) denotes cosine similarity, and T is a temperature
parameter.

Cross-domain open-vocabulary object detection. We consider multiple labeled source datasets
{Ds = {Isi , ysi }

Ns
i=1}Ns=1 from domains {Ds}Ns=1, and an unlabeled target dataset Dt = {Iti}

Nt
i=1

from domain Dt, where Ns and Nt denote the number of samples in source and target domains,
respectively. For each image Isi ∈ Ds, its annotation is ysi = {bsi , csi}, with bounding-box coordinates
bsi and class labels csi ∈ Cs. Here, Cs denotes the label space of domain Ds containing Ks pre-
defined categories. We define the base label space as the union of all source-domain label sets, i.e.,
Cbase =

⋃N
s=1 Cs. The target label space is denoted by Ct, which includes both base and novel

categories: Ct = Cbase ∪ Cnovel, with Cnovel ∩ Cbase = ∅. Here, Cnovel represents categories not seen
in any source domain. For simplicity, we denote the total number of categories across domains by K.
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3.1 MULTI-SOURCE PROMPT LEARNING

We present Multi-Source Prompt Learning (MSPL) for MAP, which learns class- and domain-specific
tokens using a standard domain-adaptive prompt structure that separates domain-invariant semantics
from domain-specific patterns for better cross-domain generalization. Prompts are optimized with
a class-specific loss Ls

class to align with category semantics and a domain-specific loss Ls
domain to

capture domain variations. As shown in Section 4, these objectives are theoretically grounded and
provably contribute to effective prompt learning.

Source prompt design. Following the domain-adaptive prompt formulation, each source-specific
prompt is defined as:

ptsc = VcVs[c][dls], (2)

where Vc = [vc
1][v

c
2]...[v

c
M1

] contains M1 learnable tokens and c = e(“CLASS-c”) is the tokenized
class label. The domain-specific component Vs = [vs

1][v
s
2]...[v

s
M2

] is combined with a tokenized
domain label dls = e(“Domain-s”). While Vc and [c] capture category semantics shared across
domains, Vs and [dls] encode domain-specific variations independent of categories. This structure
allows each prompt to jointly model general category knowledge and domain-specific patterns,
providing a strong foundation for cross-domain open-vocabulary detection.

Learning class-specific tokens. To learn class-specific domain invariant tokens Vc and [c], we
propose to optimize the standard cross-entropy loss over each source domain for an object region rs

of category k:
Ls

class = EDs [− log psclass(ŷ = k|rs)], (3)

where rs an object region in an image of the s-th source domain. The classification probability psclass
is obtained by aligning the visual region features f(rs) and corresponding class prompt g(ptsk):

psclass(ŷ = k|rs) = exp(cos(f(rs), g(ptsk))/T )∑K
c=1 exp(cos(f(r

s), g(ptsc))/T )
, (4)

By minimizing Equation (3) across all N source domains, class-level semantic knowledge (Vc and
[c]) is distilled into each source prompt ptsc, enabling accurate category-level discrimination within
its domain and promoting domain-invariant understanding.

Learning domain-specific tokens. To learn domain-specific tokens Vs and [dls] for each source
domain prompt, we minimize the following domain-specific loss function:

Ls
domain = EDs [− log psdomain(ŷ = k|rs)], (5)

where the probability formulation psdomain defined in Equation (6) is a softmax over all class-domain
prompt combinations, promoting the domain and class alignment with the visual region feature:

psdomain(ŷ = k|rs) = exp(cos(f(rs), g(ptsk))/T )∑N
d=1

∑K
c=1 exp(cos(f(r

s), g(ptdc))/T )
. (6)

By minimizing Equation (5), we encourage the source region rs to be close with domain-specific
prompt ptsk corresponding to its true class label k in the vision language space, while simultane-
ously suppressing similarity with prompts from other domains (d ̸= s). This contrastive design
in Equation (6) enforces discriminative associations between domain-specific prompts and their
corresponding visual regions, facilitating the learning of fine-grained, domain-aware representations.
A formal theoretical analysis is presented in Section 4, which rigorously justifies these objectives and
establishes a principled, theoretically grounded framework for effective prompt learning.

3.2 UNSUPERVISED TARGET PROMPT LEARNING

We introduce Unsupervised Target Prompt Learning (UTPL) in MAP, which designs prompts for the
target domain in COVD using a novel class mask to handle unseen categories. UTPL learns prompts
without supervision via three objectives guiding class-specific, domain-specific, and novel-mask
tokens. As detailed in Section 4, these objectives are theoretically justified, providing a principled
framework for effective target prompt learning.
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Target domain prompt design To enable open-vocabulary detection in the target domain, we
introduce a learnable novel mask M = [m1][m2], ...[mM3

], which serves to specialize the prompt
representation for novel classes. The target prompt is defined as:

ptt = VcVtM[c][“dlt”]. (7)

Similar to the source prompt, Vc and [c] encodes class-specific context, while Vt and [“dlt”] captures
target-domain-specific context. The mask M is designed to enhance attention toward novel categories
in the target domain by providing an explicit cue to the model, helping it distinguish between seen
and unseen categories and thus improving open-vocabulary detection performance.

To learn the target prompt without supervision, instead of relying on potentially unreliable pseudo
labels, we propose an unsupervised target prompt optimization objective that encourages consistency
in the model’s predictions across different augmentations of the same image.
Discussion of target image augmentation. Various image augmentation techniques—such as
random cropping, translation, rotation, and Gaussian noise—are commonly used in vision tasks.
However, for COVD, it is crucial to preserve the semantic integrity of the image and minimize noise to
maintain accurate predictions. In the multi-source domain adaptation setting, we aim to fully leverage
pre-trained source models. To this end, we propose narrowing the domain gap by augmenting
target images with source domain styles. Traditional methods like AdaIN Huang & Belongie
(2017) can transfer the style from a source image to a target image. More recently, text-guided
augmentation techniques Fahes et al. (2023); Kwon & Ye (2022); Suresh et al. (2024) have enabled
style transfer based on textual descriptions, offering greater flexibility without requiring explicit
source images—thus preserving source domain privacy. In our work, we adopt CLIPstyler Kwon &
Ye (2022), a text-guided augmentation method, for target image style transfer. Formally, given an
image I ∈ Dt, we generate a stylized image As(I) using CLIPstyler with a style text prompt Ts .
Additional augmentation details and visual examples are provided in the Appendix.

After obtaining stylized target augmentations, the learning of target prompt is formulated in an
unsupervised manner with the following three parts:
Learning class-specific tokens. To learn class-specific tokens for the unsupervised target domain,
we propose minimizing the entropy of the averaged prediction probability distribution across different
prompts and augmentations. The objective is formulated as:

Lt
class = EDt [−

K∑
k=1

p̃class(ŷ = k|rt) log p̃(ŷ = k|rt)], (8)

where p̃class(ŷ = k|rt) = 1
N+1

∑N
s=0 p

t
class(ŷ = k|As(r

t) denotes the average prediction probability
across N augmented views and the original view. Each prediction is computed by aligning (stylized)
visual region feature and its corresponding class prompt:

ptclass(ŷ = k|As(r
t)) =

exp (cos(f(As(r
t)), g(ptsk))/T )∑K

c=1 exp (cos(f(As(rt)), g(pt
s
c))/T )

, (9)

where As(I) is an augmented view of I with s source’s style, and A0(r
t) denotes the original

view. Minimizing Lt
class encourages the model to produce consistent and confident (i.e., low-entropy)

predictions across different domain-style augmentations of the same target image, each paired with
its corresponding source-specific prompts. By enforcing agreement across these views, the model
is incentivized to extract features that are stable under stylistic shifts. This effectively forces the
class-specific tokens to capture semantic information that is invariant across diverse domain styles.
Learning domain-specific tokens. To facilitate the learning of target domain-specific tokens, we
minimize the following entropy loss over all prompt–region pairs:

Lt
domain = EDt [−

K∑
k=1

p̃domain(ŷ = k|rt) log p̃domain(ŷ = k|rt)], (10)

where p̃domain(ŷ = k|rt) = 1
N+1

∑N
s=0 p

t
domain(ŷ = k|As(r

t)) and the prediction probability pro-
motes the alignment of domain and class with the (stylized) visual region feature:

ptdomain(ŷ = k|As(r
t)) =

exp (cos(f(As(r
t)), g(ptsk))/T )∑N

d=0

∑K
c=1 exp (cos(f(Ad(rt)), g(pt

d
c))/T )

. (11)
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Note that the denominator sum over all source and target domain, where d = 0 indicates the target
domain. Similar to the formulation in Equation (6), the probability expression in Equation (11) pushes
the model to select the correct class–domain pair under entropy minimization, while discouraging
the alignment of mismatched domain and class prompts with the (stylized) visual region, thereby
facilitating the unsupervised learning of the target domain-specific tokens.

Leaning novel class mask. To learn the mask for novel classes, we propose encouraging the novel
class prompts to diverge from the base class features by minimizing the orthogonality loss:

Lnovel =
∑

c∈Cbase

∑
k∈Cnovel

(g(ptc)
⊺g(ptk))

2 (12)

This minimizes dot product between base and novel prompt embeddings, making them directionally
independent. Similarly, for all source and target prompts, to promote their distinctions, we also
impose the mutual orthogonality on them:

Lorth =
∑

i∈Psource

∑
i∈Ptarget

1diff(i, j)(g(pt
i)⊺g(ptj))2, (13)

where we use Psource and Ptarget to denote the set of source and target prompts, respectively.
1diff(i, j) = 1 when i and j are not the same class label (to avoid penalizing matched seman-
tics). Minimizing Lorth encourages each prompt to be dissimilar to the rest, effectively promoting
mutual orthogonality. This enforces that prompts encode distinct semantic information, thereby
reducing redundancy and enhancing domain diversity.

3.3 TRAINING AND INFERENCE

During adaptation, the pre-trained visual backbones and the text encoder are kept frozen. In each
iteration, only the learnable prompts are updated via backward gradients, which is performed by
minimizing the overall learning objective Ltotal, and the gradients can be back-propagated all the
way through the text encoder g(·), making use of the rich knowledge encoded in the parameters to
optimize the context. The the overall learning objective is defined as:

Ltotal = (1− η)(Lsrc + λLtgt) + ηLorth, (14)

where Lsrc = 1
N

∑N
s=1 Ls

class + Ls
domain, and Ltgt = Lt

class + Lt
domain + Lnovel. The source and target

prompt loss Lsrc and Ltgt play equally important roles during cross-domain adaptation. The additional
orthogonal regularization term Lorth, balanced by a hyperparameter λ, brings mutual orthogonality
among different domain prompts, enforcing distinction for each domain prompt. After training, the
learned prompts are saved and used for inference.

4 THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of the proposed prompts through the lens of their
associated loss functions. Inspired by Wang et al. (2024a), we analyze the behavior of the prompts
from two perspectives: fidelity and distinction. Fidelity describes a prompt’s ability to faithfully
encode either domain-specific and class-specific information by maintaining strong alignment with
the label semantics of its corresponding domain or class. That is, a prompt with high fidelity captures
the underlying semantics of the class it represents or preserving the characteristics of the domain
it originates from. Distinction, on the other hand, requires minimal overlap between prompts from
different domains or classes, ensuring that each prompt captures unique domain or class-specific
characteristics without redundancy. Prompts with high distinction are mutually dissimilar, which
facilitates better disentanglement of semantic and domain-specific information and reduces ambiguity
during alignment.

To formalize these concepts, we first introduce propositions for both fidelity (including both supervised
and unsupervised formulations for class and domain prompts) and distinction (including both inter-
class and inter-domain variants). Based on these formulations, we analyze our proposed prompts
from these two perspectives.
Proposition 4.1 (Fidelity). A prompt pt is said to have high fidelity if it retains task-relevant semantic
information that aligns closely with the target label y. Formally, fidelity can be measured by the
mutual information MI(pt, y) between the prompt and the label. A prompt with high fidelity satisfies
a high MI(pt, y), indicating strong semantic alignment with class-specific and domain-specific cues.

6
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Proposition 4.2 (Distinction). A prompt pti is said to exhibit distinction if it captures information
that is discriminative for its associated class and domain, while remaining minimally redundant with
prompts from other classes or domains. Formally, distinction can be quantified by the (negative)
mutual information with other prompts ptj (j ̸= i): −MI(pti,ptj), where lower mutual information
indicates higher distinction. Specifically, for class-specific prompts, this is referred to as inter-class
distinction. For domain-specific prompts, this is referred to as inter-domain distinction.

Proposition 4.3 (Unsupervised Fidelity). A prompt pt is said to exhibit unsupervised fidelity if
it induces confident and semantically meaningful predictions in the absence of ground-truth labels.
Given an unlabeled input region x ∈ X , the predicted class distribution is denoted by p(ŷ|pt,x).
Assuming a non-degenerate label distribution, unsupervised fidelity is measured by the negative
Shannon entropy of the prediction distribution:

UnFI(pt) = −H(p(ŷ|pt,x)), (15)

where H(p) = −
∑

k pk log pk. Lower entropy reflects higher confidence and alignment with
semantic content, indicating greater fidelity.

Based on the definitions introduced in Proposition 4.1 through Proposition 4.3, we establish the
following propositions to analyze the behavior of the proposed prompt tokens with respect to fidelity,
unsupervised fidelity, and distinction, including both inter-class and inter-domain distinctions:

Proposition 4.4 (Source Class-Specific Prompt and Ls
class, Lorth). For source class-specific prompt,

minimizing Ls
class achieves high fidelity, and low inter-domain distinction. By jointly minimizing the

orthogonality loss Lorth, explicit high inter-class distinction is enforced.

Proposition 4.5 (Source Domain-Specific Prompt and Ls
domain, Lorth). For source domain-specific

prompt, minimizing Ls
domain achieves high domain-specific fidelity and low inter-class distinction. By

jointly minimizing the orthogonality loss Lorth, explicit high inter-domain distinction is enforced.

Proposition 4.6 (Target Class-specific Prompt and Lt
class, Lorth). For target class-specific prompt,

minimizing Lt
class achieves high unsupervised fidelity and low inter-domain distinction. By jointly

minimizing Lorth, explicit high inter-class distinction is enforced.

Proposition 4.7 (Target Domain-specific Prompt). For target domain-specific prompt, minimizing
Lt

domain achieves high unsupervised fidelity and low inter-class distinction. By jointly minimizing
Lorth, explicit high inter-domain distinction is enforced.

Proposition 4.8 (Novel Mask Prompt). For novel mask prompt, minimizing Lnovel enforce high
inter-class distinction among novel and base classes.

Through Proposition 4.4 and Proposition 4.8, we establish a theoretical foundation for designing
prompts that generalize across domains while preserving semantic separability among classes. Proofs
are deferred to Appendix E.

5 EMPIRICAL EVALUATION

Datasets. We perform extensive experiments on datasets, including (1) the Art Image dataset
with different artistic styles including Clipart1k, Comic2k, and Watercolor2k Inoue et al. (2018);
(2) Diverse Weather Dataset (DWD) Wu & Deng (2022), and (3) Cityscapes Cordts et al. (2016),
FoggyCityscapes Sakaridis et al. (2018), and KITTI Geiger et al. (2013a). Clipart1k contains 1000
clipart images across 20 classes, Watercolor2k and Comic2k contains 2000 watercolor/comic images
across 6 classes. DWD covers five domains: Day Clear (DC), Night Clear (NC), Dusk Rainy (DR),
Night Rainy (NR), and Day Foggy (DF). Each domain collects images from different weather and
lighting conditions. During adaptation, we detect novel classes beyond the six classes, such as
traffic light, and train, which do not appear in the source domains, as open-vocabulary evaluation.
Cityscapes and FoggyCityscapes contains 7 classes, KITTI contains synthetic images of cars.

Evaluation metrics. Mean Average Precision (mAP) is used as the evaluation metric in all our
experiments. We report mAP@0.5, which considers a prediction as a true positive if it matches the
ground-truth label and has an intersection over union (IOU) score of more than 0.5 with the ground-
truth bounding box. To evaluate performance across different class groups, we report APnovel
and APbase, which correspond to the average precision computed over novel and base classes,
respectively.
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Baselines. We conduct our experiment based on four state-of-the-art open-vocabulary object
detectors: RegionCLIP Zhong et al. (2022), OVMR Ma et al. (2024), YOLO-World Cheng et al.
(2024) and GDINO Liu et al. (2024). Based on the object detectors, we implement different domain
adaptive prompt learning methods including CoOP Zhou et al. (2022a), DAPL Ge et al. (2023),
DAPro Li et al. (2024), and multi-source domain adaptive prompt learning methods including
MPA Chen et al. (2023), SAP-CLIP Yang et al. (2024a), APNE-CLIP Yang et al. (2024b) and
POND Wang et al. (2024a) as well as lower bound (LB) which adapts pre-trained open-vocabulary
object detector to the target domain with handcraft prompt “ A photo of a [CLASS]".

5.1 MAIN RESULTS

In Tab. 1, we provide the quantitative performance of our proposed framework MAP on four open-
vocabulary object detectors Zhong et al. (2022); Ma et al. (2024); Cheng et al. (2024); Liu et al.
(2024), and compared with the state-of-the-art domain adaptive prompt learning methods Zhou
et al. (2022b); Ge et al. (2023); Li et al. (2024) and multi-source domain adaptive prompt learning
methods Chen et al. (2023); Yang et al. (2024b;a); Wang et al. (2024a) on the art image. First, we
observe that MAP significantly outperforms LB (i.e., the original object detector applied directly
to the target domain without adaptation), as LB fails to address the substantial domain gap present
in the target domain. Second, MSPL methods, including MAP, demonstrate a clear advantage over
traditional DAPL methods that rely on a single source domain, highlighting the benefit of leveraging
multiple source domains for more robust domain adaptation. Third, MAP exhibits a clear advantage
over other MSPL methods, particularly on novel classes, achieving nearly a 5% improvement over
the next-best MSPL approach, demonstrating the effectiveness of the novel mask prompt.

In Table 2, we report the mAP results across the four domains in the DWD benchmark. Due to
space limitations, APbase and APnovel are provided in the appendix. MAP consistently outperforms
both DAPL and MSPL baselines across all domains and backbone detectors. The detailed results
in the appendix further demonstrate that the detection of novel classes is significantly improved,
highlighting the effectiveness of the proposed novel mask prompt.

Table 1: Domain adaptation results (APs) on Clipart1k. For multi-source domain adaptation methods
(highlighted with *), Watercolor2k and Comic2k are used jointly as source domains. For single-source
domain adaptation methods, either Watercolor2k or Comic2k is used as the source domain, and only
the best performance is reported. LB denotes Lower Bound, where the backbone detector is directly
applied to the target domain without adaptation.

Backbone RegionCLIP Zhong et al. (2022) OVMR Ma et al. (2024) YOLO-World Cheng et al. (2024) GDINO Liu et al. (2024)
Methods AP APbase APnovel AP APbase APnovel AP APbase APnovel AP APbase APnovel
LB 41.14 42.85 39.03 42.86 43.33 40.57 41.96 42.87 39.83 43.06 43.94 40.79
CoOP Zhou et al. (2022b) 41.26 42.98 39.18 43.05 43.55 40.72 42.12 43.02 39.97 43.19 44.05 41.03
DAPL Ge et al. (2023) 41.57 43.25 39.47 43.36 43.86 41.05 42.54 43.41 40.42 43.48 44.49 41.48
DAPro Li et al. (2024) 42.42 44.13 40.36 44.29 44.75 41.93 43.47 44.33 41.35 44.38 45.40 42.37
MPA* Chen et al. (2023) 45.38 47.05 43.34 47.08 47.65 44.84 46.42 47.30 44.28 47.35 48.26 45.19
SAP* Yang et al. (2024a) 46.57 48.31 44.42 48.14 48.72 45.96 47.51 48.42 45.41 48.44 49.35 46.28
APNE* Yang et al. (2024b) 46.88 48.65 44.85 48.47 49.15 46.34 47.92 48.85 45.83 48.89 49.78 46.72
POND* Wang et al. (2024a) 49.54 51.36 47.45 51.12 51.89 49.02 50.58 51.49 48.49 51.50 52.47 49.45
MAP*(Ours) 52.54 53.25 52.18 55.35 56.42 55.14 54.86 55.98 54.42 55.55 56.67 55.16

Table 2: Domain adaptation results (mAP) on DWD. Following typical setting Wu & Deng (2022),
Day Clear is used as source domain. The rest three are added as source domains for building a
multi-source setting for each target domain for multi-source domain adaptation methods.

Backbone RegionCLIP Zhong et al. (2022) OVMR Ma et al. (2024) YOLO-World Cheng et al. (2024) GDINO Liu et al. (2024)
Methods NC DR NR DF NC DR NR DF NC DR NR DF NC DR NR DF
LB 40.32 29.54 26.02 33.23 41.42 30.38 26.56 33.75 41.54 30.75 26.78 34.53 42.18 33.22 29.25 37.03
CoOP Zhou et al. (2022b) 42.24 31.75 28.15 35.48 43.22 32.44 28.43 35.93 43.65 32.58 28.75 36.37 44.53 33.55 29.55 37.26
DAPL Ge et al. (2023) 42.65 31.84 28.47 35.65 43.38 32.69 28.87 36.23 43.98 32.87 29.13 36.84 44.96 33.97 29.98 38.05
DAPro Li et al. (2024) 42.43 31.86 28.17 35.53 42.81 32.62 28.66 35.98 43.84 33.46 28.81 37.27 44.54 34.18 29.55 38.07
MPA* Chen et al. (2023) 43.58 33.04 29.35 36.75 43.99 33.75 29.81 37.13 45.03 34.52 29.94 38.39 45.72 35.30 30.67 39.24
SAP* Yang et al. (2024a) 43.62 33.09 29.39 36.72 43.98 33.76 29.85 37.17 45.06 38.42 29.98 38.55 45.77 35.33 30.69 39.26
APNE* Yang et al. (2024b) 43.65 33.14 29.13 36.78 44.05 33.82 29.93 37.24 45.13 34.62 30.05 38.48 45.84 35.40 30.74 39.33
POND* Wang et al. (2024a) 43.63 33.12 29.10 36.76 44.03 33.80 29.90 37.21 45.12 34.60 30.01 38.45 45.80 35.37 30.71 39.29
MAP*(Ours) 44.84 34.31 30.56 38.06 45.42 34.85 30.92 38.47 46.22 35.94 31.45 39.93 47.13 37.05 32.27 40.97

5.2 ABLATION STUDY

In this section, we present the ablative studies to verify the effectiveness of MAP, including different
components of the prompt design (Table 3), and different architectures. Additional ablatives about
the impact of hyperparameters are presented in the Appendix.
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Effectiveness of each loss functions. In Table 3, we present an ablation study demonstrating that
each loss component contributes to improved cross-domain open-vocabulary adaptation. Introducing
a learnable class prompt via Ls

class improves performance by nearly 2% compared to fixed prompts,
confirming the benefit of adapting category semantics. Incrementally adding more components yields
steady improvements, with the combination of both class- and domain-level objectives for source
and target domains leading to an overall gain of about 10%. While using only class or only domain
prompts improves performance, the effect is less pronounced. Incorporating the novel class loss
Lnovel further boosts novel class detection by an additional +1.8%, validating the effectiveness
of explicitly modeling unseen categories. Finally, adding the orthogonality regularization Lorth
contributes another +1.5%, showing that encouraging disentanglement between class and domain
prompts further enhances generalization.

Table 3: Ablative analysis each loss function on Clipart dataset.

Ls
class Ls

domain Lt
class Lt

domain Lnovel Lorth AP APbase APnovel
✗ ✗ ✗ ✗ ✗ ✗ 43.45 43.94 40.79
✓ ✗ ✗ ✗ ✗ ✗ 45.42 45.76 40.94
✓ ✓ ✗ ✗ ✗ ✗ 45.55 45.88 41.57
✓ ✓ ✓ ✗ ✗ ✗ 46.12 46.51 42.49
✓ ✓ ✓ ✓ ✗ ✗ 53.24 53.87 52.25
✓ ✗ ✓ ✗ ✗ ✗ 44.18 44.48 39.69
✗ ✓ ✗ ✓ ✗ ✗ 45.08 45.25 40.32
✓ ✓ ✓ ✓ ✓ ✗ 54.07 53.60 54.06
✓ ✓ ✓ ✓ ✓ ✓ 55.55 56.67 55.16

The influence of λ. We conduct the experiment on Day Foggy dataset, where λ range from 0.25 to
1.50. We present the mAP with different λ values in the appendix (Figure 7), which indicates that
too small λ such as 0.25 lead to a sub-optimal performance since the target data is not fully utilized.
While setting λ = 1.0, the learning from both source and target is balanced and lead to the optimal
performance. In Figure 2, we present some qualitative results of using some of the λ values. A small
λ value such as 0.5 misclassified bike as Motor, and miss some smaller objects due to insufficient
utilization of target information such as unlabeled novel class images. λ = 0.75 is able to detect
Bike but still not able to detect smaller objects. Similarly, λ = 1.25 failed to detect smaller objects
or separates multiple Persons since it puts too much focus on learning the target knowledge. While
setting λ = 1.00, the learning reaches a balance and lead to optimal performance.

(a) λ=0.50 (b) λ=0.75 (c) λ=1.0 (d) λ=1.25

Figure 2: Detection results with different λ’s.

6 CONCLUSION

In this work, we tackle the unique challenges of cross-domain open-vocabulary object detection, where
domain shift and category shift are intricately entangled. To address these challenges, we propose
MAP, a parameter-efficient Multi-source prompt learning framework. MAP unifies Multi-Source
Prompt Learning (MSPL) and Unsupervised Target Prompt Learning (UTPL) to effectively leverage
diverse knowledge from multiple source domains and adapt to the unlabeled target domain via
learnable prompts. We further provide a theoretical analysis of the proposed prompts in terms of their
fidelity and distinction properties. Extensive experiments on cross-domain benchmarks demonstrate
the effectiveness of our approach. In future work, we would work on developing techniques for the
interpretability and explainability of the learned prompts for better model understanding.
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7 REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our work. A detailed description of our
proposed method and training objectives is provided in Section 3 of the main paper. Additional pseudo
code of the proposed algorithm, detailed training steps, implementation details, hyperparameter
settings, and dataset information are included in Appendix B. To further facilitate reproducibility, we
provide an anonymous link to the source code and scripts for training and evaluation in Appendix G.
All datasets used in our experiments are publicly available, and their references are properly provided.
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A TRAINING ALGORITHM AND NOTATIONS

The notations used in the main paper are shown in Table 4. And the learning process of MAP is
presented in Algorithm 1.

Table 4: Summary of Major Notations

Notation Description
s s-th source domain
t Target domain
N Number of source domains
Ks Length of label space in domain d
Kt Length of label space in target domain t
Ds s-th source domain
Dt target domain t
Ds Dataset of s-th source domain Ds

Dt Dataset of target domain Dt

Isi The i-th image of s-th source domain
ys
i The i-th label of s-th source domain
bsi The bounding box of the i-th image of s-th source domain
csi The class label of the i-th image of s-th source domain
Iti The i-th image of the target domain t
Cs Label space of s-th domain, |Cs| = Ks

Ct Label space of target domain t

Cbase Base classes
Cnovel Novel classes
Vc The class-specific domain-invariant tokens for class c
Vd The domain-specific class-agnostic tokens for domain sd

[“domains”] Handcrafted textual domain descriptions related to domain s
M1 Length of the learnable tokens of Vc

M2 Length of the learnable tokens of Vd

M3 Length of the learnable tokens of M
ptsc The prompt for class c in source domain s
pttc The prompt for class c in target domain t
f(·) Visual encoder
g(·) Text encoder
Nr Number of region boxed for image I

rjI j-th region of image I

f jI j-th region box embedding of image I
cos(·, ·) cosine similarity

B IMPLEMENTATION DETAILS

Model Architecture. In this work, we tested four open-vocabulary object detectors. Each source
model is initialized with a pre-trained open-vocabulary object detector. They are then fine-tuned using
their own labeled source datasets, and adapted to the target domain via MAP. During pre-training,
the text encoders are kept frozen, while the visual encoders are fine-tuned using the labeled source
data. During adaptation, each fine-tuned visual encoder is used to process source images from its
corresponding domain. The target visual encoder is initialized as a vanilla visual encoder.

Implementation details. We adopt the open-vocabulary object detector backbone to encode the
input images and their corresponding text encoder to encode the input text prompts. The length of
learnable tokens M1, M2 and M3 are fixed as 8. The hyperparameter λ is set to 1. We use SGD
optimizer with learning rate equals to 0.002. Following Ge et al. (2023), we randomly initialize each
prompt with a zero-mean Gaussian distribution with a standard deviation of 0.02. The training of the
prompts and the inference are conducted on one NVIDIA V100 GPU. The augmented images are
generated with the pre-trained CLIPstyler model Kwon & Ye (2022).
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Algorithm 1 Training Procedure of MAP

1: INPUT Source datasets {Ds}Ns=1, target dataset Dt, domain style text prompt {Ts}Nd=1, and
target domain style text prompt Tt

2: Initialize source and target prompts as "A photo of [CLS]"
3: Obtain source prompts and target prompt embedding using text encoder g(·): {{ptsc}Ns=1}Kc=1,

and {pttc}Kc=1
4: while not converged do
5: for d ∈ {1, ..., N} do
6: Sample a source batch Bs ∼ Ds

7: Compute Ls
domain and Ls

class using Equation (5) and Equation (3), respectively
8: end for
9: Sample a target batch Bt ∼ Dt

10: for each image It in Bt do
11: for each style description in {Ts}Nd=1 do
12: Augment It with Ts and Tt to obtain As(It)
13: end for
14: end for
15: Compute Lt

domain and Lt
class using Equation (10) and Equation (8), respectively

16: Compute Lnovel using Equation (12)
17: Compute Lorth using Equation (13)
18: Compute overall loss and update pts and ptt
19: end while

Text-guide Synthesis. Text-guide Synthesis aim to generated images with different styles given an
input base image and a text description. CLIPstyler Kwon & Ye (2022) design a modulation of the
style of content images only with a single text condition using the pre-trained text-image embedding
model of CLIP, and propose a patch-wise text-image matching loss with multiview augmentations for
realistic texture transfer. PODA Fahes et al. (2023) propose Prompt-driven Instance Normalization
(PIN) to learn style statistics based on CLIP feature alignment which are later used for image
augmentation. PromptStyler Cho et al. (2023) simulates various distribution shifts in the joint space
by synthesizing diverse styles via prompts without using any images to deal with source-free domain
generalization. In this work, we use CLIPstyler Kwon & Ye (2022) to generate augmentations of
unlabeled target imagesto learn target prompts. Formally, CLIPStyler aims to transfer the semantic
style of target text tsty to the content image Ic through the pre-trained text-image embedding model
CLIP without a style image Is to as a reference. Given the semantic text style of the style target and
the input content tsty and tsrc, CLIPStyler transforms the content image Ic to stylized image Ics. In
our setting, we treat the unlabeled target image as the content image Ic, the target domain semantic
description as tsrc, and the source domain semantic description as tsty . With multiple source domains
available, we augment the target image with multiple styles. The corresponding domain descriptions
are shown in Tab. 5. The augmentation results are shown in Fig. 3.

Table 5: Domain descriptions of DWD

Domain Name Domain Description
Day Clear A driving in a clear day photo
Day Foggy A driving in a foggy day photo
Night rainy A driving in a rainy night photo
Night clear A driving in a clear night photo
Dusk rainy A driving in a rainy dusk photo

C DETAILED ILLUSTRATION OF LOSS FUNCTIONS

In this section, we provide a detailed illustration of the learning objectives used in MAP through
accompanying figures.
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(a) Day Clear (b) Night Clear (c) Dusk Rainy (d) Night Rainy (e) Day Foggy

(f) Day Foggy (g) Night Clear (h) Dusk Rainy (i) Night Rainy (j) Day Clear

(k) Dusk Rainy (l) Night Clear (m) Day Clear (n) Night Rainy (o) Day Foggy

(p) Night Clear (q) Day Clear (r) Dusk Rainy (s) Night Rainy (t) Day Foggy

(u) Night Rainy (v) Night Clear (w) Dusk Rainy (x) Day Clear (y) Day Foggy

Figure 3: Stylized images of different styles with image sampled from different domains of DWD
dataset wit descriptions shown in Tab. 5.

C.1 ILLUSTRATION OF MSPL LEARNING OBJECTIVES

In Figure 4, we present figurative illustration for Ls
class and Ls

domain. To differentiate Ls
class and Ls

domain,
we use “Src Prompt 1 Emb" and “Src Prompt N Emb" to specify different source prompt embeddings
outputed by the text encoder. As shown in Figure 4, both Ls

class and Ls
domainBoth losses take a visual

region embedding (omitted in the figure for clarity, please refer to Figure 1) and the corresponding
source prompt as input. The key difference is that Ls

domain incorporates prompt embeddings from
other source domains in addition to its own, promoting the learning of domain-aware representations.

C.2 ILLUSTRATION OF UTPL LEARNING OBJECTIVES

In Figure 5, we illustrate the loss functions of learning target class-specific and domain specific tokens.
Both are learned in an unsupervised manner with augmented views and source prompts involved. In
Figure 6, we demonstrate the loss functions of the novel class mask and the prompt orthogonality.

D ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional APbase and APnovel results of the DWD benchmark in Table 6
and Table 7. We present ablative for hyper-parameters including λ, M1, M2 and M3 in Appendix D.3.
The visualization of prompt embeddings are shown in Appendix D.4. Additional experiments on
datasets including Cityscapes, FoggyCityscapes, and KITTI are presented in Appendix D.6.
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(a) Learning class-specific tokens via Ls
class. (b) Learning domain-specific tokens via Ls

domain.

Figure 4: Illustration of source prompt learning objectives: Ls
class and Ls

domain.

(a) Class-specific tokens (b) Domain-specific tokens

Figure 5: Illustration of learning target domain prompts.

D.1 APBASE AND APNOVEL RESULTS OF THE DWD BENCHMARK

In Table 6 and Table 7, we present the APbase and APnovel. We observe that MAP has ranked the top
across different object detector backbones and different domains. Similarly, MSPL methods performs
better than SSPL methods due to the utilization of multiple source models. But our model outperform
other MSPL methods since other methods only focus on addressing domain shift while neglecting
the category shift.

D.2 ABLATION STUDY

Target model initialization. For simplicity, our previous experiments initialized the target model
using a vanilla visual encoder. In this ablation study, we investigate the effect of initializing the target
model with a source model fine-tuned on one of the source domains. This approach can fully leverage
prior knowledge from a particular source domain and may accelerate adaptation, especially when
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(a) Novel mask (b) Prompt Orthogonality

Figure 6: Illustration of class and domain orthogonality loss.

Table 6: Domain adaptation results (APbase) on DWD with the same setting as Table 2.

Backbone RegionCLIP Zhong et al. (2022) OVMR Ma et al. (2024) YOLO-World Cheng et al. (2024) GDINO Liu et al. (2024)
Methods NC DR NR DF NC DR NR DF NC DR NR DF NC DR NR DF
LB 44.56 33.25 29.45 36.79 44.98 34.56 30.11 36.98 45.15 34.68 30.09 37.88 45.92 37.05 32.82 40.82
CoOP Zhou et al. (2022b) 45.78 34.66 31.59 38.67 46.54 35.92 31.74 38.55 46.83 35.62 31.58 39.75 46.84 37.12 33.04 40.95
DAPL Ge et al. (2023) 45.57 34.94 31.82 37.74 47.05 37.01 31.95 39.52 47.05 36.02 33.05 40.03 48.06 37.05 33.08 41.97
DAPro Li et al. (2024) 45.56 34.89 31.22 38.62 45.78 35.69 31.75 39.02 46.95 36.58 31.95 40.32 47.68 37.22 33.69 41.15
MPA* Chen et al. (2023) 46.89 36.45 32.58 39.98 47.15 36.87 32.96 40.25 48.24 37.85 33.04 41.52 48.88 38.65 33.84 42.41
SAP* Yang et al. (2024a) 46.78 36.12 32.45 39.84 47.01 36.84 32.89 40.20 48.15 37.54 33.09 41.74 48.95 38.51 33.79 42.42
APNE* Yang et al. (2024b) 47.14 37.25 33.08 40.82 48.08 37.85 33.95 41.25 49.12 38.70 34.11 42.52 49.85 39.45 34.90 43.38
POND* Wang et al. (2024a) 47.42 37.32 33.12 40.85 48.11 37.90 33.98 41.41 49.18 38.65 34.15 42.63 49.90 39.46 34.89 43.40
MAP*(Ours) 47.45 37.38 33.18 40.92 48.16 37.98 34.09 41.49 49.24 38.77 34.22 42.78 50.02 39.58 34.95 43.51

the target domain shares visual or semantic similarity with that source. However, such initialization
may also introduce domain bias, potentially leading to overfitting to the source characteristics and
suboptimal performance when the source-target domain gap is large.

To study this effect, we perform experiments on the Clipart1k target domain, using three initialization
strategies: a vanilla object detector, a source model fine-tuned on Comic2k, and a source model fine-
tuned on Watercolor2k. Results across four backbone detectors (RegionCLIP, OVMR, YOLO-World,
and GDINO) are shown in Table 8. We observe that initializing with a Comic2k or Watercolor2k
model generally improves AP slightly over the vanilla initialization, especially when the backbone
benefits from domain-specific knowledge without suffering from strong domain bias. This highlights
the trade-off between leveraging source-specific priors and maintaining generalization.

Heterogeneous source model architecture. For simplicity, prior experiments used the same
object detector architecture across all source models. However, our framework naturally extends
to heterogeneous source backbones, as source models remain frozen during adaptation. In this
ablation study, we explore this flexibility by employing a combination of four distinct backbone
detectors: RegionCLIP, OVMR, YOLO-World, and GDINO, each pre-trained on a different source
domain—Night Rainy, Dusk Rainy, Day Clear, and Night Clear, respectively. We adapt these models
to the target domain Day Foggy. The resulting performance achieves an AP of 39.40%, with APbase
at 40.89% and APnovel at 38.77%. While this is slightly lower than using a single strong backbone
such as YOLO-World or GDINO alone—due to the relatively weaker performance of RegionCLIP and
OVMR—it demonstrates that heterogeneous backbone integration is feasible and effective. Overall,
this experiment confirms that MAP is compatible with multi-source models of varying architectures,
enabling greater flexibility in practical deployment.

Table 7: Domain adaptation results (APnovel) on DWD with the same setting as Table 2.

Backbone RegionCLIP Zhong et al. (2022) OVMR Ma et al. (2024) YOLO-World Cheng et al. (2024) GDINO Liu et al. (2024)
Methods NC DR NR DF NC DR NR DF NC DR NR DF NC DR NR DF
LB 36.95 25.98 22.96 29.93 38.05 27.15 23.35 30.52 38.39 27.50 23.62 30.98 38.95 30.18 26.19 34.02
CoOP Zhou et al. (2022b) 38.79 27.89 24.29 31.79 39.54 28.82 24.56 32.12 39.85 28.78 24.91 32.59 40.84 29.78 26.89 35.82
DAPL Ge et al. (2023) 38.85 27.94 24.35 31.86 39.62 28.88 24.61 32.18 39.95 28.88 24.98 32.68 40.95 29.87 26.99 35.94
DAPro Li et al. (2024) 38.86 27.96 24.37 31.89 39.65 28.94 24.68 32.22 39.98 28.91 25.04 32.72 40.79 30.36 27.05 35.96
MPA* Chen et al. (2023) 40.44 29.95 26.18 33.55 40.89 30.54 26.65 34.02 41.94 31.39 26.58 34.89 42.61 33.21 27.58 36.19
SAP* Yang et al. (2024a) 40.68 30.14 26.37 33.81 41.15 30.76 26.88 34.26 42.19 31.67 26.74 35.15 42.82 33.44 27.80 36.41
APNE* Yang et al. (2024b) 40.84 30.32 26.55 34.03 41.35 30.98 27.02 34.47 42.41 31.89 26.95 35.38 43.04 33.65 28.02 36.65
POND* Wang et al. (2024a) 41.25 30.78 26.96 34.51 41.78 31.42 27.48 34.90 42.85 32.31 27.38 35.80 43.49 34.09 28.44 37.10
MAP*(Ours) 42.75 32.19 28.42 35.83 43.22 32.66 28.87 36.31 44.15 33.79 29.36 37.90 45.09 35.02 30.50 38.24
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Table 8: Domain adaptation results (APs) on Clipart1k using different pre-trained models to initialize
the target model.

Backbone RegionCLIP Zhong et al. (2022) OVMR Ma et al. (2024) YOLO-World Cheng et al. (2024) GDINO Liu et al. (2024)
Methods AP APbase APnovel AP APbase APnovel AP APbase APnovel AP APbase APnovel
Vanilla 52.54 53.25 52.18 55.35 56.42 55.14 54.86 55.98 54.42 55.55 56.67 55.16
Comic2k 52.69 53.45 52.36 55.99 56.66 55.70 54.89 55.67 54.55 56.28 56.71 56.09
Watercolor2k 52.90 54.80 52.08 55.79 56.06 55.67 54.79 55.69 54.41 56.40 56.83 56.22

Computational Complexity Analysis. Table 9 presents a comparison of the inference time and
memory usage of our method against existing baseline approaches. For a fair comparison, we evaluate
MAP alongside other MSPL methods. As shown, our method achieves the fastest inference speed at
74.1 FPS and the smallest parameter size of 37M, demonstrating both computational efficiency and
lower memory footprint.

Table 9: Time and Memory Complexity

MPA* Chen et al. (2023) SAP* Yang et al. (2024a) APNE* Yang et al. (2024b) POND* Wang et al. (2024a) MAP*(Ours)
Inference Time (FPS) 63.2 69.7 60.5 52.0 74.1
Parameter Size (M) 45 40 46 48 37

Impact of different augmentation methods. We evaluate several augmentation strategies, in-
cluding CLIPstyler Kwon & Ye (2022), CycleGAN Zhu et al. (2017), UNIT Liu et al. (2017), and
UNSB Kim et al. (2023). As shown in Table 10, CycleGAN achieves the best overall AP with a slight
gain of +0.23% over our baseline, suggesting that richer pixel-level stylization can marginally en-
hance domain realism. However, the improvement is limited, and text-guided augmentation remains
competitive while being more lightweight, controllable, and free from style image requirements.

Table 10: Performance comparison of different methods.

Metric CLIPstyler CycleGAN UNIT UNSB
AP 55.55 55.78 54.89 55.42
APbase 56.67 57.23 56.45 56.79
APnovel 55.16 55.01 54.88 54.95

Integrating LLMs in OVOD. In this ablation, we examine the impact of leveraging more powerful
pre-trained large language models (LLMs). Using YOLO-World as a baseline, we replace the original
CLIP text encoder with the stronger LLaVA-OneVision-0.5b-ov Liu et al. (2023). Since the detector
and the language model were pre-trained independently, we follow YOLO-World’s pre-training
strategy and re-train the detector for 5 epochs to align its visual features with the new text encoder. As
shown in Table 11, this substitution yields consistent gains in detection accuracy, demonstrating that
stronger LLM/MLLM backbones can significantly enhance cross-domain open-vocabulary detection.
This result highlights the potential of integrating state-of-the-art multimodal language models into
OVD frameworks to further push performance boundaries.

D.3 IMPACT OF HYPERPARAMETERS

In this section, we perform the experiments of different choices of the hyperparameters λ, M1, M2,
M3, and η to explore their impact.

The influence of M1, M2, M3 We conduct experiments on the Day Foggy dataset using G-DINO as
the model backbone, varying M1 and M2 from 6 to 12. Figure 7(a) presents a heatmap of mAP scores
for different values of M1 and M2. The results indicate that values that are too small or too large
result in sub-optimal performance, likely due to underfitting or overfitting. The best performance is
achieved when both M1 and M2 are set to 8. To evaluate the influence of M3, we fix M1 and M2 at 8
and vary M3 from 6 to 12. The results show that the optimal performance is achieved when M3 = 9.
However, variations in M3 do not significantly affect performance on the Day Foggy domain when
M1 and M2 are fixed.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 11: Comparison between different vision-language models on cross-domain open-vocabulary
detection.

Method AP APbase APnovel
YOLO-World with CLIP (LB) 41.96 42.87 39.83
YOLO-World with LLaVA 42.88 43.85 40.70
MAP with CLIP 54.86 55.98 54.42
MAP with LLaVA (Ours) 55.19 56.45 54.68

Table 12: Impact of the hyperparameter M3

Length 6 7 8 9 10 11 12
AP 40.41 40.55 40.85 40.97 40.95 40.82 40.69
APbase 43.04 43.19 43.37 43.51 43.48 43.30 43.17
APnovel 37.92 38.05 38.13 38.24 38.22 38.14 38.04

The influence of λ We conduct the experiment on Day Foggy dataset, where λ range from 0.25 to
1.50. We present the mAP with different λ values in Figure 7(b), which indicates that too small λ
such as 0.25 lead to a sub-optimal performance since the target data is not fully utilized. While setting
λ = 1.0, the learning from both source and target is balanced and lead to the optimal performance.

The influence of η. We evaluate the effect of η on the Clipart dataset with values ranging from
0.001 to 0.30, and report the results in Table 13. The best performance is obtained at η = 0.10,
indicating that a small but non-zero regularization from the orthogonality term enhances performance.
However, when η becomes too large, the orthogonality term dominates training and significantly
degrades both base and novel class accuracy.

D.4 VISUALIZATION OF PROMPT EMBEDDINGS

In this ablation, we visualized the different components of the learned prompts. We first randomly
select 75 sample prompts that summarize each pairing input image. By reducing their dimensionality
into a 2-d plane with T-SNE, we visualize each textual prompt embedding from every domain along
with the domain invariant and domain specific tokens generated in our proposed method, as shown
in Figs 8, 9 and 10. We choose to visualize the embedding of the class car to show the domain
shift effect and our method’s capability to decompose such effect into a respective domain invariant
token and a domain specific embedding token for each input image prompt. In Fig. 8, we first plot the
image embeddings from Day Clear (i.e., source) and Day Foggy (i.e., target) with red and blue dots.
The domain-invariant tokens are denoted with orange stars. We also plot the template embedding
with handcrafted prompts such as "a photo of car in the road, in the street", etc and denote them as
magenta pentagon. From Fig. 8 red circle grouped dots, we find that the model discovered domain

(a) Heatmap mAP on Day Foggy in terms of
different lengths of the learnable tokens of Vc

(M1) and Vd (M2).

(b) Multi-source test mAP on Day Foggy with
λ ablations.

Figure 7: Impact of Hyperparameters.
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Table 13: Impact of the hyperparameter η.

Metric 0.001 0.01 0.10 0.30
AP 55.47 55.50 55.55 52.13
APbase 56.60 56.63 56.67 52.98
APnovel 55.05 55.07 55.16 51.69

invariant embedding resides between the source and target domains, and locate very near to the
template. Similar finding can be seen in Fig. 9 with Night Clear and Night Rainy domains. All above
findings confirm that our method could summarize effective domain invariant embeddings that grasp
the major objects of the image. In Fig. 10, we plot the domain-specific tokens with different colors
of stars: blue, green, red and purple. We also plot the handcrafted template in orange pentagon.
From Fig. 10, we can also see that the domain-specific tokens reside near to each domain’s shifted
embedding while be far away from the template, for all four data domains. We have highlighted two
groups with blue and red circles in Fig. 10 for better illustration.

Figure 8: Day Clear versus
Day Foggy Textual Embed-
ding and Domain Invariant To-
kens.

Figure 9: Night Clear versus
Night Rainy Textual Embed-
ding and Domain Invariant To-
kens.

Figure 10: All domains tex-
tual embedding and their re-
spective Domain Specific To-
kens.

D.5 VISUALIZATION OF CLASS EMBEDDINGS

In Figure 11, we present the t-SNE visualization of base and novel classes on the Clipart dataset.
Aside from a few outliers, the base and novel classes are well separated, indicating that the novel
mask loss encourages the novel classes to explore a distinct feature space.

Figure 11: t-SNE of base and
novel class in Clipart.

Figure 12: t-SNE of base
and novel class in DWD Day
Foggy.

Figure 13: t-SNE of base
and novel class in Foggyci-
tyscapes.

D.6 ADDITIONAL DATASETS

We create a new multi-source dataset by simply utilizing Cityscapes1 Cordts et al. (2016), Foggy-
Cityscapes2 Sakaridis et al. (2018), and KITTI3 Geiger et al. (2013b) for further evaluation.

1https://github.com/tiancity-NJU/da-faster-rcnn-PyTorch
2https://www.cityscapes-dataset.com/downloads/
3http://www.cvlibs.net/datasets/kitti/
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Cityscapes consist of 2,975 training images and 500 testing images, have a total of 8 categories
captured under normal weather. Foggy-Cityscapes applies images of Cityscapes to simulate foggy as
well as inherits the annotations of Cityscapes. KITTI contains 7,481 urban images which are different
from Cityscapes. The Cityscapes and KITTI are used as source domains, while FoggyCityscapes is
the target domain. To augment the target images with the source domain styles, we use "A photo of
driving in the city in a foggy daytime" as source description and "A photo of driving in the city during
daytime" and "A photo of driving in the urban city" as target descriptions. For open-vocabulary object
detection, we reserve Rider, Bike, Motor as novel classes. The performance is presented
in Tab. 14. It’s evident that our method excels in the single-source domain adaptation methods,
attaining state-of-the-art results. Furthermore, when compared to other multi-source domain adaptive
techniques, the advantage of our approach is evident across novel and base classes.

Table 14: Domain adaptation results (APs) on Foggycityscapes. For multi-source domain adaptation
methods (highlighted with *), Cityscapes and KITTI are used jointly as source domains. For single-
source domain adaptation methods, either Cityscapes or KITTI is used as the source domain, and
only the best performance is reported. LB denotes Lower Bound, where the backbone detector is
directly applied to the target domain without adaptation.

Backbone RegionCLIP Zhong et al. (2022) OVMR Ma et al. (2024) YOLO-World Cheng et al. (2024) GDINO Liu et al. (2024)
Methods AP APbase APnovel AP APbase APnovel AP APbase APnovel AP APbase APnovel
LB 40.15 41.87 38.06 41.87 42.34 39.59 40.95 41.89 38.86 42.07 42.95 39.80
CoOP Zhou et al. (2022b) 40.25 41.97 38.18 42.05 42.57 39.74 41.11 42.03 38.96 42.20 43.07 40.05
DAPL Ge et al. (2023) 40.59 42.26 38.49 42.38 42.86 40.06 41.56 42.40 39.44 42.49 43.49 40.49
DAPro Li et al. (2024) 41.44 42.15 39.39 43.34 43.78 40.97 42.50 43.37 40.39 43.42 44.42 41.40
MPA* Chen et al. (2023) 44.15 45.14 42.33 46.15 46.64 43.79 45.52 46.35 43.32 46.36 47.29 44.23
SAP* Yang et al. (2024a) 45.26 47.05 43.24 47.02 47.58 44.75 46.32 47.28 44.33 47.28 48.29 45.24
APNE* Yang et al. (2024b) 45.78 47.60 43.76 47.38 48.12 45.30 46.86 47.80 44.78 47.85 48.72 45.66
POND* Wang et al. (2024a) 48.50 50.31 46.42 50.08 50.82 48.78 49.55 50.44 47.45 50.48 51.44 48.41
MAP*(Ours) 52.02 52.76 51.69 54.87 55.89 54.62 54.15 55.26 53.74 54.88 55.98 54.39

E THEORETICAL JUSTIFICATION

E.1 PROOF OF PROPOSITION 4.3.

Proof. In the unsupervised setting, where ground-truth labels y are unavailable, we cannot directly
evaluate the mutual information MI(pt; y). Instead, we approximate fidelity by quantifying the
information shared between the input region x and the predicted label ŷ, i.e., MI(x; ŷ), where ŷ is the
model’s output given prompt pt. We argue that under the assumption of an approximately constant
H(ŷ), low entropy of the prediction distribution p(ŷ|x,pt) implies high mutual information between
the input x and the predicted label ŷ, thus serving as a proxy for high fidelity.

Formally, the mutual information between x and ŷ is given by:

MI(x; ŷ) = H(ŷ)−H(ŷ|x), (16)

where H(ŷ) is the marginal entropy over predictions across the dataset, and H(ŷ|x) is the conditional
entropy of predictions for a given input x.

Minimizing the entropy of the prediction distribution:

Lentropy = −
∑
k

p(ŷ = k|x,pt) log p(ŷ = k|x,pt) (17)

effectively reduces H(ŷ|x). If H(ŷ) is kept high or remains approximately constant (e.g., via diverse
predictions across the dataset), then the mutual information MI(x; ŷ) increases:

Low H(ŷ|x) ⇒ High MI(x; ŷ). (18)

Hence, minimizing entropy encourages confident and consistent predictions, which implies that the
prompt encodes meaningful and class-relevant information. This serves as an effective surrogate for
high fidelity in the absence of label supervision:

Low entropy ⇒ High mutual information I(x; ŷ) ⇒ High unsupervised fidelity . (19)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

E.2 PROOF OF PROPOSITION 4.4

Proof. An effective class-specific prompt should possess high fidelity, meaning it preserves label-
relevant information, and should exhibit low distinction with respect to domains, i.e., remain invariant
to domain-specific characteristics. The class-specific loss Ls

class in Equation (3) encourages the
class-specific prompt to maximize the likelihood of correct class predictions across all regions and
source domains. From the perspective of fidelity, minimizing Ls

class increases the mutual information
MI(ptk, yk) between the class-specific prompt ptk and the label yk, as the prompt is explicitly
optimized to recover semantic label information. Specifically,

MI(ptk, yk) = H(yk)−H(yk|ptk) (20)

where H(yk) is the entropy and H(yk|ptk) is the entropy of H(yk) conditioned on ptk. Since
H(yk) is constant, maximizing the mutual information MI(ptk, yk) is equivalent to minimizing
H(yk|ptk):

MinH(ŷ|x) ⇒ Max MI(x; ŷ). (21)

At the same time, because this loss is aggregated over multiple domains without incorporating
domain labels, it discourages the prompt from encoding domain-specific cues, thereby implicitly
enforcing low distinction with respect to domain. Moreover, class-specific prompts should also
exhibit inter-class distinction since class-specific prompts should be disentangled across classes to
capture diverse semantic attributes without redundancy. And this is ensured by minimizing Lorth,
which promotes mutual orthogonality explicitly.

E.3 PROOF OF PROPOSITION 4.5

Proof. An effective domain-specific prompt should faithfully encode the unique characteristics of
each source domain (high fidelity) while remaining distinguishable from prompts of other domains
(high inter-domain distinction), and invariant to classes (low inter-class distinction). This ensures that
the prompt captures domain-specific cues that aid in learning domain-aware visual representations,
which is particularly useful for mitigating domain shifts in cross-domain detection. The domain-
specific loss function Ls

domain in Equation (5) explicitly enforces these principles. First, the fidelity is
promoted by minimizing the negative log-likelihood in Equation (5), where the visual regions rsij
are aligned with their respective domain-specific prompts ptsk. By ensuring that the visual features
closely align with the correct domain-specific prompt, we are maximizing the mutual information
between the prompt and its corresponding label k. This encourages the prompt to preserve domain-
relevant information, reinforcing the fidelity of the representation within its source domain. Second,
distinction is addressed by the contrastive nature of Equation (6), which defines the alignment over
the set of all possible class-domain prompt pairs. This normalization ensures that the domain-specific
prompts from different domains are not highly similar, thus encouraging minimal overlap. By
minimizing this overlap, the domain-specific prompts for each source domain are distinguished
from each other, resulting in high inter-domain distinction. This allows the model to better separate
the learned domain-specific representations and maintain robust performance across domains. The
prompt orthogonality loss Lorth in Equation (13) explicitly enforces high distinction among prompts.
Minimizing Lorth reduces mutual information MI(pti,ptj) between different prompts, ensuring
that each prompt captures unique and domain-specific information. With the softmax over different
classes, low inter-class distinction is enforced.

E.4 PROOF OF PROPOSITION 4.6

Proof. In the context of unsupervised target domain adaptation, learning effective class-specific
prompts without access to labeled target data is critical. Similar to the source class-specific case,
the target class-specific prompt is expected to exhibit high fidelity and low inter-domain distinction.
First, the entropy minimization loss Lt

class in Equation (8) promotes high fidelity by encouraging
prediction consistency across augmented views, while Lorth explicitly enforces orthogonality among
different class prompts to reduce redundancy and enhance distinction. From an information-theoretic
perspective, low entropy implies confident predictions, and class diversity assuming a roughly constant
H(ŷ), this corresponds to high mutual information between the learned prompt and the predicted
label. According to Proposition 4.3, the class-specific prompt presents high unsupervised fidelity.
Thus, the learned prompt is more likely to encode class-discriminative and semantically meaningful
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features. Second, by averaging predictions across various domain-stylized augmentations and prompt
variants, the model implicitly encourages low distinction between the target class-specific prompt and
prompts from source domains. This regularization effect reduces the influence of domain-specific
variations, pushing the prompt toward a domain-invariant, semantics-focused representation.

E.5 PROOF OF PROPOSITION 4.7

Proof. Similar to source domain-specific prompts, the target domain-specific prompt should demon-
strate both high fidelity and high inter-domain distinctiveness. Building on the analysis of target
class-specific prompts, high unsupervised fidelity for the target domain-specific prompt can be
achieved by optimizing Lt

domain. Meanwhile, high inter-domain distinctiveness can be explicitly
encouraged through Lorth, as is done for the source domain-specific prompts.

E.6 PROOF OF PROPOSITION 4.8

Proof. Minimizing Lnovel enhances the distinction between the novel class prompts and the base
class space. By promoting orthogonality between base and novel classes in the learned feature space,
it enables novel prompts to specialize in capturing previously unseen concepts.

E.7 GENERALIZATION GUARANTEE

In this section, we explore the generalization error of open-vocabulary domain adaptation under
multi-source setting. Given N source domains, weighted by α = (α1, α2, ..., αN ),

∑N
i=1 αi = 1,

we examine the convex combination of training error ˆerrα(h) from each source domain following
the setting in Ben-David et al. (2010), where h ∼ H is a hypothesis in the hypothesis space H.
Denoting the empirical error in the target domain as ˆerrt(h), the generalization error of multi-source
open-vocabulary domain adaptation is bounded by the following Theorem E.1.

Theorem E.1. Given N labeled source domains S1, ..., SN and an unlabeled target domain T , let
ˆerrα(h) be the empirical α-weighted error of a hypothesis h, πt

novel be the class prior probability for
the novel classes in the target domain, for any δ ∈ (0, 1), with probability at lease 1− δ,

ˆerrt(h)

1− πt
novel

≤ ˆerrα(h) +

N∑
i=1

αi(2λi + dH∆H(Di, DT )) +

N∑
i=1

αi

(
ˆerrtnovel(h)

1− πt
novel

− ˆerrsinovel(h)

)
(22)

where λi = minh∈H{errt(h) + erri(h)}. Di, DT are the domain distributions for source domain
Si and target domain T , respectively. ˆerrsinovel(h) and ˆerrtnovel(h) are the empirical risk of samples
belong to the novel classes.

Equation (22) contains three parts, convex combination of source error, domain discrepancy, and
open-vocabulary difference. Detailed proof of Theorem E.1 is provided in as follows:

Proof. Step 1. Given a symmetric loss ℓ, with h ∈ H, the expected risks of the convex combination
source and target is defined as:

errα(h) =

N∑
i=1

αiE(x,y)∼Di
ℓ(h(x),y). (23)

errt(h) = E(x,y)∼Dt
ℓ(h(x),y) (24)

The partial risk of known target classes is

err∗t (h) =
1

1− πt
novel

∫
X×Ys

ℓ(h(x),y)dPXtY t(x,y) (25)

where X is the feature space, Ys is the source label space, we suppose all the source domain share
the same label space Ys for simplification. PXtY t is the joint distribution of the target domain.
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The partial risk for the unknown target classes is

errnovel
t (h) =

∫
X
ℓ(h(x),ynovel)dPXt|ynovel(x) (26)

And we have
errt(h) = πt

novelerr
novel
t (h) + (1− πt

novel)err
∗
t (h) (27)

Then
errt(h)

1− πt
novel

− errα(h) = err∗t (h)− errα(h) +
πt

novel

1− πt
novel

errnovel
t (h) (28)

Step 2. Since we assume all the source domain share the same label space Ys, we have
N∑
i=1

αi

∫
X×Ysi

ℓ(h(x),y)dPXsY s(x,y) =

∫
X×Ys

ℓ(h(x),y)dPXsY s(x,y) (29)

err∗t (h)− errα(h) =

∫
X×Yt

ℓ(h(x),y)dPXtY t|Ys(x,y)−
N∑
i=1

αi

∫
X×Ys

ℓ(h(x),y)dPXsiY s(x,y)

≤ err∗t (h̃) +

∫
X×Yt

ℓ(h̃(x),y)dPXtY t|Ys(x,y)

+ errα(h̃)−
N∑
i=1

αi

∫
X×Ys

ℓ(h̃(x),y)dPXsiY s(x,y) (30)

where h̃ is any hypothesis in H. According to Fang et al. (2020), we have∫
X×Yt

ℓ(h(x), h̃(x))dPXtY t|Ys(x,y) =

∫
X
ℓ(h(x), h̃(x))dPXt|Ys(x,y) (31)

And for i ∈ {1, ..., N}∫
X×Ys

ℓ(h(x), h̃(x))dPXsiY s(x) =

∫
X
ℓ(h(x), h̃(x))dPXsi (x) (32)

Based on above equations, we have

err∗t (h)− errα(h) ≤ err∗t (h̃)− errα(h̃) +

N∑
i=1

αi|
∫
X
ℓ(h(x), h̃(x))dPXt|Ys(x,y)−

∫
X
ℓ(h(x), h̃(x))dPXsi (x)|

≤ err∗t (h̃)− errα(h̃) +

N∑
i=1

αidH(PXt|Ys , PXsi ) (33)

Hence, based on the definition of λi, and denoting Di = PXsi , DT = PXt|Ys , we have,

err∗t (h)− errα(h) ≤
N∑
i=1

αi(2λi + dH∆H(Di, DT )) (34)

Step 3. In this step, we prove that
πt

novel

1− πt
novel

errtnovel(h) ≤ dH∆H(Di, DT ) +
Rt

novel(h)

1− πt
novel

−Rt
novel(h) (35)

This step is similar the proof in Fang et al. (2020). Please refer to the detailed in Fang et al. (2020).

By combining the results from Step 2 & 3, we have

ˆerrt(h)

1− πt
novel

≤ ˆerrα(h) +

N∑
i=1

αi(2λi + dH∆H(Di, DT ))

+

N∑
i=1

αi

(
ˆerrtnovel(h)

1− πt
novel

− ˆerrsinovel(h)

)
(36)
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F POTENTIAL SOCIETAL IMPACT AND LIMITATIONS

Open-vocabulary domain adaptation with multiple sources has the potential to significantly expand its
application in diverse settings with various constraints, such as heterogeneous and dynamic domains
with scarce labels. The transformative potential of open-vocabulary models lies in their ability
to generalize from limited data by leveraging pre-trained knowledge, reducing the necessity for
large, domain-specific datasets. This approach allows models to remain relevant and effective in
dynamic environments without extensive retraining. By minimizing the need for comprehensive data
collection and labeling, open-vocabulary domain adaptation also lowers the costs associated with
model development and maintenance. In terms of potential negative societal impact, by utilizing the
training and testing data from different domains, there is a possibility of data privacy concern. A
potential limitation of open-vocabulary domain adaptation is that the effectiveness of open-vocabulary
domain adaptation heavily relies on the quality and breadth of the pre-trained models. If these models
are not sufficiently comprehensive or up-to-date, their generalization capabilities may be limited.

G SOURCE CODE

For the source code, please check https://anonymous.4open.science/r/LEET-585B/
README.md.

H LLM USAGE STATEMENT

Large Language Models (LLMs) were used solely to aid in polishing the writing and improving
the clarity of exposition. No part of the research ideation, experimental design, implementation, or
analysis relied on LLMs. The authors take full responsibility for the content of this paper.
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