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ABSTRACT

Cross-domain open-vocabulary object detection (COVD) poses a unique and un-
derexplored challenge, requiring models to generalize across both domain shifts
and category shifts. To tackle this, we propose MAP: a parameter-efficient Multi-
source domain-Adaptive Prompt tuning framework that leverages multiple labeled
source domains to improve detection in novel, unlabeled target domains with
unseen categories. MAP consists of two key components: Multi-Source Prompt
Learning (MSPL) and Unsupervised Target Prompt Learning (UTPL). MSPL disen-
tangles domain-invariant category semantics from domain-specific visual patterns
by jointly learning shared and domain-aware prompts. UTPL enhances general-
ization in the unlabeled target domain by enforcing prediction consistency under
text-guided style augmentations, introducing a novel entropy-minimization objec-
tive without relying on pseudo-labels. Together, these components enable effective
alignment of visual and textual representations across both domains and categories.
In addition, we present a theoretical analysis of the proposed prompts, examining
their behavior through the lenses of fidelity and distinction. Extensive experiments
on challenging COVD benchmarks demonstrate that MAP achieves state-of-the-art
performance with significantly fewer additional parameters.

1 INTRODUCTION

Object detection has witnessed significant progress with the emergence of large-scale vision-language
models (VLMs), which enable open-vocabulary detection (OVD) by leveraging textual supervision
to recognize a wide range of categories, including those unseen during training [Phoo & Hariharan
(2022); |Lin et al.[(2022); Feng et al.| (2022)); | Yao et al.| (2022); [Minderer et al.| (2022); |Zareian et al.
(2021); [Zhou et al.| (2022c)); |Arandjelovic et al.|(2023)); Cheng et al.| (2024)). However, most existing
OVD methods assume that training and test data share the same underlying domain, which is often
unrealistic in practical scenarios where data distribution shifts are common. This motivates the task of
Cross-domain Open-Vocabulary Object Detection (COVD), where models must generalize to unseen
categories in a novel domain.

Prompt learning has recently emerged as a powerful and flexible strategy for adapting VLMs to
downstream tasks. Instead of fine-tuning the entire model, prompt learning optimizes a small set of
learnable tokens that guide the pre-trained model to focus on task-relevant features. This parameter-
efficient approach has shown strong performance in domain adaptation |[Wang et al.| (2024b)); |Singha
et al.|(2023;12024); L1 et al.| (2024); |Ge et al.| (2023)). In the context of COVD where models must
handle both domain and category shifts, prompt learning offers a natural and scalable solution, as it
enables the model to flexibly align textual and visual representations across diverse distributions. In
this work, we introduce Multi-Source Prompt Learning (MSPL) for the first time in COVD, leveraging
multiple labeled source domains to jointly capture class-specific and domain-specific knowledge.
By learning both domain-adaptive and class-aware prompts, MSPL enables effective visual-textual
alignment across domains and categories, and supports robust generalization to unseen target domains
with novel classes.

For target adaptation, previous methods rely heavily on pseudo labels generated from source-trained
models |Chen et al.|(2023); Yang et al.[(2024aib); [Liu et al.| (2025)); Wang et al.| (2024a). Such pseudo
labels are often unreliable due to domain and category shifts, especially in open-vocabulary settings
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Figure 1: Framework overview: (a) Multi-Source Prompt Learning (MSPL) disentangles domain-
invariant category semantics from domain-specific visual patterns by jointly learning shared and
domain-aware prompts. (b) Unsupervised Target Prompt Learning (UTPL) enhances generalization
in the unlabeled target domain by enforcing prediction consistency under text-guided style augmenta-
tions (c), introducing a novel entropy-minimization objective without relying on pseudo-labels. See
Appendix [C]for detailed loss illustration.

where unseen classes lack meaningful supervision. This limitation hinders robust generalization and
leads to error propagation. To address these challenges, we propose Unsupervised Target Prompt
Learning (UTPL), which eliminates the need for pseudo labels by enforcing prediction consistency
under style-guided augmentations through a novel entropy-based objective. Together with MSPL,
UTPL forms the core of our framework, Multi-source domain-Adaptive Prompt tuning (MAP), which
enables robust adaptation to novel domains and categories in the COVD setting.

Beyond the algorithmic design, we provide a theoretical analysis of the learnable prompts in MAP
by introducing two key properties: fidelity and distinction, to characterize their effectiveness. We
rigorously define these properties through an information-theoretic lens, connecting high-fidelity
prompts to low predictive entropy and high mutual information with latent labels, and high-distinction
prompts to mutual orthogonality across domains or classes. Furthermore, we propose a novel
definition of unsupervised fidelity, enabling the evaluation of prompt quality even in the absence of
labeled target data. This theoretical grounding helps to clarify why MAP is effective and provides a
principled framework for future developments in prompt-based domain adaptation.

Our main contributions are as follows: (1) We propose MAP, a novel framework for multi-source cross-
domain open-vocabulary object detection that integrates MSPL and UTPL to align visual—textual
representations across domains and categories. (2) We provide a theoretical analysis of prompt
fidelity and distinction, introducing a new formulation of unsupervised fidelity based on entropy and
mutual information. (3) We achieve state-of-the-art performance on standard COVD benchmarks
with minimal additional parameters.

2 RELATED WORKS

Open vocabulary object detection. Open-vocabulary detection was first proposed by Bansal et
al. [Bansal et al|(2018)), introducing the visual-semantic embeddings to replace the classification
layer of a closed vocabulary detector. This design has now become a common practice for many
subsequent open-vocabulary object detection works |Phoo & Hariharan! (2022); Lin et al.|(2022); Feng
et al.| (2022)); Yao et al.| (2022); Minderer et al.| (2022); [Zareian et al.| (2021)); Zhou et al.| (2022c));
ArandjeloviC et al.| (2023)); (Cheng et al.|(2024). To name a few, ViLD |Phoo & Hariharan| (2022)
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uses a teacher-student framework to distill knowledge from a pre-trained open-vocabulary image
classification model (i.e., teacher model) and detect region boxes with the student model by aligning
the text and image embeddings. PromptDet [Feng et al.|(2022)) scales up the OV detector with noisy
uncurated web images using the proposed regional prompt learning technique which aligns text
embedding with visual features. DetClip [Yao et al.|(2022) designs a concept dictionary with a
paralleled concept formulation to facilitate learning from heterogeneous datasets including detection,
grounding, and image-text pairs. YOLO-World |Cheng et al.|(2024) is built upon the YOLO backbone
and highly generalizable vision-language models; a vision-language path aggregation network is
further utilized to enhance the interaction between visual and semantic information. In this work, we
use several pre-trained open-vocabulary object detectors as backbones to evaluate their ability over
cross domain adaptation.

Domain adaptive prompt learning. Prompting origins in NLP tasks which prepend instructions to
the input to help train the language model [Lester et al.|(2021); |Shin et al.| (2020). With the emergence
of vision-language models such as CLIP Radford et al.| (2021), ALIGN [Jia et al.[ (2021), which
embed a shared visual-semantic space by learning from a large scale of image alt-text pairs using a
contrastive loss, domain-adaptive prompt learning has been used to address domain shifts between
the pre-trained VLMs and the downstream tasks [Ge et al.|(2023); [Li et al.|(2024); Chen et al.| (2024));
Bai et al.|(2024); Zhao et al.|(2024); Wang et al.|(2024b)). One line of the work constructs domain
adaptive prompts by directly embedding domain information |Ge et al.|(2023); [Li et al.|(2024); Bai
et al.|(2024)). The other line of work aims to align source and target domains with a prompt-based
framework [Chen et al.|(2024); Cao et al.| (2024); [Bai et al.| (2024). To facilitate multi-source adaptive
prompt learning (MSPL), MPA |Chen et al.| (2023)) first trains individual prompt for a source and
target domain pair with a contrastive loss then utilizes auto-encoding to denoise the learned prompt
and align all the reconstructed prompts. SAP-CLIP |Yang et al.|(2024a)) designs learnable prompts
with class context vectors and domain representation vectors based on CLIP to leverage textual
information of both class semantics and domain representations. APNE-CLIP utilizes negative textual
semantics and energy-based uncertainty to transfer knowledge from multiple source domains Yang
et al.| (2024b). VAMP proposes a vision-aware multimodal prompt tuning framework to address
multi-source domain few-shot adaptation [Liu et al.| (2025). However, these multi-source prompt
learning methods heavily rely on pseudo labels generated by source-trained detectors, which are
often noisy and unreliable—especially under significant domain and category shifts. In this work,
we propose MAP (Multi-source domain-Adaptive Prompt tuning) that circumvents the reliance on
pseudo labels by introducing a novel unsupervised target prompt learning (UTPL) strategy.

3 METHODOLOGY

CLIP. The CLIP model Radford et al.|(2021) consists of a visual encoder f and a text encoder g
that map images and text into a shared embedding space. To enable zero-shot classification, class
labels are converted into textual prompts, e.g., “a photo of a [CLASS]”. After tokenization, the
prompt pt is encoded into a text embedding z = g(pt). Given an image x with label y, the visual
encoder produces an embedding f(x). The probability of class k is then computed using cosine
similarity between the visual and text embeddings:

exp(cos(f(x), g(ptk))/T)
> c=1%exp(cos(f(x), 9(pt.))/T)’

where K is the number of categories, cos(-, ) denotes cosine similarity, and T is a temperature
parameter.

p(j = klx) = ey

Cross-domain open-vocabulary object detection. We consider multiple labeled source datasets
{D* = {I7,y;} N}, from domains {ID*}_,, and an unlabeled target dataset D! = {If}*,
from domain D¢, where N, and N; denote the number of samples in source and target domains,
respectively. For each image I7 € D*, its annotation is y7 = {b?, ¢! }, with bounding-box coordinates
b; and class labels ¢; € C®. Here, C* denotes the label space of domain D° containing K pre-

defined categories. We define the base label space as the union of all source-domain label sets, i.e.,
Chase = U]gV:1 C#. The target label space is denoted by C!, which includes both base and novel

categories: C* = CP¢ U C"¥el, with C"*! N C"®¢ = &. Here, C™"*! represents categories not seen
in any source domain. For simplicity, we denote the total number of categories across domains by K.
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3.1 MULTI-SOURCE PROMPT LEARNING

We present Multi-Source Prompt Learning (MSPL) for MAP, which learns class- and domain-specific
tokens using a standard domain-adaptive prompt structure that separates domain-invariant semantics
from domain-specific patterns for better cross-domain generalization. Prompts are optimized with
a class-specific loss £, to align with category semantics and a domain-specific loss L3 i, tO
capture domain variations. As shown in Sectiond] these objectives are theoretically grounded and

provably contribute to effective prompt learning.

Source prompt design. Following the domain-adaptive prompt formulation, each source-specific
prompt is defined as:

pt. = VV?[c][dl,], 2)

where V¢ = [v{][v§]...[v§,, | contains M, learnable tokens and c = e(*“CLASS-c”) is the tokenized
class label. The domain-specific component V* = [v{][v5]...[v},,] is combined with a tokenized
domain label dl; = e(“Domain-s”). While V¢ and [c] capture category semantics shared across
domains, V* and [dl;] encode domain-specific variations independent of categories. This structure
allows each prompt to jointly model general category knowledge and domain-specific patterns,
providing a strong foundation for cross-domain open-vocabulary detection.

Learning class-specific tokens. To learn class-specific domain invariant tokens V¢ and [c], we
propose to optimize the standard cross-entropy loss over each source domain for an object region r*
of category k:

where r® an object region in an image of the s-th source domain. The classification probability pg,
is obtained by aligning the visual region features f(r®) and corresponding class prompt g(pt7):

) = exp(cos(f(r*), g(pti))/T)
Sy exp(cos(f(x), g(pt?))/T)
By minimizing Equation (3)) across all N source domains, class-level semantic knowledge (V¢ and

[c]) is distilled into each source prompt pt?, enabling accurate category-level discrimination within
its domain and promoting domain-invariant understanding.

pslass (Q = k‘ 4)

Learning domain-specific tokens. To learn domain-specific tokens V* and [dl;] for each source
domain prompt, we minimize the following domain-specific loss function:

Egomain = EDS [_ 1nggomain(y = k|rs)]> (5)

where the probability formulation pj,.;, defined in Equation (6] is a softmax over all class-domain
prompt combinations, promoting the domain and class alignment with the visual region feature:

_ exp(cos(f(r*), g(pt}))/T) .
S K exp(cos(f(r®), g(pt?))/T)

piomain(@ = klrs) (6)

By minimizing Equation (3)), we encourage the source region r® to be close with domain-specific
prompt pt; corresponding to its true class label k in the vision language space, while simultane-
ously suppressing similarity with prompts from other domains (d # s). This contrastive design
in Equation (6) enforces discriminative associations between domain-specific prompts and their
corresponding visual regions, facilitating the learning of fine-grained, domain-aware representations.
A formal theoretical analysis is presented in Section |4, which rigorously justifies these objectives and
establishes a principled, theoretically grounded framework for effective prompt learning.

3.2 UNSUPERVISED TARGET PROMPT LEARNING

We introduce Unsupervised Target Prompt Learning (UTPL) in MAP, which designs prompts for the
target domain in COVD using a novel class mask to handle unseen categories. UTPL learns prompts
without supervision via three objectives guiding class-specific, domain-specific, and novel-mask
tokens. As detailed in Section[d] these objectives are theoretically justified, providing a principled
framework for effective target prompt learning.
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Target domain prompt design To enable open-vocabulary detection in the target domain, we
introduce a learnable novel mask M = [m;][ma], ...[m s, ], which serves to specialize the prompt
representation for novel classes. The target prompt is defined as:

pt! = VeVIMIc][“dl,"]. )

Similar to the source prompt, V¢ and [¢] encodes class-specific context, while V* and [“dl,”] captures
target-domain-specific context. The mask M is designed to enhance attention toward novel categories
in the target domain by providing an explicit cue to the model, helping it distinguish between seen
and unseen categories and thus improving open-vocabulary detection performance.

To learn the target prompt without supervision, instead of relying on potentially unreliable pseudo
labels, we propose an unsupervised target prompt optimization objective that encourages consistency
in the model’s predictions across different augmentations of the same image.

Discussion of target image augmentation. Various image augmentation techniques—such as
random cropping, translation, rotation, and Gaussian noise—are commonly used in vision tasks.
However, for COVD, it is crucial to preserve the semantic integrity of the image and minimize noise to
maintain accurate predictions. In the multi-source domain adaptation setting, we aim to fully leverage
pre-trained source models. To this end, we propose narrowing the domain gap by augmenting
target images with source domain styles. Traditional methods like AdaIN Huang & Belongie
(2017) can transfer the style from a source image to a target image. More recently, text-guided
augmentation techniques [Fahes et al.| (2023)); Kwon & Ye|(2022); [Suresh et al.| (2024)) have enabled
style transfer based on textual descriptions, offering greater flexibility without requiring explicit
source images—thus preserving source domain privacy. In our work, we adopt CLIPstyler Kwon &
'Ye| (2022)), a text-guided augmentation method, for target image style transfer. Formally, given an
image I € D!, we generate a stylized image A,(I) using CLIPstyler with a style text prompt T .
Additional augmentation details and visual examples are provided in the Appendix.

After obtaining stylized target augmentations, the learning of target prompt is formulated in an
unsupervised manner with the following three parts:

Learning class-specific tokens. To learn class-specific tokens for the unsupervised target domain,
we propose minimizing the entropy of the averaged prediction probability distribution across different
prompts and augmentations. The objective is formulated as:

K
£f:lass = Ep: [_ Zﬁclass(g = k|rt> logﬁ(:‘) = k|rt)]7 (8)
k=1

where Peass (7 = klr') = 545 Ziv:o Pliass (0 = k| As(r") denotes the average prediction probability
across [V augmented views and the original view. Each prediction is computed by aligning (stylized)
visual region feature and its corresponding class prompt:

zass y =k AS I‘t = oxXp (COS(f(AS(I‘t)),g(pti))/T) ;
el = BADN = S e (coa(FLAL).otpt2)/ )

where A, (I) is an augmented view of I with s source’s style, and A (r?) denotes the original
view. Minimizing £, ; encourages the model to produce consistent and confident (i.e., low-entropy)
predictions across different domain-style augmentations of the same target image, each paired with
its corresponding source-specific prompts. By enforcing agreement across these views, the model
is incentivized to extract features that are stable under stylistic shifts. This effectively forces the

class-specific tokens to capture semantic information that is invariant across diverse domain styles.

&)

Learning domain-specific tokens. To facilitate the learning of target domain-specific tokens, we
minimize the following entropy loss over all prompt-region pairs:

K
Liomain = Ept[= > Paomain(§ = K|r*) 10g Paomain (§ = k[r")], (10)
k=1

where Paomain(§ = k[r*) = SN o Piomain (7 = k| As(r?)) and the prediction probability pro-
motes the alignment of domain and class with the (stylized) visual region feature:
A exp (cos (f(As(r")), g(pt;))/T)
p(tiomain(y = k‘AS(rt)) = N K t s d ' (11)
2d=0 2oe=1 &P (cos(f(Aa(r")), g(ptc))/T)
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Note that the denominator sum over all source and target domain, where d = 0 indicates the target
domain. Similar to the formulation in Equation (6)), the probability expression in Equation (TT)) pushes
the model to select the correct class—domain pair under entropy minimization, while discouraging
the alignment of mismatched domain and class prompts with the (stylized) visual region, thereby
facilitating the unsupervised learning of the target domain-specific tokens.

Leaning novel class mask. To learn the mask for novel classes, we propose encouraging the novel
class prompts to diverge from the base class features by minimizing the orthogonality loss:

Enovel = Z Z (g(ptc)Tg(ptk))Q (12)
ce(cbase kecm)vcl
This minimizes dot product between base and novel prompt embeddings, making them directionally
independent. Similarly, for all source and target prompts, to promote their distinctions, we also
impose the mutual orthogonality on them:

Lown= Y > Tanli,j)(g(pt")Tg(pt?))?, (13)

4 € [Psource 4 < ptarget

where we use P and P"“ to denote the set of source and target prompts, respectively.
Laige(?,5) = 1 when ¢ and j are not the same class label (to avoid penalizing matched seman-
tics). Minimizing L., encourages each prompt to be dissimilar to the rest, effectively promoting
mutual orthogonality. This enforces that prompts encode distinct semantic information, thereby
reducing redundancy and enhancing domain diversity.

3.3 TRAINING AND INFERENCE

During adaptation, the pre-trained visual backbones and the text encoder are kept frozen. In each
iteration, only the learnable prompts are updated via backward gradients, which is performed by
minimizing the overall learning objective Ly, and the gradients can be back-propagated all the
way through the text encoder g(-), making use of the rich knowledge encoded in the parameters to
optimize the context. The the overall learning objective is defined as:

»Ctotal = (1 - 77) (’Csrc + )“Ctg[) + 7]['orlha (14)

where £5¢ = L S™ L8 b L5 i and L€ = L4 4 L4 4 Logver. The source and target
prompt loss £5¢ and L€' play equally important roles during cross-domain adaptation. The additional
orthogonal regularization term Lo, balanced by a hyperparameter A, brings mutual orthogonality
among different domain prompts, enforcing distinction for each domain prompt. After training, the

learned prompts are saved and used for inference.

4 THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of the proposed prompts through the lens of their
associated loss functions. Inspired by [Wang et al.|(2024a)), we analyze the behavior of the prompts
from two perspectives: fidelity and distinction. Fidelity describes a prompt’s ability to faithfully
encode either domain-specific and class-specific information by maintaining strong alignment with
the label semantics of its corresponding domain or class. That is, a prompt with high fidelity captures
the underlying semantics of the class it represents or preserving the characteristics of the domain
it originates from. Distinction, on the other hand, requires minimal overlap between prompts from
different domains or classes, ensuring that each prompt captures unique domain or class-specific
characteristics without redundancy. Prompts with high distinction are mutually dissimilar, which
facilitates better disentanglement of semantic and domain-specific information and reduces ambiguity
during alignment.

To formalize these concepts, we first introduce propositions for both fidelity (including both supervised
and unsupervised formulations for class and domain prompts) and distinction (including both inter-
class and inter-domain variants). Based on these formulations, we analyze our proposed prompts
from these two perspectives.

Proposition 4.1 (Fidelity). A prompt pt is said to have high fidelity if it retains task-relevant semantic
information that aligns closely with the target label y. Formally, fidelity can be measured by the
mutual information MI(pt, y) between the prompt and the label. A prompt with high fidelity satisfies
a high MI(pt, y), indicating strong semantic alignment with class-specific and domain-specific cues.
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Proposition 4.2 (Distinction). A prompt pt’ is said to exhibit distinction if it captures information
that is discriminative for its associated class and domain, while remaining minimally redundant with
prompts from other classes or domains. Formally, distinction can be quantified by the (negative)
mutual information with other prompts pt? (j # i): —MI(pt’, pt’), where lower mutual information
indicates higher distinction. Specifically, for class-specific prompts, this is referred to as inter-class
distinction. For domain-specific prompts, this is referred to as inter-domain distinction.

Proposition 4.3 (Unsupervised Fidelity). A prompt pt is said to exhibit unsupervised fidelity if
it induces confident and semantically meaningful predictions in the absence of ground-truth labels.
Given an unlabeled input region x € X, the predicted class distribution is denoted by p({j|pt, x).
Assuming a non-degenerate label distribution, unsupervised fidelity is measured by the negative
Shannon entropy of the prediction distribution:

UnFI(pt) = —H (p(y|pt, %)), (15)

where H(p) = — Y, pxlogpr. Lower entropy reflects higher confidence and alignment with
semantic content, indicating greater fidelity.

Based on the definitions introduced in Proposition [4.1] through Proposition 4.3 we establish the
following propositions to analyze the behavior of the proposed prompt tokens with respect to fidelity,
unsupervised fidelity, and distinction, including both inter-class and inter-domain distinctions:

Proposition 4.4 (Source Class-Specific Prompt and £, Lortn). For source class-specific prompt,
minimizing L., achieves high fidelity, and low inter-domain distinction. By jointly minimizing the

orthogonality loss L., explicit high inter-class distinction is enforced.

Proposition 4.5 (Source Domain-Specific Prompt and L] . .in> Lorth). For source domain-specific
prompt, minimizing L}, . achieves high domain-specific fidelity and low inter-class distinction. By
Jjointly minimizing the orthogonality loss L.y, explicit high inter-domain distinction is enforced.

Proposition 4.6 (Target Class-specific Prompt and L.\, ., Lorm). For target class-specific prompt,

minimizing L, achieves high unsupervised fidelity and low inter-domain distinction. By jointly
minimizing L., explicit high inter-class distinction is enforced.

Proposition 4.7 (Target Domain-specific Prompt). For target domain-specific prompt, minimizing
Llomain achieves high unsupervised fidelity and low inter-class distinction. By jointly minimizing

orths €xplicit high inter-domain distinction is enforced.

Proposition 4.8 (Novel Mask Prompt). For novel mask prompt, minimizing L,,y.; enforce high
inter-class distinction among novel and base classes.

Through Proposition .4] and Proposition f.8] we establish a theoretical foundation for designing
prompts that generalize across domains while preserving semantic separability among classes. Proofs
are deferred to Appendix

5 EMPIRICAL EVALUATION

Datasets. We perform extensive experiments on datasets, including (1) the Art Image dataset
with different artistic styles including Clipartlk, Comic2k, and Watercolor2k [Inoue et al.| (2018));
(2) Diverse Weather Dataset (DWD) [Wu & Deng| (2022)), and (3) Cityscapes |Cordts et al.| (2016]),
FoggyCityscapes Sakaridis et al.|(2018)), and KITTI|Geiger et al.|(2013a). Clipartlk contains 1000
clipart images across 20 classes, Watercolor2k and Comic2k contains 2000 watercolor/comic images
across 6 classes. DWD covers five domains: Day Clear (DC), Night Clear (NC), Dusk Rainy (DR),
Night Rainy (NR), and Day Foggy (DF). Each domain collects images from different weather and
lighting conditions. During adaptation, we detect novel classes beyond the six classes, such as
traffic light, and train, which do not appear in the source domains, as open-vocabulary evaluation.
Cityscapes and FoggyCityscapes contains 7 classes, KITTI contains synthetic images of cars.

Evaluation metrics. Mean Average Precision (mAP) is used as the evaluation metric in all our
experiments. We report mAP@0.5, which considers a prediction as a true positive if it matches the
ground-truth label and has an intersection over union (IOU) score of more than 0.5 with the ground-
truth bounding box. To evaluate performance across different class groups, we report APnovel
and APbase, which correspond to the average precision computed over novel and base classes,
respectively.
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Baselines. We conduct our experiment based on four state-of-the-art open-vocabulary object
detectors: RegionCLIP Zhong et al.| (2022), OVMR [Ma et al.| (2024), YOLO-World |Cheng et al.
(2024) and GDINO [Liu et al.[(2024). Based on the object detectors, we implement different domain
adaptive prompt learning methods including CoOP [Zhou et al|(2022a)), DAPL |Ge et al.| (2023),
DAPro [Li et al| (2024), and multi-source domain adaptive prompt learning methods including
MPA |Chen et al.| (2023), SAP-CLIP |Yang et al.[ (2024a), APNE-CLIP |Yang et al.[ (2024b)) and
POND Wang et al.| (2024a) as well as lower bound (LB) which adapts pre-trained open-vocabulary
object detector to the target domain with handcraft prompt “ A photo of a [CLASS]".

5.1 MAIN RESULTS

In Tab. [I] we provide the quantitative performance of our proposed framework MAP on four open-
vocabulary object detectors [Zhong et al.| (2022); Ma et al.| (2024); |Cheng et al.| (2024); |Liu et al.
(2024), and compared with the state-of-the-art domain adaptive prompt learning methods [Zhou
et al.|(2022b)); Ge et al.|(2023); [Li et al.|(2024) and multi-source domain adaptive prompt learning
methods [Chen et al.| (2023)); Yang et al.| (2024bza); Wang et al.|(2024a) on the art image. First, we
observe that MAP significantly outperforms LB (i.e., the original object detector applied directly
to the target domain without adaptation), as LB fails to address the substantial domain gap present
in the target domain. Second, MSPL methods, including MAP, demonstrate a clear advantage over
traditional DAPL methods that rely on a single source domain, highlighting the benefit of leveraging
multiple source domains for more robust domain adaptation. Third, MAP exhibits a clear advantage
over other MSPL methods, particularly on novel classes, achieving nearly a 5% improvement over
the next-best MSPL approach, demonstrating the effectiveness of the novel mask prompt.

In Table 2] we report the mAP results across the four domains in the DWD benchmark. Due to
space limitations, APbase and APnovel are provided in the appendix. MAP consistently outperforms
both DAPL and MSPL baselines across all domains and backbone detectors. The detailed results
in the appendix further demonstrate that the detection of novel classes is significantly improved,
highlighting the effectiveness of the proposed novel mask prompt.

Table 1: Domain adaptation results (APs) on Clipartlk. For multi-source domain adaptation methods
(highlighted with *), Watercolor2k and Comic2k are used jointly as source domains. For single-source
domain adaptation methods, either Watercolor2k or Comic2k is used as the source domain, and only
the best performance is reported. LB denotes Lower Bound, where the backbone detector is directly
applied to the target domain without adaptation.

Backbone RegionCLIP|Zhong et al.|(2022) | OVMRMa et al.[(2024) | YOLO-World|Cheng et al.|(2024) | GDINO|Liu et al.|(2024)
Methods AP APy AP | AP APy APl | AP APy APiwe | AP APy APipa |
LB 41.14 4285 39.03 42.86 4333 4057 | 4196 4287 39.83 43.06 4394  40.79
CoOP|Zhou et al.|(2022b} 4126 4298 39.18 43.05 4355 4072 | 42,12 43.02 39.97 43.19 4405 41.03
DAPL|Ge et al.|(2023) 41.57 43.25 39.47 4336 43.86 41.05 | 4254 4341 40.42 4348 4449 4148
DAPro|Li et al.|(2024) 4242 4413 40.36 4429 4475 4193 | 4347 4433 4135 4438 4540 4237
MPA*|Chen et al.|[(2023) 45.38 47.05 43.34 47.08 47.65 44.84 | 4642 47.30 44.28 4735 4826  45.19
SAP*|Yang et al.|(2024a) 46.57 4831 44.42 48.14 4872 4596 | 4751 4842 45.41 48.44 4935  46.28
APNE¥|Yang et al.|[(2024b) || 46.88  48.65 44.85 4847 49.15 4634 | 4792 4885 45.83 48.89 49.78  46.72
POND*|Wang et al.|(2024a) || 49.54 51.36 47.45 5112 51.89  49.02 | 50.58 51.49 48.49 51.50 5247 4945
MAP*(Ours) 52.54 53.25 5218 5535 5642 5514 | 54.86 55.98 54.42 55.55 56.67 55.16

Table 2: Domain adaptation results (mAP) on DWD. Following typical setting[Wu & Deng| (2022),
Day Clear is used as source domain. The rest three are added as source domains for building a
multi-source setting for each target domain for multi-source domain adaptation methods.

Backbone RegionCLIP|Zhong et al.[(2022] | OVMR|Ma et al.[(2024] | YOLO-World|Cheng et al.[2024] | GDINO|Liu et al.[(2024] |
Methods NC DR ___NR DF NC DR__NR _DF | NC DR _RNR DF NC DR __NR __DF
LB 4032 2954 2602 3323 | 4142 3038 2656 33.75 | 41.54 30.75 26.78 3453 | 42.18 3322 29.25 37.03
CoOP|Zhou et al.|(2022b) 4224 3175 28.15 3548 | 4322 3244 2843 3593 | 4365 3258 2875 3637 | 4453 3355 2955 3726
DAPL|Ge et al.|(2023} 4265 31.84 2847 3565 | 4338 32.69 28.87 36.23 | 4398 32.87 29.13 3684 | 4496 3397 2998 38.05
DAPro[Li et al.|(2024) 4243 31.86 28.17 3553 | 42.81 32.62 28.66 3598 | 43.84 3346 28.81 3727 | 44.54 34.18 29.55 38.07
MPA*[Chen et al. (2023] 4358 33.04 2935 3675 | 43.99 3375 29.81 37.13 | 45.03 3452 29.94 3839 | 4572 3530 30.67 39.24
SAP*|Yang et al.|(2024a) 4362 3309 2939 3672 | 4398 3376 29.85 37.17 | 4506 3842 29.98 3855 | 4577 3533 3069 3926
APNE*|Yang et al.[(2024b) || 43.65 33.14 29.13 36.78 | 44.05 3382 2993 3724 | 4513 34.62 3005 3848 | 4584 3540 3074 39.33
POND*|Wang et al.[(2024a) || 43.63 33.12 29.10 3676 | 44.03 33.80 29.90 3721 | 4512 34.60 30.01 3845 | 4580 3537 3071 39.29
MAP*(Ours) 44.84 3431 3056  38.06 | 4542 3485 30.92 3847 | 4622 3594 3145 39.93 | 4713 37.05 3227 4097

5.2 ABLATION STUDY

In this section, we present the ablative studies to verify the effectiveness of MAP, including different
components of the prompt design (Table 3, and different architectures. Additional ablatives about
the impact of hyperparameters are presented in the Appendix.
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Effectiveness of each loss functions. In Table[3] we present an ablation study demonstrating that
each loss component contributes to improved cross-domain open-vocabulary adaptation. Introducing
a learnable class prompt via £, improves performance by nearly 2% compared to fixed prompts,
confirming the benefit of adapting category semantics. Incrementally adding more components yields
steady improvements, with the combination of both class- and domain-level objectives for source
and target domains leading to an overall gain of about 10%. While using only class or only domain
prompts improves performance, the effect is less pronounced. Incorporating the novel class loss
Lnovel further boosts novel class detection by an additional +1.8%, validating the effectiveness
of explicitly modeling unseen categories. Finally, adding the orthogonality regularization Lorth
contributes another 4+1.5%, showing that encouraging disentanglement between class and domain
prompts further enhances generalization.

Table 3: Ablative analysis each loss function on Clipart dataset.

glass ’C(Slomain ‘Cglass ‘Cfiomain Luovel  Lorth AP APpase  AProvel
X X X X X X 4345 43.94 40.79
v X X X X X 4542 45.76 40.94
v v X X X X 45.55 45.88 41.57
v v v X X X 46.12 46.51 42.49
v v v v X X 53.24  53.87 52.25
v X v X X X 4418 4448 39.69
X v X v X X 45.08 45.25 40.32
v v v v v X 54.07 53.60 54.06
v v v v v v 55.55 56.67 55.16

The influence of \. We conduct the experiment on Day Foggy dataset, where A range from 0.25 to
1.50. We present the mAP with different \ values in the appendix (Figure[7)), which indicates that
too small A such as 0.25 lead to a sub-optimal performance since the target data is not fully utilized.
While setting A = 1.0, the learning from both source and target is balanced and lead to the optimal
performance. In Figure 2] we present some qualitative results of using some of the A values. A small
A value such as 0.5 misclassified bike as Mot or, and miss some smaller objects due to insufficient
utilization of target information such as unlabeled novel class images. A = 0.75 is able to detect
Bike but still not able to detect smaller objects. Similarly, A = 1.25 failed to detect smaller objects
or separates multiple Persons since it puts too much focus on learning the target knowledge. While
setting A = 1.00, the learning reaches a balance and lead to optimal performance.

(b) A=0.75 (c) A=1.0 (d) A\=1.25

Figure 2: Detection results with different A’s.

6 CONCLUSION

In this work, we tackle the unique challenges of cross-domain open-vocabulary object detection, where
domain shift and category shift are intricately entangled. To address these challenges, we propose
MAP, a parameter-efficient Multi-source prompt learning framework. MAP unifies Multi-Source
Prompt Learning (MSPL) and Unsupervised Target Prompt Learning (UTPL) to effectively leverage
diverse knowledge from multiple source domains and adapt to the unlabeled target domain via
learnable prompts. We further provide a theoretical analysis of the proposed prompts in terms of their
fidelity and distinction properties. Extensive experiments on cross-domain benchmarks demonstrate
the effectiveness of our approach. In future work, we would work on developing techniques for the
interpretability and explainability of the learned prompts for better model understanding.
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7 REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our work. A detailed description of our
proposed method and training objectives is provided in Section [3|of the main paper. Additional pseudo
code of the proposed algorithm, detailed training steps, implementation details, hyperparameter
settings, and dataset information are included in Appendix [B| To further facilitate reproducibility, we
provide an anonymous link to the source code and scripts for training and evaluation in Appendix [G]
All datasets used in our experiments are publicly available, and their references are properly provided.

10
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A TRAINING ALGORITHM AND NOTATIONS

The notations used in the main paper are shown in Table[d] And the learning process of MAP is
presented in Algorithm [I]

Table 4: Summary of Major Notations

Notation Description

s s-th source domain
t Target domain
N Number of source domains

K Length of label space in domain d

K, Length of label space in target domain ¢

D* s-th source domain

D? target domain ¢

D* Dataset of s-th source domain D*®

Dt Dataset of target domain D*
I; The i-th image of s-th source domain
yi The 7-th label of s-th source domain
b3 The bounding box of the i-th image of s-th source domain
c; The class label of the i-th image of s-th source domain
If The i-th image of the target domain ¢

Cc* Label space of s-th domain, |C°| = K,
C? Label space of target domain ¢

CP=e Base classes

crov Novel classes

Ve The class-specific domain-invariant tokens for class ¢
v The domain-specific class-agnostic tokens for domain sq

[“domain,”] | Handcrafted textual domain descriptions related to domain s

M, Length of the learnable tokens of V*

Mo Length of the learnable tokens of Ve

M3 Length of the learnable tokens of M

pt. The prompt for class c in source domain s

ptl The prompt for class c in target domain ¢

7() Visual encoder

g(") Text encoder

N, Number of region boxed for image /
) j-th region of image 1
£ j-th region box embedding of image [

cos(s, ") cosine similarity

B IMPLEMENTATION DETAILS

Model Architecture. In this work, we tested four open-vocabulary object detectors. Each source
model is initialized with a pre-trained open-vocabulary object detector. They are then fine-tuned using
their own labeled source datasets, and adapted to the target domain via MAP. During pre-training,
the text encoders are kept frozen, while the visual encoders are fine-tuned using the labeled source
data. During adaptation, each fine-tuned visual encoder is used to process source images from its
corresponding domain. The target visual encoder is initialized as a vanilla visual encoder.

Implementation details. We adopt the open-vocabulary object detector backbone to encode the
input images and their corresponding text encoder to encode the input text prompts. The length of
learnable tokens M7, Ms and M3 are fixed as 8. The hyperparameter A is set to 1. We use SGD
optimizer with learning rate equals to 0.002. Following |Ge et al.|(2023)), we randomly initialize each
prompt with a zero-mean Gaussian distribution with a standard deviation of 0.02. The training of the
prompts and the inference are conducted on one NVIDIA V100 GPU. The augmented images are
generated with the pre-trained CLIPstyler model Kwon & Ye| (2022).
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Algorithm 1 Training Procedure of MAP

1: INPUT Source datasets {D*}2Y,, target dataset D!, domain style text prompt {7 }2_,, and
target domain style text prompt 73

2: Initialize source and target prompts as "A photo of [CLS]"
Obtain source prompts and target prompt embedding using text encoder g(-): {{pt:}_,}% .,

and {Ptfz}fﬂ

w

4: while not converged do
5. forde{l,..,N}do
6: Sample a source batch B; ~ D?
7 Compute L .in and L3, using Equation (5) and Equation (3), respectively
8: end for
9:  Sample a target batch B; ~ D?
10:  for each image I; in B; do
11: for each style description in {7}, do
12: Augment I; with T and T} to obtain A (1;)
13: end for
14:  end for
15:  Compute L., and LY, using Equation and Equation , respectively

16:  Compute L,ove using Equation

17 Compute Lo using Equation (13)

18:  Compute overall loss and update pt® and pt’
19: end while

Text-guide Synthesis. Text-guide Synthesis aim to generated images with different styles given an
input base image and a text description. CLIPstyler Kwon & Ye|(2022) design a modulation of the
style of content images only with a single text condition using the pre-trained text-image embedding
model of CLIP, and propose a patch-wise text-image matching loss with multiview augmentations for
realistic texture transfer. PODA |[Fahes et al.| (2023)) propose Prompt-driven Instance Normalization
(PIN) to learn style statistics based on CLIP feature alignment which are later used for image
augmentation. PromptStyler |Cho et al.|(2023)) simulates various distribution shifts in the joint space
by synthesizing diverse styles via prompts without using any images to deal with source-free domain
generalization. In this work, we use CLIPstyler Kwon & Ye|(2022)) to generate augmentations of
unlabeled target imagesto learn target prompts. Formally, CLIPStyler aims to transfer the semantic
style of target text ¢4, to the content image I.. through the pre-trained text-image embedding model
CLIP without a style image I to as a reference. Given the semantic text style of the style target and
the input content ¢, and ¢,,., CLIPStyler transforms the content image I to stylized image I.;. In
our setting, we treat the unlabeled target image as the content image I, the target domain semantic
description as t,..., and the source domain semantic description as ts,,. With multiple source domains
available, we augment the target image with multiple styles. The corresponding domain descriptions
are shown in Tab. [5} The augmentation results are shown in Fig.

Table 5: Domain descriptions of DWD

Domain Name | Domain Description

Day Clear A driving in a clear day photo
Day Foggy A driving in a foggy day photo
Night rainy A driving in a rainy night photo
Night clear A driving in a clear night photo
Dusk rainy A driving in a rainy dusk photo

C DETAILED ILLUSTRATION OF LOSS FUNCTIONS

In this section, we provide a detailed illustration of the learning objectives used in MAP through
accompanying figures.
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(a) Day Clear (b) Night Clear (c) Dusk Rainy (d) Night Rainy (e) Day Foggy

(f) Day Foggy (g) Night Clear

(k) Dusk Rainy (1) Night Clear (m) Day Clear (n) Night Rainy (o) Day Foggy

o e A g

(r) Dusk Rainy (s) Night Rainy

(u) Night Rainy (v) Night Clear  (w) Dusk Rainy (x) Day Clear (y) Day Foggy
Figure 3: Stylized images of different styles with image sampled from different domains of DWD
dataset wit descriptions shown in Tab. El

C.1 ILLUSTRATION OF MSPL LEARNING OBJECTIVES

In Figure[d] we present figurative illustration for £3, . and L3, ... To differentiate £3, and L5, ,in»
we use “Src Prompt 1 Emb" and “Src Prompt N Emb" to specify different source prompt embeddings
outputed by the text encoder. As shown in Figure[d both £, and L3, .;,Both losses take a visual
region embedding (omitted in the figure for clarity, please refer to Figure|I)) and the corresponding
source prompt as input. The key difference is that £ ., incorporates prompt embeddings from
other source domains in addition to its own, promoting the learning of domain-aware representations.

C.2 ILLUSTRATION OF UTPL LEARNING OBJECTIVES

In Figure 5} we illustrate the loss functions of learning target class-specific and domain specific tokens.
Both are learned in an unsupervised manner with augmented views and source prompts involved. In
Figure[6] we demonstrate the loss functions of the novel class mask and the prompt orthogonality.

D ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional APy,s. and AP,y results of the DWD benchmark in Table
and Table[7] We present ablative for hyper-parameters including A, M, M and M3 in Appendixﬁ
The visualization of prompt embeddings are shown in Appendix [D.4] Additional experiments on
datasets including Cityscapes, FoggyCityscapes, and KITTI are presented in Appendix [D.6]
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Figure 5: Illustration of learning target domain prompts.

D.1  APgsse AND APyover, RESULTS OF THE DWD BENCHMARK

In Table|§| and Tablem, we present the APpase and APpqv1. We observe that MAP has ranked the top
across different object detector backbones and different domains. Similarly, MSPL methods performs
better than SSPL methods due to the utilization of multiple source models. But our model outperform
other MSPL methods since other methods only focus on addressing domain shift while neglecting
the category shift.

D.2 ABLATION STUDY

Target model initialization. For simplicity, our previous experiments initialized the target model
using a vanilla visual encoder. In this ablation study, we investigate the effect of initializing the target
model with a source model fine-tuned on one of the source domains. This approach can fully leverage
prior knowledge from a particular source domain and may accelerate adaptation, especially when
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Figure 6: Illustration of class and domain orthogonality loss.

Table 6: Domain adaptation results (APy,s) on DWD with the same setting as Table

Backbone RegionCLIP|Zhong et al. [(2022] ] OVMR|Ma et al.[(2024] [ YOLO-World|Cheng et al.[(2024] | GDINO|Liu et al.[(2024] |
Methods NC DR NR DF NC DR NR DF NC DR NR DF NC DR NR DF
LB 4456 3325 2945 3679 | 4498 3456 30.11 3698 | 45.15 34.68 30.09 3788 [4592 37.05 3282 4082
CoOP|Zhou et al.|(2022b) 4578 34.66 31.59 38.67 | 46.54 3592 31.74 3855 | 46.83 3562 31.58 3975 | 46.84 37.12 33.04 4095
DAPL|Ge et al.|(2023} 4557 3494 3182 37.74 | 4705 3701 31.95 39.52 | 47.05 36.02 33.05 40.03 | 48.06 37.05 33.08 4197
DAPro|Li et al. (2024} 4556 34.89 3122 38.62 | 4578 35.69 31.75 39.02 | 46.95 36.58 31.95 4032 | 47.68 37.22 33.69 41.15
MPA*|Chen et al. [{2023] 46.89 3645 3258 3998 | 47.15 3687 32.96 4025 | 4824 37.85 33.04 4152 | 4888 38.65 33.84 4241
SAP*|Yang et al.|[(2024a) 4678 36.12 3245 39.84 | 47.01 36.84 32.89 4020 | 48.15 37.54 33.09 4174 | 4895 3851 3379 4242
APNE¥|Yang et al.[(2024b) || 47.14 3725 33.08 40.82 | 48.08 37.85 3395 41.25 | 49.12 3870 34.11 4252 | 49.85 3945 3490 4338
POND*|Wang et al.[(2024a) || 47.42 3732 33.12 40.85 | 48.11 37.90 3398 4141 | 49.18 38.65 34.15 4263 |49.90 39.46 34.89 4340
MAP*(Ours) 4745 3738 3318 4092 | 48.16 37.98 34.09 41.49 | 4924 38.77 3422 4278 | 50.02 39.58 3495 43.51

the target domain shares visual or semantic similarity with that source. However, such initialization
may also introduce domain bias, potentially leading to overfitting to the source characteristics and
suboptimal performance when the source-target domain gap is large.

To study this effect, we perform experiments on the Clipartlk target domain, using three initialization
strategies: a vanilla object detector, a source model fine-tuned on Comic2k, and a source model fine-
tuned on Watercolor2k. Results across four backbone detectors (RegionCLIP, OVMR, YOLO-World,
and GDINO) are shown in Table 8] We observe that initializing with a Comic2k or Watercolor2k
model generally improves AP slightly over the vanilla initialization, especially when the backbone
benefits from domain-specific knowledge without suffering from strong domain bias. This highlights
the trade-off between leveraging source-specific priors and maintaining generalization.

Heterogeneous source model architecture. For simplicity, prior experiments used the same
object detector architecture across all source models. However, our framework naturally extends
to heterogeneous source backbones, as source models remain frozen during adaptation. In this
ablation study, we explore this flexibility by employing a combination of four distinct backbone
detectors: RegionCLIP, OVMR, YOLO-World, and GDINO, each pre-trained on a different source
domain—Night Rainy, Dusk Rainy, Day Clear, and Night Clear, respectively. We adapt these models
to the target domain Day Foggy. The resulting performance achieves an AP of 39.40%, with APbase
at 40.89% and APnovel at 38.77%. While this is slightly lower than using a single strong backbone
such as YOLO-World or GDINO alone—due to the relatively weaker performance of RegionCLIP and
OVMR—it demonstrates that heterogeneous backbone integration is feasible and effective. Overall,
this experiment confirms that MAP is compatible with multi-source models of varying architectures,
enabling greater flexibility in practical deployment.

Table 7: Domain adaptation results (AP;ove1) on DWD with the same setting as Table

Backbone RegionCLIP|Zhong et al.[(2022] | OVMR|Ma et al.[(2024] [ YOLO-World|Cheng et al.[{2024] | GDINO|Liu et al.[2024] |
Methods NC DR _NR DF NC DR NR DF | NC DR KR DF NC DR NR DF
LB 3695 2598 2296 2993 | 3805 27.15 2335 30.52 | 3839 2750 23.62 3098 | 3895 30.18 26.19 34.02
CoOP[Zhou et al.|(2022b] 3879 27.89 2429 3179 | 39.54 28.82 24.56 32.12 | 39.85 2878 2491  32.59 | 40.84 29.78 26.89 35.82
DAPL|(Ge et al.|(2023} 38.85 27.94 2435 31.86 | 39.62 28.88 24.61 32.18 | 39.95 28.88 2498 32.68 | 4095 29.87 2699 3594
DAPro[Li et al.|(2024} 38.86 27.96 2437 31.89 | 39.65 28.94 24.68 3222|3998 2891 2504 3272 |4079 3036 27.05 3596
MPA*|Chen et al. [(2023] 4044 2995 26.18 33.55 | 40.89 30.54 26.65 34.02 | 41.94 3139 2658 34.89 | 42.61 3321 27.58 36.19
SAP*|Yang et al.|(2024a) 40.68 30.14 2637 3381 | 41.15 3076 26.88 34.26 | 42.19 31.67 2674 3515 | 42.82 3344 27.80 36.41
APNE¥|Yang et al.[(2024b) || 40.84 3032 26,55 34.03 | 41.35 3098 27.02 3447 | 4241 31.89 2695 3538 |43.04 3365 28.02 36.65
POND*|Wang et al.|(2024a} || 41.25 30.78 26.96 34.51 | 41.78 31.42 2748 3490 | 4285 3231 2738 3580 |43.49 3409 2844 37.10
MAP*(Ours) 4275 3219 2842 3583 | 4322 32.66 28.87 3631 | 44.15 3379 2936 37.90 | 4509 35.02 30.50 38.24
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Table 8: Domain adaptation results (APs) on Clipartlk using different pre-trained models to initialize
the target model.

Backbone RegionCLIP|Zhong et al.|(2022) | OVMR|Ma et al.|(2024) | YOLO-World|Cheng et al.|(2024) | GDINO|Liu et al.|(2024)
Methods AP APy APnovel AP APpie  APnovel | AP APy APnovel AP APpuse  APnovel
Vanilla 52.54 5325 52.18 5535 5642 5514 | 5486 55.98 54.42 5555 56.67 55.16
Comic2k 52.69 5345 52.36 5599 56.66 5570 | 54.89 55.67 54.55 56.28 56.71  56.09
Watercolor2k || 52.90 54.80 52.08 5579 56.06 55.67 | 5479 55.69 54.41 56.40 56.83 56.22

Computational Complexity Analysis. Table[9]presents a comparison of the inference time and
memory usage of our method against existing baseline approaches. For a fair comparison, we evaluate
MAP alongside other MSPL methods. As shown, our method achieves the fastest inference speed at
74.1 FPS and the smallest parameter size of 37M, demonstrating both computational efficiency and
lower memory footprint.

Table 9: Time and Memory Complexity

MPA*|Chen et al.|(2023) SAP*|Yang et al.|(2024a) APNE*|Yang et al.|[(2024b) POND*|Wang et al.|(2024a) MAP*(Ours)
Inference Time (FPS) 632 69.7 605 520 74.1
Parameter Size (M) 45 40 46 48 37

Impact of different augmentation methods. We evaluate several augmentation strategies, in-
cluding CLIPstyler Kwon & Ye|(2022), CycleGAN |Zhu et al.[(2017), UNIT |Liu et al.|(2017), and
UNSB Kim et al.|(2023)). As shown in Table[E], CycleGAN achieves the best overall AP with a slight
gain of +0.23% over our baseline, suggesting that richer pixel-level stylization can marginally en-
hance domain realism. However, the improvement is limited, and text-guided augmentation remains
competitive while being more lightweight, controllable, and free from style image requirements.

Table 10: Performance comparison of different methods.

Metric || CLIPstyler CycleGAN UNIT UNSB
AP 55.55 55.78 54.89 5542
APpase 56.67 57.23 56.45 56.79
APpovel 55.16 55.01 54.88  54.95

Integrating LL.Ms in OVOD. In this ablation, we examine the impact of leveraging more powerful
pre-trained large language models (LLMs). Using YOLO-World as a baseline, we replace the original
CLIP text encoder with the stronger LLaVA-OneVision-0.5b-ov Liu et al.|(2023). Since the detector
and the language model were pre-trained independently, we follow YOLO-World’s pre-training
strategy and re-train the detector for 5 epochs to align its visual features with the new text encoder. As
shown in Table[TT] this substitution yields consistent gains in detection accuracy, demonstrating that
stronger LLM/MLLM backbones can significantly enhance cross-domain open-vocabulary detection.
This result highlights the potential of integrating state-of-the-art multimodal language models into
OVD frameworks to further push performance boundaries.

D.3 IMPACT OF HYPERPARAMETERS

In this section, we perform the experiments of different choices of the hyperparameters A, My, Mo,
Ms3, and 7 to explore their impact.

The influence of M, M>, M3 We conduct experiments on the Day Foggy dataset using G-DINO as
the model backbone, varying M7 and My from 6 to 12. Figurepresents a heatmap of mAP scores
for different values of M7 and M. The results indicate that values that are too small or too large
result in sub-optimal performance, likely due to underfitting or overfitting. The best performance is
achieved when both M7 and M5 are set to 8. To evaluate the influence of M3, we fix M, and M- at 8
and vary M3 from 6 to 12. The results show that the optimal performance is achieved when M3 = 9.
However, variations in M3 do not significantly affect performance on the Day Foggy domain when
My and M5 are fixed.
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Table 11: Comparison between different vision-language models on cross-domain open-vocabulary
detection.

Method AP APpsse  APpovel
YOLO-World with CLIP (LB) || 41.96 42.87  39.83
YOLO-World with LLaVA 42.88 43.85 40.70
MAP with CLIP 54.86 5598 5442
MAP with LLaVA (Ours) 55.19 5645  54.68

Table 12: Impact of the hyperparameter M3z

Length 6 7 8 9 10 11 12

AP 40.41 4055 40.85 4097 4095 40.82 40.69
APpye || 43.04 43.19 4337 4351 4348 4330 43.17
APpover || 37.92 38.05 38.13 38.24 3822 38.14 38.04

The influence of A We conduct the experiment on Day Foggy dataset, where A range from 0.25 to
1.50. We present the mAP with different \ values in Figure[7(b), which indicates that too small
such as 0.25 lead to a sub-optimal performance since the target data is not fully utilized. While setting
A = 1.0, the learning from both source and target is balanced and lead to the optimal performance.

The influence of . We evaluate the effect of 7 on the Clipart dataset with values ranging from
0.001 to 0.30, and report the results in Table[I3] The best performance is obtained at = 0.10,
indicating that a small but non-zero regularization from the orthogonality term enhances performance.
However, when 1 becomes too large, the orthogonality term dominates training and significantly
degrades both base and novel class accuracy.

D.4 VISUALIZATION OF PROMPT EMBEDDINGS

In this ablation, we visualized the different components of the learned prompts. We first randomly
select 75 sample prompts that summarize each pairing input image. By reducing their dimensionality
into a 2-d plane with T-SNE, we visualize each textual prompt embedding from every domain along
with the domain invariant and domain specific tokens generated in our proposed method, as shown
in Figs[8] O]and [T0] We choose to visualize the embedding of the class car to show the domain
shift effect and our method’s capability to decompose such effect into a respective domain invariant
token and a domain specific embedding token for each input image prompt. In Fig. 8] we first plot the
image embeddings from Day Clear (i.e., source) and Day Foggy (i.e., target) with red and blue dots.
The domain-invariant tokens are denoted with orange stars. We also plot the template embedding
with handcrafted prompts such as "a photo of car in the road, in the street", etc and denote them as
magenta pentagon. From Fig.[§|red circle grouped dots, we find that the model discovered domain
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Table 13: Impact of the hyperparameter 7).

Metric || 0.001 0.01 0.10 0.30
AP 5547 5550 55.55 52.13
APpyse 56.60 56.63 56.67 52.98
APpover || 55.05 55.07 55.16 51.69

invariant embedding resides between the source and target domains, and locate very near to the
template. Similar finding can be seen in Fig.[Q] with Night Clear and Night Rainy domains. All above
findings confirm that our method could summarize effective domain invariant embeddings that grasp
the major objects of the image. In Fig. [T0} we plot the domain-specific tokens with different colors
of stars: blue, green, red and purple. We also plot the handcrafted template in orange pentagon.
From Fig.[I0] we can also see that the domain-specific tokens reside near to each domain’s shifted
embedding while be far away from the template, for all four data domains. We have highlighted two
groups with blue and red circles in Fig. [I0]for better illustration.

Figure 8: Day Clear versus
Day Foggy Textual Embed-
ding and Domain Invariant To-

Figure 9: Night Clear versus
Night Rainy Textual Embed-
ding and Domain Invariant To-

Figure 10: All domains tex-
tual embedding and their re-
spective Domain Specific To-

kens. kens. kens.

D.5 VISUALIZATION OF CLASS EMBEDDINGS

In Figure[TT] we present the t-SNE visualization of base and novel classes on the Clipart dataset.
Aside from a few outliers, the base and novel classes are well separated, indicating that the novel
mask loss encourages the novel classes to explore a distinct feature space.

Figure 12: t-SNE of base
and novel class in DWD Day

Foggy.

Figure 13: t-SNE of base
and novel class in Foggyci-
tyscapes.

Figure 11: t-SNE of base and
novel class in Clipart.

D.6 ADDITIONAL DATASETS

We create a new multi-source dataset by simply utilizing Cityscapesﬂ Cordts et al.| (2016), Foggy-
Cityscapeﬂ Sakaridis et al.| (2018)), and KITTIE| Geiger et al.| (2013b) for further evaluation.

"https://github.com/tiancity-NJU/da-faster-rcnn-PyTorch
https://www.cityscapes-dataset.com/downloads/
*http://www.cvlibs.net/datasets/kitti/
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Cityscapes consist of 2,975 training images and 500 testing images, have a total of 8 categories
captured under normal weather. Foggy-Cityscapes applies images of Cityscapes to simulate foggy as
well as inherits the annotations of Cityscapes. KITTI contains 7,481 urban images which are different
from Cityscapes. The Cityscapes and KITTTI are used as source domains, while FoggyCityscapes is
the target domain. To augment the target images with the source domain styles, we use "A photo of
driving in the city in a foggy daytime" as source description and "A photo of driving in the city during
daytime" and "A photo of driving in the urban city" as target descriptions. For open-vocabulary object
detection, we reserve Rider, Bike, Motor as novel classes. The performance is presented
in Tab. [I4] It’s evident that our method excels in the single-source domain adaptation methods,
attaining state-of-the-art results. Furthermore, when compared to other multi-source domain adaptive
techniques, the advantage of our approach is evident across novel and base classes.

Table 14: Domain adaptation results (APs) on Foggycityscapes. For multi-source domain adaptation
methods (highlighted with *), Cityscapes and KITTI are used jointly as source domains. For single-
source domain adaptation methods, either Cityscapes or KITTI is used as the source domain, and
only the best performance is reported. LB denotes Lower Bound, where the backbone detector is
directly applied to the target domain without adaptation.

Backbone RegionCLIP|Zhong et al.[(2022) | OVMR|Ma et al.|(2024) | YOLO-World|Cheng et al.[(2024}) | GDINO|Liu et al.|[(2024] |
Methods AP APy APpover AP APiae  APnovel | AP APpye APpover AP APuye  APpover
LB 40.15 41.87 38.06 41.87 4234 39.59 | 4095 41.89 38.86 42.07 4295 39.80
CoOP Zhou et al.|(2022b) 40.25 4197 38.18 42.05 42.57 39.74 | 41.11 42.03 38.96 4220 43.07 40.05
DAPL|Ge et al.|(2023) 40.59 42.26 38.49 4238 42.86 40.06 | 41.56 4240 39.44 4249 4349 40.49
DAPro|Li et al. [(2024) 41.44 4215 39.39 4334  43.78 40.97 | 42.50 43.37 40.39 4342 4442 41.40
MPA*|Chen et al.|(2023) 44.15 45.14 42.33 46.15  46.64 4379 | 45.52  46.35 43.32 46.36  47.29 44.23
SAP#|Yang et al.|(2024a) 4526  47.05 43.24 47.02  47.58 4475 | 46.32  47.28 44.33 4728 48.29 45.24
APNE¥*|Yang et al.|(2024b) 4578  47.60 43.76 4738 48.12 4530 | 46.86 47.80 44.78 47.85 48.72 45.66
POND*|Wang et al.|[(2024a) || 48.50 50.31 46.42 50.08 50.82 48.78 | 49.55 50.44 4745 5048 51.44 48.41
MAP#(Ours) 52.02 52.76 51.69 54.87 55.89 54.62 | 54.15 55.26 53.74 54.88 55.98 54.39

E THEORETICAL JUSTIFICATION

E.1 PROOF OF PROPOSITION[4.3]

Proof. In the unsupervised setting, where ground-truth labels y are unavailable, we cannot directly
evaluate the mutual information MI(pt;y). Instead, we approximate fidelity by quantifying the
information shared between the input region x and the predicted label ¢, i.e., MI(x; 3), where 3 is the
model’s output given prompt pt. We argue that under the assumption of an approximately constant
H(9), low entropy of the prediction distribution p(¢|x, pt) implies high mutual information between
the input x and the predicted label ¢, thus serving as a proxy for high fidelity.

Formally, the mutual information between x and g is given by:
MI(z; ) = H(§) — H(g[x), (16)

where H (7)) is the marginal entropy over predictions across the dataset, and H (¢|x) is the conditional
entropy of predictions for a given input x.

Minimizing the entropy of the prediction distribution:
Lenwopy = — Y p(§ = k|x, pt) log p(ij = k|, pt) (17)
k

effectively reduces H (g|x). If H(g) is kept high or remains approximately constant (e.g., via diverse
predictions across the dataset), then the mutual information MI(x; ) increases:

Low H (g|x) = High MI(x; §). (18)
Hence, minimizing entropy encourages confident and consistent predictions, which implies that the

prompt encodes meaningful and class-relevant information. This serves as an effective surrogate for
high fidelity in the absence of label supervision:

Low entropy = High mutual information I(x; §j) = High unsupervised fidelity |. (19)

O
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E.2 PROOF OF PROPOSITION[4.4]

Proof. An effective class-specific prompt should possess high fidelity, meaning it preserves label-
relevant information, and should exhibit low distinction with respect to domains, i.e., remain invariant
to domain-specific characteristics. The class-specific loss £, in Equation (3) encourages the
class-specific prompt to maximize the likelihood of correct class predictions across all regions and
source domains. From the perspective of fidelity, minimizing £, increases the mutual information
MI(pt,, yr) between the class-specific prompt pt, and the label yy, as the prompt is explicitly
optimized to recover semantic label information. Specifically,

MI(pty, yx) = H(yx) — H(yx|pty) (20

where H (yy) is the entropy and H (yi|pt;,) is the entropy of H(yy) conditioned on pt,. Since
H (yy) is constant, maximizing the mutual information MI(pt,, yx) is equivalent to minimizing

H(yx|pty):
FE MinH (§|x) = Max MI(x; §). 1)

At the same time, because this loss is aggregated over multiple domains without incorporating
domain labels, it discourages the prompt from encoding domain-specific cues, thereby implicitly
enforcing low distinction with respect to domain. Moreover, class-specific prompts should also
exhibit inter-class distinction since class-specific prompts should be disentangled across classes to
capture diverse semantic attributes without redundancy. And this is ensured by minimizing Lo,
which promotes mutual orthogonality explicitly.

E.3 PROOF OF PROPOSITION [4.3]

Proof. An effective domain-specific prompt should faithfully encode the unique characteristics of
each source domain (high fidelity) while remaining distinguishable from prompts of other domains
(high inter-domain distinction), and invariant to classes (low inter-class distinction). This ensures that
the prompt captures domain-specific cues that aid in learning domain-aware visual representations,
which is particularly useful for mitigating domain shifts in cross-domain detection. The domain-
specific loss function £ .., in Equation @) explicitly enforces these principles. First, the fidelity is
promoted by minimizing the negative log-likelihood in Equation (5), where the visual regions r};
are aligned with their respective domain-specific prompts pt}. By ensuring that the visual features
closely align with the correct domain-specific prompt, we are maximizing the mutual information
between the prompt and its corresponding label k. This encourages the prompt to preserve domain-
relevant information, reinforcing the fidelity of the representation within its source domain. Second,
distinction is addressed by the contrastive nature of Equation (6), which defines the alignment over
the set of all possible class-domain prompt pairs. This normalization ensures that the domain-specific
prompts from different domains are not highly similar, thus encouraging minimal overlap. By
minimizing this overlap, the domain-specific prompts for each source domain are distinguished
from each other, resulting in high inter-domain distinction. This allows the model to better separate
the learned domain-specific representations and maintain robust performance across domains. The
prompt orthogonality loss Lo in Equation (I3) explicitly enforces high distinction among prompts.
Minimizing Lo reduces mutual information MI(pt’, pt?) between different prompts, ensuring
that each prompt captures unique and domain-specific information. With the softmax over different
classes, low inter-class distinction is enforced. O

E.4 PROOF OF PROPOSITION

Proof. In the context of unsupervised target domain adaptation, learning effective class-specific
prompts without access to labeled target data is critical. Similar to the source class-specific case,
the target class-specific prompt is expected to exhibit high fidelity and low inter-domain distinction.
First, the entropy minimization loss £f, . in Equation promotes high fidelity by encouraging
prediction consistency across augmented views, while Lo explicitly enforces orthogonality among
different class prompts to reduce redundancy and enhance distinction. From an information-theoretic
perspective, low entropy implies confident predictions, and class diversity assuming a roughly constant
H (), this corresponds to high mutual information between the learned prompt and the predicted
label. According to Proposition[4.3] the class-specific prompt presents high unsupervised fidelity.
Thus, the learned prompt is more likely to encode class-discriminative and semantically meaningful
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features. Second, by averaging predictions across various domain-stylized augmentations and prompt
variants, the model implicitly encourages low distinction between the target class-specific prompt and
prompts from source domains. This regularization effect reduces the influence of domain-specific
variations, pushing the prompt toward a domain-invariant, semantics-focused representation. O

E.5 PROOF OF PROPOSITION[4.7]]

Proof. Similar to source domain-specific prompts, the target domain-specific prompt should demon-
strate both high fidelity and high inter-domain distinctiveness. Building on the analysis of target
class-specific prompts, high unsupervised fidelity for the target domain-specific prompt can be
achieved by optimizing £} ... Meanwhile, high inter-domain distinctiveness can be explicitly
encouraged through Ly, as is done for the source domain-specific prompts. O

E.6 PROOF OF PROPOSITION[4.§]

Proof. Minimizing L, enhances the distinction between the novel class prompts and the base
class space. By promoting orthogonality between base and novel classes in the learned feature space,
it enables novel prompts to specialize in capturing previously unseen concepts. O

E.7 GENERALIZATION GUARANTEE

In this section, we explore the generalization error of open-vocabulary domain adaptation under
multi-source setting. Given N source domains, weighted by a« = (aq, g, ..., an ), vazl o; =1,
we examine the convex combination of training error er (k) from each source domain following
the setting in [Ben-David et al.|(2010), where i ~ H is a hypothesis in the hypothesis space H.
Denoting the empirical error in the target domain as e7r¢(h), the generalization error of multi-source
open-vocabulary domain adaptation is bounded by the following Theorem [E.T]

Theorem E.1. Given N labeled source domains St, ..., Sy and an unlabeled target domain T, let
efro(h) be the empirical ai-weighted error of a hypothesis h, 7t be the class prior probability for
the novel classes in the target domain, for any § € (0, 1), with probability at lease 1 — 6,

efri(h) al a errt o a(h)
# <eira(h) + Y ai(2\; + duan(Di, Dr)) + > (1"0;:; - e“i&»ez(h))
 hovel i=1 i=1 — Tnovel

(22)

where \; = minp ey {erri(h) + err;(h)}. D;, Dt are the domain distributions for source domain
S; and target domain T, respectively. eir®: (h) and el (h) are the empirical risk of samples
belong to the novel classes.

Equation (22) contains three parts, convex combination of source error, domain discrepancy, and
open-vocabulary difference. Detailed proof of Theorem [E.T]is provided in as follows:

Proof. Step 1. Given a symmetric loss ¢, with h € H, the expected risks of the convex combination
source and target is defined as:

N
erra(h) =3 aifxy)p, ((h(X),¥). (23)

i=1
GTTt(h) = E(x,y)NDtg(h(X)v Y) (24)

The partial risk of known target classes is
N 1
i) = 1 [ ). ¥)dPxey () 2s)
~ Thovel J X xYs

where X is the feature space, ))° is the source label space, we suppose all the source domain share
the same label space )® for simplification. Px+y is the joint distribution of the target domain.
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The partial risk for the unknown target classes is

errtoi(h) = [ hx), Yo APy ) 26)
X
And we have
E€rTe (h) = ;ovelerrtnovel(h) + (1 - Tréovel)er’r:(h) (27)
Then L .
716rrt(t ) _ erre(h) = erry (h) — errg(h) + Tt 77““:1 erri®vl(h) (28)
- — T

novel novel

Step 2. Since we assume all the source domain share the same label space ), we have

> o f

¥)dPxey-(x,y) = /) Uh(x),y)dPyoye(x,y)  (29)
X><yb7

N
erri (h) — erra(h) = /X 00, 3P e (e.3) — Yo / (), y)dPxey-(x,Y)

< eTT;:k (il/) + / €<E(X)> y)dPXfY‘D?S (X’ y)

Xxyt
+ errg(h Zal / 0(h(x),y)dPxsiys (X, y) (30)
XxYs

where £ is any hypothesis in . According to [Fang et al.|(2020), we have

/ £(h(x), ﬁ(x))dPth\ys (x,y) = / £(h(x), B(X))dpxt\ys (x,y) 3D
XYt x
Andfori € {1,..., N}
[ 000,y (0 = [ b )P (9 ()
X xYs

Based on above equations, we have

erry (h) — erro(h) < err} (h) - erra )+ Z oz1|/ L(h /~1( X))dPxe)ys (X,y) — /X L(h(x), ﬁ(x))dPXs,, (x)]

< errf(h) — errq(h) + Z aidy (Pxt|ys, Pxs:) (33)
i=1
Hence, based on the definition of \;, and denoting D; = Pxs;, D = PXt| ys, we have,

N
errf(h) —errq(h) < Z a;(2A; + dyan(D;, Dr)) (34)
i=1
Step 3. In this step, we prove that
t Rt (h
Merrﬁovel(h) < dHA’H (Di’ DT) + %t() Rnovel(h) (35)

1—7t

novel I—m

novel

This step is similar the proof in [Fang et al.| (2020). Please refer to the detailed in [Fang et al.|(2020).
By combining the results from Step 2 & 3, we have

r N
efry(h) _
m <errq(h) + FZI a;(2X\; + dyan(D;, Dr))
N At
erryover(R) .
- Z i (]'_Oﬂitlovel - errnovel(h)> (36)

i=1
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F POTENTIAL SOCIETAL IMPACT AND LIMITATIONS

Open-vocabulary domain adaptation with multiple sources has the potential to significantly expand its
application in diverse settings with various constraints, such as heterogeneous and dynamic domains
with scarce labels. The transformative potential of open-vocabulary models lies in their ability
to generalize from limited data by leveraging pre-trained knowledge, reducing the necessity for
large, domain-specific datasets. This approach allows models to remain relevant and effective in
dynamic environments without extensive retraining. By minimizing the need for comprehensive data
collection and labeling, open-vocabulary domain adaptation also lowers the costs associated with
model development and maintenance. In terms of potential negative societal impact, by utilizing the
training and testing data from different domains, there is a possibility of data privacy concern. A
potential limitation of open-vocabulary domain adaptation is that the effectiveness of open-vocabulary
domain adaptation heavily relies on the quality and breadth of the pre-trained models. If these models
are not sufficiently comprehensive or up-to-date, their generalization capabilities may be limited.

G SOURCE CODE

For the source code, please check https://anonymous.4open.science/r/LEET-585B/
README . mdl

H LLM USAGE STATEMENT

Large Language Models (LLMs) were used solely to aid in polishing the writing and improving
the clarity of exposition. No part of the research ideation, experimental design, implementation, or
analysis relied on LLMs. The authors take full responsibility for the content of this paper.
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