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Abstract

With the rapid development of Large Vision Language Models, the focus of Graph-
ical User Interface (GUI) agent tasks shifts from single-screen tasks to complex
screen navigation challenges. However, real-world GUI environments, such as PC
software and mobile Apps, are often complex and proprietary, making it difficult
to obtain the comprehensive environment information needed for agent training
and evaluation. This limitation hinders systematic investigation and benchmarking
of agent navigation capabilities. To address this limitation, we introduce GUI Ex-
ploration Lab, a simulation environment engine for GUI agent navigation research
that enables flexible definition and composition of screens, icons, and navigation
graphs, while providing full access to environment information for comprehen-
sive agent training and evaluation. Through extensive experiments, we find that
supervised fine-tuning enables effective memorization of fundamental knowledge,
serving as a crucial foundation for subsequent training. Building on this, single-
turn reinforcement learning further enhances generalization to unseen scenarios.
Finally, multi-turn reinforcement learning encourages the development of explo-
ration strategies through interactive trial and error, leading to further improvements
in screen navigation performance. We validate our methods on both static and
interactive benchmarks, demonstrating that our findings generalize effectively to
real-world scenarios. These findings demonstrate the advantages of reinforcement
learning approaches in GUI navigation and offer practical guidance for building
more capable and generalizable GUI agents.

1 Introduction

Large Vision-Language Models (LVLMs) [2, 29, 1, 38] drives significant advances in the development
of GUI agents [31, 44, 28]. At a high level, GUI agent tasks [35, 34, 12, 45, 46] fall into two main
categories: single-screen task and screen navigation. For example, the task “Order an iPad from
the Apple website with GUI-Agent engraving” can be decomposed into subtasks such as single-
screen task (e.g., entering the required information to place an order) and screen navigation (e.g.,
navigating to the iPad purchase page). As the grounding capabilities of current mainstream LVLMs
[13, 43, 31, 28, 18] continue to improve, tasks such as form completion and target icon selection no
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Figure 1: (A) Page transition sequences: green arrows show optimal paths, red arrows show detours.
(B) Tree-structured navigation map with optimal (green) and redundant (red) paths. (C) SFT enables
memorizing page transitions for basic navigation. (D) ST-RL generalizes to unseen paths, enhancing
navigation. (E) MT-RL improves exploration and task success through environment interaction.

longer pose a major obstacle to task completion. Instead, the main challenge for GUI agents now lies
in navigating complex screens [31], which requires understanding the environment’s navigation map
and clicking the correct icons to reach the target page.

To enhance the screen navigation capabilities of GUI agents, it is crucial to have an environment
that provides accurate screen layout information and inter-screen navigation graphs for training
and evaluation. However, real-world GUI environments, such as PC software and mobile Apps,
are often complex and proprietary, making it difficult to obtain the comprehensive environment
information needed for these purposes [12, 46, 45]. This limitation hinders systematic investigation
and benchmarking of agent navigation capabilities. To address this, we introduce GUI-Exploration
Lab (GE-Lab), a simulation environment engine specifically designed for advancing GUI agent
navigation, in which screens, icons, and inter-screen navigation graphs can be flexibly defined, while
providing full access to environment information for comprehensive training and evaluation.

Within the GE-Lab environment, as illustrated in Figure 1, it is straightforward to obtain both single-
step transition knowledge, such as navigating from the current screen node to a new node by clicking
a specific icon, and multi-step transition knowledge, which involves reaching any target screen node
from the current node through a sequence of actions (see Figure 1A, B). Existing approaches based
on SFT require large volumes of data and heavily depend on expert trajectories [34, 20, 5, 13, 31].
However, collecting high-quality trajectory data on real-world GUI platforms is costly [12], and
it is challenging to assess the coverage of collected trajectories relative to the full set of possible
transitions available on the platform. In contrast, the GE-Lab environment enables low-cost scaling
of trajectory data collection and facilitates systematic ablation studies. As shown in Figure 1C,
SFT provides a crucial foundation for screen navigation, suggesting that sufficiently large trajectory
datasets can enable accurate navigation between arbitrary screens. In Figure 1C, only nodes with
degree 1 represent training data that contains knowledge about two connected nodes. This does not
imply that every node in the actual state transition graph has a degree of 1.

Nevertheless, SFT exhibits limited generalization to unseen environments [9, 44, 28, 27, 5]. Recent
ST-RL methods, such as UI-TARS [31] and UI-R1 [28], leverage preference optimization and rule-
based rewards to improve generalization. In the GE-Lab simulation environment, access to each
screen’s layout and navigation graph enables low-cost experimentation with various ST-RL methods.
As shown in Figure 1D, these methods demonstrate better generalization than SFT. ST-RL methods
focus on correcting single-step actions, while real-world interactions often involve longer action
chains. MT-RL, inspired by RAGEN [42] and VAGEN [40], offers advantages for training agents
through interaction. GE-Lab provides the first GUI simulation engine for MT-RL with interactive
training and accurate reward signals, addressing practical RL challenges through curriculum learning

2



and data proportion adjustment. As shown in Figure 1E, MT-RL encourages exploration and further
improves task success rates. Figure 1A, B illustrate the agent’s navigation process, including
backtracking and successful task completion. Moreover, MT-RL reduces dependence on annotated
data by relying on instructions and interactive environments with reward signals. Moreover, we
validate our methods on both static and interactive benchmarks, demonstrating that our findings
generalize effectively to real-world scenarios.

To summarize, our key contributions are the following: (1) We present GE-Lab, a simulation envi-
ronment engine that flexibly defines screens, icons, and navigation graphs, providing full access to
environment information for comprehensive GUI agent training and evaluation. (2) Extensive experi-
ments in GE-Lab reveal a clear training paradigm: supervised fine-tuning memorizes fundamental
navigation knowledge, ST-RL enhances generalization to unseen scenarios, and MT-RL promotes
exploration and further boosts navigation performance while reducing reliance on annotated data. (3)
Our systematic benchmarking clarifies the strengths of reinforcement learning in GUI navigation and
offers concrete guidance for building more generalizable agents.

2 Related work

2.1 GUI Agents

In recent years, GUI agents experience significant evolution. Early methodologies predominantly
rely on HTML structures and accessibility trees [23, 11, 52, 25], yet these approaches encounter
substantial cross-platform compatibility challenges due to potential information gaps across diverse
software environments. The advent of LVLMs marks a pivotal shift in this domain [14, 43, 8],
facilitating the integration of GUI comprehension and device control within unified frameworks.
Current research in LVLM-powered GUI agents follows two primary technical trajectories: one
leverages closed-source models with advanced prompt engineering [48, 21, 39], while the other
enhances open-source models through fine-tuning for GUI interaction [34, 20, 5, 13]. Existing
agents [13, 43, 31, 28, 18] exhibit robust visual grounding capabilities, effectively supporting basic
operations such as target icon selection. However, the principal challenge lies not in executing
individual clicks but in navigating complex screen transitions based on task objectives. Addressing
this navigation challenge, UI-TARS [31] extended fundamental grounding capabilities by introducing
several GUI-specific competencies, including element description, GUI dense captioning, and state
transition captioning, while incorporating task decomposition and trial-and-error strategies to learn
inter-screen transition. Nevertheless, SFT necessitates a large volume of manually annotated real
GUI trajectory data [34, 20, 5, 13, 31] and exhibits limited generalization to unseen environments
[9, 44, 28, 27, 5]. Consequently, recent research on agents increasingly shifts towards RL approaches.

To evaluate GUI agent performance, two primary categories of benchmarks are developed: static
benchmarks, including ScreenSpot [8], ScreenSpot-v2 [43], FuncPred [19], MoTIF [4], Refexp [33],
Llamatouch [50], VWB AG [24], and VWB EG [24], primarily assess task execution correctness
through ground truth matching to evaluate grounding and planning accuracy; and interactive bench-
marks AndriodWorld [35] and OSWorld [45], which enable agents to execute tasks within virtual
machines and determine task success through components that evaluate actual task completion.

2.2 Reinforcement Learning

RL is a powerful paradigm for training agents to make optimal decisions through interactions
with environment [3, 10], enabling them to autonomously learn complex behaviors by maximizing
cumulative rewards. UI-TARS [31] employs Direct Preference Optimization (DPO) [32], leveraging
incorrect rollout actions paired with human-corrected actions for error correction. DeepSeek-R1
[36] demonstrates the efficacy of rule-based RL for mathematical problem-solving. Subsequently,
[26, 41, 30, 15, 6, 51, 7, 37] extende this framework to RL, achieving significant improvements in
vision-related tasks such as visual grounding. UI-R1 [28] and GUI-R1 [44] utilize Group Relative
Policy Optimization (GRPO) [36], training with model rollouts and rule-based rewards guided by
ground truth. However, these methods focus solely on single-step action correction, whereas real-
world interactions are often more complex and involve longer action chains. Outside the GUI domain,
several innovative agent systems [17, 16, 22, 42, 40] leverage interactive environments to train agents
through reinforcement learning, thus enhancing their decision-making and execution capabilities.
Notably, RAGEN [42] and VAGEN [40] leverage MT-RL strategies to effectively enhance agents’
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capabilities in environmental interaction and multi-step reasoning. These developments inspire our
approach of combining MT-RL with the GE-Lab environment to establish robust screen navigation
capabilities for GUI agents, addressing a critical challenge in real-world GUI environments.

3 Method

3.1 GUI Exploration Lab

To address the challenges posed by complex engineering issues in real-world GUI platforms that
make them unsuitable for interactive environment training, we propose GE-Lab, a novel simulation
environment engine that generates diverse GUI environments for flexible agent training and evaluation.
As illustrated in Figure 1B, we model the simulated environment as a tree structure where nodes
represent screens and edges represent clickable transitions between screens. Both the number of nodes
and the connectivity of edges within the environment are fully customizable. Specifically, GE-Lab
first generates a graph of the environment based on user-defined parameters, which determines the
navigation relationships between different screens. Then, GE-Lab renders a screen for each node of
the graph, with each screen displaying n icons (where n is the degree of the node), where clicking
an icon triggers a screen transition. The icons appearing on each screen are collected from the
Internet and randomly sampled from an icon library, intentionally selected to be uncommon in typical
applications and randomly named to prevent the model from leveraging prior knowledge about icon
semantics, thereby enhancing the diversity of the simulation environment. During environment
construction, both the selection and placement of icons are randomized, facilitating robust OOD
testing. In addition to these randomly assigned functional icons, each screen also contains “home”
and “back” icons, enabling navigation to the root and parent nodes.

During training, the metadata generated by GE-Lab allows for the construction of screen navigation
tasks. For instance, at the page_0 node, a task instruction such as “From page_0 to page_6” can be
generated. Leveraging the navigation map, it is easy to synthesize trajectory data between arbitrary
screens at low cost, supporting both shortest-path and redundant-path trajectories. Furthermore,
agents can be trained interactively: the agent receives a image of the current screen and outputs an
action, the environment executes the action to transition to a new state, and the environment can
accurately determine whether the agent reaches the target screen, providing precise rewards. During
evaluation, the simulation environment readily supports both static benchmarks and end-to-end
interactive assessments.

3.2 Partially Observable Markov Decision Process Framework

3.2.1 Problem Formulation

The operation of a GUI Agent involves step-by-step interaction with an environment. The GUI
agent operates under conditions of partial observability, wherein it lacks access to the complete
environmental state and must instead identify interactive regions based solely on the current screen
state. Through the integration of historical states with present observations to inform decision-making
processes, this navigation paradigm is appropriately formalized within the POMDP framework,
defined by the components (U ,A,S,O, T ), as shown in Figure 2A,C. These components correspond
to the task space U , action space A, state space S, and observation space O. The probabilistic
transitions between states are governed by T : S ×A → P (S), which maps a state and action to a
distribution over the next possible states.

Functionally, the GUI agent acts as a policy π, mapping observations to actions π : O → A. Given
a specific task u ∈ U , the agent executes a series of actions aiming for completion. At each time
step t, using the current observation o ∈ O, the agent’s policy π selects the next action a ∈ A.
The environment then evolves to a subsequent state s′ ∈ S according to the transition model T .
Optionally, the agent may receive a reward r = R(s, a, s′), which is calculated based on the reward
function R : S ×A× S → R.

3.2.2 Agent Protocol

Our agent receives three primary input components: task instruction, history, and current state.
The task instruction u defines navigation objectives such as “From page_221 to page_151”. The
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User: “ Instruction: From page_0 to page_151. History: step1: click home icon on page_221. Observation: <image> "

Assistant: “ Explain: click Hotel icon on page_0. Action: click(835,65) "

…

C. Partially Observable MDP

ST-RL
𝑜! 𝑎! … 𝑜!"# 𝑟"𝑜"

𝑎"

GUI Agent

Execute

Feedback

Rollout

…

Rollout

… …
…

B. Reinforcement LearningA. Framework GE-Lab

…

…

…

𝑜#

𝑢
Task

Figure 2: (A) Overview of the interactive training framework: the GUI agent receives observations (o),
actions (a), rewards (r), and interacts with the GE-Lab environment to receive feedback and execute
actions. (B) Reinforcement learning: ST-RL operates on pre-constructed trajectories, while MT-RL
extends to multi-step online rollouts, enabling the agent to generate observation-action sequences
interactively within the environment. (C) The navigation task is formalized as a POMDP, where
historical states and current observations jointly inform the agent’s decisions.

history component maintains a record of previous observations o and actions a (e.g., “step1: click
the home icon on page_221”), providing temporal context for sequential decision making. The
current observation is a screenshot image of the GE-Lab environment, showing the unfamiliar GUI
icons with which the agent can interact. The GUI agent attends to task instructions at each step,
makes decisions informed by textual representations of historical states and actions, and generates
appropriate actions based on the current screen state. This approach effectively mitigates task
forgetting, reduces action repetition errors, and prevents state interference that would otherwise arise
from maintaining excessively long sequence lengths containing complete historical screen states.

For action generation, our framework adopts ReAct [47] to formulate appropriate actions within the
GE-Lab environment. This approach integrates reasoning and action generation by requiring the
agent to produce an explanation of its intended operation along with a precise action command (e.g.,
“click Home icon on page_0; Action: click(635,65)”), which can be directly executed in the GE-Lab
environment. In both MT-RL training and inference, we set a maximum number of interaction rounds
(e.g., 12). According to the agent protocol, with each image encoded as 729 tokens, the current
maximum context token length, which is the total of the instruction, history, and observation, is less
than 1k tokens.

3.3 Reinforcement Learning

3.3.1 Single-Turn Reinforcement Learning

The ST-RL paradigm, based on the GRPO [36], addresses the screen navigation challenge in partially
observable GUI environments (as shown in Figure 2B). At each time step t, the agent observes
ot ∈ O and receives a task specification u ∈ U . The agent selects an action at ∈ A to interact with
the environment, where the underlying state st ∈ S is partially observable. The policy πθ is thus
conditioned on the current observation, the history of past observations and actions, and the task:

πθ(at|o0:t, a0:t−1, u), (1)

where o0:t and a0:t−1 denote the sequences of observations and actions up to time t (the overline
· indicates pre-constructed trajectories), and at is the action generated by the model at the current
step via rollout. For ST-RL, o0:t and a0:t−1 are pre-constructed trajectories, which correspond to the
orange history part in Figure 2, while at is the action generated by the model at the current step. The
objective is to maximize the single-step return:

J(θ) = Eo0:t,a0:t−1,at
[r(ot, at, u)] , (2)

where r(·) is a composite reward that provides explicit supervision for GUI interaction, enhanc-
ing both training efficiency and navigation performance. Specifically, the reward consists of four
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Table 1: Models Performance on In-Distribution, Out-of-Distribution, and Interactive Benchmarks

Model ID OOD Interactive

Edge Path Overall Edge Path Overall Pass@1 Pass@5

Non-fine-tuned Model

GPT-4o-2024-11-20 [29] - - - 34.10 5.03 25.85 1.74 2.49
Claude-3.7-Sonnet [1] - - - 21.77 1.92 21.52 0.43 0.61
Gemini-2.0-flash-thinking [38] - - - 15.05 5.33 8.80 0.36 0.52

Fine-tuned Model

Qwen2.5-VL-7B-SFT 94.82 99.76 98.89 64.55 41.76 55.45 14.30 20.86
Qwen2.5-VL-7B-ST-RL 97.48 97.08 97.63 68.68 52.25 63.06 17.22 22.34
Qwen2.5-VL-7B-MT-RL 72.60 57.77 67.33 69.86 52.35 63.25 17.47 25.16

Figure 3: Case Study. Left: Environmental navigation map. Right: Detailed visualization of the page
transition flow from the initial to the final state.

components: (1) Action Type Reward—evaluates the correctness of the action type; (2) Coordinate
Accuracy Reward—measures whether the predicted click coordinates fall within the target region; (3)
Intent Matching Reward—assesses if the selected icon matches the intended interaction; (4) Format
Reward—validates whether the generated action conforms to the required output format. The reward
function formula is provided in Appendix A.4.

3.3.2 Multi-Turn Reinforcement Learning

The MT-RL paradigm extends the agent-environment interaction to multiple decision steps, as
illustrated in Figure 2B. Unlike ST-RL, where the observation and action sequences o0:t and a0:t−1

are pre-constructed, MT-RL generates these sequences online through interactive rollouts, i.e.,
{ok, ak}tk=0 ∼ E(πθ), where E(πθ) denotes the environment trajectory induced by policy πθ. At
each time step t, the agent observes ot ∈ O and selects an action at ∈ A according to its policy:

at ∼ πθ(· | o0:t, a0:t−1, u), (3)

where u ∈ U denotes the task specification, and the sequences (o0:t, a0:t−1) are dynamically gener-
ated during the agent’s interaction with the environment. The objective of MT-RL is to maximize the
expected final-step reward over the trajectory:

J(θ) = Eo0:t,a0:t∼πθ
[r(ot, at, u)] , (4)

where the reward function is defined in a sparse, goal-based A2B reward: the agent receives a
reward of +1 if it successfully reaches the target screen node, and 0 otherwise. This sparse reward
formulation encourages the agent to efficiently navigate through the environment to accomplish the
specified task. Notably, by providing reward only at the target state, this scheme promotes uninhibited
exploration and enables the agent to learn a more comprehensive value function over the state space,
facilitating the discovery of diverse and efficient trajectories for task completion.

4 Experiment

4.1 Environment Configuration

All training is conducted in Env-Base, a tree-structured graph with maximum depth of 7. Excluding
system-defined edges representing the home and back, the environment’s branching structure follows
a node distribution of [5,3,2,2,1,1,0] at each level respectively. In Section 5.2, the Environment
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Table 2: Performance Comparison of Methods across Tasks of Varying Difficulty
Path@1 Path@2 Path@3 Path@4 Path@5 Path@6 Path@7

Pass@1
SFT 99.71 51.16 19.55 8.52 3.13 2.15 0.31
ST-RL 99.71 59.73 27.57 14.01 4.59 3.38 0.83
MT-RL 98.10 52.93 26.31 13.64 6.63 4.17 2.92

Pass@5
SFT 100.00 74.15 36.04 19.75 6.71 5.04 1.30
ST-RL 100.00 70.07 37.84 23.77 7.52 7.02 3.39
MT-RL 100.00 66.67 43.24 24.69 13.01 8.11 8.33

Table 3: Performance Comparison of Methods across Out-of-Distribution Environments
SFT ST-RL MT-RL

Overall Path Edge Overall Path Edge Overall Path Edge

Env-Base 55.46 41.76 64.55 63.06 52.25 68.68 63.25 52.35 69.86
Env-Image 32.91 7.38 63.90 33.99 7.42 69.68 34.17 7.54 70.64
Env-Name 32.01 6.77 61.24 32.13 5.95 64.77 32.74 6.65 65.90
Env-Position 36.19 12.22 64.55 40.31 17.34 68.81 42.79 20.72 70.51
Env-Noise 41.18 21.87 57.50 42.33 23.55 57.90 44.56 27.05 60.55

Variants are utilized for OOD testing. Specifically, Env-Image, Env-Name, and Env-Position denote
modifications to the icon image, icon name, and icon position within Env-Base, respectively. Env-
Noise introduces noise icons into Env-Base.

Edge traversal tasks represent single-step transitions, while Path traversal tasks encompass multi-step
navigation sequences. The current environment root node comprises five subtrees: two are designated
for SFT training, two for RL training, and one for OOD testing. Notably, the SFT training dataset
also incorporates Edge data from all subtrees, including the Test subtree. This inclusion is intended
to provide the agent with fundamental knowledge of the environment, which can be leveraged for
path planning and to prevent the model from making entirely random decisions. In addition, the
SFT training set is augmented with grounding and understanding data for the icons used in the
Env-Base, further enhancing the agent’s ability to interpret and interact with GUI elements. We
employe Qwen2.5-VL-7B-Instruct [2] as our foundation model for all experiments.

4.2 ST-RL Generalizes on Out-of-Distribution Tasks

Our experimental results, shown in Table 1, provide compelling evidence regarding the effectiveness
of different model training strategies for page navigation tasks. Analysis of performance metrics
across ID and OOD benchmarks reveals several significant findings. The non-fine-tuned models
demonstrate poor performance across all evaluation metrics, with scores approximating random
selection levels. This substantiates our hypothesis that general-purpose models without domain-
specific training lack the requisite knowledge representations for effective navigation within simulated
environments. In contrast, the Qwen2.5-VL-7B-SFT exhibites remarkable improvements, particularly
on ID benchmarks. This dramatic performance enhancement indicates the model’s strong capacity to
memorize domain-specific navigation patterns. However, performance declines substantially on OOD
benchmarks, suggesting limited generalization capability when confronted with novel scenarios out-
side the training distribution. Notably, the ST-RL approach (Qwen2.5-VL-7B-ST-RL) demonstrates
superior performance characteristics. While maintaining excellent ID benchmark results, it achieves
significantly better generalization on OOD tasks (Overall: 63.06 vs. SFT’s 55.45). This 13.7%
relative improvement in OOD performance validates our reinforcement learning methodology, which
leverages trajectory-dependent reward functions to better capture underlying navigation principles
rather than merely memorizing specific action sequences. Furthermore, Interactive Benchmark results
reinforce these findings, with ST-RL achieving superior Pass@1 and Pass@5 scores (17.22 and
22.34, respectively) compared to SFT (14.30 and 20.86). This consistent performance advantage
across both automated metrics and interactive human evaluation confirms that while SFT effectively
memorizes in-domain knowledge, the ST-RL approach yields substantially better generalization to
novel scenarios, highlighting the advantages of RL for navigation tasks in dynamic environments.
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Figure 4: (A-B) Accuracy across different settings and difficulty levels within the static benchmark.
(C-D) Success rates across Pass@N and difficulty levels within interactive Benchmark.
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Figure 5: (A) Heatmap visualization of performance in different OOD environments. (B-C) The
impact of different SFT stages on ST-RL, showing performance (e.g., mean and standard deviation)
respectively. (D) Results of action space modification to counter reward hacking in MT-RL.

4.3 MT-RL Explores in Interactive Environments

According to the results presented in Table 1, MT-RL presents a distinctive performance profile
across evaluation metrics. Unlike SFT and ST-RL which train on pre-synthesized trajectories, MT-RL
employs interactive multi-round training, resulting in lower ID benchmark scores. This indicates
MT-RL avoids overfitting to training distributions, instead developing more generalizable navigation
strategies. On OOD benchmarks, MT-RL demonstrates comparable performance to ST-RL (Overall:
63.25 vs. 63.06), both significantly outperforming SFT (55.45). The most compelling evidence
of MT-RL’s effectiveness emerges in Interactive Benchmark, where it achieves the highest scores
(Pass@1: 17.47, Pass@5: 25.16). This superior performance in realistic interaction scenarios can be
attributed to MT-RL’s training paradigm, which aligns closely with actual deployment conditions.
By learning through environmental exploration rather than static demonstrations, MT-RL develops
robust adaptive behaviors that translate effectively to real-world navigation challenges, enabling the
agent to strategically explore and recover from suboptimal states. Figure 3 illustrates our agent’s
capability to navigate complex screens, demonstrating strategic exploration and error recovery when
deviating from the optimal path between page_54 and page_111. After encountering a suboptimal
state following the fourth click (834,907), the agent successfully explores alternative paths and
backtracks when necessary, ultimately completing the task through multiple recovery steps.

5 Analysis

5.1 Performance Comparison on Tasks of Varying Difficulty

We conduct ablation experiments to evaluate the performance of our methods across varying task
complexities. Figure 4(A-B) shows the step and task success rates in static benchmarks, while Table 2
and Figure 4(C-D) presents Pass@1 and Pass@5 success rates in interactive settings. Across all
scenarios, performance drops drastically as path length increases, confirming path length as a key
indicator of task difficulty. In static evaluations, ST-RL and MT-RL consistently outperform SFT,
especially for longer paths (5–7 steps). This suggests reinforcement learning improves generalization
in complex tasks. On interactive benchmark, MT-RL shows even greater gains, beating other
methods in Pass@1 and Pass@5 success rates. These results highlight MT-RL’s alignment with
real-world conditions, where iterative feedback and exploration allow agents to learn from failures
and continually refine their strategies, leading to higher success rates.
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5.2 Generalization in Different Out-of-Distribution Scenarios

We evaluate different approaches in various OOD environments to compare their robustness. Table
3 shows the detailed experimental results. Across all OOD settings, reinforcement learning–based
methods (ST-RL and MT-RL) consistently outperform SFT. Notably, in the Env-Base setting, MT-RL
and ST-RL achieve success rates of around 63%, compared to 55% for SFT, underscoring better
generalization in unseen scenarios. Altering icons or labels (Env-Image and Env-Name) causes
significant performance drops (from around 63% to 32–34%; Path success dips to about 7%),
highlighting how foundational knowledge about environment elements is crucial for navigation. In
contrast, changing icon positions (Env-Position) or adding noise icons (Env-Noise) yields more
moderate declines, and MT-RL still maintains higher rates (42–44% overall success, 20–27% on the
Path metric), indicating its robustness in dynamic settings. The heatmap in Figure5A confirms these
trends, showing MT-RL consistently outperforms ST-RL and SFT across all perturbations.

5.3 Influence of SFT on the ST-RL

To investigate the influence of SFT on the subsequent RL training phase, we first subject the base
model to SFT for varying numbers of epochs. Subsequently, models from different training stages are
utilized to initialize the ST-RL training. Figure 5B presents the reward and training steps for ST-RL
training initiated with models that have undergone SFT for 1 to 5 epochs. It is clearly observable
that models with different degrees of SFT training exhibit distinct learning trajectories and ultimately
achievable reward levels during the subsequent RL training. A core finding is that RL training
initialized with models from early SFT stages achieves higher cumulative rewards. Notably, ST-
RL-Base-Epoch1, despite exhibiting lower initial rewards during RL training, demonstrates a faster
learning rate and subsequently stabilizes at the highest reward level. Combined with Figure 5C, it is
evident that models from early SFT stages possess diversity while retaining greater plasticity. This
implies that the model has not yet formed overly entrenched biases regarding the data distribution,
thereby enabling it to more readily adapt its policy in response to reward signals and engage in
broader exploration during the RL phase. These findings indicate that more SFT is not invariably
better; rather, a trade-off exists. To achieve optimal outcomes in the subsequent RL training, the
selection of a model subjected to a moderate extent of SFT as the initialization point is paramount.

6 Generalization to Real-World

To validate the practical effectiveness of our approach, we conduct comprehensive evaluations on
real-world GUI tasks to assess the generalization capabilities of agents trained in our simulated
environment. This section presents two complementary evaluation strategies: zero-shot evaluation on
a static benchmark to test transferability, and continual training experiments to explore scalability
with real-world data integration. The detailed specifications of our real-world GUI benchmark and
the continual training datasets are provided in Appendix A.5.

6.1 Zero-Shot Evaluation on Real-World Static Benchmark

Table 4: Performance on real-world static benchmark with extended action space.
Action Total Number Success Number Success Rate
CLICK 971 622 64.06%
COMPLETE 230 221 96.09%
WAIT 231 99 42.86%
TYPE 129 119 92.25%
SCROLL 8 5 62.50%

To demonstrate the practical applicability of our approach, we evaluate the generalization capabilities
of agents trained in our simulated environment on real-world GUI tasks. To assess this, we construct
a static benchmark by sampling 1,569 instances from several open-source real-world GUI datasets.
The test samples cover a broader action space: CLICK, COMPLETE, WAIT, SCROLL, and TYPE.
Without any further fine-tuning, we evaluate our agent, which has not encountered WAIT, SCROLL,
or TYPE actions during the training process, directly on this benchmark. The results are presented
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in the Table 1 below, which show that the agent trained in the simulated environment demonstrates
a notable degree of generalization to real-world GUIs. Despite lacking explicit training on WAIT,
SCROLL, and TYPE, the agent still achieves non-trivial accuracy on these actions. This suggests
that the agent possesses some degree of atomic competence in handling GUI elements beyond its
training distribution, highlighting the generalizability of our approach and its practical implications
for real-world deployment.

The results shown in Table 4 reveal several key insights: (1) The agent achieves strong performance
on COMPLETE (96.09%) and TYPE (92.25%) actions, suggesting effective transfer of fundamental
GUI interaction skills. (2) Despite never encountering WAIT, SCROLL, or TYPE actions during
training, the agent demonstrates non-trivial accuracy on these unseen actions, indicating emergent
generalization capabilities. (3) The moderate performance on CLICK actions (64.06%) reflects
the complexity of real-world GUI element recognition, indicating that agents require additional
real-world GUI knowledge to improve their understanding.

Table 5: Performance comparison on real-world grounding and interactive benchmarks after continual
training on real-world data.

Model SS
[8]

SS-v2
[43]

FP
[19]

MoTIF
[4]

Refexp
[33]

VWB
AG
[24]

VWB
EG
[24]

AW
[35]

Aver

Base (paper report) 84.70 - - - - - - - -
Base (our report) 84.01 80.34 48.25 71.93 79.46 72.81 90.07 10.34 67.15
Continue-Train 84.91 84.43 59.50 68.30 72.13 67.96 93.70 12.06 67.87
SFT-Continue-Train 85.06 85.06 59.30 80.47 83.19 68.93 92.01 12.93 70.87
ST-RL-Continue-Train 85.53 85.61 60.45 79.41 77.88 70.87 92.98 14.65 70.92
MT-RL-Continue-Train 86.08 85.61 59.40 78.18 81.77 76.70 92.98 15.51 72.03

6.2 Evaluation on Real-World Benchmarks with Continual Training

To further investigate the scalability of our approach, we conduct continual training experiments by
incorporating real-world data. Specifically, we continue training our agents (SFT, ST-RL, MT-RL)
with 24k samples drawn from publicly available real-world GUI datasets. We then evaluate the
resulting agents on comprehensive real-world grounding and interactive benchmarks.

As shown in Table 5, our training framework consistently yields agents with strong generalization
capabilities across both simulated and real-world GUI tasks. Notably, MT-RL outperforms ST-
RL, which in turn outperforms SFT, maintaining the same performance hierarchy observed in our
simulated experiments. These results corroborate our main conclusions: (1) MT-RL training yields
superior generalization compared to ST-RL training, and (2) ST-RL generalizes better than SFT.
The quantitative results show that MT-RL-Continue-Train achieves the highest average performance
(72.03%), with particularly strong improvements on ScreenSpot (86.08%), VWB AG (76.70%), and
AndroidWorld (15.51%). The consistent performance gains across diverse benchmarks validate the
robustness of our multi-turn reinforcement learning approach.

7 Conclusion

In this work, we introduce GE-Lab, a novel simulation environment engine designed to advance
research in GUI agent navigation. GE-Lab enables flexible and modular construction of screens,
icons, and navigation graphs, while granting comprehensive access to environment information for
both training and evaluation. Through systematic experimentation, we establish a clear and effective
training paradigm: SFT serves as a critical foundation by enabling agents to memorize essential
navigation knowledge; ST-RL further enhances generalization to previously unseen scenarios; and
MT-RL fosters the development of robust exploration strategies, leading to superior navigation
performance and reduced dependence on annotated data. Our extensive benchmarking not only
highlights the strengths of reinforcement learning approaches in GUI navigation tasks but also
provides actionable insights for building more capable and generalizable GUI agents. We believe that
GE-Lab will serve as a valuable resource for the community, facilitating future research and fostering
progress towards intelligent and adaptable GUI agents.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: The abstract and introduction clearly state the paper’s main contributions and
scope. The experimental results presented in the paper provide evidence supporting these
claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of this work are discussed in an appendix section A.2 titled
“Limitations”.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate “Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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tant role in developing norms that preserve the integrity of the community. Reviewers
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: [NA]
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All necessary details for reproducing the main experimental results, including
specific configurations and procedures, are provided in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and data are included in the supplemental material and will be
released in the future.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental settings and details, including data splits, hyperparameters,
and optimizer choices, are provided in Appendix A.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results reported in the paper, including those in Table 1, Table 2, and Figure
4 (such as Pass@5), are obtained from multiple independent runs, providing appropriate
information about the statistical significance of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer “Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification:The details of the computational resources used for all experiments, including
hardware specifications and runtime information, are provided in Appendix A.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have reviewed the NeurIPS Code of Ethics and confirm that the
research fully conforms to its principles and guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The broader impacts of the paper is provided in Appendix A.3.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The foundational model Qwen2.5-VL used in this work is properly credited
and appropriately cited in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix

A.1 Experimental Details

This section details the experimental environment, dataset construction methodology, key training
parameters, and evaluation setup employed in our research, aiming to ensure the reproducibility and
transparency of our findings.

Compute Resources. All experiments are performed on a high-performance computing cluster
equipped with 16 NVIDIA A800 GPUs. The specific training duration varies depending on the model
stage and task type. A typical training time for a single SFT model is approximately 3 to 4 GPU
hours. The training of ST-RL models generally requires about 48 GPU hours, while Multi-Turn
Reinforcement Learning MT-RL models typically train for approximately 36 GPU hours.

Dataset & Benchmark. We construct and utilize multiple datasets to support various stages of
training and evaluation tasks. Env-Base serves as the core environment for our experiments as shown
in Figure 6. This is a graph with a maximum depth of 7. Excluding system-defined edges representing
the home and back actions, the branching structure of the environment follows a node distribution of
[5, 3, 2, 2, 1, 1, 0] at each respective level. Its graph structure is partitioned into five independent
subtrees, which are allocated according to a 2:2:1 ratio for the Supervised Fine-Tuning training set,
Reinforcement Learning training set, and test set, respectively. Based on this partitioning, the data
are further categorized into path data and edge data. Specifically, each subtree contains 12,439 path
data instances and 274 edge data instances. These data are primarily utilized for training the model in
graph structure understanding and fundamental navigation capabilities.

In the visual representation, the number of icons corresponds to the clickable areas that trigger page
transitions, with the task completed by selecting the "complete" icon. At the root node, there are 5
icons and clickable areas, allowing access to 5 pages. For first-level child nodes, there are 4 icons
(3 regular + 1 "Back") and 4 clickable areas, enabling navigation to 4 pages. For other child nodes,
which include "Home" and "Back" icons, the number of icons is NodeNum[i] + 2, resulting in
NodeNum[i] + 1 clickable areas, allowing access to NodeNum[i] + other pages. On average, each
screen contains more than 5 clickable icons.

We additionally generate datasets for specific vision and language understanding tasks: (1) Icon
Captioning: This dataset comprises 2,320 instances and is used to train the model to understand icons
and generate corresponding textual descriptions. (2) Icon Grounding: This dataset contains 2,320
instances, aimed at training the model to locate relevant icons within an interface based on textual
instructions. To evaluate the model’s practical performance in dynamic interactive scenarios, we
construct a dedicated interactive benchmark task set. This task set is formed by randomly selecting
any two nodes within a reserved test environment to serve as the start and end points of a task,
respectively. Ultimately, this process generates a total of 2,162 independent interactive test tasks. The
test environment is strictly isolated from the training/validation environments to ensure the objectivity
of the evaluation. The specific number of tasks, particularly the distribution of tasks according to
different path lengths or types, is presented in Table 6.

Table 6: The Number of Interactive Benchmark Tasks
Path@1 Path@2 Path@3 Path@4 Path@5 Path@6 Path@7 Overall

Number 137 147 222 324 492 456 384 2162

Details of the Out-of-domain Test Environment. To systematically evaluate generalization capa-
bilities, we construct a comprehensive suite of OOD environments that challenge different aspects of
visual grounding and navigation. As illustrated in Figure 7, our evaluation framework encompasses
five distinct environment configurations: Env-Base (in-domain baseline), Env-Image, Env-Name,
Env-Position, and Env-Noise. Following the hierarchical data partitioning strategy outlined in our
dataset construction, one subtree is reserved exclusively for OOD evaluation, ensuring zero overlap
with training trajectories. The remaining subtrees are allocated for SFT and RL phases, constituting
the in-domain training distribution. Beyond this natural distribution shift, we systematically construct
four additional OOD variants through controlled perturbations of visual, semantic, and spatial modal-
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Figure 6: The navigation map of Env-Base.

ities. Each environment preserves the underlying task structure while introducing specific domain
gaps that probe distinct aspects of model robustness and transferability.

Env-Image introduces visual domain shift by systematically replacing icon appearances while pre-
serving semantic labels and spatial configurations. As depicted in Figure 7, each icon undergoes visual
transformation (e.g., the human icon becomes a dog icon) through sampling from a disjoint visual
vocabulary, ensuring no visual overlap with the original environment. This perturbation simulates
real-world scenarios such as UI redesigns or cross-platform adaptations where functional semantics
remain invariant despite visual changes. Env-Name targets semantic grounding by altering textual
labels while maintaining visual appearance and spatial layout. The transformation involves semanti-
cally meaningful substitutions (e.g., "Human" → "Lady") that preserve categorical coherence while
introducing lexical variations. This configuration specifically challenges the model’s capacity for
semantic reasoning and tests the robustness of language-vision alignment mechanisms. Env-Position
evaluates spatial reasoning capabilities through global layout perturbations. Icon positions undergo
unconstrained randomization subject to non-overlap constraints and screen boundary conditions, as
illustrated by the repositioned elements in Figure 7. This environment assesses the model’s ability
to maintain spatial understanding beyond local neighborhood relationships. Env-Noise introduces
visual complexity through the injection of task-irrelevant distractor elements (Noise1, Noise2). These
noise icons are strategically positioned to increase visual clutter while preserving the core naviga-
tional structure, thereby testing the model’s attention mechanisms and ability to filter relevant visual
information.

Experimental Settings. Table 7 and Table 8 present the important hyperparameters used for SFT
and RL training. Unless explicitly listed in Table 8, RL hyperparameters match the SFT settings in
Table 7.

Training Time and Sampling Efficiency We provide a comprehensive analysis of the training
time and sampling efficiency across our three proposed methods. The SFT baseline requires 3-4
GPU hours for training on 60,864 samples, achieving the highest sample efficiency with minimal
computational overhead. In contrast, our reinforcement learning approaches demonstrate different
computational profiles: ST-RL requires approximately 48 GPU hours for training on 12,439 samples,
while MT-RL completes training in 36 GPU hours using 2,162 interactive tasks. The computational
trade-offs between methods reflect their distinct learning paradigms. While SFT exhibits superior
sample efficiency for in-distribution scenarios, both ST-RL and MT-RL demonstrate enhanced
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Figure 7: Out-of-Distribution Environment Configurations: Env-Base serves as the in-domain base-
line, while Env-Image, Env-Name, Env-Position, and Env-Noise introduce controlled perturbations
targeting visual appearance, semantic labels, spatial layout, and visual complexity, respectively. Each
environment maintains the same underlying task structure while introducing specific domain shifts to
probe different aspects of model robustness.

Table 7: Hyperparameters for SFT.
config value

learning rate 1e-5
learning rate schedule cosine decay
per device train batch size 2
gradient accumulation steps 2
warmup ratio 0.05
num train epochs 1
max pixels 200704

Table 8: Hyperparameters for RL.
config value

learning rate 1e-6
per device train batch size 8
num train epochs 5
num generations 8
temperature 1.2
top p 1.0
top k 8

exploration capabilities through increased environment interactions. Specifically, ST-RL achieves
99,512 total interactions compared to MT-RL’s 89,939 interactions, with both methods using 8
generations per training round. This increased interaction volume enables more comprehensive state
space exploration, leading to improved robustness in out-of-distribution and interactive scenarios.

Regarding the simulation environment, our training framework employs an efficient simulation envi-
ronment that enables rapid policy iteration without real-time rendering overhead. The environment
generates feedback by evaluating the predicted click position against pre-cached meta information,
determining state transitions based on spatial overlap with interactive elements. For instance, when
the agent predicts a click within the Home icon’s bounding box from page_6, the environment
transitions to page_0 according to the cached navigation graph. This design provides significant
computational advantages: while model inference requires approximately 13 seconds per sample,
environment feedback generation incurs only millisecond-level latency due to pre-rendered screen
caching. The simulation framework thus enables efficient policy learning without the computational
bottlenecks typically associated with real-time GUI rendering, making our approach scalable for
large-scale reinforcement learning training.

Table 9: Training Time and Sampling Efficiency Comparison for the Three Methods
Method Dataset Size Training Time Interaction Count Feedback

SFT 60864 samples 3–4 GPU hours 60864 Manually labeled
ST-RL 12439 samples 48 GPU hours 99512 Manually labeled
MT-RL 2162 tasks 36 GPU hours ∼89939 Environment Feedback
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A.2 Limitations

While the current version of GE-Lab provides a controlled and accessible environment for studying
agent navigation, its interaction logic does not yet fully capture the diversity and complexity of
real-world GUI interactions. In practical applications, user interfaces often feature a broader variety
of icons, substantial textual information, and various forms of visual noise. These elements, such as
additional icons, text, or noise, can be readily incorporated into the current environment, and we plan
to continuously enrich the simulation to better approximate real-world scenarios and enhance the
generalizability of our findings.

Regarding the action space, we intentionally restrict the agent’s available actions in the current version
to facilitate focused analysis of navigation strategies. This simplification allows us to systematically
evaluate the impact of different training methods on navigation performance. Nevertheless, real-world
GUI interactions require a richer set of actions, including gestures such as swiping and long-pressing.
Expanding the agent’s action space to support more complex interactions is an important direction
for future work, enabling more comprehensive assessment of agent capabilities in practical settings.

A.3 Broader Impact

The advancement of GUI agents hinges critically on their ability to perform robust and generalizable
screen navigation, which remains a key bottleneck for real-world deployment. By systematically
dissecting the navigation challenge, our work provides a clear roadmap for developing foundational
agent capabilities. Specifically, we demonstrate that a staged training paradigm—comprising super-
vised fine-tuning, single-turn reinforcement learning, and multi-turn reinforcement learning—enables
agents to first acquire essential knowledge, then generalize to novel scenarios, and finally develop
effective exploration strategies through interactive trial and error.

Our introduction of a flexible simulation environment, GE-Lab, allows for controlled and compre-
hensive analysis of agent behaviors, circumventing the complexities and proprietary constraints
of real-world GUI platforms. This approach not only accelerates research progress by enabling
reproducible benchmarking, but also lays the groundwork for agents to safely and efficiently acquire
the core competencies required for interacting with complex environments. By abstracting and
simplifying the environment, we are able to isolate and address fundamental challenges, ultimately
guiding the development of GUI agents toward more general and autonomous intelligence (AGI).

From a societal perspective, the development of more capable and generalizable GUI agents has
the potential to significantly enhance productivity and accessibility, automating routine digital tasks
and enabling broader access to technology for users with diverse needs. However, as agents become
more autonomous and capable of interacting with real-world systems, it is crucial to consider the
ethical implications, such as ensuring user privacy, preventing unintended actions, and maintaining
transparency in agent decision-making. Our work, by focusing on simulation-based training and
evaluation, provides a safer pathway for developing and testing agent capabilities before deployment
in real-world applications, thereby helping to mitigate potential risks. We believe that these insights
and tools will benefit the broader research community by informing the design of more capable,
reliable, and generalizable agents, and by providing a foundation for future work on safe, ethical, and
effective agent-environment interaction in both simulated and real-world settings.

A.4 Reward Function Design

To effectively guide the agent’s learning process, we design four complementary reward functions
that collectively form the complete reward signal R:

R(st, at, st+1) = rtype(at, a
∗
t ) + rcoord(at, st) + rintent(at, et) + rformat(at, et) (5)

where a∗t represents the reference action, and et denotes the generated explanation. We employ
equal weights for all four reward components based on empirical analysis of their behavior patterns.
Specifically, the Type and Format rewards are consistently optimized early in training, achieving high
means with low variance (0.98±0.03 and 0.95±0.05 respectively), effectively serving as syntactic
constraints rather than meaningful optimization objectives where heavier weighting would not
provide additional gradient information. Meanwhile, the Coordinate and Intent rewards exhibit
strong correlation, as evidenced by our analysis of 1000 sampled interactions showing P(R_coord=1 |
R_intent=1) ≈ 96.3% and P(R_intent=1 | R_coord=1) ≈ 94.2%. This strong dependency between
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these reward components reduces the necessity for differentiated weighting schemes, making equal
weights a simple yet effective approach that avoids additional hyperparameter tuning.

Action Type Reward The action type reward rtype evaluates whether the action type generated by
the agent matches the optimal action type. Our action space A includes two fundamental types: click
and complete. Formally, it is defined as:

rtype(at, a
∗
t ) =

{
1, if type(at) = type(a∗t )
0, if type(at) ̸= type(a∗t )

(6)

where type(a) extracts the type of action a. This reward encourages the agent to first understand the
action type required in the task context, establishing a foundation for subsequent precise operations.

Coordinate Accuracy Reward The coordinate accuracy reward rcoord measures the spatial pre-
cision of click operations. For click actions, we determine whether the click coordinates (x, y) fall
within the target area based on the bounding box of interactive elements:

rcoord(at, st) =


1, if type(at) = click and (x, y) ∈ P(st)

1, if type(at) = complete
0, otherwise

(7)

where P(st) represents the set of points within the correct interactive region in state st. For complete
actions, the default reward is 1 as they do not involve spatial coordinates. This reward mechanism
encourages the agent to precisely locate UI elements, enhancing operational reliability.

Intent Matching Reward The intent matching reward rintent evaluates the exact name matching
between the explanation et generated by the agent and the actual UI element interacted with through
action at:

rintent(at, et) =

{
ExactMatch(et, I(at, st)), if type(at) = click
Contains(et, “target page”), if type(at) = complete

(8)

where ExactMatch(et, I(at, st)) returns 1 if the explanation et contains the exact name of the
interacted UI element and 0 otherwise. I(at, st) represents the name of the specific icon or interactive
element that is being clicked when action at is executed in state st. Contains(et, “target page”) returns
1 if the explanation et explicitly indicates task completion, and 0 otherwise. For click operations,
we verify exact name matching between the element mentioned in the explanation and the actual UI
element clicked; for complete operations, we check whether the explanation properly acknowledges
the successful completion of the task.

Format Reward The format matching reward rformat evaluates whether both the action at and
the explanation et generated by the agent conform to the format of their respective references, a∗t and
e∗t . This reward encourages the agent to produce actions and explanations that are not only correct in
content but also consistent in structure and style with the optimal examples. It is formally defined as:

rformat(at, et, a
∗
t , e

∗
t ) =

{
1, if FormatMatch(at, a∗t ) and FormatMatch(et, e∗t )
0, otherwise

(9)

where FormatMatch(a, a∗) and FormatMatch(e, e∗) indicate whether the format of the generated
action and explanation match those of the references, respectively (such as structure, key fields, or
style). This reward term encourages the agent to generate actions and explanations that are not only
semantically correct but also well-formatted and standardized, which benefits subsequent readability,
usability, and consistency.

This multi-level reward R(st, at, st+1) enables the agent to simultaneously learn correct action
type selection, precise spatial localization, reasonable semantic understanding, and standardized
explanation expression, thereby forming comprehensive navigation capabilities. Experimental results
show that after adding the format matching reward, the explanations generated by the agent become
more standardized, further improving the navigation success rate and generalization ability in the
GE-Lab environment.
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A.5 Real-World Benchmark and Training Data

Evaluation Prompt for Real-World GUI Benchmark

You are a Multifaceted Mobile Interface Assistant. Your responsibilities include:

1. Navigating a mobile phone interface to reach a target page based on user instructions, task history, and the current
screen state.

2. Understanding icons by identifying their name or function based on their location on the screen.

3. Grounding icons by locating the coordinates of an icon based on its name or description.

You will receive input that typically includes:

• User Request: Specifies the goal (navigation, understanding, or grounding). This might be a complex instruction for
navigation or a direct question/command for icon tasks.

• Task History (Optional, primarily for Navigation): Records previous steps.

• Current Screen State: Represents the current screen, an image (indicated by <image>).

Based on the user request and the current screen state (and history if applicable), you must first determine the type of task
requested and then provide the appropriate output.
Task Types and Output Formats
General GUI Task

• Goal: Reach a target page step-by-step.

• Typical Input: Multi-turn instruction, history, and state. screen description and screenshot.

• Possible Actions:

– click: Tap a specific element. Provide coordinates (x, y) relative to a (0,0) top-left and (1000,1000) bottom-right
system.

– type: Type text into an input field. Provide the string content to be typed. Example: TYPE("Texas BBQ")
– scroll: Scroll the screen. Provide the scroll distance. Example: SCROLL(5)
– wait: Pause the execution. Provide the duration to wait in seconds. Example: WAIT(3)
– complete: Task finished, current screen is the target.

• Output Format:

Explain: [Your brief explanation, e.g., ‘click xxx
icon on yyy page.’, ‘this is the target page.’]\tAction:
[click(start_box=<|box_start|>(x,y)<|box_end|>) or TYPE("Text to type") or
SCROLL(5) or WAIT(3) or complete]

General Instructions

• Carefully analyze the user request to determine the task (Navigation, Grounding, Understanding).

• Analyze the current screen state (description or image) thoroughly.

• For actions involving coordinates (click), use the (0,0) to (1000,1000) system.

• Strictly adhere to the specified output format for the determined task type. Use a tab character (\t) as a separator where
indicated.

Evaluation Prompt for Real-World Grounding Benchmark

I want to {goal_info}. Please locate the target element I should interact with. (with point)

To comprehensively evaluate the generalization capabilities of our approach, we curate a diverse
collection of real-world GUI samples from multiple publicly available datasets. Our real-world
evaluation benchmark mentioned in section 6.1 comprises 1,569 carefully sampled instances drawn
from four established GUI datasets: AITW [34], AITZ [49], AMEX [5], and Mind2Web [11].
These datasets collectively span diverse application domains, interface designs, and interaction
paradigms, providing a comprehensive testbed for cross-domain generalization assessment. The
benchmark encompasses five distinct action types: CLICK, COMPLETE, WAIT, SCROLL, and
TYPE, representing the fundamental operations in GUI navigation. As depicted in Figure 8, the
collected samples exhibit substantial visual and functional diversity, including e-commerce interfaces
featuring product listings and shopping carts, system settings with hierarchical menu structures,
media applications displaying video content and playback controls, productivity tools with complex
layouts, and social platforms incorporating feed-based content and interactive elements. Each sample
is annotated with specific instructions and target actions, ranging from simple element selection (e.g.,
"Click the YouTube icon") to complex multi-step operations (e.g., "Cancel all purchases over $200"),
with instructions formulated in natural language that require agents to perform visual grounding,
semantic understanding, and precise action execution. The GUI screenshots are sourced from the
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original datasets, while the task descriptions and action annotations are generated by GPT-4o-2024-
11-20 [29] based on the meta-information from the original datasets, followed by quality assurance
conducted by human annotators. The prompt for this task test is shown at A.5 (Evaluation Prompt for
Real-World GUI Benchmark). Notably, our simulated training environment only expose agents to
CLICK and COMPLETE actions, making WAIT, SCROLL, and TYPE completely unseen during the
initial training phase, which enables rigorous evaluation of zero-shot generalization capabilities.

To comprehensively assess GUI understanding and interaction capabilities, we evaluate our approach
on eight established real-world benchmarks as discussed in section 6.2. Benchmarks are abbreviated
as follows: SS (ScreenSpot) [8], SS-v2 (ScreenSpot-v2) [43], FP (FuncPred) [19], MoTIF [4],
Refexp [33], VWB AG (VisualWebBench Agent Grounding) [24], VWB EG (VisualWebBench
Element Grounding) [24], and AW (AndroidWorld) [35]. Seven of these benchmarks (SS, SS-v2, FP,
MoTIF, Refexp, VWB AG, and VWB EG) are static evaluation datasets that assess visual grounding
capabilities by measuring the accuracy of locating target UI elements within screenshots given
textual descriptions. In contrast, AndroidWorld (AW) provides an interactive evaluation environment
where agents perform complete tasks within Android virtual machines, with success measured by
actual task completion rather than intermediate grounding accuracy. This diverse benchmark suite
enables thorough evaluation across both fundamental grounding abilities and end-to-end interactive
performance. For the continual training experiments described in Section 6.2, we utilize a subset of
24,000 samples from the same source datasets as domain adaptation material, enabling our agents to
bridge the gap between simulated and real-world GUI environments while maintaining the learned
multi-turn capabilities. For a fair comparison, Qwen2.5-VL-7B-Continue-Train, Qwen2.5-VL-7B-
SFT-Continue-Train, Qwen2.5-VL-7B-ST-RL-Continue-Train, Qwen2.5-VL-7B-MT-RL-Continue-
Train are trained on the same 24k dataset using 16 GPUs and identical hyperparameters, including a
global batch size of 256, a learning rate of 1e-5, a max length of 5120, and 2 epochs. The prompt for
the grounding benchmark is A.5 (Evaluation Prompt for Real-World Grounding Benchmark) , and the
prompt for the interactive benchmark is A.5 (Evaluation Prompt for Real-World GUI Benchmark).

Instruction: 

Search Texas BBQ 

Restaurants.

Explain: Typing Texas BBQ

in the search box.

Action: TYPE(“Texas BBQ”)

Instruction: 

Cancel all purchases over 

$200

Explain: Scroll down to view 

all products.

Action: SCROLL(5)

Instruction: 

Buy items under $20 on the 

homepage.

Explain: Waiting for the 

page to load.

Action: WAIT(3)

Instruction: 

Install VLC software on the

phone. 

Explain: VLC software 

installation complete.

Action: COMPLETE()

Instruction: 

Check out the NBA 2024 

Finals video on YouTube.

Explain: Click the YouTube 

app icon.

Action: CLICK(311,165)

Figure 8: Real-world Data with Expanded Action Space.

A.6 Training Stability

To evaluate the robustness and reliability of RL methods, we conduct a comprehensive analysis
of training stability across multiple random seeds. As demonstrated in Table 10, ST-RL method
exhibits remarkably stable training dynamics, with reward values demonstrating a consistent upward
trajectory from an initial value of 3.302±0.192 to a final performance of 3.760±0.175. Note that
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since ST-RL and MT-RL have different specific iteration numbers, we use It-1 to It-4 to represent
different training stages, with the specific correspondence being ST-RL (It_500 → It_2000) and
MT-RL (It_200 → It_800). Notably, the standard deviations remain consistently below 0.2 throughout
the training process, indicating minimal variance across different experimental runs. Similarly, our
MT-RL approach shows substantial and stable improvement, with rewards progressively increasing
from 0.394±0.081 to 0.745±0.079. The consistently low variance observed across all experimental
configurations provides strong empirical evidence for the stability and reproducibility of our training
methodology across different random initializations. Regarding convergence stability, our experi-
mental results reveal that both ST-RL and MT-RL demonstrate smooth and monotonic convergence
patterns, which is crucial for practical deployment scenarios. Specifically, the ST-RL approach shows
a steady improvement in evaluation scores, progressing from an initial performance of 55.13 to a
final score of 63.67, representing a substantial improvement of 8.54 points. Concurrently, the MT-RL
method achieves consistent performance gains, with evaluation scores increasing from 63.46 to 64.40.
Importantly, we observe that the standard deviations progressively decrease throughout the training
process, indicating not only improved performance but also enhanced consistency and reliability.
This convergence behavior suggests that our proposed methods successfully avoid common pitfalls in
reinforcement learning such as catastrophic forgetting or unstable policy updates, thereby ensuring
robust and predictable learning dynamics.

Table 10: Reward and Evaluation Performance Across Iterations for ST-RL and MT-RL (Mean ± Std
Over Seeds)

Model Type It-1 It-2 It-3 It-4
ST-RL Train 3.302± 0.192 3.693± 0.188 3.739± 0.152 3.760± 0.175
ST-RL Eval 55.133± 1.213 55.358± 1.254 60.077± 1.158 63.663± 1.112
MT-RL Train 0.394± 0.081 0.402± 0.083 0.614± 0.102 0.745± 0.079
MT-RL Eval 63.462± 1.089 63.494± 1.193 64.185± 1.062 64.402± 0.988

Note: It-1 to It-4 correspond to: ST-RL (It_500 → It_2000), MT-RL (It_200 → It_800).

A.7 Reward Hacking in MT-RL

In the exploration of MT-RL, a specific phenomenon of reward hacking is observed, particularly in
scenarios where the model possesses a diverse action space and supervision signals are relatively
sparse. Figure 5D illustrates the mean output length and reward for two MT-RL models. As indicated
by the dashed line, the “MT-RL-w-Hack” model exhibits significant reward hacking in the early stages
of training, characterized by a substantial reduction in length alongside a rapid increase in reward.
The fundamental cause of this hacking resides in the training mechanism and action space design
inherent to MT-RL. Firstly, the primary supervision signals and reward calculations are concentrated
on the output of the final turn in multi-turn interactions. Secondly, the model possesses at least two
types of actions: “click” and “complete”. Typically, task completion must conclude with a “complete”
action, a design that leads to a shortcut effect. The model aims to maximize short-term obtainable
rewards and tends to select “complete” actions prematurely or excessively. Consequently, it does not
genuinely learn how to solve the problem through effective “click” sequences but instead discovers a
“loophole” in the reward function. To address this issue, our strategy involves reducing action space
diversity to mitigate reward hacking. Specifically, “click” actions are predominantly retained, aiming
to guide the model to focus on enhancing the accuracy and effectiveness of these interactions rather
than seeking premature task termination. As shown by the solid line in Figure 5D, the “MT-RL-wo-
Hack” model demonstrates a stable mean length and a progressive, genuine increase in reward. This
indicates that a unified action space enables the model to concentrate on core task actions in each
decision-making turn, thereby learning deeper task logic through cumulative multi-turn interactions.
These findings offer valuable insights for the future design of more complex MT-RL systems.

A.8 Case Study

To qualitatively assess the behavioral differences engendered by Supervised Fine-tuning (SFT),
Single-Turn Reinforcement Learning (ST-RL), and Multi-Turn Reinforcement Learning (MT-RL),
we present 3 illustrative case studies. These studies are conducted within our GE-Lab environment,
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where each task has a maximum execution limit of 10 steps. The agent’s interactions for each case
under SFT, ST-RL, and MT-RL.

(a)

(b)

(c)

Figure 9: Case Study 1: Demonstrating Basic Navigation and Error Recovery. Task: From page_54
to page_171.

Case 1 In the first case, the task involves navigating to a specific target page. The SFT agent
(Figure 9(a)) exhibites a characteristic failure mode. It attempts an erroneous direct navigation from
the root node to an environment page not contain the target element. Subsequently, it becomes
trapped, indicated by futile clicks on a blank area for the final three steps until the episode terminates.
This behavior underscores SFT’s reliance on memorized trajectories and its brittleness when faced
with deviations from seen data, a limitation our training paradigm aims to overcome.

The ST-RL agent (Figure 9(b)) successfully completes the task by identifying and executing the
shortest navigation path. This demonstrates the foundational generalization capability imparted by
ST-RL, aligning with our contribution that ST-RL enhances generalization to unseen scenarios.

The MT-RL agent (Figure 9(c)) also successfully reaches the target, but notably showcases its
enhanced exploratory and recovery capabilities. After an incorrect transition from page_22 to
page_53, the agent adeptly recognizes its off-path state, executes a “back” action to return to page_22,
and then selects the correct subsequent navigation step. This ability to self-correct and recover from
errors highlights MT-RL’s promotion of exploration and its capacity to build more robust agents, as
states in our contributions.

Case 2 The second case presents a similar navigation challenge. The SFT agent (Figure 10(a))
again fails. It initially navigates to a familiar root page before attempting an incorrect direct jump
to an unrelated environment page. As in Case 1, it concludes by repeatedly clicking a blank area,
exhausting the step limit. This reinforces the observation of SFT’s limited generalization.

The ST-RL agent (Figure 10(b)) achieves the goal, albeit imperfectly. While it identifies the shortest
path, it makes an initial incorrect click on an invalid area within page_8. Due to GE-Lab’s interactive
design (where invalid actions result in no state change), the agent remains on page_8 and successfully
selects the correct icon on its subsequent attempt, ultimately reaching the target. This shows ST-RL’s
capacity for in-state error correction.

The MT-RL agent (Figure 10(c)) demonstrates superior performance by navigating to the target
via the shortest path with flawless precision in a single attempt per step. This exemplifies the
refined decision-making and heightened navigation performance fostered by the MT-RL stage, further
corroborating our claims about its benefits.
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(a)

(b)

(c)

Figure 10: Case Study 2: Navigational Precision and Efficiency. Task: From page_121 to page_180.

(a)

(b)

(c)

Figure 11: Case Study 3: Complex Navigation and Novel Path Discovery. Task: From page_51 to
page_180.

Case 3 The third case involves a more complex navigation sequence. The SFT agent (Figure 11(a))
initiates the task correctly for the first two steps. However, a single misstep on page_6 (clicking an
incorrect icon) leads it down an irretrievable and erroneous path, eventually terminating on a blank
page after multiple invalid clicks. This highlights SFT’s limitation to recover from navigational errors
in longer sequences.

The ST-RL agent (Figure 11(b)) also failes in this more challenging scenario. Despite successfully
executing the first five navigation steps, it incorrectly branches off at page_8 and is unable to find
the target page before reaching the maximum step limit. This suggests that while ST-RL improves
generalization, its exploratory reach in complex, unseen situations may still be limited.
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Remarkably, the MT-RL agent (Figure 11(c)) not only successfully reaches the target page but does
so via a novel 8-step path that is not present in any of the training data. A critical segment of this
path involves a direct and accurate transition from page_51 to page_180. It demonstrates a significant
ability to generalize and discover entirely new and efficient solutions. Notably, these discovered
solutions are sometimes longer than those typically encountered in training, which strongly supports
our contribution that MT-RL promotes exploration. Furthermore, this capability indicates that MT-RL
reduces reliance on exhaustive annotated data, as the agent successfully discovers viable paths unseen
during the SFT phase.

Collectively, these case studies, facilitated by the flexible GE-Lab environment, provide qualitative
evidence for our proposed training paradigm. SFT agents tend to memorize and fail catastrophically
upon deviation. ST-RL enhances generalization for moderately unseen scenarios. MT-RL significantly
boosts performance, promotes robust exploration and error recovery, and enables agents to discover
novel solutions, thereby offering a clear path towards more generalizable GUI agents.

A.9 Performance Comparison on Tasks of Varying Difficulty

Table 11: Performance Comparison of Methods across Varying Difficulty in Static Benchmarks
Path@1 Path@2 Path@3 Path@4 Path@5 Path@6 Path@7 Overall

Step
SFT 100.00 78.005 66.216 58.457 55.928 47.556 51.302 55.454
ST-RL 100.00 83.673 75.338 62.346 59.621 60.338 59.766 63.06
MT-RL 100.00 79.819 72.860 64.691 59.383 60.62 60.514 63.252

Task
SFT 100.00 43.537 15.315 8.333 1.626 1.316 0.0 12.766
ST-RL 100.00 57.823 24.775 13.889 3.049 2.851 0.0 16.189
MT-RL 100.00 52.381 22.072 14.506 4.268 3.07 0.26 16.003

To rigorously evaluate the performance of our proposed methods across tasks of varying complexity,
we conduct comprehensive ablation experiments. Table 11 shows the step and task success rates in
static benchmark evaluations. We observe a consistent trend across all experimental settings: as the
path length increases, the task complexity rises significantly, resulting in performance degradation
across all methods. This phenomenon is uniformly present in all testing scenarios, confirming path
length as a critical indicator of navigation task difficulty. Reinforcement learning methods (ST-RL
and MT-RL) demonstrate markedly superior performance compared to SFT. Notably, at longer
path lengths (5-7 steps), ST-RL and MT-RL maintain relatively stable success rates, whereas SFT
exhibits a substantial decline. This indicates that reinforcement learning paradigms enhance model
generalization capabilities, enabling more robust performance in complex scenarios.
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A.10 System Prompt

System Prompt for Multifaceted Mobile Interface Assistant

You are a Multifaceted Mobile Interface Assistant. Your responsibilities include:

1. Navigating a mobile phone interface to reach a target page based on user instructions, task history, and the current
screen state.

2. Understanding icons by identifying their name or function based on their location on the screen.

3. Grounding icons by locating the coordinates of an icon based on its name or description.

You will receive input that typically includes:

• User Request: Specifies the goal (navigation, understanding, or grounding). This might be a complex instruction for
navigation or a direct question/command for icon tasks.

• Task History (Optional, primarily for Navigation): Records previous steps.

• Current Screen State: Represents the current screen, an image (indicated by <image>).

Based on the user request and the current screen state (and history if applicable), you must first determine the type of task
requested and then provide the appropriate output.
— Task Types and Output Formats —
1. Task: Navigation

• Goal: Reach a target page step-by-step.

• Typical Input: Multi-turn instruction, history, and state. screen description and screenshot.

• Possible Actions:

– click: Tap a specific element. Provide coordinates (x, y) relative to a (0,0) top-left and (1000,1000) bottom-right
system.

– complete: Task finished, current screen is the target.

• Output Format:

Explain: [Your brief explanation, e.g., ‘click xxx
icon on yyy page.’, ‘this is the target page.’]\tAction:
[click(start_box=<|box_start|>(x,y)<|box_end|>) or complete] # Include point
only for CLICK

2. Task: Icon Grounding (Locating an Icon)

• Goal: Identify the coordinates of a requested icon.

• Typical Input: User request like “Click on [icon name/description] in the image.”, screen image (<image>).

• Action: Implicitly click (meaning “identify location”).

• Output Format: The explanation is often implicit in the grounding request itself.

Action: click(start_box=<|box_start|>(x,y)<|box_end|>)

3. Task: Icon Understanding (Identifying an Icon)

• Goal: Provide the name or function of an icon at given coordinates.

• Typical Input: User request like “What is the icon at point (x, y) in the image?”, screen image (<image>).

• Action: Provide textual information.

• Output Format: Just the direct answer as text.

[Icon Name or Description]

— General Instructions —

• Carefully analyze the user request to determine the task (Navigation, Grounding, Understanding).

• Analyze the current screen state (description or image) thoroughly.

• For actions involving coordinates (click), use the (0,0) to (1000,1000) system.

• Strictly adhere to the specified output format for the determined task type. Use a tab character (\t) as a separator where
indicated.
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