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ABSTRACT

Open-vocabulary semantic segmentation requires precise pixel-level alignment of
visual and textual representations, leveraging text as a universal reference to ad-
dress visual disparities across diverse datasets. While prior efforts have primarily
focused on enhancing visual representations or alignment models, the contribu-
tion of textual representations remains underexplored. Moreover, although CLIP
excels at capturing image-level features, its limited capacity for fine-grained pixel-
level representation poses a major challenge for semantic segmentation. To ad-
dress these challenges, we propose LSMSeg that employs large language models
(LLMs) to generate enriched text prompts incorporating diverse visual attributes
such as color, shape, size, and texture, thereby replacing simplistic templates with
semantically rich descriptions. In addition, we propose a Feature Refinement
Module that adapts visual features from the Segment Anything Model (SAM)
to the CLIP space using a lightweight adapter, followed by a learnable weighting
strategy to fuse them with CLIP features, enhancing pixel-to-text alignment. To
further reduce computational overhead, we introduce a Category Filtering Mod-
ule to accelerate training and decrease parameter complexity. Extensive exper-
iments demonstrate that LSMSeg significantly enhances cross-modal alignment
and achieves strong performance while maintaining efficiency, offering a robust
advancement for open-vocabulary semantic segmentation.

1 INTRODUCTION

Open-vocabulary semantic segmentation (OVSS) seeks to classify each pixel in an image into its
most relevant semantic category from a potentially unbounded set, guided by arbitrary or descrip-
tive text inputs Liang et al. (2023); Xu et al. (2023b). This task relies heavily on pre-trained vision-
language foundation models, such as CLIP Radford et al. (2021) and Align Jia et al. (2021), to
achieve pixel-level alignment between visual and textual features. However, these foundation mod-
els trained on image-level paired datasets primarily capture global context rather than localized
semantics, limiting their generalization to pixel-level tasks.

Existing strategies to improve alignment fall into two main categories: (1) Refine region-level
visual-text alignment. Methods like Ghiasi et al. (2022); Liang et al. (2023); Xu et al. (2022); Jiao
et al. (2024) employ a category-agnostic mask generator to derive region-level representations that
closely resemble image-level features. However, these methods primarily achieve region-level align-
ment, incurring substantial computational costs and inefficient memory usage. (2) Refine pixel-level
visual-text alignment. Other works Shan et al. (2024); Xie et al. (2024); Cho et al. (2024) propose to
leverage the extra vision foundation models or feature aggregation to enhance rich pixel-level visual
representation, thereby compensating for the spatial deficiencies of CLIP features. These methods
complement the spatial limitations of CLIP features, which stem from image-level contrastive train-
ing that favors global context over local pixel semantics. Nevertheless, these efforts often overlook a
critical component: the quality of textual representations. Simple text prompts like ‘a photo of
a {class name}’ often lack the semantic richness necessary to resolve fine-grained distinc-
tions. Moreover, CLIP’s text encoder can struggle with lexical ambiguities, limiting its discrimina-
tive power for fine-grained segmentation tasks. This limitation highlights our argument that the qual-
ity of textual representations is equally crucial for achieving precise visual-text alignment in OVSS.
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(a) Image (b) Template Prompt (c) Enriched Prompt

Figure 1: Visualization of the cost map. The cost map
shows pixel-text alignment, with the first row for the seen
class ‘person’ and the last two for the unseen classes ‘book-
case’ and ‘sculpture’.

Simplistic prompts fall short in three
key aspects: First, they lack the
detailed semantic information re-
quired for fine-grained segmentation
tasks, such as differentiating a flower
species based on its intricate petal
structure and color. Second, the dis-
criminative power of generated text
embeddings depends on the CLIP
text encoder, which may fail to distin-
guish between meanings if there are
lexical ambiguities. For instance, the
word ‘bat’ could refer to either ‘a
flying mammal’ or ‘a piece
of sports equipment used
in baseball,’ and simply encod-
ing the class name will not be enough
to differentiate between these two
concepts. Third, they fail to leverage
multi-modal information, which is
crucial for capturing the nuances of
complex categories, thereby limiting
the model’s adaptability to diverse
and fine-grained visual contexts. To
solve this problem, we propose to refine text attribute-level visual-text alignment. Specifically,
we leverage GPT-4 to generate a set of candidate attributes, which are then used to prompt GPT-4
for detailed sentence descriptions tailored to each category. Compared to simple template-based
prompts, the attribute-enriched prompts enable the computation of more informative pixel-to-text
cost maps Cho et al. (2024), which capture the fine-grained similarity between textual and visual
features. This leads to more accurate cross-modal alignment, as shown in Figure 1.

Enhancing textual representations is crucial for capturing attribute-level distinctions in OVSS. How-
ever, precise segmentation also depends on high-quality visual features. Prior works Wang et al.
(2025); Shao et al. (2024) have demonstrated that intermediate layers of CLIP effectively capture
dense features. Motivated by this, we propose a feature refinement module that integrates inter-
mediate CLIP features with a frozen SAM’s image encoder Kirillov et al. (2023) and refines the
cost map using a Swin-Transformer block and a subsequent linear Transformer block. Meanwhile,
we introduce a category filtering module (CFM) to eliminate irrelevant classes and lower compu-
tational complexity. By pruning low-relevance categories from the initial cost map, the module
improves segmentation accuracy and efficiency. As illustrated in Figure 2, LSMSeg achieves a new
state-of-the-art for both efficiency and accuracy. In summary, our main contributions can be sum-
marized as:(1) We propose LSMSeg, a pioneering framework that leverages large language mod-
els (LLMs) to create detailed, attribute-enriched text prompts, significantly improving text-visual
alignment for OVSS. (2) We propose a feature refinement module by utilizing the precise spatial
information of SAM with a category filtering module to reduce computational cost. (3) Extensive
experiments across multiple benchmarks demonstrate that LSMSeg achieves state-of-the-art perfor-
mance in open-vocabulary semantic segmentation.

2 RELATED WORK

2.1 OPEN-VOCABULARY SEMANTIC SEGMENTATION

Prevalent semantic segmentation methods Chen et al. (2018); Tang et al. (2023); Yuan et al. (2020);
Hu et al. (2021); Jin et al. (2021; 2022) are designed for closed sets where only predefined cate-
gories can be distinguished, and gathering data for training such models is often costly and time-
consuming. As a result, the trend in segmentation tasks is shifting towards open-vocabulary ap-
proaches. Existing works primarily focus on two approaches: (1) Refine region-level visual-text
alignment. Some works Ghiasi et al. (2022); Liang et al. (2023); Xu et al. (2022); Ding et al.
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(2022) adopt a two-stage framework to refine the alignment, where it first trains a class-agnostic
mask generator to extract masks and then leverages the pre-trained CLIP to classify each mask.

Figure 2: Segmentation Performance
and inference latency on PC-459. Our
LSMSeg outperforms ZegFormer Ding
et al. (2022), OV-Seg Liang et al.
(2023), CATSeg Cho et al. (2024), and
SED Xie et al. (2024), achieving a new
state-of-the-art mIoU of 20.3% while
maintaining lower latency.

OVSeg Liang et al. (2023) proposes fine-tuning the pre-
trained CLIP on these images and building a domain-
specific training dataset to address the CLIP’s recogni-
tion ability on masked background regions. Such a two-
stage approach is inefficient and suboptimal, as it uses
separate networks for mask generation and classification,
lacks contextual information, and incurs high computa-
tional costs by requiring CLIP to process multiple image
crops. (2) Refine pixel-level visual-text alignment. Un-
like two-stage approaches, recent one-stage methods Xu
et al. (2023a;b); Liu et al. (2024) directly apply a uni-
fied vision-language model for open-vocabulary segmen-
tation. SAN Xu et al. (2023b) attaches a lightweight im-
age encoder to the pre-trained CLIP to generate masks
and attention biases. SCAN Liu et al. (2024) proposes
a semantic integration module to embed the global se-
mantic understanding and a contextual shift strategy to
achieve domain-adapted alignment. CATSeg Cho et al.
(2024) introduces a cost aggregation-based framework,
incorporating spatial and class aggregation to reason over
the multi-modal cost volume effectively. Although these
methods demonstrate efficacy, they tend to neglect the
pivotal role of language in open-vocabulary semantic seg-
mentation, relying solely on extracting text embeddings from pre-trained vision-language models
(VLMs), with almost no works focusing on refining text attributes.

2.2 TEXT PROMPT ENHANCEMENT WITH LLMS

Recently, numerous large language models (LLMs), such as GPT Brown et al. (2020) and
LLaMA Touvron et al. (2023), have been introduced. Several works Pratt et al. (2023); Khattak et al.
(2024); Roth et al. (2023); Roy & Etemad (2023) have showcased their capability to enhance the
performance of early vision-language models (VLMs) with LLMs. CuPL Pratt et al. (2023) lever-
ages large language models to produce class-specific prompt descriptions, which are then utilized
for text prompt ensembling. WaffleCLIP Roth et al. (2023) uses random descriptors and demon-
strates additional improvements by incorporating data-specific concepts generated through LLMs.
CoPrompt Roy & Etemad (2023) harnesses a pre-trained large language model’s expertise, apply-
ing coherence constraints to the text component and data enhancement to the image component
to further improve generalization. Some methods Lai et al. (2024) leverage LLMs for reasoning
segmentation, highlighting their promise in detailed visual understanding. In this work, we design
LLM-generated prompts for OVSS by optimizing attribute selection and combination at the pixel
level. This task-specific improvement distinguishes our approach, addressing the unique challenge
of aligning fine-grained visual and textual data in segmentation.

3 METHOD

3.1 PRELIMINARIES

Problem Definition. Open-vocabulary semantic segmentation aims to partition an image I ∈
RH×W×3 into distinct semantic regions based on text descriptions, including classes that were
not seen during training. In training, only pixel-level annotations of the seen classes Ctrain are
used, with knowledge of their existence and quantity (i.e., how many and what classes are present).
Annotations for unseen categories are replaced with an “ignored” label. In an open-vocabulary
setting, Ctest may include new categories that were not encountered during training, meaning
Ctrain ̸= Ctest. In inference, both seen and unseen classes need to be segmented.
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Figure 3: Overall architecture of our proposed LSMSeg. We first utilize GPT-4 to generate en-
hanced text prompts. Next, we propose a category filter module to eliminate irrelevant classes,
yielding a refined cost map and reducing computational complexity. Finally, we leverage SAM vi-
sual features to address the spatial information deficiency in CLIP visual features through a learnable
adapter and weight generator, followed by a feature refinement process to enhance the filtered cost
map at both spatial and class levels.

3.2 ARCHITECTURE OVERVIEW

Figure 3 illustrates the overall architecture of our proposed LSMSeg, comprising three main com-
ponents: (a) The Text Prompts Generation leverages the GPT-4 model to first select appropriate
attributes and then generate descriptive sentences based on those attributes, which are subsequently
processed by the CLIP text encoder to obtain text features. (b) The Category Filter Module is pro-
posed to reduce computational parameters and accelerate training by filtering irrelevant classes on
the pixel-to-text cost map. (c) The Feature Refinement Module is introduced to integrate SAM
features with CLIP visual features through a learnable weighted fusion strategy to enhance spatial
information representation. This fused representation is utilized to refine spatial-level and class-level
feature information of the cost map, enabling a more precise and comprehensive feature representa-
tion that improves overall model performance.

3.3 TEXT PROMPTS GENERATION

What visual attributes are most
relevant for generating descriptive
text prompts to enhance pixel-
level semantic segmentation?

Color, Shape, Size,…, Contextual 
Relationships

1. Candidate Attribute Generation 

Describe a cat with respect to a 
given attribute (e.g., color). The 
description should not exceed 77 
tokens, consistent with the CLIP 
tokenizer limit.

A cat is often black, white, orange, 
or gray, sometimes with mixed fur 
colors.

2. Enriched Text Prompt Generation

Enriched Text 
Prompt

OVSS Model

Top-k 
Attributes

Performance 
Ranking

Describe a cat with respect to the 
given attribute1,  2, … and k. The 
description should not exceed 77 
tokens, consistent with the CLIP 
tokenizer limit.

A cat is attribute 1, 2, … and k. 

4. Attribute Combination 

3. Attribute Selection

Figure 4: Comprehensive Linguistic Prompt Generation
Pipeline. The pipeline includes four steps: (1) Candidate At-
tribute Generation; (2) Enriched Text Prompt Generation; (3)
Attribute Selection; and (4) Attribute Combination.

To advance open-vocabulary
semantic segmentation (OVSS),
we introduce a novel approach
that leverages GPT-4 to gen-
erate enriched text prompts,
thereby enhancing pixel-level
alignment between textual and
visual features. The overall
pipeline is illustrated in Figure 4.
Firstly, we query GPT-4 with:
‘What visual attributes
are most relevant for
generating descriptive
text prompts to enhance
pixel-level semantic
segmentation?.’ This yields
nine key attributes: color, shape,
size, texture, material, position,
pattern, action/state, and con-
textual relationships. Secondly,
we further prompt GPT-4 with: ‘Describe a {class name} with respect to a
given {attribute}. The description should not exceed 77 tokens,
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consistent with the CLIP tokenizer limit.’ For instance, given the class ‘cat’
and attribute ‘color’, GPT-4 generates: ‘A cat is often black, white, orange,
or gray, sometimes with mixed fur colors.’ This procedure yields fine-grained,
attribute-specific descriptions to replace simplistic templates such as ‘a photo of a {class
name}’, providing richer textual inputs for the CLIP text encoder. Thirdly, we optimize these
prompts by independently assessing the contribution of each attribute without incorporating the
Feature Refinement Module. Finally, we integrate the top-k attributes into comprehensive prompts,
such as: ‘A cat has a small, sleek, and agile shape with a long tail
and pointed ears, is small to medium-sized, weighing between 3 to
7 kg, has soft, fluffy fur with a smooth or slightly rough tongue,
and is often black, white, orange, or gray.’

3.4 CATEGORY FILTERING MODULE (CFM)

Given an input image I , we obtain dense visual features Fc ∈ RB×H×W×D from the CLIP image
encoder, where B, H , W , and D represent the batch size, height, width and channel. Given a set
of class names C, we leverage LLMs to generate comprehensive linguistic prompts. We obtain text
embeddings T ∈ RB×T×D by feeding these prompts into the CLIP text encoder, where T and D
represent the number of class and channel. By computing the cosine similarity between the visual
feature E and text embedding T , we derive the cost map embedding M as:

M(i,j,n) =
Fc(i, j) · Tn

∥Fc(i, j)∥∥Tn∥
. (1)

where i, j denotes the spatial positions, and n indicates the text embedding index. Thus, the cost
map embedding M has the dimension of B × T × d ×H ×W , where d is the channel of the cost
map embedding.

To reduce computational overhead and suppress noisy or uninformative text tokens, we apply a
top-k token selection when the number of text tokens exceeds a predefined padding threshold q.
Specifically, we compute the maximum correlation across spatial dimensions and visual prompts:

A = max
h,w,d

(M) , A ∈ RB×T , (2)

Then, we select the indices of the top-k highest responding tokens:

Ik = TopK(A, k = q). (3)

These selected token embeddings are gathered and re-normalized:

T′ = Gather(Norm(T), Ik), T′ ∈ RB×k×D (4)

where Norm(·) denotes ℓ2 normalization along the feature dimension. Gather(·, I) retrieves the
top-k token embeddings along the token dimension based on the selected indices Ik. For a tensor
T ∈ RB×T×D and index set Ik ∈ RB×k, this operation selects k tokens per sample in the batch
and preserves the prompt and feature structure. Then, we recompute the refined cross-modal cost
map via:

M ′
(i,j,n) =

Fc(i, j) · T ′
n

∥Fc(i, j)∥∥T ′
n∥

. (5)

3.5 FEATURE REFINEMENT MODULE

The CLIP Radford et al. (2021) model is trained by image-level contrastive learning and struggles
with precisely localizing pixel-level visual features. Its embeddings focus on global visual context
instead of the pixel-level semantics within the image. This can be a problem for segmentation,
which requires understanding the local context of each pixel about its neighbors. To address this,
we further propose leveraging a frozen SAM Kirillov et al. (2023) image encoder to enhance and
supplement the spatial information. As shown in Figure 3, we input image I into the SAM image
encoder and extract image features Fs ∈ RB×H×W×Ds from the last three global attention blocks.
A lightweight adapter is proposed to project the SAM features into the same dimensional space as
the CLIP features. Next, the Weight Generator generates an adaptive weighting coefficients through
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a local and global branch in Figure 3. This weight control the relative contributions of CLIP and
SAM features during fusion:

Ek = α× Fc,k + (1− α)× Fs,k (6)

where α is the weight generator, k stands for different layers and E is the fused visual feature.

As a segmentation task, it is intuitive to further explore spatial-level and class-level information.
We first utilize the Swin-Transformer block Liu et al. (2021) to process the fused visual features for
enriching spatial feature information as in Cho et al. (2024); Xie et al. (2024). Then, we perform
class-level feature refinement to map textual information onto each pixel, achieving more precise
alignment. We feed the text embedding into a linear transformer block generated from the com-
prehensive prompts through the CLIP text encoder. Finally, we leverage the fused feature again
to up-sample the enhanced feature representations. The overall process of feature refinement is
summarized as follows:

M ′′
(i,j,n) = S

(
[M ′

(i,j,n);Ek]
)
, (7)

M ′′′
(i,j,n) = C

(
[M ′′

(i,j,n);T
′
n]
)
, (8)

O = Up
(
[M ′′′

(i,j,n);Ek]
)
, (9)

where S and C represent spatial-level and class-level refinements, E′ is the intermediate visual
feature layer, Up denotes up-sampling, and O is the final prediction.

4 EXPERIMENTS

4.1 DATASET AND EVALUATION PROTOCOL

We train our model on COCO Stuff Caesar et al. (2018) dataset, and conduct evaluation on ADE20k-
847 Zhou et al. (2017) ADE20k-150 Zhou et al. (2017), Pascal Context-459 Mottaghi et al. (2014),
Pascal Context-59 Mottaghi et al. (2014), and Pascal VOC Everingham et al. (2010). COCO-Stuff
dataset contains 171 annotated classes and includes 118k training, 5k validation, and 41k test images.
ADE20K Zhou et al. (2017) is a large-scale benchmark for scene understanding, comprising 20k
training images, 2k validation images, and 3k testing images. It includes two sets of annotated
classes: ADE20K-150 with 150 classes and ADE20K-847 with 847 classes, although both use the
same images. Pascal Context Mottaghi et al. (2014) extends Pascal VOC 2010, offering 4,998
training and 5,005 validation images, with annotations available in two configurations: PC-59 (59
classes) and PC-459 (459 classes). Pascal VOC Mottaghi et al. (2014) consists of 11,185 training
images and 1,449 validation images across 20 object classes. Following previous work Cho et al.
(2024); Yu et al. (2023); Xu et al. (2023b), Mean Intersection over Union (mIoU) is used as the
evaluation metric across all experiments. This metric represents the average intersection-over-union
values calculated for each class across all classes.

4.2 IMPLEMENTATION DETAILS

Our experiments utilize the pre-trained CLIP model from OpenAI Radford et al. (2021), specifically
the ViT-B/16 and ViT-L/14 variants. We fine-tune the CLIP image and text encoder and the total
training iteration is set as 80k. The initial learnable fusion weight is empirically set as 0.5 for
balance. We use 2 NVIDIA-L40 GPUs for training with a batch size of 4 and the AdamW optimizer
with an initial learning rate of 2 × 10−4. The weight decay is 1 × 10−4 for our model. During
training, the input image resolution is 384 × 384 for ViT-B/16. For ViT-L/14, the resolution is
336× 336.

4.3 COMPARISONS WITH STATE-OF-THE-ART METHODS

We compare our method with existing state-of-the-art approaches across six datasets in Table 1,
including the vision-language model (VLM) and training dataset. Apart from SPNet Xian et al.
(2019) and ZS3Net Bucher et al. (2019), most methods are developed using VLM as a foundation.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Method VLM Training Dataset A-847 PC-459 A-150 PC-59 VOC VOCb
SPNet Xian et al. (2019) - PASCAL VOC - - - 24.3 18.3 -

ZS3Net Bucher et al. (2019) - PASCAL VOC - - - 19.4 38.3 -
Lseg+ Li et al. (2022) ALIGN EN-B7 COCO-Stuff 3.8 7.8 18.0 46.5 - -

OpenSeg Ghiasi et al. (2022) ALIGN EN-B7 COCO Panoptic 8.1 11.5 26.4 44.8 - 70.2
ZegFormer Ding et al. (2022) CLIP ViT-B/16 COCO-Stuff 5.6 10.4 18.0 45.5 89.5 65.5

DeOP Han et al. (2023) CLIP ViT-B/16 COCO-Stuff-156 7.1 9.4 22.9 48.8 91.7 -
OVSeg Liang et al. (2023) CLIP ViT-B/16 COCO-Stuff 7.1 11.0 24.8 53.3 92.6 -

SAN Xu et al. (2023b) CLIP ViT-B/16 COCO-Stuff 10.1 12.6 27.5 53.8 94.0 -
SCAN Liu et al. (2024) CLIP ViT-B/16 COCO-Stuff 10.8 13.2 30.8 58.4 97.0 -

EBSeg Shan et al. (2024) CLIP ViT-B/16 COCO-Stuff 11.1 17.3 30.0 56.7 94.6 -
SED Xie et al. (2024) ConvNeXt-B COCO-Stuff 11.4 18.6 31.6 57.3 94.4 -

CAT-Seg Cho et al. (2024) CLIP ViT-B/16 COCO-Stuff 12.0 19.0 31.8 57.5 94.6 77.3
LSMSeg (ours) CLIP ViT-B/16 COCO-Stuff 13.1 20.3 33.2 59.7 95.4 81.1

SimSeg Xu et al. (2022) CLIP ViT-L/14 COCO-Stuff 7.1 10.2 21.7 52.2 92.3 -
OVSeg Liang et al. (2023) CLIP ViT-L/14 COCO-Stuff 9.0 12.4 29.6 55.7 94.5 -
ODISE Xu et al. (2023a) CLIP ViT-L/14 COCO-Stuff 11.1 14.5 29.9 57.3 - -
SAN Xu et al. (2023b) CLIP ViT-L/14 COCO-Stuff 12.4 15.7 32.1 57.7 94.6 -

EBSeg Shan et al. (2024) CLIP ViT-L/14 COCO-Stuff 13.7 21.0 32.8 60.2 96.4 -
SCAN Liu et al. (2024) CLIP ViT-L/14 COCO-Stuff 14.0 16.7 33.5 59.3 97.2 -

FC-CLIP Yu et al. (2023) ConvNeXt-L COCO Panoptic 14.8 18.2 34.1 58.4 95.4 81.8
SED Xie et al. (2024) ConvNeXt-L COCO-Stuff 13.9 22.6 35.2 60.6 96.1 -

MAFT+ Jiao et al. (2024) CLIP ViT-L/14 COCO-Stuff 15.1 21.6 36.1 59.4 96.5 -
DPSegZhao et al. (2025) ConvNeXt-L COCO-Stuff 14.9 23.5 36.4 62.0 97.4 -

CAT-Seg Cho et al. (2024) CLIP ViT-L/14 COCO-Stuff 16.0 23.8 37.9 63.3 97.0 82.5
MaskAdapter Li et al. (2025) ConvNeXt-L COCO-Stuff 16.2 22.7 38.2 60.4 95.8 -

LSMSeg (ours) CLIP ViT-L/14 COCO-Stuff 16.9 25.6 38.5 63.4 97.2 84.0

Table 1: Comparison with state-of-the-art methods. We present the mIoU results on six com-
monly used test sets for open-vocabulary semantic segmentation. The highest results are highlighted
in bold, and the second highest are underlined. Compared with other methods, our proposed LSM-
Seg demonstrates superior performance across all six test sets.

(a) Image (b) CATSeg (c) LSMSeg (ours) (d) GT

Figure 5: Qualitative comparisons on PC-59. From left to right: input images, results of CAT-Seg,
results of our LSMSeg, and ground truth.

To ensure a fair comparison, the results using the same vision-language model are grouped to-
gether. Existing open-vocabulary semantic segmentation methods explore various vision–language
strategies but still struggle to segment unseen classes accurately. In contrast, our approach achieves
notable performance in accurately segmenting both seen and unseen classes. With ViT-B/16 as the
vision-language model, our LSMSeg outperforms SAN Xu et al. (2023b), SED Xie et al. (2024),
and CATSeg Cho et al. (2024) by 5.7%, 1.6%, and 1.4% on A-150. On PC-459, our method exceed
SED Xie et al. (2024), EBSeg Shan et al. (2024), and CAT-Seg Cho et al. (2024) by 1.7%, 3.0%, and
1.3%. When using a larger model ViT-L, our LSMSeg also attains notable performance on all six
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datasets. For instance, on ADE-150, our LSMSeg outperforms FC-CLIP Yu et al. (2023), SED Xie
et al. (2024) and CAT-Seg Cho et al. (2024) by 4.4%, 3.3% and 0.6%. Our method achieves favor-
able performance with both base and large models. Additionally, we present qualitative comparisons
on PC-59 in Figure 5, demonstrating the superior effectiveness of our proposed LSMSeg approach
relative to the cutting-edge method.

4.4 ABLATION STUDIES

Analysis of different prompts. We have obtained different visual attributes such as color, shape,
size, texture, material, position or location, pattern, action or state, and contextual relationship.
Here, we utilize ViT-B/16 as the VLM and train on the COCO-Stuff dataset without the feature
refinement module. To identify the attributes that play the most crucial role in the segmentation task,
we carried out an extensive series of experiments, with the results succinctly summarized in Table 2.

Methods A-847 PC-459 A-150 PC-59 VOC VOCb avg.
Baseline 11.0 17.9 28.4 54.6 94.6 74.3 46.8

Color 11.2 17.8 28.3 55.3 94.5 76.5 47.3
Shape 11.2 18.4 28.2 54.7 94.9 77.1 47.4
Size 11.6 18.2 28.3 55.8 94.3 76.2 47.4

Texture 11.3 18.2 28.4 55.5 94.8 76.2 47.4
Material 11.0 18.2 27.7 55.9 93.6 75.4 47.0

Positation 11.4 18.0 28.0 55.0 93.1 75.7 46.9
Pattern 10.9 16.9 28.2 55.2 94.8 76.2 47.0
Action 11.2 18.1 13.9 42.2 94.9 76.4 42.8
Context 7.1 17.4 16.5 29.8 94.6 73.9 39.9

Table 2: Analysis of different prompts. We conduct an
ablation study on each visual attribute individually to verify
the positive and negative attributes.

As the performance may vary across
different datasets, we present the av-
erage results over all datasets to pro-
vide a more robust evaluation of
the best approach. The baseline
method, relying on fixed hand-crafted
prompts, achieves an average mIoU
of 46.8%. Attributes perform differ-
ently: color (47.3%), shape (47.4%),
texture (47.4%), and size (47.4%)
lead, followed by material (47.0%),
pattern (47.0%), position (46.9%),
action/state (42.8%), and contextual
relationship (39.9%). Experimental
results indicate that color, size, shape, and texture are the most influential attributes for generat-
ing effective descriptive prompts.

Then, we explore different combinations of these attributes in Table 3. The results show improved
average mIoU of 47.5% (size + shape), 47.6% (size + shape + texture), 47.8% (size + shape +
texture + color), and 47.5% (size + shape + texture + color + material), respectively. We also
query GPT-4 with the prompt: “Describe a {class name} with respect to its
typical attributes in one sentence. The description must be under
77 tokens as per the CLIP tokenizer.” However, the combinations of well-chosen
attributes outperform typical attribute descriptions, highlighting the effectiveness of consistent and
strategically selected attributes in enhancing segmentation performance.

Methods A-847 PC-459 A-150 PC-59 VOC VOCb avg.
Size 11.6 18.2 28.3 55.8 94.3 76.2 47.4

Size+Shape 11.3 18.2 28.2 55.3 95.1 76.8 47.5
Size + Shape +Texture 11.4 18.5 28.7 54.4 95.0 77.5 47.6

Size + Shape +Texture + Color 11.6 18.4 28.9 55.6 94.9 77.1 47.8
Size + Shape +Texture + Color + Material 11.6 18.3 28.7 55.4 94.9 76.3 47.5

Typical attributes 11.3 18.2 27.9 54.6 94.8 74.6 46.9

Table 3: Ablation Study on Attribute Combinations. We conduct an ablation study on different
combinations of different attributes and identify the optimal combination.

K A-847 PC-459 A-150 PC-59 VOC VOCb avg Latency (ms)
16 11.7 19.0 30.9 58.3 95.0 79.9 49.1 339.5
32 12.8 19.7 32.1 58.0 94.8 80.0 49.6 362.8
48 12.6 19.6 32.0 58.1 95.2 79.9 49.6 389.1
64 12.6 19.9 32.0 58.4 94.8 79.7 49.6 421.7
96 12.6 19.8 32.2 58.4 94.8 79.6 49.6 460.2

Table 4: Ablation Study on the Number of Filtered
Classes k.

Ablation study for CFM. We in-
vestigate the impact of the filtered
class number in CFM without SAM
in Table 4. The results show that per-
formance metrics remain remarkably
stable across different k values rang-
ing from 16 to 96. Particularly, stabil-
ity is observed between k = 32 and
k = 96, highlighting the model’s ro-
bustness to variations in this hyperparameter. While higher k values lead to a slight increase in
latency, the corresponding gains in accuracy beyond k = 32 are marginal. Considering the trade-
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off between computational efficiency and performance, we therefore select k = 32 as the optimal
default setting.

Ablation Study for Feature Refinement Module. To evaluate the effectiveness of our fea-
ture refinement module, we conduct an ablation study and present the results in Table 5. In
this experiment, we adopt CLIP ViT-B/16 as the backbone. We independently validate the
contributions of spatial refinement and class refinement. We observe that integrating both
leads to the optimal results, suggesting their complementary roles in enhancing segmentation.

Methods A-847 PC-459 A-150 PC-59 VOC VOCb
LSMSeg(w/o FRM) 11.6 18.4 28.9 55.6 94.9 77.1

LSMSeg(w/o Spatial) 11.6 18.5 30.5 56.8 93.2 78.6
LSMSeg(w/o Class) 11.7 19.2 30.7 57.6 95.0 78.9
LSMSeg(w/ FRM) 13.1 20.3 33.2 59.7 95.4 81.1

LSMSeg(w/o SAM) 12.8 19.7 32.1 58.0 94.8 80.0
LSMSeg(w/ Dinov2-B) 12.2 18.8 31.1 57.2 94.9 78.7
LSMSeg(w/ SAM-B) 12.5 20.3 32.1 58.8 95.2 80.2
LSMSeg(w/ SAM-L) 13.1 20.3 33.2 59.7 95.4 81.1

Table 5: Ablation study on Feature Refinement Module.
We conduct an ablation study to verify the effectiveness of
our proposed Feature Refinement Module (FRM).

Methods A-847 PC-459 A-150 PC-59 VOC VOCb avg.
mean 12.9 20.1 32.8 59.3 95.0 80.8 50.2
concat 13.0 20.3 32.8 59.1 95.2 80.9 50.2

weight generator 13.1 20.3 33.2 59.7 95.4 81.1 50.5

Table 6: Ablation study on different fusion strategies.
Here, ‘mean’ denotes the element-wise average of CLIP and
SAM features, while ‘concat’ refers to feature concatenation
followed by a projection for dimensional alignment.

Methods Learnable Params (M) Training Time (min) Latency (ms) GFLOPs
ZegFormer 103.3 1148.3 2700 19,425.6

OVSeg 102.8 - 2000 19,345.6
CAT-Seg 70.3 693.7 535.2 3459.7

LSMSeg(w/o SAM-L) 70.3 446 362.8 2122.0
LSMSegLSMSeg(w/ SAM-L) 73.4 546 426.0 3140.6

Table 7: Efficiency comparison. All results are measured
with the Nvidia-L40 GPU.

In addition, we investigate the impact
of integrating external visual founda-
tion models. Compared to the base-
line without additional features, in-
corporating SAM (both SAM-B and
SAM-L) leads to consistent improve-
ments, demonstrating the benefits of
leveraging SAM’s strong visual pri-
ors. We also evaluate DINOv2-B,
which provides moderate gains but
remains inferior to SAM-B variants.
Notably, combining FRM with SAM
yields the best overall performance,
confirming that these two compo-
nents are complementary in strength-
ening the segmentation ability of our
model. This improvement is partic-
ularly evident on A-150 and PC-59,
where richer prompts and spatial pri-
ors strengthen pixel–text alignment
for both seen and unseen classes.

We additionally present an ablation
study on visual feature fusion strate-
gies in Table 6. Compared with sim-
ple averaging (mean) and straight-
forward concatenation (concat), our
proposed weight generator achieves
the best performance with an average
score of 50.5%. This demonstrates
that adaptively learning fusion weights provides a more effective balance between CLIP and SAM
features, leading to consistently improved results across different datasets.

Model efficiency. In Table 7, we compare the efficiency of LSMSeg with recent methods in terms
of learnable parameters, training time, inference latency, and computational cost (GFLOPs). LSM-
Seg demonstrates strong efficiency in both training and inference, benefiting from the category filter-
ing module. When combined with SAM-L, LSMSeg maintains competitive efficiency while further
improving segmentation performance, highlighting the effectiveness of integrating strong visual in-
formation with our lightweight design.

5 CONCLUSION

In this work, we introduce LSMSeg, a novel framework that advances open-vocabulary semantic
segmentation (OVSS) by effectively modeling the relationship between textual and visual repre-
sentations. By leveraging GPT-4 to generate attribute-based text prompts, LSMSeg enriches the
semantic content of textual inputs, enabling more precise pixel-level alignment with visual features.
Furthermore, our Category Filtering Module (CFM) and Feature Refinement Module optimize com-
putational efficiency and segmentation accuracy by pruning irrelevant categories. Lastly, we pro-
pose a Feature Refinement Module that dynamically integrates with CLIP visual features to achieve
both spatial and class-level feature refinement. Extensive experiments show that LSMSeg not only
achieves state-of-the-art performance but also maintains efficient inference with lower latency.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, we propose a novel approach that leverages Large Language Models (GPT-4) to gen-
erate attribute-enriched text prompts, enabling more precise alignment between visual and textual
representations and achieving significant improvements in open-vocabulary semantic segmentation
(OVSS). Specifically, we first generate candidate attributes and systematically validate their effec-
tiveness through extensive experiments. Based on these results, we then select the optimal attribute
combinations. Ultimately, this process yields the most effective text prompts for guiding OVSS.

A.2 ABLATION STUDY ON FINE-TUNING THE ENCODER OF LSMSEG.

Table 8 presents an ablation study on fine-tuning components of CLIP. Due to computational cost
constraints, the study did not fine-tune the SAM model, focusing instead on the specified CLIP
components. When we freeze the CLIP encoder, the lowest result is achieved across six datasets.
The best fine-tuning strategy for CLIP is to fine-tune query and value projections only, with an
average result of 50.5%.
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Methods A-847 PC-459 A-150 PC-59 VOC VOCb avg.
Freeze 8.1 13.3 25.9 46.9 83.4 61.6 39.9
CLIPqk 11.6 18.2 30.7 56.2 94.7 78.5 48.3
CLIPkv 12.7 19.9 32.8 59.0 95.0 80.2 49.9
CLIPqv 13.1 20.3 33.2 59.7 95.4 81.1 50.5

Table 8: Ablation study on fine-tuning the encoder of LSMSeg. We conduct an ablation study
on fine-tuning the CLIP encoder during training. q, k, and v of CLIP are query, key, and value
projections.

A.3 EXAMPLES OF ATTRIBUTE-ENRICHED TEXT DESCRIPTIONS

In this section, we present some examples of detailed class descriptions generated using the GPT-4
model.

Generated descriptions for ‘bicycle’

• A bicycle has a two-wheeled frame with handlebars and a
seat, is medium-sized at around 1 to 1.5 meters in length,
has a smooth metal frame, rubber tires, and textured handle
grips, and is often red, blue, black, or metallic with shiny
or matte finishes.

Generated descriptions for ‘car’

• A car has a boxy or sleek aerodynamic shape with four
wheels, varies in size from compact to SUVs and large
sedans, has a smooth metal body, rubber tires, and leather
or fabric seats, and is usually white, black, red, or blue
with a glossy finish.

Generated descriptions for ‘airplane’

• An airplane has a long fuselage with two wings and a tail
fin, is very large, ranging from small private jets to
massive airliners, has a smooth metal surface with rivets
and windows, and is typically white, gray, or silver,
sometimes with colorful airline logos.

Generated descriptions for ‘bench’

• A bench has a long, rectangular seat with a flat or slightly
curved surface, is medium to large, seating two to four
people, has a smooth wooden surface or a textured metal or
stone finish, and is often brown, gray, or green, blending
into outdoor environments.

A.4 MORE QUALITATIVE RESULTS

We show more qualitative comparisons on PC-459 and ADE-150 in Figure 6 and 7.
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(a) Image (b) CAT-Seg (c) LMSeg (ours) (d) Ground truth

Figure 6: Qualitative comparisons on PC-459. From left to right: input images, results of CAT-
Seg, results of our LMSeg, and ground truth.

(a) Image (b) CAT-Seg (c) LMSeg (ours) (d) Ground truth

Figure 7: Qualitative comparisons on A-150. From left to right: input images, results of CAT-Seg,
results of our LMSeg, and ground truth.
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