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Abstract

Targeted-guided response generation enables001
dialogue systems to smoothly transition a con-002
versation from a dialogue context toward a tar-003
get sentence. Such control is useful for de-004
signing dialogue systems that direct a conver-005
sation toward specific goals, such as provid-006
ing counselling and creating non-obtrusive rec-007
ommendations. In this paper, we introduce a008
new technique for target-guided response gen-009
eration, which first finds a bridging path of010
commonsense knowledge concepts between the011
source and the target, and then uses the iden-012
tified bridging path to generate transition re-013
sponses. Additionally, we propose techniques014
to re-purpose existing dialogue datasets for015
target-guided generation. Experiments reveal016
that the proposed techniques outperform vari-017
ous baselines on this task. Finally, we observe018
that the existing automated metrics for this task019
correlate poorly with human judgement ratings.020
We propose a novel evaluation metric that we021
demonstrate is more reliable for target-guided022
response evaluation. Our work generally en-023
ables dialogue system designers to exercise024
more control over the conversations that their025
systems produce.1026

1 Introduction027

Open-domain conversational systems have made028

significant progress in generating good quality re-029

sponses driven by strong pre-trained language mod-030

els (Radford et al., 2019; Devlin et al., 2019) and031

large-scale corpora available for training such mod-032

els. However, instead of passively responding to a033

user, many practical dialogue system applications034

operating in domains such as hospitality and educa-035

tion have specific goals to achieve. Prior work has036

used mechanisms such as emotion labels (Zhong037

et al., 2019), persona (Song et al., 2019), and po-038

liteness (Niu and Bansal, 2018) to control conver-039

sations according to the system’s agenda. However,040

1We will release the code publicly

Figure 1: Given a dialogue context and a target sentence,
our goal is to generate a dialogue response that smoothly
transitions the conversation from context towards the target.
Our proposed approach involves identifying a bridging path
of entities to link the context and the target.

such approaches require labelled training data for 041

a set of pre-determined labels, making it harder to 042

incorporate new goals in a system. In this work, we 043

study the problem of proactive response generation 044

based on a target sentence. For example in Figure 045

1, given the context ‘I enjoy swimming’, the system 046

guides the conversation towards the target ‘I like 047

to travel to new places’ by mentioning ‘I like to 048

swim at beaches when I go on vacation’. Using 049

target sentences for proactive control is a intuitive 050

and flexible control mechanism for dialogue de- 051

velopers, free of domain-specific handcrafting and 052

annotations. 053

Existing publicly available dialogue corpora gen- 054

erally consists of free-flow conversations where 055

the speakers move the conversation forward 056

based on the dialogue history alone, absent an 057

agenda. We build upon the recently released Otters 058

dataset (Sevegnani et al., 2021) with one-turn topic 059

transitions for mixed-initiative in open-domain con- 060

versations. Given a source sentence from a speaker, 061

the task is to generate a topic transition sentence 062

with “bridging” strategies to a target sentence from 063

another speaker. The task is challenging on sev- 064

eral fronts. First, the system needs to balance the 065
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trade-off between coherence with the context while066

smoothly transitioning towards to the target. Sec-067

ond, the Otters training dataset is relatively small068

(less than 2000 training instances), making it a low-069

resource setting. Finally, we show that standard070

word-overlap metrics are insufficient for this task.071

In this work, we propose methods to leverage072

commonsense knowledge from ConceptNet (Speer073

et al., 2017a) to improve the quality of transition074

responses. Our technique decomposes the response075

generation process into first generating explicit076

commonsense paths between the source and tar-077

get concepts, followed by conditioning on the gen-078

erated paths for the response generation. This is079

intended to mimic how humans might bridge con-080

cepts for creating transitions in conversations us-081

ing commonsense knowledge. This technique of-082

fers two benefits: 1) Leveraging external Concept-083

Net knowledge solves the data scarcity issue and084

improves the model’s capability to generate logi-085

cal transitions; 2) Since the transition response is086

grounded on commonsense knowledge paths, the087

explicit paths used by the model can provide ex-088

planations for the concepts used by the model, as089

well as provide control over the generation pro-090

cess. Furthermore, we propose a data augmenta-091

tion mechanism to help with the data scarcity issue092

by re-purposing training data from DailyDialog,093

an open-domain dialogue dataset. Both these ap-094

proaches are complementary and outperform ex-095

isting baselines in response quality and transition096

smoothness. We demonstrate how the proposed097

approach of using explicit bridging paths enables098

improved quality of transitions through qualitative099

and human studies.100

Automated evaluation is a challenging aspect101

in dialogue response generation tasks (Zhao et al.,102

2017). We show that the existing word-overlap103

metrics such as BLEU can be easily fooled to as-104

sign high scores to poor responses just based on105

high n-gram overlap with reference responses. We106

propose a metric TARGET-COHERENCE which is107

trained using hard adversarial negative instances,108

and achieves high correlation with human judge-109

ment ratings of system outputs. As part of this110

work, we collect and release a dataset of human111

ratings of various system outputs for this task.112

2 Related Work113

Target Guided Dialogue Response Generation:114

Sevegnani et al. (2021) is perhaps the closest to115

our work described in this paper. They work on 116

the task of generating a new utterance which can 117

achieve a smooth transition between the previous 118

turn’s topic and the given target topic. Past work in 119

controllable text generation has explored steering 120

neural text generation model outputs to contain a 121

specific keyword (Keskar et al., 2019), a knowl- 122

edge graph (Wu et al., 2019), or a topic (Ling et al., 123

2021). Steering dialogue towards a given keyword 124

has also been explored in past work (Tang et al., 125

2019; Qin et al., 2020a; Zhong et al., 2021), albeit 126

as a retrieval task. In contrast, our goal is to gener- 127

ate a next utterance in a dialogue setup which can 128

steer a conversation towards target sentence in a 129

smooth fashion rather than generating a response 130

for a given keyword or topic. Our work is also 131

related to prior work on text infilling (Donahue 132

et al., 2020; Qin et al., 2020b), though compared 133

to them we work in a dialogue setup and utilize 134

commonsense knowledge to perform the infilling. 135

Commonsense for Dialogue Generation: Com- 136

monsense knowledge resources (Speer et al., 137

2017b; Malaviya et al., 2020) have been used in dia- 138

logue response generation for tasks such as persona- 139

grounded dialogue (Majumder et al., 2020) and 140

open-domain dialogue generation (Ghazvininejad 141

et al., 2018; Hedayatnia et al., 2020; Zhou et al., 142

2021b). Zhou et al. (2021a) created a dataset fo- 143

cusing on social commonsense inferences in dia- 144

logue and Arabshahi et al. (2020) designed a the- 145

orem prover for if-then-because reasoning. More 146

broadly, commonsense knowledge has been used 147

in text generation tasks such as story and essay 148

generation (Guan et al., 2019a; Yang et al., 2019). 149

Automated Metrics for Evaluating Dialogue 150

Quality: Automated metrics such as BLEU (Pa- 151

pineni et al., 2002), METEOR (Banerjee and 152

Lavie, 2005), and BertScore (Zhang et al., 2020) 153

are widely used to evaluate quality of machine- 154

generated text. However, such metrics often corre- 155

late poorly with human judgement ratings of gen- 156

erated text quality (Sai et al., 2020). Past work 157

has explored trained model-based metrics such as 158

ADEM (Lowe et al., 2017) and RUBER (Tao et al., 159

2017). However, training such model-based met- 160

rics often relies on tagged training data. Gupta 161

et al. (2021) propose ways to mitigate the need for 162

such labelled data by automatically synthesizing 163

negative examples. Our proposed metric is along 164

similar lines, though we utilize different techniques 165

for synthetic negative example generation. 166
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Figure 2: Model illustrations for KPGs - Knowledge Path Generators (left) and CRG - Commonsense Response Generator
(Right). Base architecture for all models is GPT-2. Given a path sampled from ConceptNet, KPG-wc learns to predict the path
given the head, tail and intermediate entities of the path while KPG-ht learns to predict the path given only the head and tail
entities. For the CRG model, during training, a head entity from the context, a tail entity from the target and intermediate entities
from the gold transition response are fed into KPG-wc and its output path is used as input to the CRG model. During inference, a
head entity from the context and a tail entity from the target are fed into the KPG-ht model. KPG-ht then generates a path with
new concepts such as “go on vacation”. CRG model conditions on this path for transition response generation.

3 Task Overview167

We first formalize the task of target-guided re-168

sponse generation. Given a conversation context169

c between two speakers A and B, and a target ut-170

terance t for speaker B, the task is to generate a171

transition sentence s which serves as a smooth link172

between the context and the target. The target is173

a phrase or a sentence. Otters dataset (Sevegnani174

et al., 2021) consists of a simplified setting of one-175

turn topic transitions, where the conversation his-176

tory consists of a single utterance ua from speaker177

A, and a target utterance ub for speaker B, and178

the task is to generate a transition utterance s for179

speaker B to serve as a smooth link between ua and180

ub. The task is challenging since a system needs181

to devise a strategy that balances the competitive182

objectives of generating a response which is co-183

herent to the context, while smoothly driving the184

conversation towards the target.185

In this work, we propose two approaches186

for the transition response generation task: 1)187

Commonsense-guided response generation (sec-188

tion 4), and 2) Data augmentation to tackle data189

sparsity (section 5). We refer to the proposed190

method as CODA (Commonsense Path and Data191

Augmentation). We also propose a novel metric192

TARGET-COHERENCE to automatically evaluate193

the smoothness of response transitions (section 6).194

4 Commonsense-Guided Response195

Generation196

We frame the target-guided response generation197

task as follows. Given a conversation context c198

and a target t, a conditional language model learns199

to predict the transition response s. Target-guided200

generation can potentially benefit by incorporating201

commonsense reasoning by identifying rich con- 202

nections between a pair of entities which enable us 203

to generate logical transition responses connecting 204

the two. Pre-trained language models are known to 205

suffer in cases where commonsense knowledge is 206

required during generation (Zhou et al., 2018; Guan 207

et al., 2019b), especially in tasks where there is not 208

enough data available for learning commonsense 209

patterns from the text, which is true for our case. 210

In contrast, Commonsense Knowledge Graphs like 211

ConceptNet (Speer et al., 2017a) provide structured 212

knowledge about entities, which enables higher- 213

level reasoning about concepts. 214

In this work we use commonsense knowledge 215

from ConceptNet for planning a transition response. 216

ConceptNet is a large-scale semantic graph that 217

has concepts as nodes and has commonsense re- 218

lationships between them, such as ‘IsA’ and ‘At- 219

Location’. However, ConceptNet suffers from se- 220

vere sparsity issues (Malaviya et al., 2020; Bosselut 221

et al., 2019). Therefore, it is not always possible to 222

find the concepts and relationships between context 223

and target concepts. To address the sparsity issue, 224

we develop Knowledge Path Generator (KPG), a 225

language model trained on paths sampled from 226

ConceptNet. The model takes a pair of entities or 227

concepts as input and generates a multi-hop path 228

connecting the two. Since the knowledge paths 229

are sampled from a generative model rather than 230

retrieved from a fixed knowledge base, we are no 231

longer limited by the entities and paths present in 232

the ConceptNet knowledge base. 233

To generate commonsense based responses, we 234

train a Commonsense Response Generator (CRG) 235

model to generate the transition response condi- 236

tioned on the paths generated by the KPG model 237

(Figure 2). Conditioning the response generation 238
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on commonsense paths improves the reasoning ca-239

pabilities of the CRG model and provides the added240

benefits of interpretability and control over the gen-241

eration process.242

4.1 Commonsense path generator243

The KPG models attempts to connect a concept or244

entity phrase from the context to a concept from the245

target by creating knowledge paths between them.246

Path Sampling: To create training data for the247

KPG models, we sample paths between entity248

phrases from ConceptNet using random walks.249

This step builds upon past work of Wang et al.250

(2020). Given nodes N and edges E from Con-251

ceptNet, we perform random walks on the graph252

to sample a set of paths P of the form p =253

{n0, e0, n1, e1, ..., ek−1, nk} ∈ P . Here, a path p254

connects a head entity phrase n0 with the tail entity255

phrase nk via intermediate entities and edges (or256

relations) ni, ei. To sample paths, the random walk257

begins with a random entity node n0 and samples a258

path of random length k ∈ {1, 2, ...,K}, where we259

have set K = 6 in this work. To sample paths that260

are useful for our task, we prevent sampling certain261

edges types such as Synonym (Appendix A.1).262

KPG-head-tails (KPG-ht): KPG-ht is a GPT-263

2 (Radford et al., 2019) based model which is264

trained to predict a knowledge path p which links265

a head entity nh to a tail entity nt. For a sample266

path p = {nh, e0, n1, e1, ..., ek−1, nt} from Con-267

ceptNet, the path is formatted into the following268

sequence “[target] nt [sep] nh e0 n1 e1, . . . , ek−1269

nt”. KPG-ht is only used during CRG inference270

where the head entity is extracted from the context271

and tail entity from the target (Figure 2).272

KPG-will-contain (KPG-wc): A large number of273

possible paths can exist for a given head-tail entity274

pair. Training the CRG model by conditioning on275

paths which are irrelevant to the gold transition276

response might discourage the CRG model from277

conditioning on the provided commonsense path.278

Since we do not have gold paths for a response, we279

instead train a model KPG-wc to generate paths280

which are more aligned to the gold response by en-281

forcing the generated path to contain entities from282

the gold response. KPG-wc is trained to predict283

a path which contains a pre-specified entity set284

Ep = {k1, ..., kn} in the generated path by format-285

ting paths sampled from ConceptNet as the follow-286

ing sequence: “[wc] k1 [wc] k2. . . [target] nt [sep]287

nh e0 n1 e1, . . . , ek−1 nt” (Figure 2). The entity288

set Ep is a randomly permuted sequence of enti- 289

ties n1, n2, . . . , nk−1 from the sampled path. Here 290

“wc” symbolizes “will contain”. Training with this 291

sequence indicates to the model that the path gener- 292

ated between nh and nt should contain the entities 293

from the set Ep in a sensible order. Specifying the 294

special token “[target]” followed by the tail entity 295

nt informs the model about the last entity it should 296

output when generating a path. We discuss how 297

the set Ep is constructed for CRG model training 298

in the next section. 299

4.2 Response generator 300

The Commonsense response generator conditions 301

on the commonsense paths generated from the KPG 302

models to generate the transition responses. 303

Entity extraction. We extract a set of entities 304

Eh, Et and Er from the context, target and gold 305

transition response respectively using NLTK. We 306

designed simple grammar rules (details in Ap- 307

pendix A.1) to convert phrases to concise forms 308

that match the nodes present in ConceptNet, e.g., 309

“watching the star” is converted to “watch stars”. 310

Sampling and filtering paths: In this step, for 311

every pair of head and tail entity from Eh and Et, 312

we sample multiple paths from the KGP models 313

using topk sampling and chose one or more of these 314

paths for training and inference. For training the 315

CRG models with the commonsense paths, we need 316

to curate paths that are relevant to and aligned with 317

the gold response so that they are not ignored by the 318

CRG model during inference. We achieve this by 319

first sampling paths which are relevant to the gold 320

response, and then apply filtering mechanisms to 321

curate the final set of paths. For training data path 322

sampling, we use the KPG-wc model (Figure 2). 323

The input to the model is a head and tail entity 324

pair nh and nt, and the entity set Ep that consists 325

of the set of entities Er from the gold transition 326

response. The model then generates a set of paths 327

that contain the head and tail entities as well as 328

the gold response keywords. Thus, the sampled 329

path is inherently relevant to the gold response 330

due to the conditioning on gold keyword entities. 331

During inference, the set Er is not available, so we 332

leverage the KPG-ht model that takes just the head 333

and tail entity pair nh and nt as input to generate a 334

commonsense path. 335

Assuming the context and target consists of m 336

and n entities each, and we generate q number of 337

paths per pair, we get a total of m× n× q number 338
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of paths for each data instance. Since m× n× q339

can be a large number, we use simple methods to340

sub-select entity pairs and paths. (1) Sub-selecting341

Entity Pairs: We score an entity pair by calculating342

the inverse document frequencies (computed using343

Gutenberg English corpus) of the entity tokens and344

summing up the maximum value found for a to-345

ken in each entity in the pair. For training phase,346

we keep the top D pairs of entities, and for testing347

phase we keep only the highest-scoring pair. (2)348

Sub-selecting paths: We apply the following strate-349

gies to prune the set of paths for each entity pair:350

1) Perplexity - We filter out all the paths whose351

perplexity values (from the KGP models) are more352

than double the average perplexity values of all353

paths between an entity pair. 2) We remove all354

the paths which have repetition of entities since355

repetition often leads to degeneration during de-356

coding. 3) For paths in training data, we filter out357

paths which contain entities not present in the gold358

response. The final set of paths P are converted359

into natural language by converting the relation and360

inverse relations into textual format. For example,361

“art gallery UsedFor for art” is converted to “art362

gallery is used for art”.363

Training and inference in CRG model. The CRG364

model (GPT-2 based) is trained as a conditional365

model with the following input sequence: “knowl-366

edge path [target] target sentence [context] context367

sentence [response] transition response” for each368

knowledge path from the set P . We train the CRG369

model by minimizing the log-likelihood loss of the370

transition response. For inference, we create the set371

of paths P by entity extraction, path sampling and372

filtering and choose a random path p from the final373

set P . The model generates the transition response374

conditioned on the sequence of c, t, and p.375

5 Data Augmentation376

The task of target-guided response generation is377

still a relatively unexplored task, and Otters (Seveg-378

nani et al., 2021) is the only suitable dataset for379

this task to the best of our knowledge. However,380

Otters is small and consists of only a few hundred381

context-target pairs. This makes learning transi-382

tion concepts and strategies challenging in this low-383

resource setup. On the other hand, there are many384

publicly available dialogue datasets for training re-385

sponse generation models. Such datasets contain386

free-flow conversations, where although the speak-387

ers generate context coherent responses, they do388

Context the restaurant looks authentic european.
Response the chef trained in florence. the pasta

tastes nice here.
SRL Output predicate = tastes, arguments= the pasta;

nice here
Target clause the pasta tastes nice here.

Figure 3: An example to demonstrate how a conversation in
DailyDialog can be re-purposed for the task of target-guided
response generation.

not condition their responses on any target. We pro- 389

pose a technique to leverage and re-purpose such 390

datasets for the task of target-guided response gen- 391

eration. We pick the DailyDialog (Li et al., 2017) 392

dataset for experimentation and convert its conver- 393

sations to target-guided conversations in two steps: 394

1) Target creation, and 2) Data filtering. 395

For target creation, we run Semantic Role La- 396

belling (SRL) to predict predicate and arguments 397

in a response. For each predicate identified, we 398

create a clause by putting together the predicate 399

and arguments in a textual sequence. Finally, we 400

only use the clause occurring towards the end of 401

the response as a target. An example for target 402

creation is shown in Figure 3 (More details about 403

clause identification are in Appendix A.2). 404

The target creation step does not guarantee that 405

a candidate response transitions smoothly towards 406

the target clause. In the data filtering step, we 407

introduce a TARGET-COHERENCE metric to score 408

a transition response in terms of its coherence to 409

the context and smoothness towards the target. The 410

metric is described in more detail in section 6. The 411

metric assigns a score between 0-1 for a transition 412

response and we remove instances with a score less 413

than a threshold k (set to 0.7) from consideration. 414

The remaining instances are used for pretraining 415

response generation models which are finally fine- 416

tuned on the Otters dataset. 417

6 Target-Coherence Metric 418

Evaluating target-guided responses is a challeng- 419

ing task as a good transition response needs to 420

be both - coherent to the context and smoothly 421

transition towards the target. Furthermore, since 422

the task is open-domain and open-ended, there are 423

many possible correct responses which may not 424

match with a reference response (Çelikyilmaz et al., 425

2020). To tackle these challenges, we propose an 426

automatic metric for this task that does not use 427

human references. The proposed metric TARGET- 428

COHERENCE is based on a classification model 429

trained to classify a transition response as either 430

5



Dataset Train Dev Test
Otters-id 1,929 (693) 1,160 (404) 1,158 (303)
Otters-ood 2,034 (677) 1,152 (372) 1,130 (372)
DailyDialog 11,118 1,000 1,000

Table 1: Overview of the datasets.

positive, that is, it is coherent to the context and431

smoothly transitions towards the target, or negative,432

that is, the response is either not coherent to the433

context or does not transition towards the target.434

We use the gold transition response from the435

training dataset to create positive instances for train-436

ing. For a positive instance with context c, target437

t and response r, we create negative instances us-438

ing the following mechanisms: 1) We hold two439

out of (c,t,r) constant while randomly sample the440

third one. For example, sample a random context441

c′, which makes r incoherent to the c′, 2) We use a442

GPT-2 model trained on Otters dataset to generate443

a response r′ coherent to c but conditioned on a ran-444

dom target t′. 3) For a target t, we chose a response445

r′ from the Otters training set which has t as the446

target but context c′ ̸= c. We sample a maximum447

of 2 negative instance per mechanism and balance448

the count of positive and negative instances by re-449

peating positive instances. An example is shown450

in Figure 4 of Appendix A.4. We fine-tune a pre-451

trained BERT-base (Devlin et al., 2019) model on452

these instances with binary cross entropy loss.453

7 Experiments454

7.1 Datasets455

We use two datasets in our experiments. 1) Ot-456

ters (Sevegnani et al., 2021) contains instances with457

context-target-transition response triplets. It con-458

sists of two sets of splits. The Out-Of-Domain459

(OOD) split ensures that none of the context-target460

pairs in the test set are present in the train set. In461

the In-Domain (ID) split, one of either the context462

or the target in each pair in the test-set is allowed463

to appear in the train-set. DailyDialog dataset con-464

sists of casual conversations between two speakers.465

In Table 1 we present the number of dialogues in466

DailyDialog dataset and number of responses in467

otters, along with number of unique context-target468

pairs in brackets. Otters dataset consists of multiple469

responses per context-target pair.470

7.2 Baselines for generation471

We report results for a number of baselines. We472

provide complete implementation details of CODA473

and all baselines in Appendix A and B.474

Metric Target as
response

Context as
response

Reference
response

Correlation
w ratings

BLEU 15.0 9.9 6.5 -0.11
METEOR 14.0 12.6 13.2 0.01
ROUGE-L 32.3 29.8 26.5 -0.04
BS-rec 38.1 38.9 41.3 0.05
BS-F1 42.8 42.6 38.9 -0.06
TARGET-
COHERENCE

10.7 4.0 77.4 0.47

Table 2: We present the metric scores when using the target,
context and one of the references as the response. All metrics
except for TARGET-COHERENCE score the target and context
higher than the reference. TARGET-COHERENCE achieves
high correlation with human ratings. Underlined values repre-
sent statistically significant result with p-value<0.05.

• GPT-2: (Radford et al., 2019) A pretrained GPT– 475

small language model fine-tuned on Otters data. 476

Conditions on the context and target sentences to 477

generate the transition response. 478

• GPT2-Fudge Yang and Klein (2021) uses a dis- 479

criminator trained to distinguish good response 480

continuations from the poor ones and guides the 481

GPT-2 based decoder towards responses that are 482

coherent to both the source and target sentences. 483

• Multigen (Ji et al., 2020) combines the vocabu- 484

lary distribution generated by underlying GPT-2 485

model with a concept distribution from a com- 486

monsense knowledge base (ConceptNet). 487

• Concept-Predict leverages a concept prediction 488

strategy from Qin et al. (2020a). The concept is 489

predicted based on closeness to the target. 490

• CS-Pretrain model is pretrained with common- 491

sense paths used for training the KPG models and 492

is based on the commonsense story generation 493

model from Guan et al. (2020). 494

We report results for following CODA variants: 495

• CODA-ONLYDA: CODA variant that uses Dai- 496

lyDialog augmentation and does not use com- 497

monsense paths from KPG models in the CRG 498

model. 499

• CODA-NODA: CODA trained without addi- 500

tional data from DailyDialog. 501

• CODA-NOEDGE CODA variant that uses only 502

entities and no edges from the path. 503

• CODA-NOALIGN: variant that relies on only 504

KPG-ht for training and inference. Does not 505

select paths based on alignment with responses. 506

• CODA-KBPATH: variant that retrieves paths 507

directly from ConceptNet using the algorithm 508

proposed in Lin et al. (2019). 509

• CODA-Upper Upper bound for CODA which 510

uses paths inferred from the gold responses using 511

the KPG-wc keywords model during inference. 512
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In-Domain Out-Of-Domain
BLEU METEOR ROUGE-L BS-rec TC BLEU METEOR ROUGE-L BS-rec TC

GPT-2 3.4 11.9 23.9 35.4 26.7 3.0 10.8 22.2 35.0 29.7
GPT2-Fudge 3.4 12.4 24.4 36.1 28.3 3.4 11.1 23.0 35.1 29.6
Multigen 6.2 12.5 28.1 40.0 27.8 4.9 11.6 26.0 36.7 30.8
Concept-predict 3.3 12.3 28.5 38.1 28.3 3.7 11.6 23.1 35.9 26.3
CS-Pretrain 2.8 11.1 23.2 35.2 21.5 2.8 10.2 21.2 33.0 22.0
CODA 5.0 12.6 25.9 38.0 36.7 4.6 11.5 24.3 35.5 37.9
CODA-ONLYDA 4.0 12.4 24.4 37.5 32.7 3.1 11.1 22.7 35.3 33.2
CODA-NODA 4.4 12.3 25.1 37.8 35.7 4.5 11.6 24.4 35.4 36.0
CODA-NOEDGE 4.2 12.0 25.0 37.4 33.7 4.0 11.8 24.2 35.4 35.9
CODA-NOALIGN 3.7 12.4 25.5 38.5 32.1 3.2 11.2 22.8 35.6 31.2
CODA-KBPATH 3.6 12.5 24.9 38.6 33.9 3.6 11.4 24.1 35.9 33.0
CODA-UPPER 8.3 18.1 32.6 44.4 47.9 7.5 17.9 30.7 42.7 45.4
Human 6.5 13.1 26.5 41.3 77.4 4.9 12.3 24.0 37.6 77.3

Table 3: We present the results of automatic evaluation based on word-overlap and proposed TARGET-COHERENCE. CODA
outperforms all the baselines for most of the metrics. We also present results for CODA’s model ablations.

7.3 Evaluation Metrics513

We report standard automated metrics such as514

BLEU (Papineni et al., 2002), ROUGE-L (Lin,515

2004), METEOR (Banerjee and Lavie, 2005), and516

BertScore (BS-rec and BS-F1) (Zhang et al., 2020).517

Evaluation is carried out using multiple references518

from the test set. Word-overlap metrics do not519

correlate well with human judgements (Liu et al.,520

2016). Additionally, we observe that on this task,521

even a poor transition response can get a high score522

on reference-based metrics if it has high overlap523

with the context or the target. We carry out an ex-524

periment where we use the target, context and one525

of the references as the transition response. An526

ideal metric would score the reference response527

high, and give low scores to target and context used528

as a response. In Table 2, reference-based metrics529

assign higher scores to target and context sentences530

used as responses compared to human-written re-531

sponses. In contrast, TARGET-COHERENCE as-532

signs high scores to reference responses and low533

scores to target and context sentences.534

Correlation of metrics with human judgements:535

We investigate how well do the metrics correlate536

with human ratings of system outputs. To perform537

this analysis, responses from CODA, baselines, as538

well as reference responses are judged by crowd-539

source annotators who rate the smoothness of a540

response given the dialogue context and the target541

on a scale of 0 to 1 (Appendix C). We collect a total542

of 440 ratings across Otters ID and OOD splits, and543

report Spearman rank correlation (Spearman, 1961)544

of the metrics and the ratings. Krippendorff’s alpha545

for annotation is 0.42. Ratings and systems outputs546

will be released. Results, shown in last column547

of Table 2, depict that most standard automated548

metrics correlate poorly with human ratings, while549

the, proposed TARGET-COHERENCE achieves a550

very high correlation score of 0.47. 551

7.4 Results 552

In this section we present the automatic and human 553

evaluation results. Automated metric results are 554

summarized in Table 3. Although reference-based 555

metrics are lexically biased (subsection 7.3), we 556

still report their scores. We observe that CODA 557

outperforms all the baselines under in-domain (ID) 558

as well as out-of-domain (OOD) setups of Otters 559

data as per TARGET-COHERENCE (TC) score. For 560

example, CODA gets a high TC score of 36.7 (ID) 561

and 37.9 (OOD) while the TC scores of the clos- 562

est baselines GPT2-Fudge, Multigen and Concept- 563

predict are in the range of 28-31, demonstrating 564

that the proposed method leads to significant im- 565

provements in response quality. However, CODA 566

is far from reaching human performance (TC 77.4). 567

CODA Ablations: We observe that: (1) Not us- 568

ing commonsense knowledge (CODA-ONLYDA) 569

leads to large performance drops, highlighting that 570

CODA effectively utilizes commonsense knowl- 571

edge. (2) Dropping data augmentation leads to a 572

small drop in performance (CODA-NODA), hint- 573

ing at relatively small (but still significant) benefit 574

from pretraining the model using data augmenta- 575

tion. (3) Low performance of CODA-NOEDGE 576

shows the importance of using edges in common- 577

sense paths. (4) Not aligning and selecting paths 578

based on their relevance to responses during CRG 579

training (CODA-NOALIGN) leads to a high drop 580

in performance. (5) CODA outperforms CODA- 581

KBPATH by 8% (ID) and 14.5% (OOD). This im- 582

proved performance can be attributed to the gen- 583

eralizability of entities and paths generated from 584

the KPG models. (6) CODA-UPPER achieves high 585

scores, highlighting that further improvement in 586

commonsense path generation component can sig- 587
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Criteria Models Win Lose Tie
Smooth CODA vs GPT-2 37.5 31.6 31.0

CODA vs Multigen 32.3 22.8 44.8
Sensible CODA vs GPT-2 22.0 21.3 56.7

CODA vs Multigen 25.8 25.6 48.6
Informative CODA vs GPT-2 32.3 27.3 40.4

CODA vs Multigen 35.5 27.8 36.7

Table 4: Human evaluation through pairwise comparison be-
tween CODA and baselines. CODA is preferred in smoothness
and informativeness criteria while being comparably sensible.

nificantly boost the output quality of CODA.588

Human Evaluation: We conduct human eval-589

uations on Amazon Mechanical Turk to evaluate590

the quality of generated transition responses. An-591

notators are requested to evaluate the transition592

response on following criteria: (1) Smooth: rate593

whether the response serves as a smooth transition594

between the dialogue context and target. (2) Sensi-595

ble: whether the response makes sense in itself i.e.596

it is grammatical and logically coherent. (3) Infor-597

mative: how much informative content a response598

carries. Human annotators compare (or mark as a599

tie) responses from two models. We collect two600

annotations for 100 randomly selected data points601

from the test outputs. Results in Table 4 demon-602

strate that CODA outputs are preferred over the603

baselines on ‘Smooth’ and ‘Informative’ criteria.604

7.5 Qualitative Analysis605

We present representative outputs from the models606

in Table 5. For CODA, we show the path used in607

response generation. We notice that GPT-2 and608

Multigen often tend to either generate simple out-609

puts (e.g. ‘I hate my food’ in the last example)610

or simply repeat or address either the target or the611

context (e.g. ‘My pet is the gecko’, ‘Seattle is my612

favorite city to go.’) which leads to high BLUE613

and METEOR scores, but low TC scores. CODA614

avoids these pitfalls as it is conditioned on gener-615

ated commonsense paths based on both the context616

and target entities. However, CODA is susceptible617

to two issues: 1) Using poor keywords for path618

generation, and 2) Generation of irrelevant paths619

(e.g. ‘server is a person not desires greasy food’ in620

the last example).621

Path quality: We conduct a human evaluation622

study to measure the quality of the generated paths.623

For randomly selected 100 generated responses, we624

ask annotators to judge 1) Relevance: Is the path625

relevant and used in the response? and 2) Makes626

sense: Does the path makes sense? Results reveal627

that 79% of the paths were judged to be relevant628

Context: i like the sand on my feet
Target: my puppy is called georgie.
GPT-2: My mom likes the water.
Multigen: My pet is the gecko.
CODA: My dog walks along the beach with sand.
CODA-Path: sand is at location beach belongs to walk
is desired by puppy

Context: my favorite city is seattle.
Target: i ride my bicycle everywhere.
GPT2: Seattle is my favorite city to go to
Multigen: So what do you do when you go to the seattle
CODA: I bought my bicycle from a bike shop in seattle.
CODA-Path: favorite city is the location which has
bicycle shop is a dependency of ride bicycle

Context: i am a server at a food place.
Target: i eat greasy foods.
GPT-2: I eat healthy foods at restaurants.
Multigen: I hate my food.
CODA: I am a server, but I don’t want to eat too much.
CODA-Path: server is a person not desires eat greasy food

Table 5: Sample representative model outputs.

and 76% of the paths were judged to make sense. 629

Thus in aggregate, the generated knowledge is good 630

in quality, and is used in the generated response. 631

Path novelty: We analyzed the paths generated by 632

CODA which were judged as sensible by human 633

annotators and found that 26.8% of entities in the 634

paths were not found in ConceptNet. This include 635

entities such as ‘favorite food’, ‘pet kitten’, ‘single 636

kid’ and ‘online class’. Thus, the actual paths from 637

the ConceptNet might not be able to cover a large 638

fraction of head/tail entities. Furthermore, 81% of 639

sensible paths are novel and do not exist in Con- 640

ceptNet. For example, even though the path ‘eat 641

motivates go to restaurant has subevent dinner is 642

the location for bread’ exist in ConceptNet, the path 643

‘eat motivates go to restaurant has subevent dinner 644

is the location for pizza’ does not exist in Concept- 645

Net. Thus we show that CODA can generalize to 646

new entities and paths. 647

In Appendix D we discuss a human-in-the-loop 648

study for controllability. 649

8 Conclusion 650

In this work, we propose and evaluate models for 651

target-guided response generation using explicit 652

commonsense bridging paths. We also introduce an 653

automated metric to evaluate smoothness of a tran- 654

sition response. We showed that our model gener- 655

ates more smooth and informative outputs through 656

automatic and human evaluation. Furthermore, it 657

allows for more interpretable results. Going for- 658

ward, we envision a model which could combine 659

target and non-target guided dialogue planning. 660
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Ethics Statement958

We work on the task of target-guided dialogue re-959

sponse generation. Our proposed models can be960

used for several useful applications such as pro-961

viding counselling and creating non-obtrusive rec-962

ommendations. However, we recognize potential963

misuse of such models for manipulating users. Our964

models train on existing datasets such as Otters and965

DailyDialog, and also leverages external common-966

sense knowledge resources. As such, our models967

could potentially inherit biases present in these968

data sources. Xu et al. (2020) provides a review969

of recent methods that try to mitigate safety issues970

in open-domain dialogue generation which can be971

utilized for our task.972

A Implementation Details for CODA973

A.1 Training Details for CODA974

Model training: We code our models using Py-975

torch and Huggingface 2 library. We use validation976

loss to do model selection. The KPG-wc, KPG-977

ht and CRG models are all based on GPT-2 small978

architecture. We use batch size of 10 for GPT-2979

models. We use Adam optimizer with initial learn-980

ing rate of 1e − 4. We use GeForce RTX 2080981

GPUs for training models. All existing code used982

and datasets were CC-BY 4.0 or open sourced by983

original authors.984

Decoding paths and responses: For decoding985

paths using the KPG models, we use temperature986

of 0.7 and nucleus sampling with top-p set to 0.9.987

We use the same decoding strategy and hyperpa-988

rameters for decoding responses using CRG model.989

Concept Extraction: Entities need to be ex-990

tracted from the context, target and response to991

generate and align paths using the KPG mod-992

els. For any given sentence s, we first extract993

the set of noun and verb phrases from the sen-994

tence using NLTK. We design some simple gram-995

mar rules to convert some phrases to a more con-996

cise forms that are similar to the kinds of nodes997

present in ConceptNet,e.g., “watching the star”998

is converted to “watch stars”. We use NLTK’s999

POS tagging combined with the following gram-1000

mar rules: (1) Nouns and Adjectives, terminated1001

with Nouns <NN.*|JJ>*<NN.*> (2) Verb and verb1002

phrases <RB.?>*<VB.?>*<JJ>*<VB.?>+<VB>?.1003

We normalize the verbs using NLTK. The final set1004

of entities consist of the noun and verb phrases. We1005

2https://huggingface.co/

exclude certain phrases such as “today”, “enough” 1006

which are sometimes incorrectly detected as enti- 1007

ties. 1008

Sub-selecting entity pairs during training of 1009

CRG model: For every context-target pair, we 1010

have n number of pair of head-tails entities. We 1011

score an entity pair by calculating the inverse docu- 1012

ment frequencies (computed using Gutenberg En- 1013

glish corpus) of the entity tokens and summing up 1014

the maximum value found for a token in each entity 1015

in the pair. For training phase, we keep the topD 1016

pairs of entities. The value of top D is selected 1017

based on validation performance and comes out 1018

typically between 1-3. 1019

Knowledge graph details: The number of 1020

nodes in the ConceptNet resource we have used3 is 1021

382226. We perform random walks on the graph 1022

with paths of length from 1 to 6 and get a total of 1023

3883671 number of paths. 1024

Edges in the knowledge path: We discard some 1025

edge types which are regarded to be uninformative 1026

and offer little help for our task folowing Wang 1027

et al. (2020). They include RelatedTo, Synonym, 1028

Antonym, DerivedFrom, FormOf, Etymologically- 1029

DerivedFrom and EtymologicallyRelatedTo. Since 1030

the nodes in ConceptNet are directional, we also 1031

add inverse edges during path sampling. For ex- 1032

ample the path “ecosystem <– PartOf <– organism” 1033

can be sampled as “ecosystem _isPartOf organism” 1034

where the underscore indicates a reverse edge. 1035

A.2 Clause Identification for Data 1036

Augmentation 1037

For target creation, given a dialogue context c and 1038

its response r, we first break the response r into 1039

sentence clauses. For example, given a context “Is 1040

my booking complete?” and the response “your 1041

reservation is confirmed. now i need your phone 1042

number,”, we extract a clause t “i need your phone 1043

number” as the target candidate t. For clause ex- 1044

traction we use Allennlp’s SRL parser 4 which is 1045

trained using a BERT-based model (Shi and Lin, 1046

2019) and is based on PropBank (Palmer et al., 1047

2005). It identifies the arguments associated with 1048

the predicates or verbs of a sentence predicates 1049

(verbs or events) in a sentence and classifies them 1050

into roles such as agent, patient and instrument. For 1051

the example above, it identifies “need” as a predi- 1052

cate with agent “i” and instrument “your number”. 1053

3https://github.com/wangpf3/
Commonsense-Path-Generator

4github.com/allenai/allennlp
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A.3 Data Augmentation for CODA1054

We filter data from the dailydialog dataset based1055

on a threshold set to 0.7 for data augmentation.1056

This threshold was selected using emperical perfor-1057

mance of thr CODA model. For CODA-ONLYDA1058

model which does not use knowledge paths, the1059

context, target and transition response is used di-1060

rectly in training the CRG decoder of CODA-1061

ONLYDA model. But for CODA model which1062

uses the knowledge paths, the dailydialog data is1063

converted to the same format as Otters data, that is,1064

we first do entity detection on the target component1065

of the responses as well as the the dialogue context.1066

Then we generate a set of paths for each pair of1067

entities. The CODA model is first trained on paths1068

from the filtered dailydialog data and then fine-1069

tuned on the Otters dataset which follows the same1070

knowledge path format. The maximum dialogue1071

history length is set to 2 for dailydialog dataset.1072

A.4 Target Coherence Metric1073

In Table 6, we provide examples for stress testing1074

the Target-Coherence metric. TC scores for the1075

responses are shown in brackets. Simply repeating1076

or addressing either the target or context gets a low1077

TC score. For example the response “I like stargaz-1078

ing outside” is not a smooth transition and gets1079

a low TC score, while “I like stargazing outside1080

with my pet” is a smooth transition and gets a high1081

TC score. In Figure 4 we present an overview of1082

the mechanisms used for generating negative sam-1083

ples for training the Target-Coherence metric. For1084

negative examples, 1) Given gold response r, and1085

context c, we sample a random negative target t’,1086

which creates a response which does not transition1087

towards the target t, 2) Given gold response r, and1088

target t, we sample a random negative context c’,1089

which creates a response which is not coherent to1090

the context c, 3) Given gold context c, and target1091

t, we either sample a random negative response r’1092

or generate a response r’ conditioned on random1093

c’ or t’, which creates a response which does not1094

transition to target t or is coherent to context c.1095

B Training Details of Baselines1096

Training GPT-2 Fudge model Yang and Klein1097

(2021) proposed a future discriminator based de-1098

coding technique. The Fudge discriminator uses a1099

discriminator trained to distinguish good response1100

continuations from the poor ones and guides the1101

GPT2 based decoder towards responses that are co-1102

Context: i enjoy staring up at the sky.
Target: i like to spend a lot of my free time with my pet.
Response 1: I like stargazing outside with my pet. (0.99)
Response 2: I like stargazing outside. (0.05)
Response 3: I like walking with my pet. (0.01)
Response 4: My pet is a big star. (0.02)

Context: i make blogs.
Target: i have a large family with babies.
Response 1: I want to blog about my children.(0.99)
Response 2: My family has a lot of babies. (0.05)
Response 3: My blogs are very famous. (0.01)

Table 6: Stress testing the Target-Coherence metric. We show
sample responses and TC score for the responses in brackets.

POSITIVE
Gold c,r,t

CONTEXT c the restaurant looks authentic
european.

RESPONSE r the chef trained in florence.
the pasta tastes nice here.

TARGET t the pasta tastes nice here.
NEGATIVE
Random t’
with gold r,c

TARGET t’ i love to drive my car.

NEGATIVE
Random c’
with gold r,t

CONTEXT c’ i enjoy computers and phones.

NEGATIVE
Random r’
with gold c,t

Response r’ there is no parking here.

Figure 4: We train a reference-less model-based metric
TARGET-COHERENCE to score the smoothness of a gener-
ate response wrt to dialogue context and target sentence. To
train the metric, we synthesize hard negative examples using
an ensemble of techniques.

herent to both the source and target sentences. The 1103

Fudge discriminator needs positive and negative 1104

sample data for training. We train the discrimi- 1105

nator to distinguish a good response from a bad 1106

(not coherent to target or context). The input to 1107

train the discriminator (a LSTM model) is the con- 1108

catenation of the context sentence, followed by the 1109

target sentence and finally the tokens of a response 1110

r with tokens k. The discriminator then learns to 1111

predict 1 if the next token in the response at posi- 1112

tion k belongs to the gold response or 0 if the token 1113

is a random one. We train the Fudge discrimina- 1114

tor by preparing negative instances using the same 1115

techniques we use to train the Target-Coherence 1116

model - sampling random negative responses, re- 1117

sponses coherent to the context but not to the target, 1118

and responses coherent to the target but not to the 1119

context. 1120

Training CS-Pretrain model The model is based 1121

on the commonsense story generation model from 1122

Guan et al. (2020) We create training data for 1123

the CS-Pretrain model by using the same sampled 1124

paths we use for training the KPG-wc model. The 1125

paths are converted into textual format by convert- 1126
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Target Keywords
i need your address send money; visit; mail; send gift; send coupon
you should spend time with your friends don’t be alone; mental health; be happy;
you can try our restaurant best ingredients ; cheapest food; free delivery
our new recipe is best selling fat free; healthy; protein; tasty
i am the best financial advisor get rich quickly; sound advice; money management
you should have a positive attitude mental health; others will help; peace
we should always avoid fighting peace; happiness; injury; understand other people
i want to come to united states freedom ;democracy; money; job; american dream; education
everyone should get vaccinated public health; reduce hospital burden; live longer; covid; be safe
we should donate to charity help poor; make a difference; give assistance; feel good; social benefits

Table 7: The set of manually created targets and keyword set used for each target.

ing edges into text sequences. The model is only1127

pretrained with general commonsense paths and1128

then fine-tuned on Otters dataset in a manner simi-1129

lar to the GPT-2 baselines (i.e. without paths). Our1130

experiments show that pretraining with common-1131

sense model does not help with target-guided task,1132

probably since the task needs target conditional1133

commonsense and general commonsense knowl-1134

edge only confuses the model during decoding.1135

Training Concept-Predict leverages a concept pre-1136

diction strategy from Qin et al. (2020a). The input1137

to the model is the context and target and it predicts1138

a single concept based on closeness to the target.1139

The concept is then fed as an input to the CRG1140

model along with the context and target sentences.1141

Training CODA-ONLYDA: CODA variant that1142

uses Dailydialog augmentation and does not use1143

commonsense paths from KPG models in the CRG1144

model. Therefore the model consists of only a CRG1145

model (no KPG models) which take the context and1146

target sentences as inputs.1147

Training CODA-NOEDGE CODA variant that1148

uses only entities and no edges from the path.1149

For example the path “favorite city is the location1150

which has bicycle shop is a dependency of ride bi-1151

cycle” is converted to “favorite city bicycle shop1152

ride bicycle”, which is fed as input to the CRG1153

model.1154

Training CODA-NOALIGN: variant that relies1155

on only KPG-ht for training and inference. Does1156

not select paths based on alignment with responses.1157

The paths used during training the CRG model1158

come from KPG-ht instead of KPG-wc.1159

Training CODA-KBPATH: variant that samples1160

paths directly from ConceptNet using the algorithm1161

proposed in Lin et al. (2019). Given a pair of con-1162

text and target concept, we use their algorithm to1163

sample an actual path directly from ConceptNet.1164

The model is pretrained on Dailydialog augmented1165

data and fine-tuned on Otters with the sampled1166

paths from ConceptNet. The model suffers from1167

Context: i dye my hair.
Target: we should donate to charity.
Path (KPG-oneent): hair belongs to people motivated by
give assistance has prequisite donate to charity.
CODA-controlled: I donate my hair to a non-profit that
helps people in need.
Path (KPG-ht): hair belongs to people desires donate
to charity
CODA: People who donate are very good people.

Context: i have an amazing garden.
Target: you can try our restaurant.
Path (KPG-oneent): garden is a location of grow food
motivated by goal best ingredients is desired by person
capable of try restaurant
CODA-controlled: My restaurant uses the best ingredients
from the garden.
Path (KPG-ht): garden is a location of have friends
over has prerequisite try restaurant
CODA: you can have friends over.

Table 8: Sample data and model outputs from the human-
in-the-loop experiment. The underlined words are keyword
inputs provided to the model KPG-oneent. The italicised
words in the CODA controlled outputs are phrases are gener-
ated based on the input keywords.

missing entities and missing links between entities 1168

in ConceptNet which is solved by CODA. 1169

C Human Ratings Collection 1170

We present the Amazon mechanical turk interface 1171

for human ratings collection in Figure 5. THe work- 1172

ers were first shown instructions about the task with 1173

definitions and examples for all rating criteria. We 1174

paid the workers an average of 15 per hour. We 1175

set the qualification condition as 1000 HITS com- 1176

pleted, 95% or more approval rate and location as 1177

native english speaking countries. 1178

D Human-in-the-loop Experiment 1179

Can human involvement improve generation? 1180

Our CRG model uses explicit paths generated from 1181

the KPG models, which not only provides inter- 1182

pretability, it also allows human-in-the-loop inter- 1183

vention for finer controllability. To test this hypoth- 1184

esis, we create a model KPG-oneent which is a 1185

14



Figure 5: Amazon mechanical turk interface for human ratings collection

hybrid version of KPG-wc and KPG-ht model. The1186

model takes a single entity nk given by a user as an1187

input and is trained to generate a path containing1188

that entity. We test this model on a manually cre-1189

ated set of target sentences S of size 10 belonging1190

to domains such as healthcare and charity. The1191

data created is shown in Table 7. An example1192

sentence in set S is ‘we should donate to charity’1193

and we manually curate a set of keywords such as1194

‘help poor’, ‘give assistance’ and ‘tax deductions’1195

that are relevant to the target sentence of interest1196

and can guide the knowledge path sampling to-1197

wards meaningful paths. This data creation took1198

the authors 30 minutes of effort. For 100 random1199

sampled contexts from the Otters dataset, we se-1200

lect a random target sentence from the set S and1201

sample a keyword k from the curated set of key-1202

words of that target. We compare this controllable1203

model with the KPG-ht model that was used for1204

path generation in all our experiments. We find1205

that the TARGET-COHERENCE metric favors the1206

KPG-oneent model in 59 percent of cases, confirm-1207

ing that even minimal human intervention in the1208

form of domain relevant keywords can improve the1209

quality of generation.1210

We present sample outputs of the model in Ta-1211

ble 8. The input keywords used as intervention are1212

underlined. The paths which use the keyword inter-1213

vention generate smoother transitions compared to1214

the paths which do not use the keyword interven-1215

tion.1216
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