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Abstract—The embedded representation and clustering tasks both play important roles in relational data analysis and mining.

Traditional methods mainly employ graph structure to describe relational data, but intuitive pairwise connections among nodes are

insufficient to model high-order data in the real-world, such as the relations between proteins and polypeptide chains. Hypergraphs are

a generalization of graphs, and hypergraphs can well model high-order data. When modeling relational data in the real world,

hypergraphs are often accompanied by node attributes, i.e., attributed hypergraphs. Besides this, how to integrate the structural

information and attribute information appropriately is another important task, while has not been investigated systematically. In this

paper, we propose Adaptive Hypergraph Auto-Encoder(AHGAE) to learn node embeddings in low-dimensional space. Our method can

utilize the high-order relation to generate embedding for clustering. It is composed of two procedures, i.e., the adaptive hypergraph

Laplacian smoothing filter and the relational reconstruction auto-encoder. It has the advantage of integrating more complex data

relations compared with graph-based methods, which leads to better modeling and clustering performance. The proposed method has

been evaluated on hypergraph datasets and benchmark graph datasets. Experimental results and comparison with the state-of-the-art

methods have demonstrated the effectiveness of our proposed method.

Index Terms—Hypergraph, clustering, representation learning, neural network
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1 INTRODUCTION

NON-EUCLIDEAN data frequently appears in our
lives, which can be described with relations, i.e., rela-

tional data. Graph structures, whose nodes represent enti-
ties and edges represent relations between entities, usually
are utilized to describe the relational data. With the devel-
opment of deep learning, the Graph Neural Network
(GNN), a general term for a series of algorithms based on
deep learning in the field of graphs, is proposed. GNN has
efficient performance [1], a series of representative models
[2], [3], [4] and many meaningful applications [5], [6].

However, each edge in graphs only connects two nodes,
which limits the graph’s representation ability. It is the charac-
teristic that leads the simple graph structure unable to repre-
sent high-order relational data. Suppose we need to describe
the relationship between the authors of some papers, i.e., the
co-author network, we can naturally use edges to connect

authors who once had cooperative relationships, thus form
the graph structure, as shown in Fig. 1a. However, the rela-
tionships between the authors in the source data are described
as the author lists of the paper, and we inevitably lose the
association information between authors and papers. In order
to completely retain this high-order information, we need to
get rid of the limitation of edge degree, i.e., each edge can be
permitted to connect two or more nodes, so we can use the
edge to represent the paper and the sub-nodes of the edge to
represent its authors, as shown in Fig. 1b. Such structures that
do not limit the degree of nodes are called as hypergraphs [7],
and such edges are called as hyperedges. Hypergraphs, as
high-order representations of graphs, can well model high-
order datawithout loss of information [8].

Besides, hypergraphs are generalizations of graphs, so
many graph-related problems can also be solved using hyper-
graph structure. In general, hypergraphs have awider percep-
tual domain and more reasonable interpretability in many
scenes, so the introduction of hypergraph structures can
obtain better performance in certain graph tasks[9]. It is
because of the powerful capabilities of hypergraphs that they
have received increasing attention to applications, such as the
visual tasks [10] and the recommender systems [11], etc.

In the real-world, Hypergraph data is often accompanied
by node attributes, namely, attributed hypergraphs, which
have two accepted assumptions:

� Nodes in the same hyperedge have similar attributes.
� Nodes with similar features have similar attributes.
In other words, nodes belonging to the same hyperedge

are more inclined to have the same preference. There are
many interesting applications based on these assumptions,
such as recommendations for products or users, and online
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personalized services. Meanwhile, it derives many based
tasks: clustering, representation learning, link prediction or
classification. In recent years, with the gradual improve-
ment of hypergraph theory, some works related to hyper-
graph learning have gradually attracted attention [12], [13],
[14], [15]. However, the related works for clustering tasks
still are little exploration.

Inspired by researches related to representation learning
and clustering tasks in the graph field, we propose an Adap-
tive Hypergraph Auto-Encoder (AHGAE ) model for hyper-
graph clustering tasks, which is also perfectly compatible with
graph clustering tasks. Unlike other graph-based deep cluster-
ing or autoencoder models, the design of the AHGAE model
consists of two steps,which can be understood as a decoupling
operation, as shown in Fig. 2. For the first step, the hypergraph
Laplacian smoothing filters are utilized to integrate node infor-
mation and its neighbor information by the association infor-
mation between hyperedges and nodes, and adaptively select
the optimal order to form node representations optimized for
clustering tasks. For the second step, the relationship recon-
struction auto-encoder focuses on the relations between node
features and learns the appropriate low-dimensional node
embeddingswhile retaining the hypergraph structure.

In summary, the main contributions of this paper are as
follows:

� A hypergraph Laplacian smoothing filter is pro-
posed, which achieves the effect of smoothing node
features by fusing their features and the adjacent fea-
tures in the same hyperedges. Its purpose is to better
reduce the impact of high-frequency noise and
enhance more essential attributes. We provide its
spatial derivation and analyze its filtering character-
istics in the frequency domain.

� An Adaptive Hypergraph Auto-Encoder (AHGAE)
is proposed, which is an embedded model specifi-
cally for hypergraph clustering tasks. Our model can
adaptively integrate the node and structural infor-
mation in the hypergraph to generate the node
embeddings. Because of the superior representation
ability of hypergraphs, our model is well compatible
with the attributed graph.

� We construct an attributed hypergraph dataset DBLP-
HG provided by DBLP official website. And through
clustering experiments on the DBLP-HG dataset and
some benchmark graph datasets, the considerable per-
formance of our proposedmodel has been verified.

2 RELATED WORK

According to the data information used by models, graph
clustering tasks are divided into structural graph clustering
tasks and attributed graph clustering tasks.

Structural graph clustering tasks only utilize structural
information. The spectral clustering [16] method directly
takes the graph structure as input, and by slicing the graph,
the weights of the edges between the different sub-graphs
after the cut are as low as possible to achieve the purpose of
clustering. [17] proposes to decompose the adjacency matrix
of the nodes into node representations, and then uses
K-means or other methods to obtain the clustering result.
DeepWalk [18] is a method that uses SkipGram to learn
node representations by randomly walking on the graph
and maximizing the probability of each node’s neighbor-
hood, and then obtains clustering results. Moreover, some
methods based on auto-encoder [19] are used for the struc-
tural graph clustering task.

Graphs with both graph structure and node features are
called as attributed graphs. The research attention of attrib-
uted graph clustering [20] is how to balance graph struc-
tural information and node features information. The most
common pipeline is to learn node representations that

Fig. 1. The graph and hypergraph representation of co-author network.
(a) represents the graph structure connecting all the cooperating
authors. (b) represents the hypergraph structure that uses the associa-
tion information between authors and papers to describe the cooperative
relationship, where e1, e2 and e3 respectively represent different papers.

Fig. 2. Adaptive Hypergraph Auto-Encoder framework. First, the optimal
smoothing feature of each node is obtained through an adaptive high-
order hypergraph adaptive filter. The node features incorporating struc-
tural information are obtained through a simple relational reconstruction
auto-encoder. DcðtÞscore represents the change value of the unlabeled clus-
tering metric DBI, which is used to select the optimal order t.
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incorporate structural information first, and then implement
common clustering methods, such as K-means or spectral
clustering to obtain the final results. GAE and VGAE [21]
are the models that combine graph convolutional network
and auto-encoder or variational auto-encoder to extract
node representations. AGC [22] is an adaptive spectral
graph convolution method, which uses high-order graph
convolution operations to capture the global structure, and
uses the intra-class distance to adaptively select the appro-
priate order, but this order selection method sometimes
fails. SDCN [23] is a new structural deep clustering net-
work, which uses dual self-supervised modules to effec-
tively combine the advantages of auto-encoder and graph
convolution networks. Based on the above work, DGSCN
[24] is a deep graph structural clustering network based on
a triple self-supervised module, which adds a graph auto-
encoder structure and integrates denseGCN [25] to alleviate
the over-smoothing problem, but its complex structures do
not improve the performance obviously. AGE [26] uses the
graph smoothing filter operator to filter the graph node fea-
tures, and then calculates the similarity matrix of the filtered
features to select pairs of positive and negative training
samples as the supervision information to train the encoder.
Although this approach is very innovative, many hyper-
parameters cannot be fine-tuned to restrict its application.

The above works are all based on simple graphs, but they
only describe the pairwise relations. Modeling high-order
data using the graph structure inevitably loses the high-
order information [8]. Therefore, it is unreasonable to use
graph-based methods to mine or analyze high-order data.
Hypergraph structures, as high-order representations of
graph structures, can model complete high-order data.
Meanwhile, because hypergraphs have wider node percep-
tual range and more reasonable interpretability, they
achieve a considerable performance in certain graph tasks.
How to mine potential information from hypergraph struc-
tures attracts increasing attention. [27] puts forward the
concept of learning with hypergraphs, which can be used in
clustering, classification, and embedding and achieves the
performance beyond the ordinary graph. Hypergraph neu-
ral networks (HGNN) proposed in [28], which are similar to
the GCNs in graphs [2], extend the convolution operation to
the process of hypergraph learning. [12] proposes a new
unsupervised feature selection method to jointly learn the
similarity matrix and conduct both subspace learning and
feature selection, which can use on clustering tasks. But its
complex optimization details do not make it perform better
than the above graph methods for clustering tasks.

However, it is a lack of works that directly cluster for
hypergraphs or high-order data using deep learning. Our
paper takes the hypergraph node clustering tasks as the
research object, and proposes a novel AHGAE model,
which is well compatible with the related tasks of graphs.

3 PROPOSED METHOD

In this section, we introduce our proposed Adaptive Hyper-
graph Auto-Encoder (AHGAE) model in detail. The overall
framework of the model is shown in Fig. 2.

First, the basic concepts of hypergraphs and related sym-
bolic representations are introduced in Section 3.1. Then in

Section 3.2, a hypergraph Laplacian smoothing filter is pro-
posed. We derive it in the spatial domain and analyze its
low-pass characteristics in the frequency domain. In Sec-
tion 3.3, we analyze the influence of the weight ratio of each
node to its adjacent node features passing through hyper-
edges on the hypergraph, and how to select the order of
Laplacian smoothing filtering layers is shown in Section 3.4.
Finally, the detailed process of relational reconstruction
auto-encoders is explained in Section 3.5. The overall algo-
rithm of AHGAE is given in the end.

3.1 Hypergraph Definition

Given an undirected attributed hypergraph G ¼
ðV; E;X;WÞ, where V represents the node set, E represents
the hyperedge set, X represents the feature matrix and W
represents the weighted diagonal matrix composed of
weights of hyperedges. The feature matrix X 2 RjVj�F is
composed of the feature vectors of all nodes, where jVj is
the number of nodes, and F is the dimension of the node
features. vi is used to denote the ith node in the nodes set V,
and ek is used to denote the kth hyperedge in the hyperedge
set E. For the hypergraph G, the incidence matrix H 2
RjVj�jEj is used to describe the relations between nodes and
hyperedges, where jEj represents the number of hyper-
edges. Each element hði; kÞ in H, i.e., whether node vi
belongs to hyperedge ek, is calculated as follows:

hði; kÞ ¼ 1; if vi 2 ek

0; else
:

(
(1)

3.2 Hypergraph Laplacian Smoothing Filter

The hypergraph Laplacian smoothing filter can be regarded
as information aggregation between nodes in the spatial
domain, and their information is transmitted through the
hyperedges, as shown in Fig. 3.

The given information includes the node feature matrix
X, the incidence matrix H, and the hyperedge-weighted
matrixW. Through calculation, the node degree vi is dvðiÞ ¼P

ek2E wðkÞhði; kÞ, and the hyperedge degree ek is deðkÞ ¼P
vi2V hði; kÞ. Further, Dv and De denote the diagonal matri-

ces of the node degrees and the hyperedge degrees,
respectively.

For the node information aggregation process, we pass
the average value of the node features to hyperedge. The
feature of hyperedge ek is defined as

E
ðtÞ
k ¼ 1

jNðekÞj
X

vj2NðekÞ
X
ðtÞ
j

¼
X
vj2V

hðj; kÞ
deðkÞ X

ðtÞ
j ;

(2)

where t represents the order, NðekÞ represents the set of all
sub-nodes belonging to the hyperedge ek, Ek and Xj repre-
sent the feature of the hyperedge ek and the feature of the
node vj, respectively.

After each hyperedge aggregates the features of all sub-
nodes, we need to pass the information back to all nodes
through the weight of the hyperedge. Then, we implement
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weighted fusion with the original node information

X
ðtþ1Þ
i ¼ ð1� gÞXðtÞ

i þ g
X

ek2NðviÞ

hði; kÞwðkÞ
dvðiÞ E

ðtÞ
k

¼ ð1� gÞXðtÞ
i þ g

X
vj2V

X
ek2E

hði; kÞwðkÞhðj; kÞ
dvðiÞdeðkÞ X

ðtÞ
j ;

(3)

where NðvÞ represents all the hyperedges adjacent to the
node v, and g 2 ½0; 1� is the weight coefficient of the filter.

We then simplify the above formula and express it in a
matrix form

Xðtþ1Þ ¼ ð1� gÞXðtÞ þ gD�1
v HWD�1

e HTXðtÞ; (4)

where I is the identity matrix whose dimension is the num-
ber of nodes jVj.

However, the spectral radius ofD�1
v HWD�1

e HT is not less
than 1, which leads to an unstable state of features, and
increases the risk of feature explosion or disappearance
when stacking multi-layer filters. We replace it with sym-
metric normalized form D�1=2

v HWD�1
e HTD�1=2

v [27], and the
equation is represented as

Xðtþ1Þ ¼ ð1� gÞXðtÞ þ gD�1=2
v HWD�1

e HTD�1=2
v XðtÞ

¼ XðtÞ � gðI�D�1=2
v HWD�1

e HTD�1=2
v ÞXðtÞ: (5)

Therefore, we obtain the symmetric hypergraph Laplacian
matrix

L ¼ I�D�1=2
v HWD�1

e HTD�1=2
v : (6)

Here L is a positive semi-definite matrix[29]. Therefore, the
eigenvalues of D�1=2

v HWD�1
e HTD�1=2

v are no larger than 1,
which solve the problem of feature instability.

So the formula of multi-order hypergraph Laplacian
smoothing filter is

XðtÞ ¼ ðI� gLÞtX: (7)

A reasonable order t enables nodes to obtain the most suit-
able perception range to improve clustering performance.
The hypergraph Laplacian smoothing filter with an order
selected by node features is called an adaptive hypergraph
Laplacian smoothing filter. The specific selection strategy is
explained in Section 3.4.

Then we discuss the low-pass filtering characteristics of
the hypergraph smoothing Laplacian filter in the frequency
domain. We decompose the eigenvalue of the hypergraph
Laplacian operator L ¼ ULU�1, where L is a diagonal
matrix, and the diagonal elements are the eigenvalues of L.
The frequency response function

pðLÞ ¼ diagðpð�1Þ; . . . ; pð�jVjÞÞ; (8)

so the hypergraph Laplacian smoothing filter can be set toG ¼
UpðLÞU�1. The essence of the smoothing filter is a low-pass fil-
ter. The frequency response function is set to a linear form

pð�Þ ¼ 1� g�; g 2 ½0; 1�: (9)

Because of the eigenvalue of the hypergraph Laplacian
� 2 ½0; 1�, pð�Þ is negatively correlated with �, and pðLÞ is
positive semi-definite matrix. Therefore, the hypergraph
Laplacian smoothing filter G can suppress high-frequency
signals and preserve the low-frequency information con-
taining rich semantic information. It is similar to the graph
signal filter, and the corresponding proof for graph struc-
ture is provided in [22]. The hypergraph Laplacian smooth-
ing filter can be simplified as

G ¼ UpðLÞU�1 ¼ UðI� gLÞU�1 ¼ I� gL: (10)

So the update function of feature matrix X is the same as
Eq. (5).

3.3 Weight g

For the feature update function in Eq. (3), the value of g

determines the proportion of each node’s features and adja-
cent features. When g ¼ 0, the node information is no longer

Fig. 3. Hypergraph Laplacian Smoothing Filter. First, the node features are merged into hyperedge features, and then the hyperedge features are
propagated to the nodes to form smoothed node features. The smoothed node features are weighted fusion with the original node features to form a
new node feature. Then, they are combined with the initial graph structure to generate the output.
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updated, i.e., Xðtþ1Þ ¼ XðtÞ, which is obviously invalid.
When g ¼ 1

Xðtþ1Þ ¼ D�1=2
v HWD�1

e HTD�1=2
v XðtÞ; (11)

which is the hypergraph convolution operation [28]. Here,
the node information is completely replaced by the informa-
tion obtained by neighbor aggregation. Suppose the two
nodes vi; vj with the same incidence information, i.e., hði; :Þ ¼
hðj; :Þ, their updated features become the same and no longer
have discrimination in downstream calculations.

Hyperedges often cover more nodes in the real world,
and the nodes have a greater probability of having the same
incidence relationship so that the above situation appears
frequently. For example, in a social personalized tag net-
work, even though there are so many personalized tags,
many users still have the same tag sets. Therefore, using
Eq. (11) will cause the user portrait information to become
invalid. For simple graphs, when they have the same adja-
cent relationship, the node features are indistinguishable.
Currently, the best solution is to introduce residual struc-
ture or retain original information [30].

Each hyperedge in hypergraphs has its own interpreta-
tion, but this often cannot be a decisive factor for clustering
tasks. So the disappearance of feature discrimination is not
appropriate for clustering tasks. Especially when the order
increases, the influence range increases exponentially,
which leads to the over-smoothing problem more serious.
Therefore, we need to compromise between their weights,
i.e., the graph filter kernel

G ¼ ð1� gÞIþ gD�1=2
v HWD�1

e HTD�1=2
v : (12)

The experimental analysis of the weight g is explained in
Section 4.5.1.

3.4 Choice of Order t

A suitable order can cause that each node perceives the
most suitable range of adjacent features, so a reasonable
metric becomes the key issue. Davies-Bouldin Index (DBI)
[31] is the average similarity measure of each cluster with
its most similar cluster, where similarity is the ratio of
within-cluster distances to between-cluster distances. It has
the advantage that is computed only quantities and features
inherent to the dataset. The minimum score of DBI is zero,
and the values closer to zero indicate a better partition. For
the t-order smoothing filter, we utilize the DBI index of the
smoothed node feature similarity matrix as an evaluation
index for the quality of clustering

cðtÞscore ¼ DBIðXðtÞðXðtÞÞT Þ; (13)

whereDBIð�Þ is the DBI algorithm. Note that the purpose of
using the similarity matrix XXT instead of the original fea-
ture matrix X is to eliminate the influence of features and
only focus on the similarities between nodes.

In detail, the formula for the DBI index is DBI ¼
maxi6¼j

SiþSj
Mi;j

, where Si denotes the average distance between
each of the samples within the class i and the center of the
class, and Mi;j denotes the inter-class distance from the cen-
ter of cluster i to j. An overly high order is likely to cause

the over-smoothing phenomenon of node features, i.e., all
node feature tend to be similar and coalesce in the feature
space. Therefore, the intra-class distances Si decreases
sharply, leading to a decrease in DBI score. Therefore, the
global lowest of cðtÞscore cannot obtain the optimal clustering
performance in general. So we suppose the change of score
is DcðtÞscore ¼ cðtÞscore � cðt�1Þ

score . When DcðtÞscore > 0, the order of t�
1 is the local minimum and the clustering performance
achieves or nears the best order, so we regard t� 1 as the
optimal order and obtain the optimal smoothed feature
matrix Xsm ¼ Xðt�1Þ.

The experimental analysis of the order t is further
explained in Section 4.5.2.

3.5 Relational Reconstruction Auto-Encoder

After obtaining the smoothed feature matrix, we utilize the
relational reconstruction auto-encoder to further learn node
representations in low-dimensional spaces without losing
structural information, as shown in Fig. 2. First, the adja-
cency matrix is constructed through the incidence matrix

A ¼ "ðHHTÞ; (14)

where binarization function "ðxÞ ¼ 1; x > 0
0; x ¼ 0

�
.

The filtered feature matrix is compressed through a sin-
gle-layer fully connected layer

Z ¼ scaleðXsmQÞ; (15)

where Z is the node embedding matrix which contains both
feature information and structural information, scaleð�Þ rep-
resents a normalization function to rescale the range of
node features to [0,1], i.e., scaleðxÞ ¼ x�minðxÞ

maxðxÞ�minðxÞ , and Q 2
RF�F 0

is the learnable parameter that is applied over the
nodes to extract features.

We further calculate the similarity matrix between the
node features

S ¼ sigmoidðZZT Þ; (16)

where sigmoidðxÞ ¼ 1
1þe�x . Eq. (16) is equivalent to calculate

the normalized cosine distancematrix between node features.
It is also called as an inner product decoder, which is used to
reconstruct the adjacent relations between nodes. Our goal is
tominimize the error between the adjacencymatrixA and the
similarity matrix S. When converting an incidence matrix to
an adjacency matrix by Eq. (14), the nodes in each hyperedge
are connected in pairs. When converting a hypergraph to a
normal graph, a hyperedge with degree d will be converted

into d�ðd�1Þ
2 normal edges. Therefore, as the hyperedge degrees

increase, the number of edges increases sharply. In some
cases, the adjacency matrix is too dense, which will cause a

serious imbalance between positive and negative samples in

matrixA.
In order to solve the above problems, we choose to

weight each element in A

Wij ¼
jVj2�

PP
AijPP

Aij
; Aij ¼ 1

1; Aij ¼ 0

(
: (17)
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The weighted binary cross-entropy function is used to
calculate the reconstruction loss

Lre ¼ 1

jVj2
XjVj
i¼1

XjVj
j¼1

�Wij½Aij � log Sij þ ð1�AijÞ � log ð1� SijÞ�:

(18)

By introducing weights to the cross-entropy loss function,
the imbalance was effectively mitigated and the model had
str onger compatibility with the tasks in denser relational
networks.

Through a period of training to the relational reconstruc-
tion auto-encoder, the learned node embeddings is
obtained. For clustering tasks, the spectral clustering algo-
rithm [16] is utilized to obtain the final cluster distribution.

The overall algorithm flow is provided in Algorithm 1,
where Lines 1-8 represent the adaptive hypergraph Lapla-
cian smoothing filter, and Lines 9-15 represent the relational
reconstruction auto-encoder.

Algorithm 1. AHGAE

Input: Node set V, incidence matrix H, feature matrix X,
hyperedge weight matrix W, iteration training times
N ;

Output: Node Embedding Matrix Z;
1 Set Xð0Þ ¼ X; t ¼ 0; cð0Þscore ¼ �1;
2 repeat
3 t ¼ tþ 1;
4 XðtÞ ¼ ðI� gLÞXðt�1Þ;
5 Calculate cðtÞscore by Eq. (13);
6 DcðtÞscore ¼ cðtÞscore � cðt�1Þ

score ;
7 until DcðtÞscore > 0
8 Set Xsm ¼ Xðt�1Þ;
9 Obtain Adjacency matrix A from Eq. (14);
10 for iter 2 0; 1; . . . ; N do
11 Get Embedding Matrix Z from Eq. (15);
12 Get Similarity matrix S from Eq. (16);
13 Train Relational Reconstruction Auto-Encoder with loss

function Eq. (18);
14 end
15 Output Node Embedding Matrix Z.

4 EXPERIMENTS

In this section, we evaluate our proposed model on cluster-
ing tasks for hypergraph data and graph data, and also
compare the impact of different graph filtering kernels on
our model. Meanwhile, we also discuss the influence of
hyperparameters including weight g and order t, and verify
the validity of the proposed order selection method.

4.1 Datasets

4.1.1 Attributed Hypergraph Dateset

To demonstrate that the proposed model AHGAE has con-
siderable performance on attributed hypergraph datasets,
the article-author hypergraph network DBLP-HG is con-
structed through the XML interface provided by the DBLP
(DataBase system and Logic Programming) website.1 In

DBLP-HG, each node represents a paper, whose features are
extracted by applying the bert-as-service [32] to the title of
the paper, and each hyperedge represents a different
author. Certain authors are used as the parent nodes, and
adopt the BFS algorithm to mine the information of authors
and their papers. The author IDs with a higher frequency is
extracted to construct hyperedges, and use the research
field of the journal/conference proceedings (refer to the
attention of researchers in different fields and SCI partition)
as the paper (node) label. Here we define 3 themes: Artificial
Intelligence and its Applications, Power Electronics and Circuit
Systems, and Network and Communication. The paper num-
bers of each theme are 1,984, 1,668, and 1,411, respectively.

Apart from the clustering tasks, this dataset is also
utilized hypergraph supervised node classification and
other hypergraph tasks. The data acquisition method is
acquired in the appendix for detail, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2021.3108192.

4.1.2 Attributed Graph Datesets

Some additional graph datasets with different implications
are utilized to verify the considerable performance of our
model in simple graph datasets, such as citation networks,
webpage redirection networks, paper co-author networks,
and author networks. They all provide complete attributed
graph information, including graph structure, node fea-
tures, and node labels. A detailed description of the dataset
is provided below:

� Cora [33]: This is a citation network dataset describ-
ing the citation relations between papers. Each node
represents a paper and its feature is the word vector
of the article. Each edge represents the citation rela-
tions between the two connected papers. Node labels
indicate different research fields and the node fea-
tures are binary word vectors.

� Wiki [34]: This is a webpage redirection network
dataset where each node represents a web page, and
each node feature is represented as a tf-idf weighted
word vector. If two web pages can be accessed
through hyperlinks, they are connected.

� ACM [23]2: This is a paper network dataset selected
from the ACM official dataset. If two papers have
the same author, they will be connected by edges.
The node features represent the word vectors of key-
words, and categories represent three research fields:
database technology, wireless communication, and
data mining.

� DBLP [23]3: This dataset is based on an author net-
work provided by the DBLP platform, which can be
understood as a social network of a specific group of
people (researchers related to engineering disci-
plines such as computers). Each node represents an
author, each edge represents that the two connected
authors collaborated once, i.e., co-author, and the
node features represent the feature of the keywords
of the author’s research.

1. https://dblp.org/xml/
2. https://dl.acm.org/
3. https://dblp.uni-trier.de/
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Table 1 provides statistical information for the above
datasets.

4.2 Baselines

We compare AHGAE with representative methods pro-
posed in recent years. Their brief introductions are shown
in the following:

� Methods using only node features include K-means
[35], Spectral-F [16].

� GAE and VGAE [21] are models that combine graph
convolutional network and auto-encoder or varia-
tional auto-encoder to extract node representations.

� AGC [22] is an adaptive spectral graph convolution
method, which uses high-order graph convolution
operations to capture the global structure, and uses
the intra-class distance to adaptively select the
appropriate order.

� SDCN [23] is a new structural deep clustering net-
work, which uses dual self-supervised modules to
effectively combine the advantages of auto-encoder
and GCN.

� DGSCN [24] is a deep graph structural clustering
network based on a triple self-supervised module,
which adds a graph auto-encoder structure and inte-
grates DenseGCN [25] to alleviate the over-smooth-
ing problem.

� AGE [26] first uses the graph smoothing filter opera-
tor to filter the graph node features, and then calcu-
lates the similarity matrix of the filtered features to
select pairs of positive and negative training samples
as the supervision information to train the encoder.

4.3 Implementation

4.3.1 Hypergraph Construction

When data is inputted into the model, we need to perform
hypergraph construction and feature normalization in turn.
The difference between graphs and hypergraphs is edges
and hyperedges, i.e., the degree limitation of edges. How to
construct a hypergraph to make the hyperedge interpretable
is a key problem. Constructing hyperedges based on adja-
cent relations has reasonable interpretability. For example,
each node and the neighbor nodes are jointly constructed
into a hyperedge: for citation networks, each hyperedge
represents all citation relationships of a specified paper; for
web-related networks, each hyperedge represents all linked
pages in a specified webpage; for co-author networks, each
hyperedge represents all co-authors of a specified paper; for
author networks, each hyperedge represents all co-authors
of a specified author, etc.

Considering both the complexity and the intuitive
semantics of the hyperedges, we connect first-order neigh-
bors to construct hyperedges. In other words, each hyper-
edge is composed of each node and its neighbor nodes. In
this way, more detailed information can be fully perceived
and learned.

4.3.2 Metrics and Parameter Settings

To evaluate the performance of each model, the following
metrics are used in the clustering tasks: clustering accuracy
(ACC), normalized mutual information (NMI) and adjusted
rand index (ARI). For all the metrics, a higher value repre-
sents better performance.

To verify the robustness and considerable adaptive abil-
ity of our model, we remove the fixed random seeds to
implement random parameter initialization. Additionally,
we repeat each experiment at least 20 times and report the
average clustering performance of the model AHGAE and
the latest models. For the graph filter kernel of the adaptive
hypergraph Laplacian filter in Eq. (12), the weight g is set to
4
5 for Cora and 2

3 for other datasets. A further discussion
about the choice of g is in Section 4.5.1. The Adam optimizer
is utilized for the reconstruction encoder part, and out of
experience, the learning rate is set to 10�4 for DBLP-HG and
10�3 for other datasets. The encoder is a single fully con-
nected layer whose input dimension is the node feature
dimension and the output dimension is 500. This setting
helps us well to compare with baselines. The iteration num-
bers of training are fixed at 5,000 for DBLP-HG and fixed at
400 for others to generate our final node embeddings. The
spectral clustering result of node embeddings is used as the
final clustering result to verify our model.

Note that since this paper does not consider the weight
difference between the hyperedges, we give the hyperedges
equal weights, i.e., W ¼ I on the following experiments.
Moreover, it is emphasized that the spectral clustering algo-
rithm is utilized to verify our performance.

4.4 Results

4.4.1 Attributed Hypergraph Clustering

Here we discuss the experiments for attributed hypergraph
datasets. For the graph-based clustering methods, we use
Eq. (14) to generate its corresponding adjacency matrix for
downstream calculations. The experiment results of differ-
ent models on the DBLP-HG are summarized in Table 2,
where the bold values indicate the best performance.

The proposed model AHGAE exceeds representative
models proposed in recent years. Compared with the latest
AGE model, AHGAE still has 11.65%, 5.01%, and 13.15%
performance improvements on ACC, NMI, and ARI
respectively.

To demonstrate the validity of our proposed model, we
replace the hypergraph Laplacian smoothing filter G calcu-
lated by Eq. (12) in our model with the graph convolution
kernel proposed by [2]

G1 ¼ eD�1=2eAeD�1=2; (19)

TABLE 1
The Statistics of the Hypergraph/Graph Dataset

Dataset Nodes Edges Hyperedges Features Classes

DBLP-HG 5,193 - 3607 768 3
Cora 2,708 5,429 - 1,433 7
Wiki 2,405 17,981 - 4,973 17
ACM 3,025 13,128 - 1,870 3
DBLP 4,058 3,528 - 334 4
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the adaptive graph convolution kernel proposed by [22]

G2 ¼ 1

2
Iþ 1

2
eD�1=2 eAeD�1=2; (20)

the graph filter kernel of the graph Laplacian smoothing fil-
ter proposed by [26]

G3 ¼ 1

3
Iþ 2

3
eD�1=2 eAeD�1=2; (21)

and the hypergraph convolution kernel proposed by [28]

G4 ¼ D�1=2
v HWD�1

e HTD�1=2
v : (22)

In the above formulas, A is obtained through Eq. (14), andeA ¼ Aþ I, eDii ¼
P

j
eAij. For each graph filter kernel, we

repeat the experiment 20 times to get the average value, and
the experimental results are shown in Table 3, where RAE
represents the relational reconstruction auto-encoder, and
the bold values indicate the best performance.

By comparing with different graph filter kernels on the
hypergraph dataset DBLP-HG, the superiority of the pro-
posed kernel is proved. Although the performance is com-
parable when only the adaptive smoothing filter is used, the
introduction of RAE prompts our hypergraph Laplacian
smoothing filter kernel perform better than other filter ker-
nels. Compared with the latest graph Laplacian smoothing
filter kernel G3, the proposed filter kernel still has 0.30%,
1.23%, and 1.15% performance improvements on ACC,
NMI, and ARI respectively.

The hypergraph convolution kernel G4 also directly uses
high-order data as the object, which still achieves a certain
improvement compared with the graph convolution kernel
G1. But compared with G4, the proposed kernel G solves
the problem of a rapid decline in the discrimination
between hypergraph nodes by retaining a certain weight of
the node’s information, which has 8.70%, 15.79%, and
17.55% performance improvements on ACC, NMI, and ARI
respectively.

Note that sometimes the introduction of RAE reduce the
performance because the over-smoothing phenomenon
leads to the problem that node discrimination disappears
seriously, which makes it difficult to reconstruct the adja-
cent relations by over-smoothed features.

4.4.2 Attributed Graph Clustering

The proposed model is also compatible with attributed
graph datasets. We compare AHGAE with the latest

representative models on attributed graph datasets, includ-
ing Cora, Wiki, ACM and DBLP. The graph-based models
completely adopted the original parameter settings in their
work. But for a fair comparison, we also remove the random
seed of the mentioned models to test their robustness and
adaptive ability. The experimental results are presented in
Table 4, where the bold values indicate the best performance.
The model AHGAE, which combines the above two parts,
further improves the performance and in performance, our
model exceeds the graph-based models proposed in recent
years. Furthermore, the experiments on DBLP with sparser
edges andWiki with denser edges verify the advantages and
powerful generalization ability of our proposedmethod.

Comparing with AGE [26], which consists of the Lapla-
cian smoothing filter and the adaptive encoder, the pro-
posed model has some advantages:

� The hypergraph Laplacian smoothing filter has a
larger perception domain, which means that each
node can more easily aggregate a wider range of
node information.

� The relation reconstruction auto-encoder introduces
weights to solve the imbalance problem, and com-
pared with the adaptive filter in AGE, it has a sim-
pler hyperparameter adjustment to achieve
considerable performance.

Similarly, they are the main advantages of our model
compared to the graph-based methods.

Meanwhile, the ablation experiments are conducted and
the results are also shown in Table 4. Compared with the
baseline Spectral-F, performance improvements are obtained
apparently after introducing either the adaptive hypergraph
Laplacian smoothing filter or the relation reconstruction
auto-encoder. The proposed model AHGAE, which is com-
bined by the above two parts, obtains further improvement
and achieves state-of-the-art. It shows that the two parts of
our model are meaningful and indispensable.

4.5 Discussion

4.5.1 Influence of Weight g

In this section, to discuss the effect of the value of weight g
on the results, we plot the clustering performance w.r.t.

TABLE 2
Clustering Results on DBLP-HG

Model ACC NMI ARI

GAE(2016) 53.11 10.47 13.06
VGAE(2016) 49.97 9.45 8.54
AGC(2019) 60.97 22.77 26.03
SDCN(2020) 60.92 19.52 24.76
DGSCN(2020) 61.54 20.09 25.77
AGE(2020) 61.22 31.89 30.41

AHGAE(our) 72.87 36.90 43.56

TABLE 3
Clustering Results of Different Kernels on DBLP-HG

Model kernel ACC NMI ARI

Basline(Spectral-F) - 50.08 14.79 15.10
Only RAE - 69.12 31.98 38.37

Only Adaptive-Smoothing G1 59.81 18.41 20.60
Only Adaptive-Smoothing G2 65.45 28.20 32.87
Only Adaptive-Smoothing G3 65.75 29.59 34.49
Only Adaptive-Smoothing G4 60.41 19.78 24.51
Only Adaptive-Smoothing G 65.12 28.40 33.69

Adaptive-Smoothing + RAE G1 61.14 19.76 21.14
Adaptive-Smoothing + RAE G2 70.61 31.84 38.09
Adaptive-Smoothing + RAE G3 72.57 35.67 42.41
Adaptive-Smoothing + RAE G4 63.57 21.11 26.01

AHGAE(our)
Adaptive-Smoothing + RAE G 72.87 36.90 43.56
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weights g on the graph dataset Cora and the hypergraph
dataset DBLP-HG. We design 11 sets of experiments for
each dataset which have different g in the range of [0,1]
with a step of 0.1. Each set of experiments is repeated 40
times, and the ACC, NMI, ARI metrics of the results of each
experiment are recorded. The result is plotted as a box plot
in Fig. 4. The best performance is obtained in g ¼ 0:8 and
g ¼ 0:6 on Cora and DBLP-HG, respectively.

As for the hypergraph dataset DBLP-HG, overly high or
low weights cause significant drops in performance. If g is
set too high, the discrimination between nodes will decrease
sharply, even lead to lower performance than the perfor-
mance of directly clustering the original data. By contrast, if
g is set too low, the smoothing order will increase appar-
ently, and each node tends to learn the overall information,
which makes it difficult to accomplish clustering tasks. It
explicitly demonstrates the importance of a suitable weight
ratio between node information and its neighbor informa-
tion. As for the graph dataset Cora, a similar conclusion is
obtained.

In addition, by observing the relative positions of the
quartiles of the box plot, we can also find that an appropri-
ate g can also ensure the relative stability of the clustering
performance. Moreover, the choice of the best g will depend
on the importance of the structural information relative to
the attribute information.

4.5.2 Over-Smoothing Analysis and Order Selection

In this section, we discuss the over-smoothing problem and
analyze the relations between the multi-order hypergraph
Laplacian smoothing filter and DBI calculated by Eq. (13).

To demonstrate the validity of this selection method, we
plot the clustering performance w.r.t. the order t on hyper-
graph dataset DBLP-HG and graph datasets Cora, Wiki,
ACM, DBLP. The relations between the changing trend of
different metrics and the order t when g ¼ 2

3 are shown in
Fig. 5. The order of the local lowest DBI is the same or near
to the order of the optimal clustering effect. As shown in
Fig. 5, the orders of the local lowest DBI on different

TABLE 4
Clustering Results for Attributed Graph Datasets Including Cora,Wiki, ACM and DBLP

Cora Wiki ACM DBLP

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

K-means 50.30 31.70 24.40 41.70 44.00 15.10 67.31 32.44 30.60 38.65 11.45 6.97
Spectral-F 34.70 14.70 7.10 49.10 46.40 25.40 71.80 37.49 38.67 58.52 27.50 23.78

GAE(2016) 61.10 48.20 30.20 37.90 34.50 18.90 84.52 55.38 59.46 61.21 30.80 22.02
VGAE(2016) 59.20 40.80 34.70 45.10 46.80 26.30 84.13 53.20 57.72 58.59 26.92 17.92
AGC(2019) 63.85 49.60 37.62 47.65 45.28 27.11 68.76 35.58 37.78 52.18 22.88 18.18
SDCN(2020) 63.12 45.24 36.12 41.21 39.12 23.82 90.45 68.31 73.91 68.05 39.50 39.15
DGSCN(2020) 63.04 45.36 36.94 46.61 42.60 25.69 89.59 66.55 71.89 71.11 36.11 39.26
AGE(2020) 70.08 56.78 49.27 56.49 56.05 39.15 92.10 72.51 78.05 78.11 45.07 50.64

Adaptive Smoothing 64.18 49.93 36.99 53.56 53.24 34.38 79.93 52.01 52.57 66.95 39.17 33.79
RAE 63.86 47.74 41.52 54.01 53.95 36.46 91.80 71.59 77.28 76.83 45.58 48.86
AHGAE(both) 74.58 59.12 55.09 59.49 56.52 42.80 92.79 74.63 79.86 78.62 48.88 52.23

Fig. 4. Influence of weight g on Cora and DBLP-HG. (a) (b) (c) represent the relationship between g and the metrics ACC, NMI, ARI on Cora respec-
tively, and (d) (e) (f) are for DBLP-HG.
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datasets are 1, 4, 1, 1, 2 respectively. The best performance is
obtained at orders 1, 4, 1, 2, 2 respectively, which are almost
the same as the selected order.

By observing the trend of the ACC, NMI, and ARI in
Fig. 5, we can find that almost everyone is rise first and
then fall. It is no doubt that the increase is a manifestation
of the effectiveness of the introduction of structural infor-
mation, and the decline in performance indicates the
over-smoothing phenomenon. Over-smoothing refers to
the phenomenon that each node tends to have the same
feature so that the distinction between nodes is greatly
reduced with the increasing layers of graph filtering.
Over-smoothing is an inevitable problem in graph or
hypergraph learning. Fig. 5 shows that the DBI of the fea-
ture similarity matrix can stably select or close to the opti-
mal order. This selection method prevents the occurrence
of the over-smoothing phenomenon, which is very mean-
ingful in practical applications.

4.5.3 Visualization

Finally, to intuitively reflect the performance of our model
on clustering tasks, the representation in two-dimensional
space is visualized using a t-SNE algorithm [36].

First, the experiments are conducted on all datasets, as
shown in Fig. 6, where the different colors represent differ-
ent labels, and the coordinates indicate the relative positions
of different node features in two-dimensional space. For
each sub-figure in Fig. 6, the scatter plots represent the two-

dimensional distribution of the original data, the adaptive-
smoothed data, and the embeddings learned by AHGAE,
respectively.

It is obvious that the adjacent data tend to have the same
features when applying the adaptive hypergraph Laplacian
smoothing filter, which is reflected on scatter plots that the
data points having the same attributes are close to each
other. Then when applying the relationship reconstruction
auto-encoder, the distance between the clusters gradually
increases to achieve our final AHGAE performance. It is
proven that the decoupling design of our proposed model
is effective. The adaptive hypergraph Laplacian smoothing
filter only pays attention to intra-class relations, and the
relationship reconstruction auto-encoder focuses on inter-
class relations while maintaining adjacent relations.

We also have similar conclusions for the hypergraph
dataset DBLP-HG, as shown in Figs. 7a, 7b, and 7c.
Moreover, the two-dimensional visualization learned by
AGE, AGC, and DGSCN are shown in Figs. 7d, 7e, and
7f. It shows that our model has considerable clustering
performance compared with other models, but other
models have irregular distributions to weaken clustering
performance.

5 CONCLUSION

In this paper, we propose a framework of Adaptive Hyper-
graph Auto-Encoders(AHGAE), which is used to learn the
node embeddings of relational data for clustering tasks,

Fig. 5. Over-Smoothing Analysis and Choice of Smoothing Order. The vertical axis represents the changing trend about different metrics, and the hor-
izontal axis represents the order t.

Fig. 6. Two-dimensional visualization of node representations using t-SNE on graph datasets. For each sub-figure, the scatter plots represent the
low-dimensional distribution of the original data, the smoothed data, and the embeddings learned by AHGAE, respectively.
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whether data has a graph structure or hypergraph structure.
Through the adaptive hypergraph Laplacian smoothing fil-
ter and the relational reconstruction auto-encoder, the node
information and structural information are fused adap-
tively. Because hypergraphs are regarded as generalizations
of graphs, AHGAE innovatively unifies the hypergraphs
and graphs, which is a more general model for clustering
tasks and embedded learning. By the clustering experi-
ments on the attributed graph or hypergraph datasets, the
proposed model outperforms state-of-the-art proposed in
recent years. In future works, it is worthy to study how to
Unify hypergraph learning and graph learning. Besides,
embedded learning or clustering tasks of large-scale hyper-
graphs are also very meaningful research orientation.
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