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Abstract001

Enabling an open-world vocabulary object detec-002

tion and segmentation in 3D scenes is a current003

challenge in 3D computer vision. One of the appli-004

cation fields that can profit from this is crime scene005

investigation where digital twins of felonies are in-006

creasingly common. These scenes often-times encom-007

pass a very large amount of arbitrary objects. We008

propose a vision language model based processing009

pipeline that creates a latent-space representation of010

the full contents of a Gaussian splat scene through011

DINOv3/SigLIP2 feature extraction that can be012

queried with open-world vocabulary to find objects.013

To ease computational cost, the system operates in014

2D image space and then segments found objects015

of arbitrary size within the 3D scene. Our pipeline016

is designed to work on cluttered, large scenes with017

many details. Results and their evaluation will be018

presented at Northern Lights Deep Learning 2026.019

1 Introduction020

Object detection in cluttered 3D scenes is a challeng-021

ing task e.g. due to partial occlusions and, depend-022

ing on scene size and number of objects, computa-023

tional complexity. When applied to crime scene in-024

vestigation, these issues can increase heavily. Crime025

scenes are often-times chaotic, messy and stretch026

over several rooms or even streets, especially in cases027

of felonies. Police units in the last decade began028

to conserve the state of crime scenes before they029

are cleaned to be able to reenter them in virtual030

reality. The goal is, inter alia, to have an as-realistic-031

as-possible digital twin for further scene inspection032

or sanity checks on testimonies.033

An automated detection of objects within a digital034

twin of a crime scene can ease the work of detec-035

tives. Further, it would enable the creation of an036

inventory of the crime scene to match with other037

cases and find repeating patterns in present objects.038

Discrete-class-based object detection is not sufficient039

for this, as the type of object of importance from040

case to case can be manifold and not foreseeable.041

We propose an open-vocabulary deep-learning-based042

pipeline for the generation of latent space represen-043
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Figure 1. Examplary

tations of 3D scenes that is semantically searchable 044

through a vision language model (VLM). 045

2 Related Research 046

Crime scene investigation within virtual reality 047

is increasingly utilized by federal police units. 048

As one early example, the Bavarian state police 049

is researching and working on meshed 3D twins 050

from imagery and LiDAR scans since 2012, now 051

transitioning towards Gaussian Splats. 052

In recent years an increasing number of methods 053

are proposed in the field of open-vocabulary 3D 054

scene understanding, embedding 2D vision-language 055

features into 3D representations. LangSplat [1] lifts 056

multi-level CLIP [2] features extracted from SAM 057

[3] segmentation-masks into 3D through feature 058

compression, establishing a 3D Gaussian language 059

field for open-vocabulary querying. However, its ag- 060

gregation tends to blur semantics across large scenes 061

and small or occluded objects, posing challenges 062

in digital crime scene analysis, displayed in Figure 1. 063

064

Dr.Splat [4] and Occam’s LGS [5] improve runtime 065

efficiency by directly injecting language embeddings 066

into individual Gaussians, enhancing per-point se- 067

mantic consistency but lacking occlusion handling 068

- especially posing a problem in unstructured and 069

chaotic environments as crime scenes. VALA [6] 070

adresses these issues by introducing the concepts 071

of visibility-aware gating and a streaming cosine- 072
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Figure 2. Input data and processing pipeline overview.

median feature aggregation to ensure that only truly073

visible Gaussians receive semantic updates. Comple-074

mentary to these works, GaussianVLM [7] further075

shift the focus towards scene-centric reasoning, in-076

tegrating 3DGS with large VLMs for holistic text-077

based scene interaction.078

Together, these advances provide the methodologi-079

cal foundation for our proposed pipeline, which ex-080

tends visibility-aware per-Gaussian semantics with081

explicit object level instancing and inventory gener-082

ation within complex 3D scenes.083

3 Methodology084

We introduce a five-step pipeline that is able to085

process objects that are arbitrary both in size and086

class. The input data are images and their resulting087

Gaussian Splat with the camera poses. Fig. 2 shows088

an overview of inputs and the processing pipeline.089

1. Feature extraction. First, DINOv3 [8] is used090

to extract a latent space representation of all the091

input images’ features. For performance tests, a092

comparison set of features will be generated via093

SigLIP2 [9]. These feature representations are094

fused and compressed into one single embedding095

for the whole scene. The advantage of this latent096

space representation is that it does not rely on097

distinct classes.098

2. Refine splat. In the second step, we refine the099

input Gaussian splat through Difix3D+ [10] to100

improve 3D reconstruction results and minimize101

floaters. A sharper splat results in a more precise102

segmentation in the downstream pipeline.103

3. Object segmentation. For the third step, the104

latent space representation is queried with a105

search term for an object. If the object is found, 106

all individual input images are searched for the 107

object. From the correlation heatmap we can 108

estimate an individual mask size for segmenting 109

the images utilizing SAMv2.1 [11]. This is impor- 110

tant to prevent too large or too small masks that 111

would result in incomplete or too fine-grained 112

segmentations. Especially in crime scene photog- 113

raphy one finds overview imagery of the whole 114

scene where for example a blood splatter might 115

be only a small detail in one image but it fills the 116

whole image in an up-close detail shot. 117

4. Projection into splat. The Gaussian splat is 118

then supplemented with the semantics of the ob- 119

ject class. By projecting from the input images 120

and their respective camera poses, the individ- 121

ual Gaussians of the object are assigned its class 122

attribute in 3D space. The diverse poses en- 123

sure a low number of false negative detections as 124

occlusions are reduced if the scene is captured 125

properly. 126

5. Object instancing. Lastly, we instantiate all 127

found objects and add them to an inventory of 128

the room. 129

4 Conclusion 130

Pipeline part 1 is set up for the comparison of feature 131

extractors, parts 2, 3 and 4 are fully implemented. 132

The full implementation including part 5 will be 133

presented at Northern Lights Deep Learning 2026. 134

Further, the segmentation step will be updated when 135

v3 of SAM is available. 136
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