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ABSTRACT

Industrial anomaly detection has been significantly advanced by large multimodal
models (LMMs), enabling diverse human instructions beyond detection, partic-
ularly through visual-grounded reasoning for better image understanding. How-
ever, the lack of domain-specific knowledge of LMMs limits the accurate gen-
eration of responses in complex industrial scenarios. In this work, we present
JUDO, Juxtaposed Domain-Oriented Multi-modal Reasoner, a framework that ef-
ficiently incorporates domain knowledge and context in visual and text reasoning.
The visual reasoning provides detailed inspection by segmenting the defect re-
gion in the query image by juxtaposing it with the normal image as visual domain
context, enabling a fine-grained visual comparative analysis. Furthermore, we
inject domain knowledge through supervised fine-tuning (SFT) to enhance con-
text understanding and subsequently guide domain reasoning through reinforce-
ment learning (GRPO) with three tailored rewards, opting for a domain-oriented
thought process. Experimental results demonstrate that JUDO achieves superior
performance on the MMAD benchmark, surpassing models such as Qwen2.5-
VL-7B and GPT4o. These results highlight the importance of enhancing domain
knowledge and context for effective reasoning in anomaly understanding. The
implementation of JUDO can be found in https://anonymous.4open.
science/r/JUDO-9C8B.

1 INTRODUCTION

Visual anomaly detection (Jiang et al., 2025; Xu et al., 2025), which aims to identify unique anomaly
patterns from images in industrial environments, has evolved significantly with the recent emer-
gence of Large Multimodal Models (LMMs) (Hurst et al., 2024; Bai et al., 2025; Wang et al.,
2025). While most anomaly patterns are specialized for domain-specific settings, current LMMs
have demonstrated strong generalization capabilities in complex industrial environments, as shown
by the MMAD benchmark (Jiang et al., 2025). Building upon this foundation, recent models such
as AnomalyR1 (Chao et al., 2025) and OmniAD (Zhao et al., 2025) have employed Group Relative
Policy Optimization (GRPO) (Shao et al., 2024) training to advance multimodal anomaly detection
capabilities further. Specifically, AnomalyR1 is the first to introduce GRPO training to anomaly de-
tection tasks, while OmniAD further advances this approach by integrating anomaly segmentation
to enable visual-grounded reasoning.

Despite these advances, current GRPO-based models primarily optimize instruction-response
matching, overlooking the incorporation of domain knowledge essential for robust and generaliz-
able defect reasoning. Such domain knowledge in text generally encompasses characteristics of
normal and defect samples—including their definitions, causes, and consequences, which serve as
the prior knowledge necessary for reliable defect analysis. In addition, normal images play the role
of visual context, offering reference information for distinguishing between normality and anomaly.
However, this knowledge and visual context are often specialized and rarely encountered during
the pretraining of LMMs, making reasoning based solely on the inherent generalized knowledge of
LMMs insufficient. Recent studies (Jiang et al., 2025) have demonstrated that providing external
knowledge (Zhao et al., 2024) or normal samples in context at inference can alleviate this limitation
of LMMs, bridging this knowledge gap. However, providing knowledge and context only at infer-
ence time has limitations when LMMs lack sufficient internal knowledge, as LMMs become overly
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dependent on external context, leading to misaligned responses that prioritize contextual plausibil-
ity over accuracy. This limitation still stems from insufficient internalized domain knowledge and
context in the model, ultimately hindering reliable and accurate domain-oriented reasoning.

To address this challenge, we propose JUDO, Juxtaposed Domain-Oriented Multi-modal Reasoner,
the first approach that systematically internalizes domain knowledge for industrial anomaly detec-
tion through learning. Unlike prior GRPO-based models that apply post-training without domain
alignment, JUDO unifies domain understanding across visual grounding and textual reasoning. Our
framework begins in Stage 1 by establishing domain-aware visual reasoning through juxtaposed
segmentation learning, where comparing normal and defect images internalizes visual context. This
approach addresses the underexplored potential of normal samples, which typically serve only as op-
tional context in inference, while JUDO incorporates it as a core reasoning context during training.
In Stage 2, we enhance domain-oriented textual reasoning of LMMs by injecting domain knowledge
into model parameters, unlike prior work (Jiang et al., 2025) that injects textual domain knowledge
externally via prompts. Our approach builds foundational domain knowledge for industrial anomaly
detection reasoning, yielding more reliable domain-aligned reasoning. Finally, Stage 3 unifies visual
grounding and domain semantics through reinforcement learning (GRPO) (Shao et al., 2024) with
rewards composed of domain reasoning, segmentation, choice, and structural alignment rewards,
ensuring that the model produces reliable and domain-aware reasoning for anomaly understanding.

Extensive experiments on industrial anomaly detection benchmarks MMAD (Jiang et al., 2025)
demonstrate the effectiveness of our approach. JUDO achieves superior performance, highlighting
that internalizing domain knowledge and context during training time fundamentally matters in in-
dustrial anomaly understanding. Moreover, JUDO enhances both reliability and explainability by
aligning its reasoning with the learned domain knowledge and grounding anomaly regions in visual
evidence, through unified training to align domain knowledge and context.

We summarize our contributions as follows:

• We propose JUDO, the first approach to systematically internalize domain knowledge and
context into both visual and textual reasoning for industrial anomaly understanding.

• We introduce a novel framework that builds domain understanding through visual segmen-
tation and textual knowledge internalization, and unifies these capabilities via reinforce-
ment learning with domain-aligned reward designs.

• Through comprehensive experiments, we demonstrate that JUDO achieves superior per-
formance while enhancing explainability through segmentation-based visualizations and
ensuring reliability via domain-aligned reasoning, addressing real-world industrial needs.

2 RELATED WORK

2.1 LARGE MULTIMODAL MODELS (LMMS)

Recent Large Multimodal Models (LMMs) have advanced visual understanding through high-
quality instruction tuning (Hurst et al., 2024; Bai et al., 2025; Chen et al., 2024; Team et al., 2025;
Comanici et al., 2025), stronger cross-modal architectures (Wang et al., 2025; Agrawal et al., 2024b),
and more sophisticated training pipelines (Xiaomi et al., 2025; Deitke et al., 2025). Most multimodal
models now support multi-image inputs (Xiaomi et al., 2025), with GPT-4o, GPT-5 (Hurst et al.,
2024), the Gemini-2.5 model (Comanici et al., 2025), and InternVL3.5 (Wang et al., 2025) demon-
strating improved reasoning performance through cross-image comparison. However, the majority
of these models (Hurst et al., 2024; Bai et al., 2025; Wang et al., 2025) remain optimized for common
question–answering tasks grounded in general knowledge. When applied to out-of-distribution sce-
narios such as industrial anomaly detection—where domain knowledge is crucial—their reasoning
performance tends to be noticeably less accurate.

2.2 INCORPORATING DOMAIN KNOWLEDGE INTO LMMS

To address the demand for specialized knowledge for LMMs (Song et al., 2025), specifically in
fields such as finance (Qian et al., 2025), biomedicine (Liu et al., 2025), education (Agrawal et al.,
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2024a), and materials (Prabhakar et al., 2025), researchers have actively studied to integrate domain-
specific expertise into LMMs. Most approaches fall into two categories: dynamic injection and
learning-based integration through pretraining or fine-tuning. Dynamic injection-based methods
provide the external knowledge in a similar way to RAG (Zhao et al., 2024) at inference time without
additional training; its effectiveness is highly dependent on retrieval quality. In contrast, learning-
based methods encode the domain knowledge into the model’s parameters. However, this line of
work remains underexplored for industrial anomaly understanding.

2.3 INDUSTRIAL ANOMALY DETECTION AND LMMS

Visual anomaly detection in industrial settings has evolved significantly with deep learning. Early
and still widely used methods are often unsupervised, focusing on learning a model of nor-
mal data and identifying deviations (Salehi et al., 2021; Bergmann et al., 2021). These include
reconstruction-based methods using autoencoders or GANs, where high reconstruction error signals
an anomaly (An & Cho, 2015; Schlegl et al., 2017), and embedding-based methods, which map
normal samples to a tight cluster in a feature space (Roth et al., 2022; Defard et al., 2021). While
effective for detection and localization on benchmarks like MVTec AD (Bergmann et al., 2019),
these approaches typically do not provide defect analysis for their predictions.

The advent of LMMs has introduced a new paradigm that enables comprehensive defect analy-
sis. Rather than simply detecting anomalies, LMMs can now respond to diverse analytical queries
about defect characteristics—such as identifying defect types, describing their visual appearance,
and analyzing their potential consequences. To facilitate research in this area, a MMAD bench-
mark (Jiang et al., 2025) has been presented, providing a suite for evaluating an LMM’s reasoning
abilities on industrial anomaly problems. Meanwhile, several works have recently applied LMMs
to this challenge. AnomalyGPT (Gu et al., 2024) was an early method using LMMs for zero-
shot anomaly detection and generating descriptive reports. More recently, a few methods employ
reinforcement learning to improve reasoning quality. AnomalyR1 (Chao et al., 2025) incorporates
Group Relative Policy Optimization (GRPO) (Shao et al., 2024) to refine its reasoning. Furthermore,
OmniAD (Zhao et al., 2025) unifies the anomaly segmentation and anomaly reasoning problem for
fine-grained defect understanding.

3 METHOD

Our proposed model, JUDO, is a domain-oriented multimodal reasoner for industrial anomaly un-
derstanding. The main claim of JUDO is that domain knowledge and contextual information funda-
mentally matter in industrial anomaly understanding, yet this approach remains underexplored and
non-trivial. In this direction, our core contribution is a unified learning objective in which compar-
ative visual reasoning and domain semantics fuse together into the domain-aligned reasoning pro-
cess, described in Figure 1. The first stage introduces a comparative reasoning ability between query
and normal images for patch-level segmentation, then the second stage internalizes textual domain
knowledge into model parameters, and the final stage unifies the visual grounding and domain se-
mantics using GRPO-based optimization tailored reward designs. The following subsections detail
each training stage, with the corresponding dataset construction process described in Appendix A.

3.1 STAGE 1: LEARNING ANOMALY SEGMENTATION-BASED JUXTAPOSED REASONING

For reliable and fine-grained visual reasoning, we employ anomaly segmentation to pinpoint defect
regions and integrate this capability into the reasoning process. To encompass proper domain visual
context, we propose the juxtaposed reasoning paradigm that explicitly compares defective images
against their normal samples during training. While most existing segmentation methods achieve
reasonable performance by directly predicting the target regions, the lack of clear reasoning criteria
for anomaly judgment limits segmentation performance in defect detection. Additionally, although
using normal images as contextual reference has become common practice during inference (Jiang
et al., 2025), how to efficiently harness this comparative context to enable explicit reasoning of
defects during training has yet to be addressed. Our comparative training paradigm shifts the objec-
tive from a simple pattern memorization to a fine-grained juxtaposed reasoning, enabling the model
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Stage 3Stage 1 Stage 2

There is a defect 
in the object. 
What is  the effect of 
the defect?
Choose the options.

Segmentation based 
Juxtaposed Reasoning 

<seg>(7,2)-(7,4) , (8,2)-(8,4) , 
(9,3)-(9,4) , (10,3)-(10,4) 

</seg>
<think> The first image 
shows a cable routed 

differently from the second 
image, indicating a deviation 

from the standard design.. 
</think>

Domain Knowledge 
Injection

Domain 
Reasoning Answer

Answer

Reward

Reward

Domain-oriented GRPO

Ground truth Answer for Domain Question Pseudo-Domain Rationale Generated Output

Query Image Normal Image

Domain 
Snippet

Q. What are the reasons 
for connectors losing their 

alignment?

A: Improved aesthetics

B: No significant effect

C: Reduced functionality

D: Increased durability

Query

<seg>(7,2)-(7,4) , (8,2)-(8,4) , 
(9,3)-(9,4) , (10,3)-(10,4) </seg>
<think>The defect in the first 
image shows a cable with an 
unusual routing compared to 
the second image. This 
indicates a deviation from 
standard design and may affect 
functionality. Therefore, the 
correct answer is C. Reduced 
functionality.</think> 
<answer>C</answer>

A. Connectors may lose their 
alignment due to orientation 
concerns, including improper 
alignment or twisting.

<think> The first image reveals 
a cable routed differently from 
the second image, suggesting 
a departure from the standard 
design that could impair 
functionality. Hence, the 
correct answer is C. Reduced 
functionality. </think> 
<answer>C</answer>

Domain 
Reasoning

Figure 1: Overview of JUDO (Juxtaposed Domain-Oriented Multi-modal Reasoner). The frame-
work progresses in three stages: (1) Stage 1: Learning Anomaly Segmentation-Based Juxtaposed
Reasoning, (2) Stage 2: Domain-knowledge Injection, and (3) Stage 3: Domain-Oriented Group
Relative Policy Optimization. Through the progressive stages, we incorporate the domain knowl-
edge and context into LMMs for reliable and robust anomaly analysis.

to internalize a more generalized and fundamental notion of normality as a baseline for anomaly
understanding.

Inspired by text-based segmentation approaches, such as Text4Seg (Lan et al., 2025; Zhao et al.,
2025), the model is trained to output the coordinates of anomalous patches within a 16x16 grid
through SFT (Schlegl et al., 2017). The instruction is given to describe the anomaly region and ex-
plain the visual evidence by comparing query images with normal samples as juxtaposed reasoning.
For instance, a defect region is represented as a textual sequence such as (11,12)-(11,14), (12,11),
pinpointing specific patches that deviate from the norm, including juxtaposed explanations. This
format compels the model to perform a direct, patch-level juxtaposition, moving beyond a general
comparison to a fine-grained recognition of differences against the normal template. This spatial
grounding is crucial, as it forces the reasoning process to be tied to specific visual evidence, making
the subsequent textual explanation more accurate and reliable.

Dataset Construction. We construct a training dataset for juxtaposed fine-grained anomaly seg-
mentation. We utilize only one image from each defect category in the MMAD dataset, and addi-
tionally, incorporate the REAL-IAD (Wang et al., 2024) dataset for more generalized segmentation
capability. As illustrated in Figure 5 of the Appendix, each anomalous query image is paired with a
randomly sampled normal template from the same object category. The model is then trained to gen-
erate a dual-part response from this pairing: first, a textual sequence of patch coordinates between
<seg></seg> tags that serves to ground the explanation by identifying the anomalous region,
and second, a corresponding comparative explanation within <think></think> tags, which is
synthetically generated to describe the defect by contrasting the two images, given the anomalous
region bounded by a red line and the defect type.

3.2 STAGE 2: DOMAIN-KNOWLEDGE INJECTION

While Stage 1 equips the model with comparative reasoning ability using normal images as the
domain context, it primarily focuses on visual reasoning processes. However, the model still lacks
sufficient domain knowledge for industrial anomaly problems. As a result, the model struggles to
deliver accurate text reasoning and often fails to derive correct solutions without proper foundational
knowledge. To address this limitation, we inject the domain knowledge (Mecklenburg et al., 2024)
by constructing domain QA datasets and employing supervised fine-tuning (SFT). This approach
differs from conventional supervised learning that directly trains on correct answers to queries in
the MMAD dataset, as it focuses on supervised learning of domain knowledge that may not directly
correspond to specific instructions but provides foundational knowledge essential for solving related
problems. Through supervised fine-tuning on the domain QA dataset, the model acquires a more
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generalizable understanding of how domain knowledge applies across different object categories
and defect types. This enhanced understanding forms the basis for Stage 3, where reinforcement
alignment further refines the precision and reliability of domain reasoning.

Dataset Construction. We generate question–answer pairs using the raw domain snippets provided
in MMAD (Jiang et al., 2025). Each snippet contains an unstructured textual description of the
characteristics of an object category and its associated defect types, and serves as textual knowledge
source for constructing the Stage 2 dataset (see Table 4 in the Appendix). Specifically, we prompt
GPT 4o to reflect inspection knowledge from the unstructured domain snippet into structured QA
pairs —for example, questions related to defect criteria, functional implications (e.g., “What criteria
indicate that the fabric border is defective?” or “Why is detecting loose threads important for prod-
uct reliability?”). These questions are derived purely from the textual information in the snippet and
are not tied to any specific anomalous image sample. To improve robustness, each QA is further
paraphrased into multiple semantically consistent but lexically diverse variants. We show a more
detailed data construction process in Section A. Finally, every QA instance is paired with a nor-
mal image from the corresponding object category, grounding the textual domain knowledge in its
object-level visual context and naturally prompting the model to recall relevant domain knowledge
during reasoning. We provide examples of the generated QA pairs in Section B.2.

3.3 STAGE 3: DOMAIN-ORIENTED GROUP RELATIVE POLICY OPTIMIZATION

The final stage of our framework, Stage 3, is designed to elevate the model’s capabilities in the visual
and textual domain-oriented reasoning, mainly obtained from prior stages. While Stage 1 builds a
foundation in visual juxtaposed reasoning and Stage 2 internalizes textual domain knowledge, these
skills are not yet integrated. Thus, we employ Group Relative Policy Optimization (GRPO) (Shao
et al., 2024), which is a reinforcement learning method that optimizes policies by comparing rela-
tive performance within groups of trajectories for better generalization. We design GRPO policies
to align the model’s behavior, ensuring that the final output is a seamless integration of accurate
visual grounding and deep domain understanding. This alignment is guided by multi-faceted reward
functions that provide a comprehensive feedback signal, composed of three primary components.
We explain each policy with respect to reward functions as follows.

Domain Reasoning Reward. The primary objective of the Domain Reasoning Reward is to guide
the reasoning process presented within the <think></think> tags toward aligning with the
domain-oriented reasoning process, specifically queries targeted of the MMAD benchmark. Since
there is no ground-truth for each instruction encompassing domain knowledge and context for
MMAD datasets, we generate the pseudo-domain rationale using GPT-4o, providing full contexts
such as the query, correct answer, images including normal reference, juxtaposed reasoning from
Stage 1 pipeline, and relevant domain knowledge. We treat this generated pseudo-domain ratio-
nale as the semantic target and design the policy to guide domain-oriented direction. Specifically,
we define the reward, Rdomain, using the cosine similarity between the embedding vectors of the
model’s generated reasoning as Egen and a pseudo-domain rationale denoted as Epdomain using the
representation space of all-MiniLM-L6-v2 SentenceTransformer (Reimers & Gurevych, 2019)
model, which is effectively encode the semantic meaning of one or multiple sentences, denoted as
ϕ(·). This reward mechanism is formalized as:

Rdomain =
ϕ(Egen) · ϕ(Epdomain)

∥ϕ(Egen)∥∥ϕ(Epdomain)∥
, if Rdomain ≥ 0.5, otherwise 0. (1)

The domain reasoning reward leverages semantic similarity to align the model’s reasoning with a
reference rationale that is grounded strictly in the provided evidences. The pseudo-domain rationale
reorganizes the inputs without introducing new knowledge, ensuring that GPT-4o serves only as an
evidence structurer. This reward differs from typical GRPO settings that emphasize answer correct-
ness or output format, since it directly encourages consistent domain-oriented reasoning patterns
while remaining flexible to the phrasing of the generated explanation.

Segmentation Reward. This reward evaluates the spatial precision of the anomaly patch coor-
dinates generated within the <seg></seg> tags through F1 score calculation (Zhao et al., 2025),
reinforcing the skill developed in Stage 1. A reward of 0 is immediately assigned for any improperly
formatted coordinate strings. For validly formatted outputs, the reward function compares the set of
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predicted grid cells (P) against the ground-truth set (PG) using the following piecewise function:

Rseg =


1.0 if P = ∅ and PG = ∅,
0.2 + 0.8 · F1(P, PG) if P ̸= ∅ and PG ̸= ∅,
0.0 otherwise.

(2)

This formulation incentivizes not only high-overlap localization but also correct format adherence
and accurate identification of anomaly-free instances, penalizing cases where only one set is empty.

Choice and Structural Alignment Reward. This composite reward ensures correct, well-
structured, and logically sound output through three components (Shao et al., 2024): 1) Choice
Reward rewards correct multiple-choice selection within <answer></answer> tags to pro-
mote accurate decision-making; 2) Format Reward ensures adherence to the required format as
<seg>...<think>...<answer> structure, ensuring the structure of responses is consistent
and parsable; and 3) Reasoning Structure Reward encourages both the conclusive answer with in
the reasoning and final answer to be correct while penalizing answer choices mentioned in the first
half of reasoning text, preventing premature commitment.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Benchmarks. We evaluate our approach on the MMAD benchmarks (Jiang et al.,
2025), which integrates four datasets, such as MVTec-AD (Bergmann et al., 2019), MVTec-
LOCO (Bergmann et al., 2022), VisA (Zou et al., 2022), and GoodsAD (Zhang et al., 2024) datasets,
with multiple choice QA covering seven key subtasks. We report averaged accuracy as the evalua-
tion metric, computed as the ratio of correct predictions to the total number of predictions. For Stage
1, we sample 10 instances from each category in the Real-IAD dataset (Wang et al., 2024) together
with one instance per category from MMAD, yielding a total of 1.4k and 293 images, respectively.
In Stage 2, we construct a domain-specific QA corpus by leveraging the MMAD domain knowledge
JSON files. For each category, we generate 30 unique questions and augment them with two para-
phrased variants, resulting in approximately 13k QA pairs. Finally, Stage 3 applies GRPO using a
sparse sampling strategy, where only one training instance per category from MMAD—identical to
the sampled used in Stage 1—is utilized, yielding 1.4k QA pairs for reinforcement alignment.

Implementation Details. Our framework is built on PyTorch 2.5.1 with HuggingFace Transform-
ers and the TRL GRPO trainer. We use Qwen2.5-VL-7B as the base model, initialized from a
vision–language pre-trained checkpoint. Training runs on a single node with 4×NVIDIA H200
GPUs using torchrun and DeepSpeed ZeRO-3. For Stage 1 and Stage 2, we train for 8 and 2
epochs, respectively, using learning rates of 1× 10−6 and 5× 10−7 in bf16 precision. For GRPO,
we use 16 generations per prompt, batch size of 8, and train for 14 epochs, also in bf16.

Baselines and Inference Settings. We benchmark JUDO against leading general-purpose mod-
els such as Qwen2.5-VL, InternVL3.5, and various commercial models. Our primary industrial
specialized baseline is AnomalyR1 (Chao et al., 2025); another recent method, OmniAD (Zhao
et al., 2025), was not included due to the unavailability of its public codebase. For consistency with
JUDO’s architecture, we re-implemented the AnomalyR1 approach on a Qwen2.5-VL 7B model
using the author’s provided code and our sampled dataset. The result is referred as the AnomalyR1
in Table 1 and Base GRPO model in our ablation study in Section 4.3. All models are evaluated
under a strict 1-shot inference protocol in the equivalent way of MMAD, using both a query image
and a normal template as input to ensure a fair comparison.

4.2 EXPERIMENTAL RESULTS

Table 1 presents the comparison against both general-purpose LMMs and the anomaly-focused base-
line AnomalyR1. JUDO achieves strong performance across the MMAD seven subtasks, reaching
the highest overall averaged accuracy of 80.73% among the open-source models. Advantages of
JUDO are particularly evident across the four defect-related subtasks: classification, localization,
description, and analysis. Since these tasks assume that the domain-specific knowledge plays a cru-
cial role, the performance gains are a direct result of the effective incorporation of domain knowledge
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Table 1: Performance comparison of both commercial and open-source LMMs in MMAD with the
standard 1-shot setting. Anomaly Discrimination uses the average accuracy across the normal and
abnormal categories. The best scores are highlighted in bold while the second best are underlined.
* indicates the best performance among the open-source models.

Model Scale Anomaly Defect Object AverageDiscrimination Classification Localization Description Analysis Classification Analysis

Random Chance - 50.00 25.00 25.00 25.00 25.00 25.00 25.00 28.57

Human (expert) - 95.24 75.00 92.31 83.33 94.20 86.11 80.37 86.65
Human (ordinary) - 86.90 66.25 85.58 71.25 81.52 89.58 69.72 78.69

Claude-3.5-sonnet - 60.14 60.14 48.81 67.13 79.11 85.19 79.83 68.36
Gemini-1.5-pro - 68.63 60.12 58.56 70.38 82.46 89.20 82.25 73.09
Gemini-2.5-pro - 83.07 73.86 67.20 79.97 86.27 94.88 83.08 81.19

Gemini-2.5-flash - 93.38 69.88 63.30 76.41 81.57 94.04 82.00 80.08
GPT-4o - 68.63 65.80 55.62 73.21 83.41 94.98 82.80 74.92

GPT-5-mini - 64.10 67.35 69.07 79.02 86.72 93.96 83.37 77.65

Qwen2.5-VL 7B 71.39 54.35 61.17 65.81 79.32 91.44 84.43 72.56
LLaVA-OneVision 7B 51.77 46.13 41.85 62.19 69.73 90.31 80.93 63.27

InternVL3.5 8B 67.50 49.37 57.9 58.07 77.66 72.01 81.11 66.30
Kimi-VL-A3B 16B 72.93* 53.49 59.66 72.39 81.74 91.91 85.89 74.00

MiMo-VL 8B 54.45 59.56 60.77 71.50 78.48 90.56 81.60 70.99
AnomalyR1 7B 60.93 64.81 70.72 79.06 85.52 93.12 86.91* 77.29

JUDO 7B 64.51 72.17* 75.95* 84.38* 87.76* 94.24* 86.07 80.73*

and reasoning through our progressive stages. Specifically, Stage 1 establishes a strong foundation
by using juxtaposed segmentation training to foster fine-grained comparative analysis, which di-
rectly boosts defect localization to 75.59% (from 61.17% for the base Qwen). This visual grounding
is then enriched in Stage 2, where the integration of domain-specific knowledge provides the con-
ceptual basis needed for accurate explanations, as seen in the 84.38% and 87.76% accuracy on the
defect description and analysis, respectively. Finally, Stage 3 is critical for merging these capa-
bilities. The multi-reward GRPO training ensures the model’s final output is a coherent synthesis
of juxtaposed visual evidence and textual expertise. This integrated process allows JUDO to not
only locate defects precisely but also to classify, describe, and analyze them with a domain-aligned
thinking process, leading to more robust and reliable reasoning.

However, our JUDO does not achieve superior performance in anomaly discrimination tasks, even
with rich domain-specific foundational knowledge. Similarly, other models trained with a GRPO
framework, such as AnomalyR1, exhibit a trade-off in raw binary detection accuracy. This is ev-
ident in the results: AnomalyR1 achieves 60.93% accuracy, while JUDO shows only a modest
improvement at 64.51%. Both remain below the 72.93% and 71.39% reached by recent LLMs such
as Kimi-VL, as well as the base model Qwen2.5-VL, respectively. We attribute Kimi-VL’s higher
performance to its more advanced visual encoder, although it still lacks domain-specialized knowl-
edge, as reflected in its relatively low performance on defect-related tasks. In Section 4.4, we further
discuss the impact of our multi-staged learning framework under anomaly discrimination.

Commercial multimodal models such as Gemini-2.5-Pro and Gemini-2.5-Flash show strong perfor-
mance on anomaly discrimination, likely due to their highly capable vision encoders. However, their
performance on domain-level defect reasoning remains overall lower than JUDO’s. This contrast
highlights a key distinction: while large commercial LMMs excel at broad visual pattern recog-
nition, they do not have sufficient defect semantics or comparative industrial cues in a way that
generalizes across classification, localization, description, and analysis. In contrast, despite being
built on a smaller open-source backbone, JUDO consistently achieves higher defect-reasoning ac-
curacy because its training explicitly aligns comparative visual grounding with structured domain
knowledge. These results demonstrate that domain-aligned training can surpass much larger com-
mercial systems when the task requires specialized industrial reasoning rather than generic visual
understanding.

4.3 ABLATION STUDY

We conduct an ablation study to systematically evaluate the contribution of each component in
the JUDO framework, with results summarized in Table 2. The study begins with the baseline
Qwen2.5-VL-7B model, which achieves an average accuracy of 72.56%. We note that this result
is obtained without using the Chain-of-Thought process, not requiring the reasoning process gener-
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Table 2: Ablation study of different methods. We denote Stage 1 as SegJux, Stage 2 as DomInj, and
the full Stage 3 as GRPOdom, where the domain reasoning reward is used. The segmentation reward
is only used in methods that go through Stage 1 training. Average accuracy (%) is reported.

Method Average

Qwen2.5-VL-7B 72.56
+ GRPO 77.29
+ GRPO + RAG 76.29
+ GRPO + DomInj 79.82
+ GRPO + SegJux + DomInj 80.35

+ GRPOdom + SegJux + DomInj (JUDO) 80.73

ally in <think> tags, but outputting the answer directly, since it is not trained to learn the proper
reasoning, yet. Applying a standard GRPO training stage improves general instruction-following
and raises the accuracy to 77.30% in the equivalent of AnomalyR1. To evaluate the effectiveness
of domain knowledge injection, we employ RAG, which dynamically provides external information
upon the model trained on vanilla GRPO, referring to the model as (+ GRPO + RAG). The way of
employing RAG is followed in the MMAD (Jiang et al., 2025). While RAG-based approaches have
been claimed to often improve the performance, the external context attached to our trained reason-
ing model acted in the negative direction rather than bringing in positive gain. In contrast, the im-
pact of domain injection was remarkably effective, resulting in an improvement of almost 5% gain.

Figure 2: Performance across different
stages.

The effectiveness of JUDO’s learning-based ap-
proach becomes evident in the subsequent steps as
shown in the result. The most significant perfor-
mance leap comes from Stage 2’s Domain Injec-
tion (+ GRPO + DomInj), which internalizes do-
main knowledge through supervised fine-tuning and
increases accuracy to 79.82%. This result is substan-
tially higher than the RAG-based method, demon-
strating the superiority of integrating textual knowl-
edge directly into the model’s parameters. Building
on this, the addition of Stage 1’s juxtaposed segmen-
tation training (+ GRPO + SegJux + DomInj) brings
the accuracy to 80.35%, highlighting the value of
grounding textual reasoning in fine-grained juxta-
posed visual analysis. The final refinement, which
uses the complete Stage 3 GRPO with a specialized
domain reasoning reward (+ GRPOdom), achieves the
peak performance of 80.75%. This confirms that each stage of the JUDO framework provides a
meaningful and incremental benefit, leading to its final state-of-the-art performance.

4.4 DISCUSSION OF MULTI-STAGED LEARNING FRAMEWORK

Figure 2 presents the progression of anomaly discrimination accuracy and averaged accuracy of de-
fect subtasks (classification, localization, description, and analysis) across the key checkpoints of our
pipeline: the Qwen2.5-VL baseline, its Chain-of-Thought (CoT) variant, and each JUDO stage. The
figure shows that the most significant performance shift occurs before any of JUDO’s optimization
takes place. When the model switches from direct answering to CoT reasoning, anomaly discrimi-
nation accuracy drops sharply (71.39% → 61.90%), and the averaged accuracy over the four defect
subtasks decreases from 65.15% to 57.00%. This confirms that the initial degradation stems from a
reasoning-mode behavioral change rather than from the design of our multi-stage training. The drop
in anomaly discrimination in particular is consistent with a recent finding (Liu et al., 2024) that ex-
plicit verbal reasoning can impair performance on perception-heavy tasks by interfering with rapid,
pattern-based visual judgments, a phenomenon analogous to verbal overshadowing. After entering
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Figure 3: Response comparison between Base GRPO, Base GRPO + RAG and JUDO. The anoma-
lous region in the query image is highlighted in green, while the segmentation output from JUDO is
represented as red patches in the Segmented Image.

the pipeline, anomaly-detection performance remains largely stable, with only a small fluctuation
from 65.42% (Stage 1+2) to 64.51% in the final model, indicating that catastrophic forgetting is
present but limited.

In contrast, the progressive optimization produces substantial and consistent gains across the four
defect subtasks. As shown in Figure 2, accuracy increases from 62.58% after Stage 1 to 67.18%
after Stage 1+2, and ultimately reaches 80.57% in the full model. This pattern demonstrates that
the GRPO-based domain alignment strengthens domain-aware classification, localization, descrip-
tion, and analysis, even as low-level anomaly discrimination remains stable. These results highlight
that JUDO’s multi-stage design primarily enhances domain-oriented reasoning capabilities while
preserving binary anomaly detection performance.

4.5 QUALITATIVE ANALYSIS

Figure 3 provides a qualitative comparison that highlights the limitations of baseline models and the
effectiveness of JUDO’s integrated reasoning. The Base GRPO model exhibits a critical failure, as
it is unable to detect the defect and states there is “no visible defect,” while paradoxically offering
an incorrect answer (“C”). The Base GRPO + RAG model demonstrates a different failure mode
rooted in contextual distraction. Misled by the retrieved domain snippet, which contains descriptions
of multiple potential defects, it latches onto a plausible but incorrect description of a “noticeable
indentation or dent”—likely related to deformation—instead of the correct “opened” defect type.
This failure to ground the textual context in the visual evidence leads to a mislocalization of the
“body of the canister” and the wrong answer (“A”). This negative impact is also confirmed by
the quantitative results, where the RAG model’s accuracy (76.29%) is lower than the Base GRPO
model’s (77.29%).

In stark contrast, JUDO leverages its internalized knowledge for a successful and coherent analysis.
It correctly identifies and locates the defect on the “lid of the canister,” provides a visually-grounded
explanation of an “irregular white area,” and supports its reasoning with an accurate segmentation
map to arrive at the correct answer (“D”). This direct comparison clearly illustrates that JUDO’s
integrated, learning-based approach is essential for achieving reliable and fine-grained reasoning,
overcoming the weaknesses of models that either lack domain knowledge or are distracted by it.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 4: Examples of JUDO’s output on MMAD dataset. The anomalous region in the query image
is highlighted in green, while the segmentation output from JUDO is represented as red patches in
the Segmented Image.

5 CONCLUSION

In this work, we presented JUDO, a novel framework that addresses the core challenge of aligning
domain knowledge in industrial anomaly understanding. By unifying comparative visual reasoning
and domain semantics into a domain-aligned learning objective, our approach significantly enhances
anomaly understanding capabilities. Experimental results on the MMAD benchmark demonstrate
superior performance compared to state-of-the-art models in defect-reasoning tasks. These findings
suggest that internalizing domain knowledge and context during training is not only highly effective
but also significantly more beneficial than providing context solely at inference time. This approach,
therefore, enables more reliable and accurate multimodal reasoning systems in complex industrial
scenarios.
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available datasets for industrial anomaly detection (MMAD, REAL-IAD), which contain images
of inanimate industrial objects. No human subjects were involved in this study, and no personally
identifiable information was used, thereby minimizing privacy concerns. Our work uses GPT-4o
for the programmatic generation of structured training data, as detailed in Appendix A.1, to ensure
a consistent and replicable data construction pipeline and grammar correction. The goal of this
research is to advance industrial quality control and automation, and we do not foresee any direct
negative societal impacts or ethical concerns arising from the proposed method.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. The complete source code for our
framework, including data preprocessing scripts, implementation of all three training stages, and
evaluation protocols, is provided in the supplementary materials, accessible via an anonymous repos-
itory at https://anonymous.4open.science/r/JUDO-9C8B. The core methodology of
our three-stage training process is detailed in Section 3. Our experimental setup, including the
specific datasets, baselines, and key implementation details such as the base model, libraries, and
hyperparameters, is described in Section 4.1. Furthermore, a comprehensive description of our pro-
grammatic dataset construction pipeline for all training stages can be found in Appendix A.1. We
believe these resources provide the necessary details for the research community to reproduce our
results.
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Figure 5: Stage 1 Training Data Example
Figure 6: Stage 2 Training Data Example

A DETAILED DATASET CONSTRUCTION PROCESS

To construct the datasets for our three-stage framework, we developed a programmatic pipeline that
utilizes GPT-4o. This approach was chosen to ensure high quality, structural consistency, and scala-
bility across all data. The pipeline consisted of three stages: constructing comparative explanations
(Stage 1), constructing domain Q&As datasets (Stage 2), and generating pseudo-domain reference
reasoning (Stage 3). The specific process for each dataset construction is detailed below.

Stage 1: Comparative Explanation. The primary goal of this stage is to create a dataset that
teaches the model to perform fine-grained, juxtaposed reasoning by comparing anomalous and nor-
mal images. The construction process for each data instance is as follows:

1. Input: The process begins with an anomalous query image, its corresponding binary
anomaly mask, and a randomly selected normal template image from the same object cat-
egory.

2. Anomaly Patch Generation: The provided anomaly mask is used to identify the pre-
cise location of the defect. We overlay a 16x16 grid on the image, and any grid cell
that overlaps with the mask is marked as anomalous. The coordinates of these anomalous
patches are then converted into a textual sequence. This sequence uses (row, column)
notation for individual patches and (row, col start)-(row, col end) for con-
tiguous horizontal patches. This text string is then encapsulated within <seg> tags (e.g.,
<seg>(11,12)-(11,14), (12,11)</seg>).

3. Comparative Explanation Synthesis: To generate the reasoning text, we first annotate the
anomalous query image by using its mask to draw a red outline around the defect region.
This visually grounded image, along with the normal template image, the defect type, and
any relevant domain notes, is provided as input to GPT-4o. The model is prompted to act
as an expert and generate a concise comparative explanation, describing the visual differ-
ences between the two images with a focus on the defective region’s characteristics. This
synthetically generated text forms the content for the <think> tags.

4. Final Data Assembly: The final training instance combines the visual and textual compo-
nents. It consists of the original anomalous image and the normal template image as inputs,
paired with the generated dual-part response: the <seg> tag containing the patch coordi-
nates, followed by the <think> tag containing the comparative explanation. Figure 5
shows an example of a training data for Stage 1.

Stage 2: Domain Q&A. This stage aims to inject essential, category-specific domain knowledge
into the model through supervised fine-tuning. The dataset is constructed by converting the unstruc-
tured textual knowledge from MMAD into a structured question-answer format.

1. Input: We utilize the “domain snippets” from the MMAD benchmark as the foundational
knowledge source. Each snippet provides a textual description of the characteristics of a
specific object category and its associated defect types. Table 4 shows an example of a
domain snippet for “Squeezed Teeth” defect of the object “Zipper”.
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Table 3: System prompt for data construction in Stage 2

Generate unique QA pairs grounded in the snippet with enforced categories.
You are tasked with generating high-quality Q&A pairs grounded strictly in the given
snippet. Rules: - DO NOT mention ”snippet” or ”according to the snippet”.
- All answers must be strictly grounded in the text, no outside knowledge.
- Produce exactly count unique question–answer pairs.
- Use a variety of question styles, including:
1. Criteria-based (e.g., ”What criteria indicate a defect in ...?”)
2. Defect understanding (e.g., ”How does this affect. . . ?”)
3. Comparative reasoning (e.g., ”What distinguishes X from Y?”)
4. Functional impact (e.g., ”Why does this defect matter?”)
5. Recognition (e.g., ”What is. . . ?”)
6. Quality control reasoning (e.g., ”Why is it important to detect. . . ?”)
7. Aesthetic/structural concerns
- Ensure balance: include multiple styles, not just one.
- Keep answers factual and strictly tied to the snippet.
Return as a JSON array: [ {{”question”: ”...”, ”answer”: ”...”}}]
Snippet:{snippet}

Table 4: Example of a domain snippet for “Squeezed Teeth” defect of the object “Zipper”.

The defect manifests as teeth of the zipper that appear squeezed or compressed together,
disrupting the otherwise uniform alignment and spacing of the zipper teeth. This irregu-
larity can occur at various locations along the zipper, often concentrated in the central or
top/bottom areas. Characteristics of the defect include noticeable distortion in the shape
of the teeth, which appear pinched and may vary in spacing compared to the adjacent,
properly aligned teeth. The presence of squeezed teeth could potentially hinder the func-
tionality of the zipper, leading to difficulties in smooth opening and closing, or causing the
zipper slider to get stuck during use. The affected area is identifiable by its misshapen and
irregular appearance, contrasting with the uniform and symmetrical pattern of the healthy
zipper teeth surrounding it.

2. Initial Q&A Generation: For each domain snippet, we employ GPT-4o to generate an
initial set of 30 unique question-answer pairs. The generation is guided by a prompt that
instructs the model to formulate questions reflecting industrial inspection knowledge, such
as inquiries about defect criteria, visual appearance, or functional impact. A crucial con-
straint is that all answers must be strictly grounded in the provided text snippet, with no
external knowledge introduced.

3. Paraphrasing for Robustness: To enhance the model’s robustness and prevent overfitting
on specific phrasing, each of the initial 30 Q&A pairs is further processed. We use GPT-4o
again to generate two semantically identical but lexically diverse paraphrases for each pair.
This step expands the dataset with varied phrasings of the same core knowledge.

4. Final Data Assembly: The final dataset consists of the original and paraphrased Q&A
pairs. To anchor this textual knowledge to a visual context, each Q&A instance is paired
with a randomly sampled normal image from the corresponding object category. This
encourages the model to associate the domain knowledge with the visual appearance of
the object, facilitating better knowledge recall during multimodal reasoning tasks. Figure 8
shows examples of the final Q&A pairs in Stage 2 generated from the domain snippets.
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B DATASET EXAMPLES

B.1 STAGE 1

Figure 7: Stage 1 Training Dataset Examples
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B.2 STAGE 2

Figure 8: Stage 2 Training Dataset Examples
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C ADDITIONAL JUDO RESPONSES

Figure 9: Examples of JUDO’s output on MMAD dataset. The anomalous region in the query image
is highlighted in green while the segmentation output from JUDO is represented as red patches in
the Segmented Image
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