

000 001 002 003 004 005 JUDO: A JUXTAPOSED DOMAIN-ORIENTED MULTI- 006 MODAL REASONER FOR INDUSTRIAL ANOMALY QA 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904

054 dependent on external context, leading to misaligned responses that prioritize contextual plausibility
 055 over accuracy. This limitation still stems from insufficient internalized domain knowledge and
 056 context in the model, ultimately hindering reliable and accurate domain-oriented reasoning.
 057

058 To address this challenge, we propose **JUDO**, Juxtaposed Domain-Oriented Multi-modal Reasoner,
 059 the first approach that systematically internalizes domain knowledge for industrial anomaly detec-
 060 tion through learning. **Unlike prior GRPO-based models that apply post-training without domain**
061 alignment, JUDO unifies domain understanding across visual grounding and textual reasoning. Our
 062 framework begins in Stage 1 by establishing domain-aware visual reasoning through juxtaposed
 063 segmentation learning, where comparing normal and defect images internalizes visual context. This
 064 approach addresses the underexplored potential of normal samples, which typically serve only as op-
 065 tional context in inference, while JUDO incorporates it as a core reasoning context during training.
 066 In Stage 2, we enhance domain-oriented textual reasoning of LMMs by injecting domain knowledge
 067 into model parameters, unlike prior work (Jiang et al., 2025) that injects textual domain knowledge
 068 externally via prompts. Our approach builds foundational domain knowledge for industrial anomaly
 069 detection reasoning, yielding more reliable domain-aligned reasoning. Finally, Stage 3 unifies visual
 070 grounding and domain semantics through reinforcement learning (GRPO) (Shao et al., 2024) with
 071 rewards composed of domain reasoning, segmentation, choice, and structural alignment rewards,
 072 ensuring that the model produces reliable and domain-aware reasoning for anomaly understanding.
 073

074 Extensive experiments on industrial anomaly detection benchmarks MMAD (Jiang et al., 2025)
 075 demonstrate the effectiveness of our approach. JUDO achieves superior performance, **highlighting**
076 that internalizing domain knowledge and context during training time fundamentally matters in in-
077 dustrial anomaly understanding. Moreover, JUDO enhances both reliability and explainability by
 078 aligning its reasoning with the learned domain knowledge and grounding anomaly regions in visual
 079 evidence, through unified training to align domain knowledge and context.
 080

081 We summarize our contributions as follows:
 082

- 083 • **We propose JUDO, the first approach to systematically internalize domain knowledge and**
084 context into both visual and textual reasoning for industrial anomaly understanding.
- 085 • **We introduce a novel framework that builds domain understanding through visual segmen-**
086 tation and textual knowledge internalization, and unifies these capabilities via reinforce-
087 ment learning with domain-aligned reward designs.
- 088 • Through comprehensive experiments, we demonstrate that JUDO achieves superior per-
 089 formance while enhancing explainability through segmentation-based visualizations and
 090 ensuring reliability via domain-aligned reasoning, addressing real-world industrial needs.
 091

092 2 RELATED WORK

093 2.1 LARGE MULTIMODAL MODELS (LMMs)

094 Recent Large Multimodal Models (LMMs) have advanced visual understanding through high-
 095 quality instruction tuning (Hurst et al., 2024; Bai et al., 2025; Chen et al., 2024; Team et al., 2025;
 096 Comanici et al., 2025), stronger cross-modal architectures (Wang et al., 2025; Agrawal et al., 2024b),
 097 and more sophisticated training pipelines (Xiaomi et al., 2025; Deitke et al., 2025). Most multimodal
 098 models now support multi-image inputs (Xiaomi et al., 2025), with GPT-4o, GPT-5 (Hurst et al.,
 099 2024), the Gemini-2.5 model (Comanici et al., 2025), and InternVL3.5 (Wang et al., 2025) demon-
 100 strating improved reasoning performance through cross-image comparison. However, the majority
 101 of these models (Hurst et al., 2024; Bai et al., 2025; Wang et al., 2025) remain optimized for common
 102 question-answering tasks grounded in general knowledge. When applied to out-of-distribution sce-
 103 narios such as industrial anomaly detection—where domain knowledge is crucial—their reasoning
 104 performance tends to be noticeably less accurate.
 105

106 2.2 INCORPORATING DOMAIN KNOWLEDGE INTO LMMs

107 To address the demand for specialized knowledge for LMMs (Song et al., 2025), specifically in
 108 fields such as finance (Qian et al., 2025), biomedicine (Liu et al., 2025), education (Agrawal et al.,
 109

108 2024a), and materials (Prabhakar et al., 2025), researchers have actively studied to integrate domain-
 109 specific expertise into LMMs. Most approaches fall into two categories: dynamic injection and
 110 learning-based integration through pretraining or fine-tuning. Dynamic injection-based methods
 111 provide the external knowledge in a similar way to RAG (Zhao et al., 2024) at inference time without
 112 additional training; its effectiveness is highly dependent on retrieval quality. In contrast, learning-
 113 based methods encode the domain knowledge into the model’s parameters. However, this line of
 114 work remains underexplored for industrial anomaly understanding.

115

116 2.3 INDUSTRIAL ANOMALY DETECTION AND LMMs

117

118 Visual anomaly detection in industrial settings has evolved significantly with deep learning. Early
 119 and still widely used methods are often unsupervised, focusing on learning a model of normal
 120 data and identifying deviations (Salehi et al., 2021; Bergmann et al., 2021). These include
 121 reconstruction-based methods using autoencoders or GANs, where high reconstruction error signals
 122 an anomaly (An & Cho, 2015; Schlegl et al., 2017), and embedding-based methods, which map
 123 normal samples to a tight cluster in a feature space (Roth et al., 2022; Defard et al., 2021). While
 124 effective for detection and localization on benchmarks like MVTec AD (Bergmann et al., 2019),
 125 these approaches typically do not provide defect analysis for their predictions.

126

127 The advent of LMMs has introduced a new paradigm that enables comprehensive defect analysis.
 128 Rather than simply detecting anomalies, LMMs can now respond to diverse analytical queries
 129 about defect characteristics—such as identifying defect types, describing their visual appearance,
 130 and analyzing their potential consequences. To facilitate research in this area, a MMAD bench-
 131 mark (Jiang et al., 2025) has been presented, providing a suite for evaluating an LMM’s reasoning
 132 abilities on industrial anomaly problems. Meanwhile, several works have recently applied LMMs
 133 to this challenge. AnomalyGPT (Gu et al., 2024) was an early method using LMMs for zero-
 134 shot anomaly detection and generating descriptive reports. More recently, a few methods employ
 135 reinforcement learning to improve reasoning quality. AnomalyR1 (Chao et al., 2025) incorporates
 136 Group Relative Policy Optimization (GRPO) (Shao et al., 2024) to refine its reasoning. Furthermore,
 137 OmniAD (Zhao et al., 2025) unifies the anomaly segmentation and anomaly reasoning problem for
 138 fine-grained defect understanding.

139

140 3 METHOD

141

142 Our proposed model, **JUDO**, is a domain-oriented multimodal reasoner for industrial anomaly un-
 143 derstanding. **The main claim of JUDO is that domain knowledge and contextual information funda-
 144 mentally matter in industrial anomaly understanding, yet this approach remains underexplored and
 145 non-trivial. In this direction, our core contribution is a unified learning objective in which compa-
 146 rative visual reasoning and domain semantics fuse together into the domain-aligned reasoning pro-
 147 cess, described in Figure 1.** The first stage introduces a comparative reasoning ability between query
 148 and normal images for patch-level segmentation, then the second stage internalizes textual domain
 149 knowledge into model parameters, and the final stage unifies the visual grounding and domain se-
 150 mantics using GRPO-based optimization tailored reward designs. The following subsections detail
 151 each training stage, with the corresponding dataset construction process described in Appendix A.

152

153 3.1 STAGE 1: LEARNING ANOMALY SEGMENTATION-BASED JUXTAPOSED REASONING

154

155 For reliable and fine-grained visual reasoning, we employ anomaly segmentation to pinpoint defect
 156 regions and integrate this capability into the reasoning process. To encompass proper domain visual
 157 context, we propose the juxtaposed reasoning paradigm that explicitly compares defective images
 158 against their normal samples during training. While most existing segmentation methods achieve
 159 reasonable performance by directly predicting the target regions, the lack of clear reasoning criteria
 160 for anomaly judgment limits segmentation performance in defect detection. Additionally, although
 161 using normal images as contextual reference has become common practice during inference (Jiang
 162 et al., 2025), how to efficiently harness this comparative context to enable explicit reasoning of
 163 defects during training has yet to be addressed. Our comparative training paradigm shifts the objec-
 164 tive from a simple pattern memorization to a fine-grained juxtaposed reasoning, enabling the model

Figure 1: Overview of JUDO (Juxtaposed Domain-Oriented Multi-modal Reasoner). The framework progresses in three stages: (1) Stage 1: Learning Anomaly Segmentation-Based Juxtaposed Reasoning, (2) Stage 2: Domain-knowledge Injection, and (3) Stage 3: Domain-Oriented Group Relative Policy Optimization. Through the progressive stages, we incorporate the domain knowledge and context into LMMs for reliable and robust anomaly analysis.

to internalize a more generalized and fundamental notion of *normality* as a baseline for anomaly understanding.

Inspired by text-based segmentation approaches, such as Text4Seg (Lan et al., 2025; Zhao et al., 2025), the model is trained to output the coordinates of anomalous patches within a 16x16 grid through SFT (Schlegl et al., 2017). The instruction is given to describe the anomaly region and explain the visual evidence by comparing query images with normal samples as juxtaposed reasoning. For instance, a defect region is represented as a textual sequence such as (11,12)-(11,14), (12,11), pinpointing specific patches that deviate from the norm, including juxtaposed explanations. This format compels the model to perform a direct, patch-level juxtaposition, moving beyond a general comparison to a fine-grained recognition of differences against the normal template. This spatial grounding is crucial, as it forces the reasoning process to be tied to specific visual evidence, making the subsequent textual explanation more accurate and reliable.

Dataset Construction. We construct a training dataset for juxtaposed fine-grained anomaly segmentation. We utilize only one image from each defect category in the MMAD dataset, and additionally, incorporate the REAL-IAD (Wang et al., 2024) dataset for more generalized segmentation capability. As illustrated in Figure 5 of the Appendix, each anomalous query image is paired with a randomly sampled normal template from the same object category. The model is then trained to generate a dual-part response from this pairing: first, a textual sequence of patch coordinates between `<seg></seg>` tags that serves to ground the explanation by identifying the anomalous region, and second, a corresponding comparative explanation within `<think></think>` tags, which is synthetically generated to describe the defect by contrasting the two images, given the anomalous region bounded by a red line and the defect type.

3.2 STAGE 2: DOMAIN-KNOWLEDGE INJECTION

While Stage 1 equips the model with comparative reasoning ability using normal images as the domain context, it primarily focuses on visual reasoning processes. However, the model still lacks sufficient domain knowledge for industrial anomaly problems. As a result, the model struggles to deliver accurate text reasoning and often fails to derive correct solutions without proper foundational knowledge. To address this limitation, we inject the domain knowledge (Mecklenburg et al., 2024) by constructing domain QA datasets and employing supervised fine-tuning (SFT). This approach differs from conventional supervised learning that directly trains on correct answers to queries in the MMAD dataset, as it focuses on supervised learning of domain knowledge that may not directly correspond to specific instructions but provides foundational knowledge essential for solving related problems. Through supervised fine-tuning on the domain QA dataset, the model acquires a more

216 generalizable understanding of how domain knowledge applies across different object categories
 217 and defect types. This enhanced understanding forms the basis for Stage 3, where reinforcement
 218 alignment further refines the precision and reliability of domain reasoning.
 219

220 **Dataset Construction.** We generate question–answer pairs using the raw domain snippets provided
 221 in MMAD (Jiang et al., 2025). Each snippet contains an unstructured textual description of the
 222 characteristics of an object category and its associated defect types, and serves as textual knowledge
 223 source for constructing the Stage 2 dataset (see Table 4 in the Appendix). Specifically, we prompt
 224 GPT 4o to reflect inspection knowledge from the unstructured domain snippet into structured QA
 225 pairs —for example, questions related to defect criteria, functional implications (e.g., “What criteria
 226 indicate that the fabric border is defective?” or “Why is detecting loose threads important for prod-
 227 uct reliability?”). These questions are derived purely from the textual information in the snippet and
 228 are not tied to any specific anomalous image sample. To improve robustness, each QA is further
 229 paraphrased into multiple semantically consistent but lexically diverse variants. We show a more
 230 detailed data construction process in Section A. Finally, every QA instance is paired with a nor-
 231 mal image from the corresponding object category, grounding the textual domain knowledge in its
 232 object-level visual context and naturally prompting the model to recall relevant domain knowledge
 233 during reasoning. We provide examples of the generated QA pairs in Section B.2.
 234

235 3.3 STAGE 3: DOMAIN-ORIENTED GROUP RELATIVE POLICY OPTIMIZATION

236 The final stage of our framework, Stage 3, is designed to elevate the model’s capabilities in the visual
 237 and textual domain-oriented reasoning, mainly obtained from prior stages. While Stage 1 builds a
 238 foundation in visual juxtaposed reasoning and Stage 2 internalizes textual domain knowledge, these
 239 skills are not yet integrated. Thus, we employ Group Relative Policy Optimization (GRPO) (Shao
 240 et al., 2024), which is a reinforcement learning method that optimizes policies by comparing rela-
 241 tive performance within groups of trajectories for better generalization. We design GRPO policies
 242 to align the model’s behavior, ensuring that the final output is a seamless integration of accurate
 243 visual grounding and deep domain understanding. This alignment is guided by multi-faceted reward
 244 functions that provide a comprehensive feedback signal, composed of three primary components.
 245 We explain each policy with respect to reward functions as follows.

246 **Domain Reasoning Reward.** The primary objective of the Domain Reasoning Reward is to guide
 247 the reasoning process presented within the `<think></think>` tags toward aligning with the
 248 domain-oriented reasoning process, specifically queries targeted of the MMAD benchmark. Since
 249 there is no ground-truth for each instruction encompassing domain knowledge and context for
 250 MMAD datasets, we generate the *pseudo-domain rationale* using GPT-4o, providing full contexts
 251 such as the query, correct answer, images including normal reference, juxtaposed reasoning from
 252 Stage 1 pipeline, and relevant domain knowledge. We treat this generated *pseudo-domain ratio-
 253 nale* as the *semantic target* and design the policy to guide domain-oriented direction. Specifically,
 254 we define the reward, R_{domain} , using the cosine similarity between the embedding vectors of the
 255 model’s generated reasoning as E_{gen} and a *pseudo-domain rationale* denoted as $E_{pdomain}$ using the
 256 representation space of **all-MiniLM-L6-v2** SentenceTransformer (Reimers & Gurevych, 2019)
 257 model, which is effectively encode the semantic meaning of one or multiple sentences, denoted as
 258 $\phi(\cdot)$. This reward mechanism is formalized as:
 259

$$260 R_{domain} = \frac{\phi(E_{gen}) \cdot \phi(E_{pdomain})}{\|\phi(E_{gen})\| \|\phi(E_{pdomain})\|}, \quad \text{if } R_{domain} \geq 0.5, \text{ otherwise } 0. \quad (1)$$

261 The domain reasoning reward leverages semantic similarity to align the model’s reasoning with a
 262 reference rationale that is grounded strictly in the provided evidences. The pseudo-domain rationale
 263 reorganizes the inputs without introducing new knowledge, ensuring that GPT-4o serves only as an
 264 evidence structurer. This reward differs from typical GRPO settings that emphasize answer correct-
 265 ness or output format, since it directly encourages consistent domain-oriented reasoning patterns
 266 while remaining flexible to the phrasing of the generated explanation.

267 **Segmentation Reward.** This reward evaluates the spatial precision of the anomaly patch coor-
 268 dinates generated within the `<seg></seg>` tags through F1 score calculation (Zhao et al., 2025),
 269 reinforcing the skill developed in Stage 1. A reward of 0 is immediately assigned for any improperly
 270 formatted coordinate strings. For validly formatted outputs, the reward function compares the set of

270 predicted grid cells (P) against the ground-truth set (P_G) using the following piecewise function:
 271

$$272 \quad R_{seg} = \begin{cases} 1.0 & \text{if } P = \emptyset \text{ and } P_G = \emptyset, \\ 273 \quad 0.2 + 0.8 \cdot F1(P, P_G) & \text{if } P \neq \emptyset \text{ and } P_G \neq \emptyset, \\ 274 \quad 0.0 & \text{otherwise.} \end{cases} \quad (2)$$

275 This formulation incentivizes not only high-overlap localization but also correct format adherence
 276 and accurate identification of anomaly-free instances, penalizing cases where only one set is empty.
 277

278 **Choice and Structural Alignment Reward.** This composite reward ensures correct, well-
 279 structured, and logically sound output through three components (Shao et al., 2024): 1) **Choice**
 280 **Reward** rewards correct multiple-choice selection within `<answer></answer>` tags to pro-
 281 mote accurate decision-making; 2) **Format Reward** ensures adherence to the required format as
 282 `<seg>...<think>...<answer>` structure, ensuring the structure of responses is consistent
 283 and parsable; and 3) **Reasoning Structure Reward** encourages both the conclusive answer with in
 284 the reasoning and final answer to be correct while penalizing answer choices mentioned in the first
 285 half of reasoning text, preventing premature commitment.
 286

287 4 EXPERIMENTS

288 4.1 EXPERIMENTAL SETUP

289 **Datasets and Benchmarks.** We evaluate our approach on the MMAD benchmarks (Jiang et al.,
 290 2025), which integrates four datasets, such as MVTec-AD (Bergmann et al., 2019), MVTec-
 291 LOCO (Bergmann et al., 2022), VisA (Zou et al., 2022), and GoodsAD (Zhang et al., 2024) datasets,
 292 with multiple choice QA covering seven key subtasks. We report averaged accuracy as the evalua-
 293 tion metric, computed as the ratio of correct predictions to the total number of predictions. For Stage
 294 1, we sample 10 instances from each category in the Real-IAD dataset (Wang et al., 2024) together
 295 with one instance per category from MMAD, yielding a total of 1.4k and 293 images, respectively.
 296 In Stage 2, we construct a domain-specific QA corpus by leveraging the MMAD domain knowledge
 297 JSON files. For each category, we generate 30 unique questions and augment them with two para-
 298 phrased variants, resulting in approximately 13k QA pairs. Finally, Stage 3 applies GRPO using a
 299 sparse sampling strategy, where only one training instance per category from MMAD—identical to
 300 the sampled used in Stage 1—is utilized, yielding 1.4k QA pairs for reinforcement alignment.
 301

302 **Implementation Details.** Our framework is built on PyTorch 2.5.1 with HuggingFace Transfor-
 303 mers and the TRL GRPO trainer. We use Qwen2.5-VL-7B as the base model, initialized from a
 304 vision-language pre-trained checkpoint. Training runs on a single node with 4×NVIDIA H200
 305 GPUs using `torchrun` and DeepSpeed ZeRO-3. For Stage 1 and Stage 2, we train for 8 and 2
 306 epochs, respectively, using learning rates of 1×10^{-6} and 5×10^{-7} in `bf16` precision. For GRPO,
 307 we use 16 generations per prompt, batch size of 8, and train for 14 epochs, also in `bf16`.
 308

309 **Baselines and Inference Settings.** We benchmark JUDO against leading general-purpose mod-
 310 els such as Qwen2.5-VL, InternVL3.5, and various commercial models. Our primary industrial
 311 specialized baseline is AnomalyR1 (Chao et al., 2025); another recent method, OmniAD (Zhao
 312 et al., 2025), was not included due to the unavailability of its public codebase. For consistency with
 313 JUDO’s architecture, we re-implemented the AnomalyR1 approach on a Qwen2.5-VL 7B model
 314 using the author’s provided code and our sampled dataset. The result is referred as the AnomalyR1
 315 in Table 1 and Base GRPO model in our ablation study in Section 4.3. All models are evaluated
 316 under a strict 1-shot inference protocol in the equivalent way of MMAD, using both a query image
 317 and a normal template as input to ensure a fair comparison.
 318

319 4.2 EXPERIMENTAL RESULTS

320 Table 1 presents the comparison against both general-purpose LMMs and the anomaly-focused base-
 321 line AnomalyR1. **JUDO achieves strong performance across the MMAD seven subtasks, reaching**
 322 **the highest overall averaged accuracy of 80.73% among the open-source models.** Advantages of
 323 JUDO are particularly evident across the four defect-related subtasks: classification, localization,
 324 description, and analysis. Since these tasks assume that the domain-specific knowledge plays a cru-
 325 cial role, the performance gains are a direct result of the effective incorporation of domain knowledge
 326

324 Table 1: Performance comparison of both commercial and open-source LMMs in MMAD with the
 325 standard 1-shot setting. Anomaly Discrimination uses the average accuracy across the normal and
 326 abnormal categories. The best scores are highlighted in bold while the second best are underlined.
 327 * indicates the best performance among the open-source models.

Model	Scale	Anomaly Discrimination	Classification	Defect Localization	Description	Analysis	Object Classification	Object Analysis	Average
Random Chance	-	50.00	25.00	25.00	25.00	25.00	25.00	25.00	28.57
Human (expert)	-	95.24	75.00	92.31	83.33	94.20	86.11	80.37	86.65
Human (ordinary)	-	86.90	66.25	85.58	71.25	81.52	89.58	69.72	78.69
Claude-3.5-sonnet	-	60.14	60.14	48.81	67.13	79.11	85.19	79.83	68.36
Gemini-1.5-pro	-	68.63	60.12	58.56	70.38	82.46	89.20	82.25	73.09
Gemini-2.5-pro	-	83.07	73.86	67.20	<u>79.97</u>	86.27	94.88	83.08	81.19
Gemini-2.5-flash	-	93.38	69.88	63.30	76.41	81.57	94.04	82.00	80.08
GPT-4o	-	68.63	65.80	55.62	73.21	83.41	94.98	82.80	74.92
GPT-5-mini	-	64.10	67.35	69.07	79.02	<u>86.72</u>	93.96	83.37	77.65
Qwen2.5-VL	7B	71.39	54.35	61.17	65.81	79.32	91.44	84.43	72.56
LLaVA-OneVision	7B	51.77	46.13	41.85	62.19	69.73	90.31	80.93	63.27
InternVL3.5	8B	67.50	49.37	57.9	58.07	77.66	72.01	81.11	66.30
Kimi-VL-A3B	16B	72.93*	53.49	59.66	72.39	81.74	91.91	85.89	74.00
MiMo-VL	8B	54.45	59.56	60.77	71.50	78.48	90.56	81.60	70.99
AnomalyR1	7B	60.93	64.81	<u>70.72</u>	79.06	85.52	93.12	86.91*	77.29
JUDO	7B	64.51	72.17*	75.95*	84.38*	87.76*	94.24*	<u>86.07</u>	<u>80.73*</u>

343 and reasoning through our progressive stages. Specifically, Stage 1 establishes a strong foundation
 344 by using juxtaposed segmentation training to foster fine-grained comparative analysis, which di-
 345 rectly boosts defect localization to 75.59% (from 61.17% for the base Qwen). This visual grounding
 346 is then enriched in Stage 2, where the integration of domain-specific knowledge provides the con-
 347 ceptual basis needed for accurate explanations, as seen in the 84.38% and 87.76% accuracy on the
 348 defect description and analysis, respectively. Finally, Stage 3 is critical for merging these capa-
 349 bilities. The multi-reward GRPO training ensures the model’s final output is a coherent synthesis
 350 of juxtaposed visual evidence and textual expertise. This integrated process allows JUDO to not
 351 only locate defects precisely but also to classify, describe, and analyze them with a domain-aligned
 352 thinking process, leading to more robust and reliable reasoning.

353 However, our JUDO does not achieve superior performance in anomaly discrimination tasks, even
 354 with rich domain-specific foundational knowledge. Similarly, other models trained with a GRPO
 355 framework, such as AnomalyR1, exhibit a trade-off in raw binary detection accuracy. This is ev-
 356 ident in the results: AnomalyR1 achieves 60.93% accuracy, while JUDO shows only a modest
 357 improvement at 64.51%. Both remain below the 72.93% and 71.39% reached by recent LLMs such
 358 as Kimi-VL, as well as the base model Qwen2.5-VL, respectively. We attribute Kimi-VL’s higher
 359 performance to its more advanced visual encoder, although it still lacks domain-specialized knowl-
 360 edge, as reflected in its relatively low performance on defect-related tasks. **In Section 4.4, we further**
 361 **discuss the impact of our multi-staged learning framework under anomaly discrimination.**

362 Commercial multimodal models such as Gemini-2.5-Pro and Gemini-2.5-Flash show strong per-
 363 formance on anomaly discrimination, likely due to their highly capable vision encoders. However, their
 364 performance on domain-level defect reasoning remains overall lower than JUDO’s. This contrast
 365 highlights a key distinction: while large commercial LMMs excel at broad visual pattern recog-
 366 nition, they do not have sufficient defect semantics or comparative industrial cues in a way that
 367 generalizes across classification, localization, description, and analysis. In contrast, despite being
 368 built on a smaller open-source backbone, JUDO consistently achieves higher defect-reasoning ac-
 369 curacy because its training explicitly aligns comparative visual grounding with structured domain
 370 knowledge. These results demonstrate that domain-aligned training can surpass much larger com-
 371 mercial systems when the task requires specialized industrial reasoning rather than generic visual
 372 understanding.

373 4.3 ABLATION STUDY

375 We conduct an ablation study to systematically evaluate the contribution of each component in
 376 the JUDO framework, with results summarized in Table 2. The study begins with the baseline
 377 Qwen2.5-VL-7B model, which achieves an average accuracy of 72.56%. We note that this result
 378 is obtained without using the Chain-of-Thought process, not requiring the reasoning process gener-

378 Table 2: Ablation study of different methods. We denote Stage 1 as SegJux, Stage 2 as DomInj, and
 379 the full Stage 3 as GRPO^{dom}, where the domain reasoning reward is used. The segmentation reward
 380 is only used in methods that go through Stage 1 training. Average accuracy (%) is reported.
 381

Method	Average
Qwen2.5-VL-7B	72.56
+ GRPO	77.29
+ GRPO + RAG	76.29
+ GRPO + DomInj	79.82
+ GRPO + SegJux + DomInj	80.35
+ GRPO ^{dom} + SegJux + DomInj (JUDO)	80.73

392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 ally in <think> tags, but outputting the answer directly, since it is not trained to learn the proper
 reasoning, yet. Applying a standard GRPO training stage improves general instruction-following
 and raises the accuracy to 77.30% in the equivalent of AnomalyR1. To evaluate the effectiveness
 of domain knowledge injection, we employ RAG, which dynamically provides external information
 upon the model trained on vanilla GRPO, referring to the model as (+ GRPO + RAG). The way of
 employing RAG is followed in the MMAD (Jiang et al., 2025). While RAG-based approaches have
 been claimed to often improve the performance, the external context attached to our trained reasoning
 model acted in the negative direction rather than bringing in positive gain. In contrast, the impact of domain injection was remarkably effective, resulting in an improvement of almost 5% gain.

402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 The effectiveness of JUDO’s learning-based approach becomes evident in the subsequent steps as shown in the result. The most significant performance leap comes from Stage 2’s Domain Injection (+ GRPO + DomInj), which internalizes domain knowledge through supervised fine-tuning and increases accuracy to 79.82%. This result is substantially higher than the RAG-based method, demonstrating the superiority of integrating textual knowledge directly into the model’s parameters. Building on this, the addition of Stage 1’s juxtaposed segmentation training (+ GRPO + SegJux + DomInj) brings the accuracy to 80.35%, highlighting the value of grounding textual reasoning in fine-grained juxtaposed visual analysis. The final refinement, which uses the complete Stage 3 GRPO with a specialized domain reasoning reward (+ GRPO^{dom}), achieves the peak performance of 80.75%. This confirms that each stage of the JUDO framework provides a meaningful and incremental benefit, leading to its final state-of-the-art performance.

4.4 DISCUSSION OF MULTI-STAGED LEARNING FRAMEWORK

422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 Figure 2 presents the progression of anomaly discrimination accuracy and averaged accuracy of defect subtasks (classification, localization, description, and analysis) across the key checkpoints of our pipeline: the Qwen2.5-VL baseline, its Chain-of-Thought (CoT) variant, and each JUDO stage. The figure shows that the most significant performance shift occurs before any of JUDO’s optimization takes place. When the model switches from direct answering to CoT reasoning, anomaly discrimination accuracy drops sharply (71.39% → 61.90%), and the averaged accuracy over the four defect subtasks decreases from 65.15% to 57.00%. This confirms that the initial degradation stems from a reasoning-mode behavioral change rather than from the design of our multi-stage training. The drop in anomaly discrimination in particular is consistent with a recent finding (Liu et al., 2024) that explicit verbal reasoning can impair performance on perception-heavy tasks by interfering with rapid, pattern-based visual judgments, a phenomenon analogous to verbal overshadowing. After entering

425
 426
 427
 428
 429
 430
 431
 Figure 2: Performance across different stages.

Figure 3: Response comparison between Base GRPO, Base GRPO + RAG and JUDO. The anomalous region in the query image is highlighted in green, while the segmentation output from JUDO is represented as red patches in the Segmented Image.

the pipeline, anomaly-detection performance remains largely stable, with only a small fluctuation from 65.42% (Stage 1+2) to 64.51% in the final model, indicating that catastrophic forgetting is present but limited.

In contrast, the progressive optimization produces substantial and consistent gains across the four defect subtasks. As shown in Figure 2, accuracy increases from 62.58% after Stage 1 to 67.18% after Stage 1+2, and ultimately reaches 80.57% in the full model. This pattern demonstrates that the GRPO-based domain alignment strengthens domain-aware classification, localization, description, and analysis, even as low-level anomaly discrimination remains stable. These results highlight that JUDO’s multi-stage design primarily enhances domain-oriented reasoning capabilities while preserving binary anomaly detection performance.

4.5 QUALITATIVE ANALYSIS

Figure 3 provides a qualitative comparison that highlights the limitations of baseline models and the effectiveness of JUDO’s integrated reasoning. The Base GRPO model exhibits a critical failure, as it is unable to detect the defect and states there is “no visible defect,” while paradoxically offering an incorrect answer (“C”). The Base GRPO + RAG model demonstrates a different failure mode rooted in contextual distraction. Misled by the retrieved domain snippet, which contains descriptions of multiple potential defects, it latches onto a plausible but incorrect description of a “noticeable indentation or dent”—likely related to deformation—instead of the correct “opened” defect type. This failure to ground the textual context in the visual evidence leads to a mislocalization of the “body of the canister” and the wrong answer (“A”). This negative impact is also confirmed by the quantitative results, where the RAG model’s accuracy (76.29%) is lower than the Base GRPO model’s (77.29%).

In stark contrast, JUDO leverages its internalized knowledge for a successful and coherent analysis. It correctly identifies and locates the defect on the “lid of the canister,” provides a visually-grounded explanation of an “irregular white area,” and supports its reasoning with an accurate segmentation map to arrive at the correct answer (“D”). This direct comparison clearly illustrates that JUDO’s integrated, learning-based approach is essential for achieving reliable and fine-grained reasoning, overcoming the weaknesses of models that either lack domain knowledge or are distracted by it.

Figure 4: Examples of JUDO’s output on MMAD dataset. The anomalous region in the query image is highlighted in green, while the segmentation output from JUDO is represented as red patches in the Segmented Image.

5 CONCLUSION

In this work, we presented JUDO, a novel framework that addresses the core challenge of aligning domain knowledge in industrial anomaly understanding. By unifying comparative visual reasoning and domain semantics into a domain-aligned learning objective, our approach significantly enhances anomaly understanding capabilities. Experimental results on the MMAD benchmark demonstrate superior performance compared to state-of-the-art models in defect-reasoning tasks. These findings suggest that internalizing domain knowledge and context during training is not only highly effective but also significantly more beneficial than providing context solely at inference time. This approach, therefore, enables more reliable and accurate multimodal reasoning systems in complex industrial scenarios.

540
541
ETHICS STATEMENT

542 The authors have read and adhered to the ICLR Code of Ethics. This research is based on publicly
 543 available datasets for industrial anomaly detection (MMAD, REAL-IAD), which contain images
 544 of inanimate industrial objects. No human subjects were involved in this study, and no personally
 545 identifiable information was used, thereby minimizing privacy concerns. Our work uses GPT-4o
 546 for the programmatic generation of structured training data, as detailed in Appendix A.1, to ensure
 547 a consistent and replicable data construction pipeline and grammar correction. The goal of this
 548 research is to advance industrial quality control and automation, and we do not foresee any direct
 549 negative societal impacts or ethical concerns arising from the proposed method.

550
551
REPRODUCIBILITY STATEMENT
552

553 We are committed to ensuring the reproducibility of our work. The complete source code for our
 554 framework, including data preprocessing scripts, implementation of all three training stages, and
 555 evaluation protocols, is provided in the supplementary materials, accessible via an anonymous repos-
 556 itory at <https://anonymous.4open.science/r/JUDO-9C8B>. The core methodology of
 557 our three-stage training process is detailed in Section 3. Our experimental setup, including the
 558 specific datasets, baselines, and key implementation details such as the base model, libraries, and
 559 hyperparameters, is described in Section 4.1. Furthermore, a comprehensive description of our pro-
 560 grammatic dataset construction pipeline for all training stages can be found in Appendix A.1. We
 561 believe these resources provide the necessary details for the research community to reproduce our
 562 results.

563
564
REFERENCES

565 Garima Agrawal, Kuntal Pal, Yuli Deng, Huan Liu, and Ying-Chih Chen. Cyberq: Generating
 566 questions and answers for cybersecurity education using knowledge graph-augmented llms. In
 567 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 23164–23172,
 568 2024a.

569 Pravesh Agrawal, Szymon Antoniak, Emma Bou Hanna, Baptiste Bout, Devendra Chaplot, Jes-
 570 sica Chudnovsky, Diogo Costa, Baudouin De Monicault, Saurabh Garg, Theophile Gervet, et al.
 571 Pixtral 12b. *arXiv preprint arXiv:2410.07073*, 2024b.

573 Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection using reconstruc-
 574 tion probability. *Special Lecture on IE*, 2:1–18, 2015.

576 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Pengfei Wang,
 577 et al. Qwen2.5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.

580 Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Mvtec ad—a comprehen-
 581 sive real-world dataset for unsupervised anomaly detection. In *Proceedings of the IEEE/CVF*
 582 *conference on computer vision and pattern recognition*, pp. 9592–9600, 2019.

584 Paul Bergmann, Kilian Batzner, Michael Fauser, David Sattlegger, and Carsten Steger. The mvtec
 585 anomaly detection dataset: a comprehensive real-world dataset for unsupervised anomaly detec-
 586 tion. *International Journal of Computer Vision*, 129(4):1038–1059, 2021.

588 Paul Bergmann, Kilian Batzner, Michael Fauser, David Sattlegger, and Carsten Steger. Beyond dents
 589 and scratches: Logical constraints in unsupervised anomaly detection and localization. *Inter-
 590 national Journal of Computer Vision*, 130(4):947–969, 2022.

593 Yuhao Chao, Jie Liu, Jie Tang, and Gangshan Wu. Anomaly1: A grp-based end-to-end mllm for
 594 industrial anomaly detection. *arXiv e-prints*, pp. arXiv–2504, 2025.

596 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
 597 glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
 598 multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*,
 599 2024.

594 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 595 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 596 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 597 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

598 Thomas Defard, Aleksandr Setkov, Angelika Loesch, and Romann Audigier. Padim: a patch distri-
 599 bution modeling framework for anomaly detection and localization. In *International Conference*
 600 *on Pattern Recognition*, pp. 475–489. Springer, 2021.

602 Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Moham-
 603 madreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, et al. Molmo and pixmo: Open
 604 weights and open data for state-of-the-art vision-language models. In *Proceedings of the Com-
 605 puter Vision and Pattern Recognition Conference*, pp. 91–104, 2025.

606 Zhaopeng Gu, Bingke Zhu, Guibo Zhu, Yingying Chen, Ming Tang, and Jinqiao Wang. Anoma-
 607 lygpt: Detecting industrial anomalies using large vision-language models. In *Proceedings of the*
 608 *AAAI conference on artificial intelligence*, volume 38, pp. 1932–1940, 2024.

609 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 610 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 611 *arXiv:2410.21276*, 2024.

612 Xi Jiang, Jian Li, Hanqiu Deng, Yong Liu, Bin-Bin Gao, Yifeng Zhou, Jialin Li, Chengjie Wang,
 613 and Feng Zheng. Mmad: A comprehensive benchmark for multimodal large language models in
 614 industrial anomaly detection. In *The Thirteenth International Conference on Learning Represen-
 615 tations*, 2025.

616 Mengcheng Lan, Chaofeng Chen, Yue Zhou, Jiaxing Xu, Yiping Ke, Xinjiang Wang, Litong Feng,
 617 and Wayne Zhang. Text4seg: Reimagining image segmentation as text generation. In *The Thir-
 618 teenth International Conference on Learning Representations*, 2025.

619 Ryan Liu, Jiayi Geng, Addison J Wu, Ilia Sucholutsky, Tania Lombrozo, and Thomas L Griffiths.
 620 Mind your step (by step): Chain-of-thought can reduce performance on tasks where thinking
 621 makes humans worse. *arXiv preprint arXiv:2410.21333*, 2024.

622 Zhiqiang Liu, Chengtao Gan, Junjie Wang, Yichi Zhang, Zhongpu Bo, Mengshu Sun, Huajun Chen,
 623 and Wen Zhang. Ontotune: Ontology-driven self-training for aligning large language models. In
 624 *Proceedings of the ACM on Web Conference 2025*, pp. 119–133, 2025.

625 Nick Mecklenburg, Yiyu Lin, Xiaoxiao Li, Daniel Holstein, Leonardo Nunes, Sara Malvar, Bruno
 626 Silva, Ranveer Chandra, Vijay Aski, Pavan Kumar Reddy Yannam, et al. Injecting new knowledge
 627 into large language models via supervised fine-tuning. *arXiv preprint arXiv:2404.00213*, 2024.

628 Vignesh Prabhakar, Md Amirul Islam, Adam Atanas, Yao-Ting Wang, Joah Han, Aastha Jhun-
 629 jhunwala, Rucha Apte, Robert Clark, Kang Xu, Zihan Wang, et al. Omnicience: A domain-
 630 specialized llm for scientific reasoning and discovery. *arXiv preprint arXiv:2503.17604*, 2025.

631 Lingfei Qian, Weipeng Zhou, Yan Wang, Xueqing Peng, Jimin Huang, and Qianqian Xie. Fino1: On
 632 the transferability of reasoning enhanced llms to finance. *arXiv e-prints*, pp. arXiv–2502, 2025.

633 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
 634 networks. In *Conference on Empirical Methods in Natural Language Processing*, 2019.

635 Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Schölkopf, Zeynep Akata, and Peter Gehler.
 636 Towards total recall in industrial anomaly detection. In *Proceedings of the IEEE/CVF Conference*
 637 *on Computer Vision and Pattern Recognition*, pp. 19551–19561, 2022.

638 Mohammadhassan Salehi, Niousha Sadjadi, Mehran Vaini, Erfan Entezari, and S Mehran Razavi. A
 639 survey of deep learning for industrial visual anomaly detection. *arXiv preprint arXiv:2112.06246*,
 640 2021.

648 Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Ursula Schmidt-Erfurth, and Georg
 649 Langs. Unsupervised anomaly detection with generative adversarial networks to guide marker
 650 discovery. In *International conference on information processing in medical imaging*, pp. 146–
 651 157. Springer, 2017.

652 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 653 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 654 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

655 Zirui Song, Bin Yan, Yuhang Liu, Miao Fang, Mingzhe Li, Rui Yan, and Xiuying Chen. Injecting
 656 domain-specific knowledge into large language models: a comprehensive survey. *arXiv preprint*
 657 *arXiv:2502.10708*, 2025.

658 Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen,
 659 Chenlin Zhang, Chenzhuang Du, Chu Wei, et al. Kimi-vl technical report. *arXiv preprint*
 660 *arXiv:2504.07491*, 2025.

661 Chengjie Wang, Wenbing Zhu, Bin-Bin Gao, Zhenye Gan, Jiangning Zhang, Zhihao Gu, Shuguang
 662 Qian, Mingang Chen, and Lizhuang Ma. Real-iad: A real-world multi-view dataset for bench-
 663 marking versatile industrial anomaly detection. In *Proceedings of the IEEE/CVF Conference on*
 664 *Computer Vision and Pattern Recognition*, pp. 22883–22892, 2024.

665 Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
 666 Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3. 5: Advancing open-source multimodal
 667 models in versatility, reasoning, and efficiency. *arXiv preprint arXiv:2508.18265*, 2025.

668 LLM Xiaomi, Bingquan Xia, Bowen Shen, Dawei Zhu, Di Zhang, Gang Wang, Hailin Zhang,
 669 Huaqiu Liu, Jiebao Xiao, Jinhao Dong, et al. Mimo: Unlocking the reasoning potential of lan-
 670 guage model—from pretraining to posttraining. *arXiv preprint arXiv:2505.07608*, 2025.

671 Jiacong Xu, Shao-Yuan Lo, Bardia Safaei, Vishal M Patel, and Isht Dwivedi. Towards zero-shot
 672 anomaly detection and reasoning with multimodal large language models. In *Proceedings of the*
 673 *Computer Vision and Pattern Recognition Conference*, pp. 20370–20382, 2025.

674 Jian Zhang, Runwei Ding, Miaoju Ban, and Linhui Dai. Pku-goodsad: A supermarket goods dataset
 675 for unsupervised anomaly detection and segmentation. *IEEE Robotics and Automation Letters*, 9
 676 (3):2008–2015, 2024.

677 Penghao Zhao, Hailin Zhang, Qinhuan Yu, Zhengren Wang, Yunteng Geng, Fangcheng Fu, Ling
 678 Yang, Wentao Zhang, Jie Jiang, and Bin Cui. Retrieval-augmented generation for ai-generated
 679 content: A survey. *arXiv preprint arXiv:2402.19473*, 2024.

680 Shifang Zhao, Yiheng Lin, Lu Han, Yao Zhao, and Yunchao Wei. Omnid: Detect and understand
 681 industrial anomaly via multimodal reasoning. *arXiv preprint arXiv:2505.22039*, 2025.

682 Yang Zou, Jongheon Jeong, Latha Pemula, Dongqing Zhang, and Onkar Dabeer. Spot-the-difference
 683 self-supervised pre-training for anomaly detection and segmentation. In *European conference on*
 684 *computer vision*, pp. 392–408. Springer, 2022.

685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

Figure 5: Stage 1 Training Data Example

A DETAILED DATASET CONSTRUCTION PROCESS

To construct the datasets for our three-stage framework, we developed a programmatic pipeline that utilizes GPT-4o. This approach was chosen to ensure high quality, structural consistency, and scalability across all data. The pipeline consisted of three stages: constructing comparative explanations (Stage 1), constructing domain Q&As datasets (Stage 2), and generating **pseudo-domain** reference reasoning (Stage 3). The specific process for each dataset construction is detailed below.

Stage 1: Comparative Explanation. The primary goal of this stage is to create a dataset that teaches the model to perform fine-grained, juxtaposed reasoning by comparing anomalous and normal images. The construction process for each data instance is as follows:

- Input:** The process begins with an anomalous query image, its corresponding binary anomaly mask, and a randomly selected normal template image from the same object category.
- Anomaly Patch Generation:** The provided anomaly mask is used to identify the precise location of the defect. We overlay a 16x16 grid on the image, and any grid cell that overlaps with the mask is marked as anomalous. The coordinates of these anomalous patches are then converted into a textual sequence. This sequence uses (row, column) notation for individual patches and (row, col_start)-(row, col_end) for contiguous horizontal patches. This text string is then encapsulated within `<seg>` tags (e.g., `<seg> (11,12) - (11,14), (12,11) </seg>`).
- Comparative Explanation Synthesis:** To generate the reasoning text, we first annotate the anomalous query image by using its mask to draw a red outline around the defect region. This visually grounded image, along with the normal template image, the defect type, and any relevant domain notes, is provided as input to GPT-4o. The model is prompted to act as an expert and generate a concise comparative explanation, describing the visual differences between the two images with a focus on the defective region's characteristics. This synthetically generated text forms the content for the `<think>` tags.
- Final Data Assembly:** The final training instance combines the visual and textual components. It consists of the original anomalous image and the normal template image as inputs, paired with the generated dual-part response: the `<seg>` tag containing the patch coordinates, followed by the `<think>` tag containing the comparative explanation. [Figure 5 shows an example of a training data for Stage 1.](#)

Stage 2: Domain Q&A. This stage aims to inject essential, category-specific domain knowledge into the model through supervised fine-tuning. The dataset is constructed by converting the unstructured textual knowledge from MMAD into a structured question-answer format.

- Input:** We utilize the “domain snippets” from the MMAD benchmark as the foundational knowledge source. Each snippet provides a textual description of the characteristics of a specific object category and its associated defect types. [Table 4 shows an example of a domain snippet for “Squeezed Teeth” defect of the object “Zipper”.](#)

756 Table 3: System prompt for data construction in Stage 2
757
758

759 Generate unique QA pairs grounded in the snippet with enforced categories.
 760 You are tasked with generating high-quality Q&A pairs grounded strictly in the given
 761 snippet. Rules: - DO NOT mention "snippet" or "according to the snippet".
 762 - All answers must be strictly grounded in the text, no outside knowledge.
 763 - Produce exactly count unique question–answer pairs.
 764 - Use a variety of question styles, including:
 765 1. Criteria-based (e.g., "What criteria indicate a defect in ...?")
 766 2. Defect understanding (e.g., "How does this affect...?")
 767 3. Comparative reasoning (e.g., "What distinguishes X from Y?")
 768 4. Functional impact (e.g., "Why does this defect matter?")
 769 5. Recognition (e.g., "What is...?")
 770 6. Quality control reasoning (e.g., "Why is it important to detect...?")
 771 7. Aesthetic/structural concerns
 772 - Ensure balance: include multiple styles, not just one.
 773 - Keep answers factual and strictly tied to the snippet.
 774 Return as a JSON array: [{"question": "...", "answer": "..."}]
 775 Snippet: {snippet}

776 Table 4: Example of a domain snippet for "Squeezed Teeth" defect of the object "Zipper".
777
778

779 The defect manifests as teeth of the zipper that appear squeezed or compressed together,
 780 disrupting the otherwise uniform alignment and spacing of the zipper teeth. This irregu-
 781 larity can occur at various locations along the zipper, often concentrated in the central or
 782 top/bottom areas. Characteristics of the defect include noticeable distortion in the shape
 783 of the teeth, which appear pinched and may vary in spacing compared to the adjacent,
 784 properly aligned teeth. The presence of squeezed teeth could potentially hinder the func-
 785 tionality of the zipper, leading to difficulties in smooth opening and closing, or causing the
 786 zipper slider to get stuck during use. The affected area is identifiable by its misshapen and
 787 irregular appearance, contrasting with the uniform and symmetrical pattern of the healthy
 788 zipper teeth surrounding it.

789

2. **Initial Q&A Generation:** For each domain snippet, we employ GPT-4o to generate an
 790 initial set of 30 unique question-answer pairs. The generation is guided by a prompt that
 791 instructs the model to formulate questions reflecting industrial inspection knowledge, such
 792 as inquiries about defect criteria, visual appearance, or functional impact. A crucial con-
 793 straint is that all answers must be strictly grounded in the provided text snippet, with no
 794 external knowledge introduced.
3. **Paraphrasing for Robustness:** To enhance the model's robustness and prevent overfitting
 795 on specific phrasing, each of the initial 30 Q&A pairs is further processed. We use GPT-4o
 796 again to generate two semantically identical but lexically diverse paraphrases for each pair.
 797 This step expands the dataset with varied phrasings of the same core knowledge.
4. **Final Data Assembly:** The final dataset consists of the original and paraphrased Q&A
 798 pairs. To anchor this textual knowledge to a visual context, each Q&A instance is paired
 799 with a randomly sampled normal image from the corresponding object category. This
 800 encourages the model to associate the domain knowledge with the visual appearance of
 801 the object, facilitating better knowledge recall during multimodal reasoning tasks. **Figure 8**
 802 shows examples of the final Q&A pairs in Stage 2 generated from the domain snippets.

803
804
805
806
807
808
809

810 B DATASET EXAMPLES
811812 B.1 STAGE 1
813

814

815

816

Query Image Normal Template Image

817

818

819

820

821

822

823

824

825

<seg> (3,7)–(3,8), (4,7)–(4,8), (5,8), (6,8) </seg>
<think> The first image shows a component with a defect where one of the metal pins is bent out of alignment. This pin is leaning to one side, differing from the other pins, which are straight and uniformly aligned. In contrast, the second image displays a normal component with all pins straight and evenly spaced, indicating proper alignment and assembly.
</think>

826

827

828

829

830

831

Query Image Normal Template Image

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

<seg> (11,13), (12,12)–(12,13), (13,10)–(13,12), (14,8)–(14,11) </seg>
<think> The first image shows a roll of tape with a noticeable defect on its outer surface. The defect appears as an irregular, indented line running across the tape, disrupting the smooth, continuous surface seen in the second image. The second image displays a normal roll of tape with a uniform, smooth surface without any indentations or irregularities. </think>

Figure 7: Stage 1 Training Dataset Examples

864
865

B.2 STAGE 2

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Original Q: What might cause fabric border fraying in zippers?**A:** Fabric border fraying in zippers might be caused by improper stitching or material degradation.**Paraphrase 1 Q:** What are possible reasons for fabric border fraying in zippers?**A:** Possible reasons for fabric border fraying in zippers include improper stitching or material degradation.**Paraphrase 2 Q:** Why might fabric border fray in a zipper?**A:** Fabric border might fray in a zipper due to improper stitching or material degradation.**Original Q:** Why is the integrity of the seal in food packaging important?**A:** The integrity of the seal in food packaging is important because it ensures the safety and freshness of the contents, preventing spoilage and contamination.**Paraphrase 1 Q:** Why must food packaging have a secure seal?**A:** Food packaging must have a secure seal to ensure the safety and freshness of the contents, preventing spoilage and contamination.**Paraphrase 2 Q:** Why is a strong seal crucial in food packaging?**A:** A strong seal is crucial in food packaging to maintain the safety and freshness of the contents, avoiding spoilage and contamination.**Original Q:** How can excess washers in a hardware set be problematic?**A:** Excess washers can disrupt the expected arrangement and cause confusion during assembly, affecting usability.**Paraphrase 1 Q:** What problems can arise from having excess washers in a hardware set?**A:** They can cause trouble by disrupting the expected arrangement and leading to confusion during assembly.**Paraphrase 2 Q:** In what way are excess washers in a hardware set an issue?**A:** They disrupt expected arrangements and cause confusion during assembly, which affects usability.

Figure 8: Stage 2 Training Dataset Examples

