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Abstract
Quasi-Newton (QN) methods provide an alternative to second-order techniques for solving mini-
mization problems by approximating curvature. This approach reduces computational complexity
as it relies solely on first-order information, and satisfying the secant condition. This paper fo-
cuses on multi-secant (MS) extensions of QN for convex optimization problems, which enhances
the Hessian approximation at low cost. Specifically, we use a low-rank perturbation strategy to
construct an almost-secant QN method that maintains positive definiteness of the Hessian estimate,
which in turn helps ensure constant descent (and reduces method divergence). Our results show that
careful tuning of the updates greatly improve stability and effectiveness of multisecant updates.

1. Introduction

We consider the unconstrained minimization problem

minimize
x

f(x) (1)

where f : Rn → R is convex, in C2, and bounded below. Newton’s method iteratively solves the
linear system of order n to get a search direction pk,

∇2f(xk)pk = ∇f(xk)

where ∇2f(xk) is the Hessian and ∇f(xk) is the gradient. In this case, the next iterate is updated
as

xk+1 = xk − αpk

where α > 0 is a step length parameter. However, when dealing with large-scale problems, getting
the Hessian matrix and solving (1) is not computationally scalable. For this reason, Quasi-Newton
(QN) methods, like BFGS, are introduced and become good substitutes which efficiently approxi-
mate the Hessian with simple operations performed on successive gradient vectors.

Specifically, we investigate a series of multisecant quasi-Newton methods for minimizing (1),
via repeated iterations

xk+1 = xk − αH−1
k ∇f(xk) (2)

where Hk serves as a Hessian approximation of f at xk and satisfies multiple secant conditions

Hk(xi − xj) = ∇f(xi)−∇f(xj) (3)

for some subset of i ̸= j ∈ {k, k− 1, ..., k− p+ 1} where p is the number of previous information
taken into account. In high dimensional cases, where n > 2p, such updates are nonunique because
the number of variables to define Hk is more than the number of constraints.
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Methods of this type are referred to as multisecant quasi-Newton methods, because they approx-
imate the Hessian through satisfying the multiple secant equations in (3). The main advantage of
such methods is that they exploit second order information using only first order oracles, and do
not in general require matrix inversion. In addition, limited memory versions exist which signifi-
cantly reduce storage limits. Thus, they are often superior to gradient methods in smooth, but very
ill-conditioned problems.

Perhaps the most well-known family of single-secant quasi-Newton methods are Broyden’s
method [1], Powell’s method, Davidson-Fletcher-Powell (DFP) [10], and BFGS named after the
concurrent works of Broyden [1], Fletcher [2], Goldfarb [3], and Shanno [4]. The multi-secant
extensions were first explored not long later; [6] for Broyden’s method, and [7] for extensions of
Broyden’s, Powell’s method, DFP, and BFGS updates. Gay and Schnabel [8] provided an improved
version of Broyden’s method for inverse Hessian update. These methods also attempt to progres-
sively include desired features, such as 1. fast and cheap updates, 2. symmetry, and 3. positive
definiteness. However, the addition of these features is much less straightforward in the multise-
cant case; for this reason, multisecant methods are primarily used to solve quadratic systems, where
symmetric positive semidefinite updates of multi-secant DFP and BFGS are easier to guarantee.
However, for general convex optimization problems, multi-secant quasi-Newton methods do not
ensure descent.

Later, a generalized framework [11] of the Broyden’s method was also provided in which a
block of secant conditions can be satisfied at each iteration which gives the flexibility to the rank
of update on the inverse Hessian. Fang and Saad [9] also proposed the generalization of Broyden’s
and Multisecant family with several successful techniques for handling QN-type problems. More
recently, closely related works include Gao et al. [14], Liu et al. [13], and Mokhtari[12]. These
are higher rank update schemes that use only first-order information, and are shown to achieve
q-superlinear convergence, at least in the local sense.

In this work, we explore various techniques to impose symmetric and positive semidefinite
updates in multisecant DFP and BFGS through carefully tuned perturbations, for ill-conditioned
non-quadratic problems. We compare these techniques against the perturbation methods presented
in the seminal work [7].

2. Preliminaries

2.1. Single-secant quasi-Newton methods

The well-known single-secant quasi-Newton methods are DFP [10] and BFGS [1–4] which maintain
Bk to be symmetric or positive semidefinite:

Bk+1 = Bk +
(yk −Bsk)y

T
k + yk(yk −Bksk)

T

yTk sk
−

yk(yk −Bksk)
T sky

T
k

(yTk sk)
2

(Davidon, Fletcher, Powell, 1991)

Bk+1 = Bk +
yky

T
k

yTk sk
−

Bksks
T
kBk

(sTkBksk)
(Broyden, Fletcher, Goldfarb, Shanno,1970)

where the Hessian approximation update Bk+1 satisfy the (single)secant condition

Bk+1 (xk+1 − xk)︸ ︷︷ ︸
sk

≈ ∇f(xk+1)−∇f(xk)︸ ︷︷ ︸
yk

. (4)
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The secant condition is derived from the Taylor’s second order expansion and its differential

∇f(xk+1) ≈ ∇f(xk) +∇2f(xk)(xk+1 − xk).

where Bk+1 ≈ ∇2f(xk+1). If we restrict Bk+1 to be symmetric, then the equation (4) has n(n+1)
2 −

n degrees of freedom where n ≥ 1. If n = 1, then (4) has a unique solution, however, n > 1 case
explains why there are many variations of quasi-Newton methods. After computing Bk+1, each
quasi-Newton method will update xk+1 at each iteration

xk+1 = xk − αB−1
k ∇f(xk).

To guarantee that each step taken is in a descent direction, the following

−∇fT
k B

−1
k ∇fk < 0 (5)

should be satisfied. If Bk+1 is not positive semidefinite, (5) is no longer satisfied and hence the
algorithm will not be guaranteed to monotonically decrease at each iteration. Therefore, maintaining
positive semidefinite Hessian approximation Bk+1 is an important key for quasi-Newton methods.

2.2. multisecant quasi-Newton methods

Schnabel [7] explained four typical multisecant quasi-Newton methods. Firstly, we consider two
choices for si and yi: the “curve-hugging” version for i = k, ..., k − p+ 1 such that

si = xi+1 − xi, yi = ∇f(xi+1)−∇f(xi)

and the “anchored at most recent” version for i = k − 1, ..., k − p such that

si = xk+1 − xi, yi = ∇f(xk+1)−∇f(xi).

Basically, both are interpolating the same previous point and this is explained well in Schnabel’s
paper. For the simplicity, we will use the former ‘curve-hugging’ version from now on.

We want to extend single-secant version to multi-secant by considering p previous points where
p > 1, more than one column vectors for sk and yk. We create matrix version of iterative and
derivative difference matrices, Sk and Yk respectively, by

Sk =

 sk−p sk−p+1 . . . sk

 , Yk =

 yk−p yk−p+1 . . . yk


where si = xi+1 − xi and yi = ∇f(xi+1)−∇f(xi). Then, we can define multisecant condition

Bk+1Sk = Yk (6)

which interpolates p number of previous iterates. Given the matrices Sk and Yk, (6) is an under-
determined problem because the number of constraints is less than the number of variables that
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should be defined for Bk ∈ Rn×n. Following multisecant DFP and multisecant BFGS updates are
under the assumption that Y TS is symmetric (and positive semidefinite).

Bk+1 = Bk + (Yk −BkSk)(Y
T
k Sk)

−1Y T
k + Yk(Y

T
k Sk)

−1(Yk −BkSk)
T

− Yk(Y
T
k Sk)

−1(Yk −BkSk)
TSk(Y

T
k Sk)

−1Y T
k . (MS DFP)

Bk+1 = Bk + Yk(Y
T
k Sk)

−1Y T
k −BkSk(S

T
k BkSk)

−1ST
k Bk (MS BFGS)

However, the assumption that Y TS is symmetric and/or positive semidefinite is not true for general
convex functions f . In fact, outside of f being a quadratic function, it is usually untrue. Specifically,
if STY is not symmetric (or positive semidefinite) then it is impossible to both satisfy (6) and have
Bk+1 be symmetric (or positive semidefintie).

3. An almost-multi-secant method

We first summarize all the existing MS quasi-Newton methods as

Bk+1 = Bk −D1W
−1DT

2

for some D1, D2,W . (Note that W is not usually symmetric nor positive semidefinite.) The natural
perturbation to enforce symmetry and positive semidefiniteness is to

Bk+1 = Bk −
D1W

−1DT
2 + (D1W

−1DT
2 )

T

2
+ µI

where µ is the smallest positive value needed to ensure that Bk+1 ⪰ 0. That is, defining

∆̄ = −1

2

[
D1 D2

] [ 0 W−1
k

W−T
k 0

] [
DT

1

DT
2

]
∈ Rn×n

then the goal is to find µ = max{0,−λmin(Bk + ∆̄)}.
Note that the multisecant condition Bk+1Sk = Yk may not be exact when we perturb Bk+1, and

this is the reason of being an ‘almost multisecant’ scheme. However, in general, finding λmin(Bk)
may not be computationally cheap. The obvious approach is to use a fast power method or Lanczos
method, but there is no reason to assume that Bk is sparse, nor low rank after n iterations. Therefore,
we assume that this operation is prohibitive, or at least can only be used rarely.

We therefore approximate µ = max{0,−λmin(∆̄)}. This can be simply done by computing the
eigenvalue of a tiny 2p× 2p matrix by exploiting the Schur complement property. More mathemat-
ical details are written in the Appendix. Note that µI + ∆̄ is the Schur-complement of

H =
1

2

2µI D1 D2

DT
1 0 Wk

DT
2 W T

k 0

 ≺ 0

where H is not PSD no matter how large µ is because of zeros in its diagonal. Therefore, we add a
nontrivial diagonal block A whose Schur complement reduces to ∆. Let

∆ = −1
2

[
D1 D2

] [ 0 W−1
k

W−T
k 0

] [
DT

1

DT
2

]
+ µI ∈ Rn×n

H1 = 2µI +A−
[
D1 D2

] [ cI F
F T cI

]−1 [
DT

1

DT
2

]
∈ Rn×n

H2 =

[
cI F
F T cI

]
−

[
DT

1

DT
2

]
(A+ 2µI)−1

[
D1 D2

]
∈ R4p×4p
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Then, for the right choice of A and F (details are in the Appendix A), ∆ = ∆̄ + µ and H1 is PSD
if and only if H2 is PSD. Since H2 is a much smaller (2p× 2p) matrix, finding µ large enough such
that H2 is PSD can be done much more efficiently. The Figure 3 in the Appendix C sustains the
argument that ∆ is positive semidefinite if and only if H2 is positive semidefinite.

4. Numerical Results

Quadratic Problem We define a quadratic problem with A ∈ Rp×n, x0 = .001× 1̄, η ∼ N(0, 1)
and b = Ax0 + η where

min
x∈Rp

f(x) = min
x∈Rp

||Ax− b||22
2p

Logistic Regression Problem We define Logistic Regression problem with b is a binary vector
and σ is the sigmoid function, σ(x) = 1

1+e−x where

min
θ∈Rn

f(θ) = min
θ∈Rn

−1

p

p∑
i=1

log(σ(bia
T
i θ))

Figure 1: Quadratic Problem Figure 2: Logistic Regression Problem

In the above simulation results, Quadratic problem’s loss value is monotonically decreasing for
every multisecant case because B ⪰ 0 which satisfies STBS = STY and maintains −B−1∇f(x)
be descent direction. On the other hand, Logistic regression problem monotonically decrease only if
B is positive definite by controlling µ. In this case, f(x) is not quadratic and Y TS is not symmetric
which shows that the secant condition is not fully satisfied (exact) in Figure 2.

5. Conclusion

We aimed at improving the approximation of the Hessian matrix while keeping computational costs
low. More precisely, we employ a strategy involving low-rank perturbations to create an almost-
secant quasi-Newton approach, ensuring that the estimated Hessian remains positive definite by the
Schur-Complement theorem. This, in turn, contributes to maintaining a consistent descent in solving
a minimization problem, thereby reducing the risk of method divergence. Our findings demonstrate
that meticulously adjusting the update process by getting the right value µ enhances the stability
and efficiency of multisecant quasi-Newton updates.
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Appendix A.

Lemma 1 Define c = c1 = c2 and

P = (cI − c−1FF T )−1, Q = (cI − c−1F TF )−1

Pick F = c3USV T where W−1 = UΣV T is the full SVD of W−1, and S is a diagonal matrix
satisfying

Σ = (S2 − c2I)−1S. (7)

Pick c3 =
cϵ

c+∥W∥2 for some ϵ ∈ (0, 1). Then the inverse

[
P −F (c2I − F TF )−1

−(c2I − F TF )−1F T Q

]
=

[
cI F
F T cI

]−1

Then the following three statements are equivalently true.

1. ∥F∥2 ≤ c

2.
[
cI F
F T cI

]
is PSD

3. P and Q exists and are also PSD

Proof
Recall the inverse of a 2x2 block matrix can be written as[

cI F
F T cI

]−1

=

[
(cI − c−1FF T )−1 −F (c2I − F TF )−1

−(c2I − F TF )−1F T (cI − c−1F TF )−1

]
.

Thus gives the correct construction of P and Q. Then, in the off diagonal terms,

−F (c2I − F TF )−1 = −c3USV T (c2V V T − c23V S2V T )−1

= c3US(c23S
2 − c2I)−1V T

and

−(c2I − F TF )−1F T = −(c2I − c23V S2V T )−1c3V SUT

= V (c23S
2 − c2I)−1c3SU

T

Note that

Σ = (S2 − c2I)−1S ⇐⇒ (S2 − c2I)Σ = S ⇐⇒ S2
iiΣi − Sii − Σic

2 = 0 for ∀i

and from the quadratic formula, we have the singular values of F as

Sii =
1 +

√
1 + 4Σ2

i c
2

2Σi
≤

1 +
√
1 +

√
4Σ2

i c
2

2Σi
=

1

Σi
+ c
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or, 1
c3
∥F∥2 ≤ c + ∥W∥2 because ∥F∥2 = c3∥S∥2 and ∥F∥2 ≤ (c + ∥W∥2)c3 = cϵ ≤ c. Thus 1.

is true under our assignment of c3.

Next, we can simply prove the second and third properties by the Schur-complement[
cI F
F T cI

]
⪰ 0 ⇐⇒ cI ⪰ 0 and cI − 1

c
FF T =

1

c
(c2I − FF T ) ⪰ 0

⇐⇒ cI ⪰ 0 and cI − 1

c
F TF =

1

c
(c2I − F TF ) ⪰ 0

if and only if
c2 − ∥F∥22 ≥ 0 ⇐⇒ ∥F∥2 ≤ c

Appendix B.

Lemma 2 For any choice of positive number c, The matrix

A := ∆− 2µI +
[
D1 D2

] [ cI F
F T cI

]−1 [
DT

1

DT
2

]
is positive semidefinite.
Proof Based on our construction, A can be written as

A =
[
D1 D2

] [ (cI − c−1FF T )−1 −F (c2I − F TF )−1 −W−1

−(c2I − F TF )−1F T −W−T (cI − c−1F TF )−1

] [
DT

1

DT
2

]
=

[
D1U D2V

] [ (cI − c−1c23S
2)−1 c3S(c

2
3S

2 − c2I)−1 − Σ
c3(c

2
3S

2 − c2I)−1S − Σ (cI − c−1c23S
2)−1

]
︸ ︷︷ ︸

=:B

[
UTDT

1

V TDT
2

]

where W−1 = UΣV T and F = c3USV T . We are left to show if B is PSD. Note that we
may partition B into 4 blocks of diagonal matrices, which means there exists a permutation PBP T

which is block diagonal, with 2x2 symmetric blocks

Bii =

 1

c−1
c c

2
3S

2
ii

c3Sii

c23S
2
ii−c2

− Σii

c3Sii

c23S
2
ii−c2

− Σii
1

c−1
c c

2
3S

2
ii

.


The (1,1) and (2,2) blocks can be shown to be positive since

c3Sii ≤
c

c+ ∥W∥2
(∥W∥2 + c) = c. (8)

Therefore, Bii is PSD iff the (2,1) element has magnitude smaller than both diagonal elements; that
is,

Bii ⪰ 0 ⇐⇒ 1

c− 1
c c

2
3S

2
ii

≥ c3Sii

c23S
2
ii − c2

− Σii.
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Since (8), this is equivalent to

c ≥ −c3Sii − (c2 − c23S
2
ii)︸ ︷︷ ︸

≥0

Σii

which is true since the right hand side is negative.

Appendix C.

Theorem 1 Consider W a nonsymmetric matrix, and

∆ = µI − 1

2

[
D1 D2

] [ 0 W−1

W−T 0

] [
DT

1

DT
2

]
.

Then ∆ is PSD if and only if

H2 =

[
cI F
F T cI

]
−
[
DT

1

DT
2

]
(A+ 2µI)−1

[
D1 D2

]
. (9)

is PSD, for

A =
[
D1 D2

] [ P −(c2I − F TF )−1F T −W−1

−F (c2I − F TF )−1 −W−T Q

] [
DT

1

DT
2

]
and F = cϵ

c+∥W∥2V SUT where W−1 = UΣV T is the SVD of W−1, and S is a diagonal matrix
satisfying (7).

Figure 3: Picking µ: ∆ ≻ 0 (large matrix) if and only if H2 ≻ 0 (small matrix).

Proof Consider the matrix

H =

2µI +A D1 D2

DT
1 cI F

DT
2 F T cI

 .
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where c is a nonnegative scalar, F is a 2p× 2p matrix (yet undefined), and A is some (unspecified)
symmetric matrix. Then the two Schur complements of H are H1 and H2:

H1 := 2µI +A−
[
D1 D2

] [ cI F
F T cI

]−1 [
DT

1

DT
2

]
∈ Rn×n

H2 =

[
cI F
F T cI

]
︸ ︷︷ ︸

H3

−
[
DT

1

DT
2

]
(A+ 2µI)−1

[
D1 D2

]
∈ R4m×4m.

Then,

H1 is PSD and
[
c1I F
F T c2I

]
is PSD and invertible

if and only if

H2 is PSD and A+ 2µI is PSD and invertible.

From Lemma 1, we see that the proposed construction of A and F is indeed valid for setting
∆ = H1; moreover, for any value of c > 0, A and H3 are both PSD. Thus, ∆ is PSD if and only if
H2 is PSD.

Note that while we have pushed the certification of PSD from our original n × n matrix ∆ to
that of a smaller 2p × 2p matrix in (9), the inversion (A + 2µI)−1 ∈ Rn×n still seems daunting.
However, note that

A+ 2µI =
[
D1 D2

]
B

[
DT

1

DT
2

]
+ 2µI

for

B =

[
(cI − c−1FF T )−1 −(c2I − F TF )−1F T −W−1

−F (c2I − F TF )−1 −W−T (cI − c−1F TF )−1

]
∈ R4m×4m

is a diagonal-plus-low-rank matrix, and its inverse can be efficiently computed using another Wood-
bury inversion

(A+ 2µI)−1 =
1

2µ
I − 1

2µ

[
D1 D2

](
2µB−1 +

[
DT

1

DT
2

] [
D1 D2

])−1 [
DT

1

DT
2

]
.
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