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Abstract
End-to-end (E2E) autonomous driving has recently emerged as a new paradigm,
offering significant potential. However, few studies have looked into the practical
challenge of deployment across domains. In this work, we propose RoCA, a
novel framework for Robust Cross-domain E2E Autonomous driving. RoCA
formulates the joint probabilistic distribution over the tokens that encode ego and
surrounding vehicle information in the E2E pipeline. Instantiating with a Gaussian
process (GP), RoCA learns a set of basis tokens with corresponding trajectories,
which span diverse driving scenarios. Then, given any driving scene, it is able
to probabilistically infer the future trajectory. By using RoCA together with a
base E2E model in source-domain training, we improve the generalizability of the
base model, without requiring extra inference computation. In addition, RoCA
enables robust adaptation on new target domains, significantly outperforming direct
finetuning. We extensively evaluate RoCA on various cross-domain scenarios and
show that it achieves strong domain generalization and adaptation performance.

1 Introduction
In autonomous driving, most recent research has shifted towards integrated, end-to-end (E2E)
systems [2, 3, 4, 8, 11, 16]. While E2E approaches can potentially provide enhanced overall driving
performance thanks to the joint optimization across components, their robustness can be lacking
when encountering less frequent scenarios. An important factor is the lack of diversity in existing
large-scale training datasets e.g., [1, 5, 6], which often fail to capture the full spectrum of driving
scenarios. For instance, datasets like nuScenes [1] are dominated by simple events, with limited
coverage of rare, safety-critical edge cases. This imbalance is further amplified by standard training
protocols, which tend to prioritize performance on frequent scenarios, causing the optimization to
under-weigh long-tail events. As a result, E2E models trained in such a ways have sub-optimal
performance when deployed in different domains, such as different cities, lighting environments,
camera characteristics, or weather conditions.

To address these challenges, we propose RoCA, Robust Cross-domain end-to-end Autonomous
driving. RoCA is an end-to-end autonomous driving framework designed for enhanced robustness
and efficient adaptation using only multi-view images. RoCA learns a compact yet comprehensive
codebook containing basis token embeddings (b) that represent diverse ego and agent states, spanning
both source and potentially target data characteristics. Crucially, RoCA leverages this learned
codebook within a Gaussian Process (GP) framework. During inference, given a new scene’s token
embedding, the GP probabilistically predicts future ego waypoints and agent motion trajectories
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Figure 1: RoCA framework overview.1 RoCA consists of two components. (1) A base E2E planner (e.g., [11,
14]) extracts the ego and agent tokens from multi-view images for the motion planner to predict future trajectories.
(2) Proposed RoCA module, which leverages Gaussian process (GP). In source-domain training, RoCA learns a
set of basis tokens from the source domain via reconstructing ego and agent tokens from the basis, supervised
by the tokens from the base model (bottom dashed arrow). Its GP-based trajectory regression model predicts
trajectories which are supervised by ground-truth waypoints (top dashed arrow). During adaptation, RoCA
generates pseudo ground truth to fine-tune the base model on the target domain (purple arrow).

by leveraging the correlation between the current embedding and the learned basis embeddings (b)
and their associated known trajectories (w = g(b)) for a learned mapping (g(.)) This probabilistic
formulation inherently supports generalization, as predictions for novel scenes are informed by their
similarity to known embeddings within the diverse codebook. Furthermore, the variance estimated
by the GP provides a principled measure of prediction uncertainty. This variance can be used to
dynamically weight the training loss, enabling RoCA to automatically assign greater importance to
uncertain or difficult predictions. The RoCA framework typically involves an initial stage to build
the codebook and optimize GP parameters using source data, followed by efficient deployment or
adaptation using only multi-view images processed through the learned GP component.

Our main contributions are summarized as follows:
• We propose RoCA, a novel framework for robust cross-domain end-to-end autonomous

driving. Leveraging a Gaussian process (GP) formulation, RoCA captures the joint distribu-
tion over ego and agent tokens, which encode their respective future trajectories, enabling
probabilistic prediction.

• By utilizing our GP to impose regularization on source-domain training, RoCA leads to
more robust end-to-end planning performance across domains.

• RoCA enables adaptation of the end-to-end model on a new target domain. Apart from
standard finetuning, its uncertainty awareness makes it possible to select more useful data in
the active learning setup.

• Through extensive evaluation, RoCA demonstrates robust performance across domains, for
instance, from simulation to real world, across cities. Domain adaptation using RoCA is
not only more effective, leading to better planning performance, but also more efficient, by
using the predictive uncertainty to select more useful data for finetuning.

2 Proposed Approach: RoCA

We present RoCA, a novel, Gaussian process (GP)-based framework for cross-domain end-to-end
autonomous driving. By using a set of basis tokens trained to span diverse driving scenarios, our
proposed RoCA module probabilistically infers a trajectory for the current input scene. RoCA not
only enhances the robustness of the trained E2E model, but also provides adaptation capability on a
new domain.

1Images from nuScenes, licensed under CC BY-NC-SA 4.0.
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2.1 System Overview

Our proposed E2E pipeline consists of a base E2E model and our proposed RoCA module. The base
model, e.g., [11, 14], typically has two parts: 1) a scene encoder st(.; θst), which converts the input
images into scene features/tokens like ego tokens e, and agent tokens a , and 2) a motion planner
h(.; θh), which consumes these scene tokens to predict trajectoryego and agent tokens, and predicts
the trajectories for both the ego and other vehicles: ppred, cpred,ppred,a, cpred,a = h(e, a; θh), where
p denotes the waypoints and c denotes the trajectory class (e.g., total number of classes can be 16
trajectory groups for each driving command of turn left, turn right, and go straight.); θst and θh are
learnable parameters. The RoCA module contains a Gaussian process model, denoted by g(.; θg, κ),
where κ(.) is the GP kernel function and θg denotes the learnable parameters in th e module.2 Figure 1
shows the system diagram.

2.2 RoCA Module

2.2.1 Basis Tokens and Trajectories

We construct a “codebook” of learnable basis tokens, B = {Bk = {bj,k}Cj=1}
Ncode

k=1 , where Ncode is
the number of basis groups, each representing a certain trajectory pattern, e.g., turn left, turn right,
and C is the group size. These basis tokens are designated to bijectively map to a set of plausible,
safe driving trajectories, {Wk}Ncode

k=1 . To construct this set of basis trajectories, we first sample
Ncode · C representative trajectories from ground-truth human driving data, e.g., nuScenes [1]. They
are then clustered into Ncode groups, such that each group Wk contains C trajectories with similar
driving patterns. In our Gaussian process formulation, each trajectory wj,k ∈ Wk is associated with
a unique, learnable basis bj,k ∈ Bk. In other words, during training, each basis token learns the
driving scenario that corresponds to its trajectory.

2.2.2 Reconstructing Ego and Agent Tokens

Given a driving scenario with ego and agent tokens from the base model, e and a, we first classify
them into the respective basis groups. Let ce denote the index of the group assigned to e. This
classification is performed based on the kernel distance metric and an MLP operating on distance,
i.e., MLP(κ(e,B)) predicts the classification logits for the ego token (similarly for agent).

Let Bce denote the basis tokens in the classified group ce. The core mechanism for learning the basis
Bce is by reconstructing the original ego token e using Bce based on Gaussian process. The joint
distribution of e and Bce is given by

p(e,Bce) ∼ N
([

e
Bce

]
,

[
κ(e) κ(e,Bce)

κ(e,Bce)
⊤ κ(Bce)

])
, (1)

where p(.) denotes probability density function and κ(., .) is the kernel function evaluating pairwise
distances among tokens (specifically, we use the RBF kernel).

The predictive mean ê (i.e., the reconstruction of e) and predictive variance σ2
e are given by

ê = banchor,ce + κ(e,Bce)κ(Bce)
−1B̄ce ,

σ2
e = κ(e)− κ(e,Bce)κ(Bce)

−1κ(e,Bce)
⊤ + σ2

noiseI,
(2)

where banchor,ce is the mean of the tokens in group ce, B̄ce is the zero-mean version of Bce , and
σ2
noise is a small, learnable noise variance.

This prediction ê serves as an approximation of the original e, reconstructed with the basis tokens.
We supervise this reconstruction with the original ego token. Similarly, we applying the same
reconstruction process to obtain â and σa for each agent token a, using their respective classified
group of basis tokens Bca . The overall reconstruction loss for training the basis tokens is given by

Lrec =
1

σ2
e

|ê− e|2 − log(σe) +
1

σ2
a

|â− a|2 − log(σa) + ||BcaB
⊤
ca − I||2 + ||BceB

⊤
ce − I||2, (3)

2See [13] for more details on Gaussian processes.
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2.2.3 Trajectory Prediction via Gaussian Process

Similar to the previous part, given the ego and agent tokens from the base model, e and a, we first
classify them to their respective basis groups, ce and ca. A GP-based regression then infers the future
trajectory based on the correlation between the ego/agent token and the basis tokens. The predicted
mean and variance for the ego trajectory, p̂e and σe, is given by

p̂w = wanchor,ce + κ(e,Bce)κ(Bce)
−1W̄ce ,

σ2
w = κ(e)− κ(e,Bce,w)κ(Bce)

−1κ(e,Bce)
⊤ + σ2

noiseI,
(4)

where wanchor,ce is the mean of the trajectories in group ce, W̄ce is the zero-mean version of Wce ,
and σ2

noise is a small, learnable noise variance. The predicted agent trajectory p̂w,a and variance σ2
w,a

can be obtained in a similar way.

When training in the source domain, we supervise these GP-based trajectory predictions with the
ground truth, as follows:

Lsup =
1

σ2
w

Lplanning(p̂w,pgt)− log(σw)−
1

σ2
w,a

Lmotion(p̂w,a,pgt,a)− log(σw,a)

+ Lclass(ce, cgt,e) + Lclass(ca, cgt,a) + Ltriplet(ce, cp, cn) + Ltriplet(ca, cp,a, cn,a)

(5)

where pgt and pgt,a are the ground-truth ego and agent trajectories, cgt and cgt,a are ground-truth
ego and agent token categories. The predictive trajectory mean and variance are supervised using
variance-weighted losses, similar to those used in [11, 14]). Lplanning and Lmotion denote the
waypoint planning and motion tracking losses, as used in [14, 11].

2.3 Training and Adaptation

2.3.1 Training in Source Domain

Pre-training base E2E model. First, we train the base E2E model on the source domain data
following standard training procedure, e.g., [11, 14].

Learning basis tokens and GP parameters. Secondly, we use both Lrec of Eq. 3 and Lsup of Eq. 5
to train RoCA. This includes training the basis tokens and other parameters, e.g., MLP parameters,
kernel parameters.

Finetuning base E2E model. Finally, given the trained RoCA module, we utilize it to perform
regularized finetuning. More specifically, in addition to the standard supervised loss used to train the
base model, we additionally use the following loss by treating RoCA as a teacher:

Lgp =Lclass(cpred, ce) + Lclass(cpred,a, ca) + Ltriplet(cpred, cp, cn) + Ltriplet(ca, cp,a, cn,a)

+
1

σ2
w

Lplanning(ppred, p̂w)− log(σw) +
1

σ2
w,a

Lmotion(ppred,a, p̂w,a)− log(σw,a)

+DKL(cpred,e||ce) +DKL(cpred,a||ca), (6)

where ppred, cpred, cpred,a, and cpred,a are the predicted ego and agent trajectory waypoints and
classes from the base E2E model, DKL is the KL-divergence.

2.3.2 Adaptation in Target Domain

In some cases, ground-truth waypoints are available in the target domain, e.g., based on ego status
tracking. In such cases, model adaptation is then the same as the final step in source-domain
training, where the standard ground-truth supervision on planning is used together with the GP-based
regularization from RoCA: Lgp in Eq. 6.

There are scenarios where ground-truth trajectories are not available. For instance, it is nontrivial to
process large-volume driving logs and thus, ground-truth waypoints may not be available right after
data is collected in the target domain (while images are usually readily available). For unsupervised
domain adaptation, as ground-truth labels are not available, we use Lgp to update the base E2E model.
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Figure 2: tSNE projection of ego/agent tokens with (top) and without (bottom) RoCA. By using
our proposed approach, the model has better separability of different trajectory modes (indicated by
different colors). In contrast, the baseline SparseDrive shows poor separability, indicating a sensitivity
to any perturbations. The analysis is performed on the full nuScenes val set, the Boston val split, and
Singapore val split, with models trained on nuScenes full training set, the Singapore training subset,
and Boston training subset, respectively (left, middle, right).

3 Experiments

We conduct extensive experiments to evaluate RoCA on standard end-to-end driving benchmarks and
compare it with the latest state-of-the-art (SOTA) methods. Specifically, we consider challenging
cross-domain setups to evaluate the robustness and adaptation performance of our proposed approach.

3.1 Datasets, Evaluation Metrics, and Baselines

We use the recent, challenging benchmark of Bench2Drive (B2D) [9], which leverages the CARLA
simulator and features 44 difficult interactive scenarios (see Table 1 in B2D paper for more details)
across diverse weather and urban conditions. We utilize the B2D base version (1000 video clips)
for training and Dev10 for closed-loop evaluation, which is a representative subset selected by the
authors [10]. We use the metrics provided by B2D for assessing model performance, e.g., driving
score, efficiency.

We use nuScenes [1] to evaluate open-loop planning performance. This dataset consists of 28k
total samples in a 22k/6k training/validation split. The objects in each scene are annotated with 3D
bounding box, orientation, and speed. nuScenes contains data collected from two cities, Boston and
Singapore, which allows us to evaluate cross-domain performance across cities. Within the validation
set, we also consider a “targeted" subset containing 689 samples where the vehicle must make a turn,
as established in [15]. On nuScenes, we use average L2 trajectory error and average collision rate to
evaluate planning performance.

We consider three recent, representative methods, VAD [11], SparseDrive [14], and SSR [12] as
the base E2E models. Specifically, we use VAD-T (tiny configuration) and SparseDrive-S (small
configuration). Note that our proposed RoCA can be used with any E2E planning model, as long as it
provides a tokenized representation.

3.2 Learned Tokens in GP

Our proposed GP-based formulation in RoCA provides more robust scene representation and trajec-
tory planning. Specifically, as shown in Figure 2 (top), the learned basis tokens form clearly distinct
clusters (as marked by the different colors), with each cluster representing a different trajectory
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Table 1: Closed-loop evaluation on Bench2Drive. Driving scores and efficiency are higher the better,
and average L2 error is lower the better.

Method Driving score Efficiency Avg L2

VAD-T 33.75 128.2 1.18
DiMA (Vicuna-v1.5-7B) 36.12 134.2 0.91
SSR 40.36 91.7 0.80

RoCA (VAD-T) 38.57 138.0 0.84
RoCA (SSR) 44.19 100.1 0.68

Table 2: Sim-to-real transfer from Bench2Drive to nuScenes. Driving score and efficiency are higher
the better, and average L2 error is lower the better.

Method

Source: Bench2Drive, Target: nuScenes
Zero-shot Fine-tuned

Full Val Targeted Val Full Val Targeted Val
Avg L2 Avg Col Avg L2 Avg Col Avg L2 Avg Col Avg L2 Avg Col

VAD-T 1.32 0.51 1.59 0.54 1.01 0.45 1.40 0.46
DiMA (Vicuna-v1.5-7B) 0.94 0.26 1.29 0.38 0.71 0.19 1.06 0.30
SSR 1.08 0.31 1.47 0.44 0.82 0.23 1.30 0.37

RoCA (VAD-T) 0.85 0.24 1.19 0.34 0.63 (0.77) 0.16 (0.20) 0.88 (0.95) 0.26 (0.29)
RoCA (SSR) 0.79 0.22 1.10 0.34 0.57 (0.66) 0.12 (0.17) 0.76 (0.89) 0.25 (0.29)

pattern. Note that the tokens visualized on Boston (Singapore) val subset are from model trained on
Singapore (Boston) training subset. As such, even in a new domain, RoCA can still robustly parse the
driving scenario in its probabilistic framework and infer a proper trajectory. In contrast, SparseDrive
in Figure 2 (bottom) produces mixed pattern across trajectories types, making it fragile when model
is deployed in a new domain. For instance, given a token that corresponds to turning left, a slight
perturbation to this token (e.g., due to different camera characteristics, lighting, etc.) can result in
drastically different driving behavior in the output of the planner.

3.3 In-Domain Evaluation

We perform closed-loop evaluation of models trained on B2D on Dev10, which consists of 10 test
scenarios carefully selected by the B2D authors to be both difficult and representative. We compare
our proposed RoCA with VAD, SSR [12], and DiMA [7], All methods are trained for 12 epochs. In
this evaluation, no adaptation is performed on Dev10. In can be seen from Table 1 that by using
our proposed RoCA for training, we achieve significantly better planning performance, even in this
in-domain setting. For instance, in the case of VAD-T and SSR, RoCA increases the driving scores
by about four points.

3.4 Domain Generalization and Adaptation

We conduct a sim-to-real experiment by transferring the B2D-trained models to nuScenes, either
in a zero-shot manner or with a short finetuning of 6 epochs. Specifically, we also evaluate on the
more complex targeted split of nuScenes. In Table 2, we see that RoCA has significantly better
sim-to-real performance as compared to the baselines as well as a state-of-the-art LLM-based model,
in both zero-shot and short-finetuning settings. Moreover, even when we finetune the model without
ground truth (only using Lgp of Eq. 6), RoCA still achieves strong performance (in parentheses)
when comparing with existing models finetuned with ground truth.

3.5 Active Learning

In the target domain, our goal is to identify the most informative samples for domain adaptation
through active learning, thereby reducing both annotation and adaptation costs. To achieve this, we
propose using the GP-based predictive variance as a sampling criterion, selecting samples with the
highest uncertainty. We compare our variance-based selection with the baseline method of random
sampling, evaluated at 5%, 10%, and 15% sampling rates of the full target training data.

Table 3 reports cross-city planning accuracy results for transfers between Singapore and Boston after
fine-tuning with ground-truth supervision, using SparseDrive-S as the baseline. Across all sampling
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Table 3: Cross-city active learning performance, using 5%, 10%, and 15% target training samples
selected randomly or based on predictive variance by RoCA. The base model is SparseDrive-S in this
case.

Adapt. Method Sampling 5% 10% 15%

Avg. L2 (m) ↓ Avg. Col.(%)↓ Avg. L2 (m) ↓ Avg. Col.(%)↓ Avg. L2 (m) ↓ Avg. Col.(%)↓
Singapore → Boston

Direct finetune random 0.767 0.215 0.753 0.199 0.711 0.175
Direct finetune RoCA 0.745 0.191 0.719 0.183 0.678 0.126
RoCA random 0.644 0.123 0.584 0.121 0.552 0.121
RoCA RoCA 0.617 0.110 0.554 0.110 0.513 0.108

Boston → Singapore
Direct finetune random 0.891 0.198 0.839 0.201 0.823 0.185
Direct finetune RoCA 0.828 0.192 0.815 0.172 0.793 0.166
RoCA random 0.707 0.148 0.656 0.133 0.633 0.126
RoCA RoCA 0.673 0.135 0.604 0.113 0.561 0.102

rates, selection based on RoCA consistently results in lower trajectory errors and collision rates
compared to random selection, on both the full validation and the targeted subsets. These results
demonstrate the effectiveness of our uncertainty-guided sampling in identifying representative samples
for efficient domain adaptation. Furthermore, RoCA consistently outperforms the baseline under
both sampling strategies, underscoring its robustness and adaptability in cross-domain scenarios.

4 Conclusions and Discussions
We present RoCA, a novel framework for robust cross-domain end-to-end autonomous driving. By
leveraging a GP formulation, RoCA models the joint distribution over ego and agent trajectories,
enabling probabilistic prediction and uncertainty-aware planning. This GP-based regularization
enhances source-domain training and significantly improves generalization to unseen domains.
RoCA’s key strength lies in its flexible domain adaptation: it supports standard finetuning, uncertainty-
guided active learning, and online adaptation, making it well-suited for real-world deployment.
Extensive experiments on Bench2Drive and nuScenes benchmarks show that RoCA provides strong
domain generalization and adaptation performance for end-to-end autonomous driving.
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