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Abstract

This work tackles a key challenge in Test Time Adaptation (TTA): adapting on limited
data. This challenge arises naturally from two scenarios. (i) Current TTA methods are
limited by the bandwidth with which the stream reveals data, since conducting several
adaptation steps on each revealed batch from the stream will lead to overfitting. (ii) In
many realistic scenarios, the stream reveals insufficient data for the model to fully adapt to
a given distribution shift. We tackle the first scenario problem with auxiliary tasks where we
leverage unlabeled data from the training distribution. In particular, we propose distilling
the predictions of an originally pretrained model on clean data during adaptation. We found
that our proposed auxiliary task significantly accelerates the adaptation to distribution
shifts. We report a performance improvement over the state of the art by 1.5% and 6%
on average across all corruptions on ImageNet-C under episodic and continual evaluation,
respectively. To combat the second scenario of limited data, we analyze the effectiveness of
combining federated adaptation with our proposed auxiliary task across different models even
when different clients observe different distribution shifts. We find that not only federated
averaging enhances adaptation, but combining it with our auxiliary task provides a notable
6% performance gains over previous TTA methods.

1 Introduction

Deep Neural Networks (DNNs) have achieved remarkable success, achieving state-of-the-art results in several

applications ( , ; , ; , ). Still, their performance severely deteriorates
whenever a shift exists between training and testing distributions ( , ;b). Such distribution
shifts are not unlikely in real-world settings. Changes in weather conditions ( , ),

camera parameters ( , ), data compression or even adversarial perturbations ( ,

) are all examples of distribution shifts that might impact model performance. Needless to say, adapting
to or mitigating the negative effects of distribution shifts is crucial to the safe deployment of DNNs in many
cases, e.g., in self-driving cars.

Test Time Adaptation (TTA) ( , : , ) methods adapt a pretrained model to the test
distribution with the goal of mitigating drops in performance caused by distribution shifts. In practice, this
typically translates into optimizing a proxy objective function on a stream of unlabeled test data in an online
fashion ( , ). The TTA approach has showed great success in improving performance under
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distribution shifts in several scenarios ( ; ; , ). However, to
prevent overfitting, all TTA methods in the hterature conduct a smgle adaptatlon step on each received batch
at test time ( , ; , ). This limits the efficacy of TTA methods by the bandwidth

of the stream, thus hampermg their online performance. Furthermore, the current paradigm of TTA focuses
on updating a single model at a time, assuming the stream will reveal enough data to capture the underlying
distribution shift. Yet, in many realistic settings, the stream of data accessible to an individual model might
be too scarce to enable adequate adaptation. In such scenarios, we might accelerate adaptation by leveraging
other models being adapted to similar domain shifts in a collaborative fashion ( ,

In this work, we tackle the aforementioned lack of data in TTA by proposing an auxiliary task that can be
optimized at test time. Since the amount of data from a given distribution shift is limited by the bandwidth
of the stream, we follow ( ); ( ); ( ) in leveraging unlabeled
data from the training distribution. First, we show one can enhance current TTA methods and accelerate
adaptation to distribution shifts by introducing a simple auxiliary task consisting of the same proxy objective
of previous TTA methods but applied to unlabeled clean data. Based on this observation, we propose
DISTA (Distillation-based TTA), a better auxiliary objective that distills the predictions of the original
pretrained model on clean unlabeled data during adaptation. Our empirical results on two benchmarks and
three evaluation protocols show DISTA produces significant improvements in performance.

In summary, our contributions are threefold: (i) We present a methodology to analyze the effectiveness of
auxiliary tasks on accelerating the adaptation under distribution shift through lookahead analysis (

). We show that one can leverage clean unlabeled data to better adapt to distribution shifts. (ii)
We propose DISTA; a TTA method with a distillation-based auxiliary task. We conduct comprehensive
experimental analysis on the two standard and large-scale TTA benchmarks ImageNet-C (

, ) and ImageNet-3DCC ( , ), where we show how DISTA improves the performance
over state-of-the-art methods by a significant margin (1.5% under episodic evaluation and 6-8% under continual
evaluation). (iii) We further analyze a novel and realistic scenario where each individual model is presented
with insufficient amount of data for adaptation. We demonstrate how federated learning facilitates adaptation
in this case, even when the observed distribution shift varies among clients. Moreover, we observe DISTA
provides a large performance gain (6% on ImageNet-C) over state-of-the-art methods in this federated setup.

2 Methodology

Preliminaries Test Time Adaptation (TTA) studies the practical problem of adapting pretrained models
to unlabeled streams of data from an unknown distribution that potentially differs from the training one. Let
fo : X = P(Y) be a classifier parametrized by 6 that maps a given input @ € X to a probability simplex
over k labels (i.e. fi(z) > 0,||fo(z)|l1 = 1). During the training phase, fy is trained on some source data
Dy C X x Y, but at test time, it is presented with a stream of data S that might be differently distributed
from D;. In this work, we focus on covariate shifts, i.e., changes in the distribution over the input space X
due to, for instance, visual corruptions caused by changes in weather conditions faced by self-driving systems.
TTA defines a learner g(6,x) that adapts the network parameters 6 and/or the received unlabeled input x at
test time to enhance model performance under distribution shifts. Forrnally, and following the online learning
notation ( ; ) ), we describe the
interaction at a time step t € {0 1,. oo} between a TTA method g and the stream of unlabeled data S as:

1. The stream S reveals a sample x;.
2. The learner g adapts z; to £; and 6, to 0, before issuing a prediction g = f;, (Zy).

3. The learner g updates model parameters with 6;11 = af; + (1 — a)ét, for0<a<l.

Importantly, TTA is concerned with online evaluation, meaning the learner must issue its prediction ¢
immediately after observing ;. The main paradigm in TTA employs an unsupervised objective function
to be optimized on-the-fly at test time to circumvent performance drops caused by domain shift.

( ) observed a strong correlation between the entropy of the output prediction for a given batch of



Published in Transactions on Machine Learning Research (01/2025)

1.0 z Fixed
—— Gaussian Noise 2.0 —— Gaussian Noise fgt )é' Undated
0.9 ! Motion Blur 1.8 Motion Blur - pdate
S Snow K16 Snow T
- 0.8 kel
3 g1 Ty Ty Tipo *ee S
so07 g12
[=] o
<} S 1.0
“06 - J 0F f )
0.8
0.5 0.6 T
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Num. Batches Num. Batches xs ~ Ds
(a) Aux-Tent equation 2. (b) DISTA equation 4. (c) Pipeline equation 5

Figure 1: Lookahead Analysis and Pipeline. (a) Running mean of lookahead over observed batches
when employing Tent on both data revealed from the stream and D;. (b) Running mean of lookahead over
observed batches using DISTA. (c¢) Pipeline for our proposed DISTA.

inputs and the error rate. Based on that, ( ) proposed to minimize the entropy of the output
prediction for a given batch of inputs at test time through:
Opr1 = argminEq, s [E (fo(z+))] with E (fo(z:)) Z fi(xe) log fo(xy). (1)

In practice, the optimization problem is usually solved with a single gradient descent step to avoid overfitting
network parameters on each received batch. It is noteworthy that this approach is only effective when the
received batches (i) have diverse sets of labels and (ii) relate to a single type of domain shift ( ,

). In previous work, ( ) attempted to accommodate these drawbacks by deploying a data
selection procedure, while ( ) leveraged a balanced episodic memory that have inputs with a
diverse set of labels.

2.1 Test Time Adaptation with Auxiliary Tasks

TTA imposes many challenges due to its realistic setup, where the learner needs to adapt the model to
unlabeled data revealed by the stream in an online manner. The amount of data available for adaptation
is thus fairly limited, as the learner only has access to the data revealed by the stream. Yet, the speed of
adaptation matters: the faster the learner adapts to the distribution shift, the better its online performance.
However, most TTA methods in the literature conduct a single adaptation step to prevent overfitting model
parameters to each received batch. That is, even when new batches are revealed slowly enough to allow
multiple optimization steps, the learner g cannot benefit from this additional time. This naturally begs the
question: can we enhance the adaptation speed of TTA methods in this setting? In this work, we address
this question through the lens of auxiliary tasks.

Auxiliary tasks ( ; , ) are additional loss terms that indirectly optimize
the desired objective function. In fact, the simple TTA objective in equation 1 can already be seen as an
auxiliary loss of sorts, but unfortunately it is susceptible to overfitting. We take a step back and ask the

following question: what could an adaptation model access at step ¢ other than z;? EATA ( , ),
for instance, leveraged source data D in an anti-forgetting regularizer, while DDA ( , ) used Dy
to train a diffusion model to project x; into the source domain. More recently, ( ) condensed

Ds to construct a set of labeled examples per class used for adaptation. While one could potentially access
labeled samples D, for the aforementioned approach, several applications do not allow accessing this labeled
distribution (e.g. training procedure can be outsourced with private training data). Note that, however, one
could get unlabeled data from this distribution cheaply. For example, one could store few unlabeled data
examples at clear weather conditions (for autonomous driving applications) as a proxy for source distributions
before deploying the model in an episodic memory, following ( ). Having said that, a natural
question arises: how can we use unlabeled samples from Dy to better adapt on distribution shifts in S7

We first examine a simple auxiliary task. During test time, we adapt the model not only on the data revealed
from the stream (i.e. x;) but also on a sample x4 ~ Ds. For example, for the entropy minimization approach
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in equation 1, we get the following objective function:

min[ E _E(fo(ze)) + E_E(fo(xs))]. (2)

0 x;~S zs~Dg
At first glance, it is unclear whether the additional term in the loss function would effectively facilitate
adaptation to domain shifts in §. Therefore, to better analyze the effect of the auxiliary term, we break the
optimization problem in equation 2 into two steps as follows

0 =0y — Vo [E (fo(xr))], Or1 =07 —YVo [E (fo(xs))]- (3)

Note that the gradients in the first and second SGD steps are evaluated at 8; and 0, respectively. Now, we
can study the effect of our auxiliary task by measuring the improvement on the entropy after optimizing the
auxiliary task via the notion of lookahead ( , ) defined as

Lookahead (%) = 100 x (1 - E(f9t+1(zt))/E(f9;:(zt))> .

The higher the lookahead, the better the auxiliary task is at minimizing the desired objective. We conduct
experiments on the ImageNet-C benchmark ( , ), where we fix fp, to be a ResNet-
50 ( , ) pretrained on the ImageNet dataset ( , ). We measure the lookahead over
samples revealed from the stream for when S contains one of 3 domain shifts (Gaussian Noise, Motion Blur,
and Snow) and we take Dy as a subset of unlabeled images from the training set. For each received batch z;
from the stream S, we sample a batch zs from Dy with the same size for simplicity. Figure la summarizes the
results. We can observe that the simple auxiliary task of minimizing the entropy of predictions on source data
has, surprisingly, a positive impact on the desired task (i.e., minimizing entropy on corrupted data). This
hints that one could accelerate the convergence of adaptation on corrupted data by leveraging unsupervised
auxiliary tasks on source data. We highlight that, through our lookahead analysis, one could analyze the
effectiveness of different auxiliary tasks in TTA. We confirm the performance improvement hinted via our
lookahead analysis experimentally in Section 4.1 and Table 1. That is, by allowing existing TTA methods
(such as Tent ( , ) and SHOT ( , )) to leverage source data, one can improve
and accelerate their adaptation by adapting on source data as an auxiliary task. Next, we describe our
proposed auxiliary task.

2.2 DISTA: Distillation Based Test Time Adaptation

In Section 2.1, we analyzed the positive impact of one example of auxiliary task, observing that entropy
minimization on source data does improve adaptation to domain shifts. Next, we propose a better and more
powerful auxiliary task. We distill a saved copy of the original pretrained model fg, during adaptation on
samples from the source distribution. More precisely, we replace the entropy minimization term on the source
data with a cross-entropy loss between the predictions of fy, and fy,. We also use a data selection scheme

similar to that of ( ) whereby we only update the model on samples with low entropy. Our
overall objective function can be described as follows:
min [ B N\ (z)E (fo(z:) + B As(s)CE (fo(xs), fo, ()] (4)
1 x A oS x),mt— € 1 T
where )\t(x) _ {E(fo, (z))<Eo}-+{cos(fe, (x), <e} S( ) o {E(fo,(x))<Eo}

exp(E(fa, () — Eo) P T D (E(fa, () — Eo)

where 1y is an indicator function that takes the value 1 if the condition {.} is satisfied and 0 otherwise,
e and E are positive thresholds, and m!~! is the moving average of the prediction vector. We note here
that both A\; and A are data selection functions that prevent updating the model on unreliable or redundant
samples. To assess the effectiveness of our proposed auxiliary task, we follow our setup in Section 2.1 and
consider the following alternating optimization approach:

0F = 0r — Vo [M(z)E (fo(zr))], Orr1 = 0 — YV [As(25)CE (fo(xs), fo,(2s))] - (5)
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Hence, we can now measure the lookahead and analyze how effective our approach is for adaptation. We
replicate our setup from Section 2.1 and report the results in Figure 1b. We find that our proposed auxiliary
task has a positive lookahead over all observed batches. It is worth mentioning that we observe similar results
with all types of domain shifts we considered, as indicated by more detailed lookahead results that we defer
to appendix for the sake of conciseness. That is, solving our auxiliary task on clean data in an online fashion
helps the model to adapt faster and better to distribution shifts presented in the stream S. Please refer to
Figure 1c for an illustration of DISTA.

Intuition behind DISTA. First, based on our observation in Section 2.1, minimizing the entropy of the
predictions on clean data can accelerate adaptation and hence improve online performance. However, besides
the clean data, we also have access to the pretrained model fy,. Therefore, we can combine both sources of
information to obtain the richer auxiliary task of knowledge distillation ( , ), which has been
shown to improve performance in similar settings ( , ). Further, the auxiliary task in DISTA
is essentially an anti-forgetting objective, and thus allows us to adapt a pretrained model to domain shifts
while remaining close to fp, in function space. We hypothesize this allows for a more stable adaptation that
prevents fy, from diverging and overfitting on each presented domain shift by S. We argue that DISTA is
richer than the simple entropy minimization in equation 2 while being more flexible than regularizing the
parameter space (e.g. EATA ( , ).

Unlabeled source data vs Labeled training data. We close this section by stressing a clear distinction
between the use of labeled training data and unlabeled source data. In many applications, the labeled data
used to train the model is not available either because it is proprietary or because of privacy concerns. Yet,
unlabeled data from the source distribution (or even another similar distribution, see Section 4.4.3) might
be easily accessible. Take CLIP ( , ) as an example. Although the pre-trained weights of
the CLIP model are publicly available, the training data is not, as it is kept private by OpenAl. However,
one could easily sample unlabeled data points from the source distribution (e.g. sampling clean images that
are correctly classified by the CLIP model with high confidence). Thus, we only assume access to unlabeled
source data to further alleviate privacy concerns and make DISTA as broadly applicable as possible.

3 Related Work

Unsupervised Domain Adaptation (UDA) aims to learn domain-invariant features by optimizing
pretrained models on both labeled source data and unlabeled target data ( , ). Such
invariant features can be learned via information maximization ( , ) or generative adversarial
networks ( , ). A big reason for the success of UDA methods is the offline adaptation, allowing
the learner to visit each example in the target distribution multiple times ( , ). However, TTA
alleviates this assumption through online evaluation, where the learner must adapt to and make a prediction
for each sample from the stream after seeing it only once.

Test Time Training (TTT) aims at updating a pretrained model at test time on the received unlabeled

data when there is a distribution shift between training and testing data ( , ). This is usually
done by including a self-supervised loss function during the training process (e.g. predicting the rotation
angle ( , )) that will be later used at test time ( , ; ;

, ). It is noteworthy that such approaches, while being effective in mitigating performance drops
under distribution shifts, are less practical as they require control over the training process, and thus are not
readily applicable to any pretrained model ( , ).

Test Time Adaptation (TTA) focuses on optimizing a given pretrained model at test time (

; , ; , ), and in constrast to TTT, poses no assumptions on the tralmng
process. Earlier approaches showed that adapting the statistics of the normalization 1aycrs is effective at
reducing the error rate under distribution shifts ( , ; , ).
This was followed by the seminal work of ( ) which showed a Correlation between the entropy of
the model prediction distribution and the error rate. This observation initiated a line of work that minimizes
the entropy of the predictions at test time such as TENT ( , ), MEMO ( , ),
and the more powerful EATA ( , ) and SAR ( , ). Later approaches employed
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Table 1: Episodic Evaluation on ImageNet-C Benchmark with ResNet-50. We report the error
rate (lower is better) for each corruption. We adapt the model to each corruption independently in episodic
evaluation. DISTA improves over the previous state-of-the-art methods.

Noise Blur Weather Digital

Gauss  Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Bright Contr Elastic Pixel Jpeg Avg.
Source 97.8 97.1 98.1 82.1 90.2 85.2 77.5 83.1 76.7 75.6 41.1 94.6 83.0 794 684 82.0
AdaBN 849 843 843 85.0  84.7 73.6 61.1 658 669 52.1 34.8 83.3 56.1 51.1  60.3 68.5
BN 84.6 839 838 80.1 80.2 71.7 60.4 654 652 51.6 34.6 76.3 54.4 49.7 592 66.7
SHOT 731 698 720 76.9 759 58.5 52.7 533 622 438 346 82.6 46.0 423 489 59.5
TTAC 71.3 703 708 82.1 774 63.9 53.9 499 555 439 3238 81.4 43.7 411 46.7  59.0
Tent 70.3 682  69.0 72.2 73.0 58.8 50.7  52.7  59.0 427  32.7 72.9 45.6 414 476 571
SAR 69.5 69.7  69.0 71.2 1.7 58.1 50.5 529 57.9 427  32.7 62.9 45.5 41.6  47.8 56.2

Aux-Tent 68.5  66.4  66.6 71.1 71.9 55.8 49.3 508 604 41.6 32.7 80.8 44.2 40.5 46.3 56.5

Aux-SHOT  67.1 649  65.7 69.0 69.9 55.5 49.8 50.7  58.7 423 33.3 68.2 44.4 41.1 46,5 55.1
EATA 64.0  62.1 62.5 66.9 66.9 52.5 474 48.2 542 402 32.2 54.6 42.2 39.2  44.7 519
DISTA 62.2 599 60.6 653 65.3 50.4 46.2 46.6 53.1 38.7 31.7 53.2 40.8 38.1 43.5 50.4

Table 2: Episodic Evaluation on ImageNet-3DCC Benchmark with ResNet-50. We compare our
proposed DISTA with the previous state-of-the-art EATA in terms of error rate (lower is better).

Bit Error Quant. Far Focus Flash Fog H256 ABR H256 CRF Noise Low Light Near Focus XY Blur Z Blur Avg.

EATA 91.5 58.9 47.8 71.0  62.2 72.4 67.3 56.1 46.8 38.6 64.9 52.7 60.9
DISTA 91.4 57.9 47.0 70.2 61.8 71.5 66.3 54.1 45.5 38.0 63.8 51.5 59.9

data augmentations at test time to enhance invariance to distribution shifts ( ,

). More closely to our work, some TTA methods leveraged source data for adaptation through model
optimization ( , ), feature matching ( , ), or input projection via diffusion
models ( , ). In this work, we approach TTA through the lens of auxiliary tasks, proposing a
new and more effective way to leverage unlabeled data samples to accelerate the adaptation.

4 Experiments

Setup. We follow prior art in focusing our experiments on the image classification task ( , ;
, ; , ) where fy is a model pretrained on ImageNet ( , ). In
our experiments, we consider different architectures including the standard ResNet-50 ( , ), the
smaller ResNet-18, ResNet-50-GN (replacing Batch Normalization Layers with Group Normalization layers),
and Vision Transformers (ViT) ( , ), following ( ). Regarding the evaluation
benchmarks, we consider two large scale standard benchmarks in the TTA literature; ImageNet-C (

, ) and the more realistic ImageNet-3DCC ( , ). We fix the severity level in our
experiments to 5 and evaluate on all corruptions presented in both of the aforementioned datasets. Unless
stated otherwise and following prior work ( , ; , ; , ), we report
results for ResNet-50 ( ) as the architecture fp and assume that the stream S reveals batches of
data with a size of 64. Nonetheless, Section 4.4.2 presents results under different architectures and batch
sizes. Please refer to the appendix for further experimental details.

In our experiments, we consider a total of 8 TTA baselines from the literature. In particular, we analyze
methods that adapt the statistics of BN layers, such as Adabn ( , ) and BN ( , );
the clustering approach TTAC-NQ ( , ); SHOT ( , ), which maximizes the mutual
information; the continual adaptation method CoTTA ( , ); entropy minimization approaches,
such as Tent ( , ); and the state-of-the-art methods that employ data point selection procedures,
like SAR ( , ) and EATA ( , ). We follow the official implementation of all baselines
with their recommended parameters. Further, and for fair comparison, we supplement Tent and SHOT to
leverage source data by applying their adaptation method on source data as an auxiliary task. That is,
for each TTA method, we conduct two adaptation steps: one on x; and one on x4. For Tent, we precisely
conduct the alternating optimization scheme in equation 3, while for SHOT we replace the entropy with a
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Table 3: Continual Evaluation on ImageNet-C with ResNet-50. We report the average error rate per
corruption (lower is better) when S contains a sequence of domain shifts (ordered from left to right) followed
by the clean validation set of ImageNet. DISTA improves over previous state-of-the-art by 6% on average
across all corruptions and on clean data.

Noise Blur ‘Weather Digital

Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Bright Contr Elastic Pixel Jpeg Avg. Val

CoTTA  77.2 66.9  63.1 75.1 71.5 69.4 67.1 7.9 712 671 62.0 73.1 69.1 66.1 68.0 69.3 61.4
SAR 68.6 61.7 618 72.6 69.8 65.1 57.6 63.7 641 528 41.2 67.6 52.8 494 52,5  60.1 34.1
EATA 64.0 588  59.2 69.2 68.1 62.8 56.4 58.5  60.6 48.4 39.2 58.9 49.0 454 487 56.5 32.7

DISTA 62.4 56.9 57.0 63.5 62.9 51.4 46.3 48.1 53.5 40.1 32.8 52.8 42.5 38.9 43.3 50.2 26.3

Table 4: Continual Evaluation on ImageNet-3DCC with ResNet-50. We compare DISTA to the
previous state-of-the-art EATA in terms of average error rate per corruption when S contains a sequence of
domain shifts (ordered from left to right) followed by the clean ImageNet validation set. DISTA improves
over EATA by ~ 8% on average across all corruptions and by 9% on clean data.

Bit Error Quant. Far Focus Flash Fog H256 ABR H256 CRF Noise Low Light Near Focus XY Blur Z Blur Avg. Val

EATA 91.5 71.5 57.2 74.6  66.6 79.0 75.0 66.9 55.9 48.5 70.6 59.3 68.1 358
DISTA 91.0 61.2 48.9 70.4 61.4 72.1 66.0 55.1 45.1 39.2 63.4 50.8 60.4 26.5

mutual information term on both x; and x,. We denote this enhanced version of both baselines as Aux-Tent
and Aux-SHOT, respectively. We note that for EATA, we do not include an additional auxiliary task as
EATA leverages source data in the anti-forgetting auxiliary loss in the form of /5 regularizer. Regarding our
proposed method, DISTA, we fix D, to be a randomly selected subset of ImageNet training set', and for
each received z; from the test stream, we sample z from D, with an equivalent batch size. We employ our
alternating optimization approach described in equation 5 and consider different approaches to solve our
proposed auxiliary objective function in Section 4.4.1.

4.1 Episodic Evaluation

We start with the simple episodic evaluation, following the common practice in the TTA literature (

, ; , ; , ). In this setting, the stream S contains data from a single type
of domain shift w.r.t to the training distribution (e.g. fog). We report the error rates for all 15 corruptions in
the ImageNet-C benchmark in Table 1 for different TTA methods.

We observe that (i) DISTA sets new state-of-the-art results in the episodic evaluation by outperforming EATA.
We found that our auxiliary distillation task reduces the error rate under all corruptions by a significant 1.5%
on average, and by 2% on shot noise and motion blur. Table 2 shows similar improvements on the more
challenging ImageNet-3DCC benchmark. This result demonstrates the effectiveness of DISTA in accelerating
the convergence of entropy minimization on data received from the stream, as evidenced in Figure 1b. That
is, the faster the model is at adapting to earlier batches, the better the performance on later batches revealed
by the stream.

Regarding equipping Tent and SHOT with source data, we observe that our auxiliary task approach is
orthogonal to the adaptation strategy. Both Aux-Tent and Aux-SHOT outperform their original baselines by
a significant margin. For example, optimizing the auxiliary task yields a 3% error rate reduction on motion
blur for both baselines. It is worth mentioning that we record a more notable performance improvement
when employing the auxiliary task on SHOT compared with Tent (4% compared to 0.6% improvement on
average). Note that, DISTA outperforms both approaches by at least 4.5% on average across all corruptions.

4.2 Continual Evaluation

Next, we consider the more realistic and challenging continual evaluation protocol. In this setting, the stream
S presents the learner with a sequence of domain shifts. We follow ( ) in constructing the

ISimilar results obtained with Ds being a subset of the validation set can be found in Appendix C.4.
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Table 5: Federated Evaluation on ImageNet-C with ResNet-50. We split the data belonging to each
corruption into 50 clients (no overlap) and report the average error rate per corruption. We consider the
local training (-L) where there is no communication across clients and the federated adaptation (-F) when
clients with the same domain shift category communicate their models for averaging. For example, clients
with Noise corruption (Gaussian, Shot, and Impulse) average their models every communication round. We
observe that federated adaptation reduces the error rate over local adaptation. Further, DISTA improves
over other methods in both scenarios.

Noise Blur ‘Weather Digital

Gauss Shot Impul ‘ Defoc  Glass Motion Zoom ‘ Snow Frost Fog Bright ‘ Contr Elastic Pixel Jpeg Avg.

Tent-L 83.6 829 829 84.7 84.6 73.3 60.7 654  66.6 51.8 349 82.7 55.8 50.5  59.6 68.0
Tent-F 726  69.7  69.6 75.3 74.8 65.8 57.0 57.8  61.1 47.1  36.5 73.4 50.4 46.8 514 60.6

EATA-L 823 814 818 ‘ 83.8 83.6 72.2 59.8 ‘ 64.0 65.7 50.5 34.3 ‘ 81.1 54.7 49.5 579 66.8

EATA-F 68.8 66.0 66.0 72.5 72.5 64.6 59.0 545  59.1 456  38.2 64.0 49.7 458 49.7 584
DISTA-L  81.1 79.6  80.4 ‘ 82.7 82.6 70.4 58.2 62.2 643 487 342 ‘ 79.4 53.3 48.1 558 654

DISTA-F 628 588 589 66.8 66.0 54.6 48.2 50.5 549 40.6 338 56.6 44.8 40.2 446 521

stream S by concatenating all corruptions in the ImageNet-C benchmark. We report the results on different
domain orders in the appendix due to space limitations. Further, and to assess the performance of the model

on the original source distribution upon adaptation, we follow ( ) by appending the clean
validation set of ImageNet as a last domain in the stream S. For this evaluation setup, we consider three
strong continual adaptation methods: CoTTA ( , ), SAR ( , ), and EATA (

, ) that are designed for life-long adaptation. Table 3 summarizes the results on ImageNet-C where
the order of domains presented to the learner follows the order in the table (from left to right). We accompany
the reported error rate on each corruption with the average error rate under all domain shifts. We further
adapt the model on the clean validation set at the end of the stream (last column).

We observe that (ii) DISTA sets a new state-of-the-art in continual evaluation by outperforming EATA by a
notable 6% on average across all corruptions. It is worth noting that the performance gap is particularly wide
for snow, motion and zoom blur, where DISTA reduces the error rate by 10% or more. (iii) Furthermore,
while all considered methods suffer from a significant performance drop on the source distribution, our
distillation auxiliary task prevents forgetting the source domain and reduces the error rate on clean validation
data by more than 6%, recovering the performance of the non-adapted model. This goes to show that,
while our auxiliary task enhances the convergence speed of adaptation, this improved convergence does
not come at the cost of overfitting to each adapted domain. In fact, our distillation loss helped in better
life-long adaptability, and importantly, not forgetting the original source domain. Notably, the performance of
DISTA under continual evaluation was not substantially different from that under episodic evaluation. This
demonstrates the stability that our auxiliary task provides in the adaptation process. We also complement
our experiments with continual evaluation on ImageNet-3DCC dataset and report the results in Table 4. We
observe similar results on this more challenging dataset where we outperform the previous state of the art,
EATA, by 8% on average across all corruptions and by 9% on the clean validation set.

4.3 Federated Evaluation

Motivation. In all of the previous evaluation schemes, we focused on adapting a single model having access
to the entire stream of data §. However, in many realistic scenarios there might be several deployed models,
and the data received by each one of them individually might not be enough for adaptation. Federated
learning ( , ; , ) shines in this setting by allowing different models to
communicate their updates privately with a server that aggregates the information and sends back a more
powerful global model. The aggregation step is usually done through federated averaging ( ,

), where the global model is the average of the weights of the local models. In this section we analyze a
novel federated evaluation setup of TTA.

Setup. We consider a category-wise federated TTA setup where clients (7.e. models) adapting to the same
category of domain shifts (e.g. all weather corruptions in ImageNet-C) communicate their updates for a



Published in Transactions on Machine Learning Research (01/2025)

65
520 EATA 8 Source zf‘g i EATA SOTA
518 DISTA Tent S DISTA 60 DISTA
516 Batch Size q75 EATA g516 1 + DISTAL 255
o514 Frequency 270 DISTA @514 --- DISTA% 5
8512 S §512 | 550
@ 51 = 65 cohe &
551.0 s 5510 - 545
F 508 i 60 @i 50.8 . &40
55 50.6 TSl
506 = E— R 35
50.4 50 50.4
0 20 40 60 8 100 2’ 2* 2° 2° 0 10" 102 30 . N N
Additional Computation (%) Batch Size % of Source Data r188% g0t 2508 W
(a) Computational Burden. (b) Sensitivity to BS. (c) Sensitivity to |Ds| (d) Sensitivity to Archs.

Figure 2: Analysis on DISTA. (a) Trade-off between error rate and the additional computational requirement
of DISTA in comparison to EATA. (b) Robustness of the performance gain of DISTA under different batch
sizes. (c) Sensitivity of DISTA against the size of D, in contrast to using labeld (DISTA-L). (d) Shows
consistent performance gains of DISTA under different architectures when compared to EATA (ResNet-18,
50) and SAR ( ) ) (ResNet 50-GN, ViT).

better global adaptation. We divide the data belonging to a single domain into N non-overlapping subsets
where each client adapts to a stream of data coming from one subset. Further, we allow all clients to have
M communication rounds with the server that aggregates the updates and sends back the global model.
We consider the full participation setup where all clients participate in each adaptation and communication
round. For instance, in the weather conditions case, all clients adapting to snow, frost, fog, and brightness
will communicate their models to be aggregated via federated averaging. Note that setting N = 1 and
M = 0 recovers the episodic evaluation in Section 4.1. We set N = 50 and compare the performance of local
adaptation (i.e. M = 0) and the federated adaptation with M = 4 which results in a communication round
each 4 adaptation steps.

Results. We report the error rates on the 4 corruption categories in Table 5 for Tent, EATA, and DISTA
where (-L) represents local adaptation and (-F) represents federated adaptation. We observe that (v)
Conducting federated adaptation provides consistently lower error rates than adapting each client solely on
their own local stream of data. This result is consistent for all considered methods. Note that the performance
gain is despite the fact that in each communication round, models adapting to different domain shifts are
being aggregated. (vi) DISTA is consistently outperforming all other baselines under both the local and
federated adaptation setups. Specifically, DISTA improves over EATA by a notable 6% on average in the
federated adaptation setup.

4.4 Analysis
4.4.1 Computational and Memory Burden

In the previous section, we empirically verified the effectiveness of DISTA under different evaluation schemes
and benchmarks. Now, we provide a fine-grained analysis of the computational cost our method. We first
observe that the second update step in equation 5 has a similar cost to the adaptation step on x;, as we
sample x, with the same size. This makes the overall cost of DISTA 2x the cost of updating using EATA.
Next, we discuss some tricks to accelerate DISTA.

Parallel updates. The main bottleneck in the update step in equation 5 is that 6,4 is a function of 67,
with the two optimization steps on x; and x; done in sequence. Assuming enough memory, and inspired by
federated averaging, we also propose to solve the DISTA optimization problem in equation 4 with

07 = 00 = yVo Mu(@) E (fo(x))] 07 = 00 =7V [As(26) CE (fo(5), fo, (25))] (6)

and set 0,41 = (07+07)/2. This will allow both update steps on z; and x4 to be conducted in parallel,
minimizing the latency of DISTA. We found that this approach, with the very same hyperparameters, yields
similar results to the solver in equation 5. Further details are left for the appendix.

Memory-efficient setup. While the parallel approach in equation 6 reduces the latency of DISTA, it incurs
larger memory costs than EATA. Hence, we focus our experiments on the more memory-efficient sequential
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Table 6: Continual (top two rows) and Episodic (last two rows) Evaluation on ImageNet-C When
Source Data is Unavailable. We report the error rate (lower is better) for each corruption. DISTA-Sketch
improves over EATA.

Noise Blur Weather Digital
Continual Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Bright Contr Elastic Pixel Jpeg Avg. Val
EATA 64.0 58.8 59.2 69.2  68.1 62.8 56.4 585 60.6 484  39.2 58.9 49.0 45.4  48.7 56.5 32.7
DISTA-Sketch ~ 63.6  59.1  59.3 68.1  68.1 57.9 51.4 528 572 43.6 36.2 56.8 46.9 42.7 463 54.0 29.3
Episodic Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Bright Contr Elastic Pixel Jpeg Avg. -
EATA 64.0 621 625 66.9  66.9 52.5 474 482 542 402 322 54.6 42.2 39.2 447 519 -

DISTA-Sketch ~ 63.5  61.1  61.5 67.1 66.6 51.2 46.8 474 539 394 319 55.2 41.5 38.7 443 513 -

update for DISTA. In Figure 2a, we report the average error rate on ImageNet-C under episodic evaluation
under different additional computational burdens. We do so by (i) varying the batch size of x, or (ii) the
frequency of updates on z, under a fixed batch size of 64. Note that for 0% additional computation, the
performance of DISTA restores the current state-of-the-art EATA. Interestingly, we observe a smooth trade-off
between additional computation and performance gains. For example, with 50% additional computation
(i.e. optimizing the auxiliary task on every other batch) DISTA outperforms EATA by 1.4% on average. That
is, one could save 50% of the additional computation of DISTA with a marginal drop in performance gains.

4.4.2 Ablation Studies

Sensitivity to batch size. For completeness, we analyze the sensitivity of DISTA when the stream S
reveals batches of different sizes. In particular, we consider batch sizes in {64,32,16,8}. We conduct episodic
evaluation on ImageNet-C and report the average error rate on all corruptions in Figure 2b. We compare our
DISTA with the non-adapted model (Source), Tent, and EATA. We observe that DISTA provides consistent
performance improvements under all considered batch sizes. In fact, at batch size 8, DISTA improves upon
EATA by more than 15%. It is worth noting that the data selection process of EATA hinders its effectiveness
for small batch sizes, allowing Tent to outperform it, but our proposed auxiliary task seems to mitigate the
same effect for DISTA.

Sensitivity to the size of D,. In all our experiments, we assumed the size of the source dataset D; to
be comparable to the size of S. In Figure 2c, we see the average error rate on ImageNet-C under episodic
evaluation when DISTA has access to only a fraction of D;. We observe DISTA is robust to the number
of clean examples, and even when D; has only 10% of the stream size (i.e. Ds has 5000 unlabeled images),
DISTA improves over EATA by 1.4% on average on ImageNet-C.

DISTA +Labels. We also analyze a variant of DISTA where labels from the source data are available. We
replace the distillation loss in equation 4 with a cross entropy term with the ground-truth label. We defer a
thorough discussion and experimental results to appendix C.6, where we show that, while DISTA+Labels
outperforms EATA it still underperforms DISTA. This shows the efficacy of DISTA is not due to the learning
signal coming from the source data, but to the anti-forgetting regularization preventing the model from
straying away from the original pretrained model in function space.

Architectures. Finally, we follow the recent work of ( ) and explore the effectiveness of
integrating DISTA into different architectures. We consider the smaller and more efficient ResNet18, ResNet50-
GN, and ViT ( , ). For all architectures, we follow ( ) in adapting only the

normalization layers and compare the performance against EATA on ResNet18 and ResNet50, and against
SAR on ResNet50-GN and ViT (best performing method). We report the results in Figure 2d where we
follow our episodic evaluation on ImageNet-C. We find that DISTA consistently outperforms other baselines
irrespective of the choice of the architecture. In fact, DISTA improves over SAR under the ViT architecture
by an impressive 7%, setting new state-of-the-art results. Due to limited space, we leave experiments with
ViT under batch size 1 to the appendix.
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4.4.3 DISTA When Source Data is Unavailable.

At last, we analyze the setting when the source data Dy is unavailable. We ask the question: Can we leverage
a proxy distribution to be effective in accelerating and regulating the adaptation in DISTA? Following on
from the anti-forgetting motivation of DISTA, it is reasonable to expect DISTA to work best with samples
from the training distribution. However, if the prediction function defined by the model is smooth enough, it
is possible that samples from a different distribution might be enough to regularize it effectively. To answer
this question, we conduct the following experiment. We set D, as ImageNet-Sketch ( , ) and
test the efficacy of DISTA under both episodic and continual evaluation on the ImageNet-C benchmark. We
denote this variant of DISTA as DISTA-Sketch.

Table 6 summarizes the results on ImageNet-C benchmark under continual and episodic evaluations, re-
spectively. We observe that DISTA under this setting outperforms EATA by 2.5% on average across all
corruptions in ImageNet-C and by 3.4% on the clean validation set under continual evaluation. We also note
that this performance gain is also observed under the episodic evaluation where DISTA-Sketch improved
the performance over EATA by 1% against contrast and motion blur. This demonstrates how versatile our
proposed DISTA is even when D, is unavailable.

5 Conclusions

In this work, we analyzed the effectiveness of auxiliary tasks to accelerate the adaptation to distribution
shifts through lookahead analysis. In particular, we showcased two scenarios for when test time adaptation
suffer from limited data for adaptation: slow stream and limited data per client in the federated setting. In
both scenarios, our proposed DISTA provided significant performance gains.
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A Test Time Adaptation with Auxiliary Tasks

A.1 DISTA: Distillation Based Test Time Adaptation

In Section 2.2, we showed how our proposed auxiliary task in DISTA had a positive lookahead for three
corruptions from the ImageNet-C benchmark. Here, for the sake of completeness, we provide the lookahead
plots for the remaining corruptions in ImageNet-C in Figure 3. We observe, similarly to our earlier findings
in Section 2.2, that our auxiliary task has a consistent positive lookahead across all corruptions. That is, our
distillation loss on clean data helps to better adapt to domain shifts. Note that this is already demonstrated
through our extensive experimental evaluation in Sections 4.1-4.3 where DISTA consistently outperformed
previous state-of-the-art TTA methods.
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Figure 3: Lookahead Analysis. We plot the lookahead of DISTA for the 12 different corruptions from the
ImageNet-C benchmark. We find that our proposed auxiliary task always yields a positive lookahead across
all considered corruptions. These results corroborate our hypothesis that optimizing our distillation task on
clean data helps adapting to distribution shifts.

A.2 Lookahead Analysis with Ground Truth Labels.

In previous sections, we analyzed the lookahead under two restrictions: (i) The model can only access
x¢ at time step ¢ and (ii) the ground truth labels are never available to the learner. To that regard, we
computed the lookahead solely on x; and using a proxy unsupervised metric (i.e. entropy). Here, we discuss
a hypothetical scenario to confirm our findings where we assume that the learner can access z;;1 at time
t along with the ground truth labels of x4, 1 denoted as y;41. In this case, one can redefine the lookahead
based on the actual performance by measuring the following

Lookahead, = CE (fgt+1 (Te41), yt+1) - CFE (fg; (Te41), ytH) . (7)

Note that in order to get positive lookahead values, the auxiliary task has to improve the performance. We
measure the running mean of this version of lookahead in Equation 7 over samples revealed from the stream
when S contains one of 3 domain shifts from ImageNet-C (Gaussian Noise, Motion Blur, and Snow) in
Figure 3d. We observe a positive impact of the auxiliary task proposed in DISTA as the running mean of
lookahead is positive. Note that the trend over this measure (with alleviating the realistic restrictions) is
inline with our proposed lookahead analysis in the paper in Section 2.1.

B Related Work

Evaluation Protocols in TTA. The predominant evaluation protocol in TTA is the episodic evaluation:
adapting the pretrained model to one type of distribution shift at a time (e.g. fog) where the environment
reveal batches of data with mixed categories. More recently, a line of work tackled more challenging setups
such as continual evaluation ( , ), practical evaluation ( , ), a computationally
budgeted evaluation ( , ), and federated evaluation ( , ). In this work, we
experiment with our proposed DISTA under different evaluation protocols showing its superiority to previous
methods in the literature in different scenarios.
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Continual Learning. Continual Learning studies a closely related problem where a model learns from

labeled data revealed sequentially from a stream ( , ). Several works analyzed this interesting
problem and developed powerful methods to enhance and accelerate learning including regularization
methods ( , ; , ) and employing an experience replay methods (

, ; , ). More closely and very recently, Csaba et.al explored a semi-
supervised setting in online continual learning where the learner train on data revealed from the stream in a
semi-supervised manner due to the delay in the labeling process ( , ). Despite, the similarity
between Continual Learning and TTA, one clear distinction between these two areas of research is that the
model learns on labeled data in CL while adapting on unlabeled data in TTA.

Federated Learning (FL) FL tackles the data scarc1ty challenge through training models in a collaborative

and descentralized manner ( , ). Closely related, personalization
techniques attempted to combat dlstrlbutlon shlfts between the global federated model and the deployed
models on edge devices ( , ; , ). Nonetheless, FL assumes accessing labeled data

distribution to train and personalize on, unlike TTA where models are adapted on unlabeled streams of
data. In this work, we conduct initial exploration on the impact of adaptation in a federated fashion. In fact,
we show scenarios where federated averaging positively enhance adaptation even when different clients are
adapting to different distribution shifts.

C Additional Experiments

C.1 Experimental Setup and Hyper-parameter Choices

In Section 4, we describe our experimental setup in terms of architectures and evaluation protocols. In this
section, we provide additional implementation and experimental details that, due to space constraints, we
were unable to elaborate on in the main paper. For all baselines, we used the official code released by the
authors to reproduce their results with their recommended hyperparameters. Note that all analyzed TTA
methods (except SHOT) operate solely on the normalization layers of a given network. That is, 6 always
refers to the learnable parameters of the normalization layers (e.g. BatchNorm layers). Furthermore, and
following ( ) and ( ), we use an SGD optimizer with a learning rate of 25 x 1074
and a momentum of 0.9. For DISTA, we follow ( ) in setting € = 5 x 1072 in equation 4 but pick
a higher value for Ey; we set Ey = 0.51og(1000) instead of 0.41og(1000), since we observed a better lookahead
with modest increases in Fy. However, as we show in a later section, we still observe better results with
DISTA than with EATA even when keeping Ey = 0.410g(1000). Regarding Aux-Tent, we set the learning
rate to 5 x 1074, For Aux-SHOT, the learning rate is set to the default value recommended by SHOT. It is
worthy to mention that in all our experiments, the stream reveals batches with randomly sampled classes
in i.i.d. fashion. Also, in our federated adaptation experiments, the available source data was randomly
partitioned among the N clients, so that each client only had access to a different subset of the data with 1/N
of the samples. At last, it is worth noting that each experiment was run using a single Nvidia V100 GPU.

C.2 Continual Evaluation

In Section 4.2, we evaluated DISTA under the continual learning setup where the stream S contains multiple
distribution shifts presented one at a time. We followed the evaluation setup from ( ) regarding
the order of types of domain shift in the stream S. Here, and for completeness, we evaluate DISTA and
compare it to EATA when the order of different domains is shuffled. We report the results across 3 random
seeds that control the randomness of domains in S in Table 7

We observe that while randomly shuffling the domains of ImageNet-C in the stream S has a large impact
on the performance of EATA, DISTA is much more robust against such variation. That is, we report a
performance drop of 7-9% for EATA when the corruptions are randomly ordered, and thus more severe shifts
between presented domains are expected compared to a nicely ordered sequence. However, the same effect is
virtually absent when using DISTA, for which the added randomness in domain order had little effect on the
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Table 7: Continual Evaluation on ImageNet-C Under Different Domain Orders with ResNet-50.
We report the average error rate on corrupted (across all 15 corruptions) and clean domains with different
random orders of domains. The first two columns are the summary of the evaluation in Section 4.2. We
observe a more stable adaptation with DISTA in comparison to EATA under different domain orders where
the performance gap surpasses 10%. Lower is better.

Ordered 42 4242 424242 Avg.

Seed Corr. Clean ‘ Corr. Clean ‘ Corr. Clean ‘ Corr. Clean ‘ Corr. Clean

EATA 56.5 32.7 63.6 38.5 64.7 39.4 65.8 40.4 62.7 37.8
DISTA | 50.2 26.3 | 52.3 27.6 | 52.2 27.7 | 52.6 28.2 | 51.8 274

performance either on corrupted or clean domains. This brings another demonstration of the stability of
DISTA under different evaluation schemes.

C.3 Analysis
C.3.1 Computational Burden

In Section 4.4.1, we discussed an alternative approach of solving the DISTA optimization problem for the
sake of improving efficiency. In particular, we considered a parallel update in equation 3. We compare the
performance of the alternating solver (DISTA) and parallel solver (DISTA-P) against EATA in Table 8
(Episodic evaluation on ImageNet-C). We observe the performance of DISTA-P is on par with that of DISTA,
with both variants outperforming EATA by a significant margin. That is, our proposed auxiliary task is
boosting the performance irrespective of the deployed solver. Hence, one can improve the efficiency (latency)
by employing the parallel solver for our proposed objective in equation 4 when sufficient memory is available.

C.3.2 Ablation Studies

In Section 4.4.2, we analyzed the sensitivity of DISTA under different batch sizes when compared against
Tent and EATA. We showed how DISTA is much more stable than both approaches when tested with very
small batch sizes. Here, we step up the game and analyze DISTA under the smallest batch size of 1 where
most TTA methods fail.

SAR ( , ) provided state-of-the-art results under this realistic evaluation (batch size of 1)
by employing a stable update and leveraging a ViT architecture, where Layer Normalization layers are
independent of the batch size. In that regard, we fix the architecture in this section to ViT where we update
the learnable parameters of the normalization layers. We compare the performance of SAR and DISTA under
this setting and with batch size of 1 in Table 9. We observe that DISTA significantly outperforms SAR under
this setup. In particular, DISTA provides an average of ~ 5% reduction on the error rate under episodic
evaluation on ImageNet-C. This performance gain is consistent across all corruptions in the ImageNet-C
benchmark.

Table 8: Episodic Evaluation on ImageNet-C Benchmark with ResNet-50. We report the results of
employing parallel update (DISTA-P) compared with sequential update (DISTA) to improve efficiency. We
observe that both solvers yield comparable results that are consistently better than EATA. Hence, under
sifficient memory availability, one can improve latency with the parallel update.

Noise Blur Weather Digital

Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Bright Contr Elastic Pixel Jpeg Avg.
EATA 64.0 621 625 66.9  66.9 52.5 474 482 542 402 322 54.6 42.2 39.2  44.7 519

DISTA 62.2 59.9 60.6 65.3 65.3 50.4 46.2 46.6  53.1 387 317 53.2 40.8 38.1 435 504
DISTA-P 624 60.1 61.0 65.0 65.0 50.6 464 468 532 39.0 319 53.4 41.1 38.3 437 50.5
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Table 9: Episodic Evaluation on ImageNet-C Under Batch Size of 1 with ViT. We compare DISTA
and SAR under batch size of 1 when emplying the ViT architecture. We observe that DISTA significantly
outperforms SAR under this setting.

Noise Blur ‘Weather Digital

Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Bright Contr Elastic Pixel Jpeg Avg.

SAR 54.2 56.4  53.4 46.4 49.2 42.5 46.9 41.3  46.7  31.1 23.8 34.3 41.8 31.1 337 42.19
DISTA 47.5 48.7 46.6 44.8 44.7 40.2 42.0 329 34.2 274 22.0 32.4 35.8 29.7 32.6 37.43

C.3.3 Orthogonality of Auxiliary Tasks

In Section 4.1, we showed how our auxiliary task approach is orthogonal to the underlying TTA method. In
particular, we showed in Table 1 how applying an auxiliary task on clean data helps with either a Tent-like
or a SHOT-like approach. Here we delve more onto this orthogonality. For the sake of this study, we pick
SHOT as a TTA method. We report in Table 10 the effect of different auxiliary components on the overall
performance of SHOT. Note that we fix the architecture to ResNet-50 and conduct episodic evaluation on
the ImageNet-C benchmark.

First, we observe that employing an auxiliary task given by the SHOT objective computed on clean data
improves the results significantly (> 4%). Further, we combine the aforementioned approach with the filtering
approach of not updating the model on unreliable examples where we observe another performance boost of
1%. At last, we replace SHOT as an auxiliary task with our proposed distillation scheme in Section 2.2, while
maintaining the SHOT objective on corrupted data. In this case, we observe another significant performance
boost, corroborating the superiority of our proposed auxiliary task and the orthogonality of our components
to the adaptation method.

C.3.4 Components of DISTA

At last, we ablate the effect of each component of DISTA on the performance gain. Note that DISTA is
reduced to EATA if we remove the proposed auxiliary task. To that end, we report in Table 11 the error
rate of EATA, and its enhanced version through our proposed auxiliary task. Fist, we analyze the effect
of introducing our distillation scheme via Cross Entropy (CE) on clean data without filtering. We observe
a 0.5% reduction in the average error rate, with the performance gain reaching 0.8% on the motion blur
corruption. Further, we analyze combining the aforementioned approach with filtering unreliable samples
(by employing As(xs)), observing another 0.4% performance boost. Finally, we include sample reweighing
and increase the filtering margin Ey to 0.510g(1000) resulting in another boost in accuracy (reduction in
error rate). We note that we set the best hyperparameters for EATA, as recommended by the authors, with
Ey = 0.410g(1000).

Table 10: Episodic Evalutation on ImageNet-C of SHOT with different auxiliary components
with ResNet-50. We experiment with auxiliary components when combined with SHOT. (Aux.) represents
applying SHOT on both clean and corrupted data. (Fil) adds filtering unreliable examples. (DIS) replaces
SHOT as an auxiliary task with our distillation task.

Noise Blur Weather Digital

Gauss  Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Bright Contr FElastic Pixel Jpeg Avg.
SHOT 731 69.8 720 76.9 75.9 58.5 52.7 533 622 43.8 34.6 82.6 46.0 42.3 489  59.5

+ Aux  67.1 649  65.7 69.0 69.9 55.5 49.8 50.7  58.7 423 33.3 68.2 44.4 41.1  46.5  55.1
+ Fil. 66.2 64.1 64.3 68.5 68.7 54.9 49.0 50.0  56.7  41.7 32.7 64.2 44.0 40.6 459 54.1

+DIS 649 62.6 62.7 67.1 66.9 52.9 47.9 48.6 55.4 40.5 324 61.8 42.9 39.3 44.7 52.7
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Table 11: Ablating DISTA with Episodic Evaluation on ImageNet-C with ResNet-50. We ablate
each component of DISTA where (CE) represents the distillation via Cross Entropy, (Fil) represents the
filtering, and DISTA is the an improved version with better hyperparameter (setting Ey = 0.51og(1000).
Note that each proposed component provides a consistent performance boost.

Noise Blur Weather Digital

Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Bright Contr Elastic Pixel Jpeg Avg.
EATA 64.0 62.1 62.5 66.9 66.9 52.5 47.4 48.2 54.2  40.2 32.2 54.6 42.2 39.2 447 519

+ CE 63.2 612 616 66.3  66.3 51.7 469 479 539 39.7 319 54.3 41.9 39.1 444 514
+ Fil. 62.9 60.7 614 65.8  65.9 51.2 46.5 476 53.7 393  3L7 54.3 41.6 38.5 441 51.0

DISTA 62.2 59.9 60.6 653 65.3 50.4 46.2 46.6 53.1 38.7 31.7 53.2 40.8 38.1 43.5 504

C.4 Ablation on the Size of the Source Dataset

We complement our results with an ablation study on the effect of the size of source dataset Ds on the
performance of DISTA. To that end, let D, be a random subset of the validation set (unlabeled images). We
conduct episodic evaluation on ImageNet-C using ResNet-50 dataset for this ablation and report the results
in Table 12, where we observe DISTA is robust against variations in the size of Dy. In particular, we observe
that even with 10% of the validation set (i.e. storing 5000 unlabeled images), DISTA improves over EATA by
1.4% on average across all corruptions. Furthermore, with only 1% of the validation dataset (500 unlabeled
images), DISTA still improves on EATA by 1% on shot and impulse noise.

C.5 Limitations of DISTA

In our experiments, we showed how DISTA is effective in multiple evaluation protocols, two datasets, and
four different architectures. We note here that the performance improvement of DISTA comes at the cost of
a memory burden (storing data samples from D;). However, our experiments in Table 12 show that even
with a very small set of unlabeled examples, DISTA is still effective in improving performance. In addition,
we experimented with DISTA for when the source data is not available in Section 4.4.3 where DISTA is still
very effective in enhancing the performance over EATA. At last, one limitation of our federated TTA setting
is the assumption that all clients have access to data from the source distribution. This makes our setting
more applicable to the cross-sile setting, where the number of clients is not too large, leaving the exploration
to other federated settings for future work.

Table 12: Effect of the Size of D,. We report the error rate of DISTA under episodic evaluation on
ImageNet-C when Dy is a sub-sampled set of the validation set of ImageNet. We observe that DISTA is
robust under varying the size of D,. ‘Ratio’ represents the sub-sampled coefficient (i.e. ratio of 0.25 means
that DISTA only leverages 25% of the validation set as Ds).

Ratio (%) Noise Blur Weather Digital

Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Bright Contr Elastic Pixel Jpeg Avg.
EATA(0.0%) 64.0 621 625 66.9  66.9 52.5 474 482 542 402 322 54.6 42.2 39.2 447 519

DISTA(1.0%) 63.1 61.1  61.1 66.7 65.8 50.9 46.7 473 53.7  39.1 31.9 54.1 41.5 38.6 44.1 51.1
DISTA(2.5%) 62.6 608  60.9 65.7 65.8 50.9 46.6 472 534  39.1 31.7 54.0 41.5 38.7 438 50.8
)
)

(
DISTA(5.0% 62.4 604 609 65.5 66.0 50.5 46.3 469 532 389 318 53.6 41.0 38.3 43.8 50.6
DISTA(7.5% 62.6  60.3 608 65.4 65.3 50.4 46.4 46.8 53.3 38.9 317 53.8 41.2 38.2  43.7 50.6
DISTA(10%) 62.4  60.3  60.2 65.5 65.5 50.6 46.3 46.7 531 388 317 53.5 41.1 38.2 438 50.5
DISTA(25%) 622 604  60.6 65.8 65.5 50.5 46.3 46.7  53.1 386 317 53.3 40.9 382  43.6 50.5
DISTA(50%) 62.3 604 604 65.1 65.7 50.6 46.2 46.7 533 38.7  31.7 53.2 40.9 38.3 434  50.5
(
(

DISTA(75%) 62.3  59.9  60.5 64.8 65.2 50.4 46.0  46.8 531 38.7 317 53.7 40.9 38.1  43.5 50.4
DISTA(100%) 62.2  59.9  60.6 65.3 65.3 50.4 46.2  46.6  53.1 387 31.7 53.2 40.8 38.1 435 50.4
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Table 13: Episodic Evaluation on ImageNet-C Benchmark. We compare the performance of EATA,
DISTA, and leveraging labeled data for DISTA instead of the distillation task. We replace the distillation
task with a cross entropy loss between the predictions and the ground-truth labels. We observe that
our unsupervised distillation scheme outperforms both EATA and leveraging labeled data. Nevertheless,
DISTA +Labels still outperforms EATA by 0.8% on average.

Noise Blur Weather Digital
Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Bright Contr Elastic Pixel Jpeg Avg.
EATA 64.0 621 625 66.9  66.9 52.5 474 482 542 402 32.2 54.6 42.2 39.2 447 519
DISTA + Labels 62.7  60.9  60.9 66.0  66.1 50.7 46.9 474  53.6 39.2 31.9 54.9 41.5 38.6 442 51.0
DISTA 62.2 59.9 60.6 653 65.3 50.4 46.2 46.6 53.1 38.7 31.7 53.2 40.8 38.1 43.5 504

C.6 Leveraging Labeled Source Data

At last, we study a variation of DISTA for when labeled data from the source distribution is available. In this
setting, one could replace the distillation loss in Equation equation 4 with a supervised loss function. To that
end, we analyze one variant of DISTA where we replace the distillation loss with cross entropy loss between
the prediction of fy, and the ground-truth labels. The modified objective function can be expressed as:

E

(zs,ys)~Ds

min B \(z)E (fo(x2)) + As(25)CE (fo(2s),ys)

T~

We experiment with this labeled variant of DISTA and report the results on ImageNet-C in Table 13 under
episodic evaluation using ResNet-50 architecture. We observe that leveraging hard (ground-truth) labels does
not improve the result over our unsupervised distillation loss. Nevertheless, this supervised variant enhances
the performance over the previous state-of-the-art method, EATA.

We provide the following hypothesis as to why the labeled variant of DISTA underperforms. The distillation
auxiliary task regularizes the adapted model not to stray away too much from the original model in function
space. We hypothesize this anti-forgetting regularization improves the stability of the model during adaptation,
which facilitates the optimization problem and improves overall performance in corrupted data. When using
the labels from the source data and optimizing the cross-entropy, we still have a regularizer with the same
anti-forgetting motivation, but in this case we might not get the same stability during adaptation, due to the
imperfect performance of fy,. In practice, for data points that are incorrectly classified by the model, the
auxiliary loss term will be high and might dominate the TTA objective, thus slowing down adaptation and
possibly pushing the model to less favorable regions of the loss landscape.

C.7 Impact of DISTA on Overfitting in TTA

Next, we assess the impact of our proposed task on reducing overfitting when adapting with a TTA method
with multiple adaptation steps. The following table reports the error rate on ImageNet-C under episodic

Table 14: Episodic Evaluation on ImageNet-C Benchmark under Larger Number of Adaptation Steps for
EATA vs DISTA. We compare the performance (error rate) when adapting with either EATA or DISTA with
multiple adaptation steps. Our proposed auxiliary task in DISTA slows down overfitting when adapting to
the revealed batch by the stream with multiple adaptation steps.

Noise Blur Weather Digital

Num. Steps

Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Bright Contr Elastic Pixel Jpeg Avg.
EATA-1 64.0 62.1 62.5 66.9 66.9 52.5 474 48.2 54.2  40.2 32.2 54.6 42.2 39.2  44.7 519
EATA-2 68.3 63.8  65.9 726 724 53.7 48.6 493  55.7 405 329 58.2 42.9 39.8  45.7 54.0
EATA-3 74.1 70.5 75.6 86.9 81.2 58.9 52.0 51.8 60.2  41.7 34.2 74.4 45.4 415  48.0 598
EATA4 90.4 821 85.7 96.8  91.5 67.1 529 555 672 43.0 352 95.7 46.1 42.0 49.0 66.7
EATA-5 95.3 929 932 97.1 96.2 70.6 56.6  56.9 747 451 354 97.3 47.9 444 512 703
DISTA-1 62.2 59.9 60.6 65.3 65.3 50.4 46.2 46.6 53.1 38.7 31.7 53.2 40.8 38.1 43.5 504
DISTA-2 67.5 63.2 63.9 70.6 70.9 53.0 48.4 48.2 55.9 399 32.2 60.2 42.4 39.2 449 534
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evaluation, where EATA /DISTA-X represents adapting with EATA /DISTA with X adaptation steps. We
first compare EATA-2 with DISTA as DISTA conducts two sequential adaptation steps making it directly
comparable with EATA-2. We report an avarage error rate of 50.4% for DISTA-1 compared with 54.0% for
EATA-2. Further, we compare DISTA-2 with EATA-4 where the performance gap becomes much larger
(53.3% for DISTA-2 compared to 66.7% for EATA-4). We also note DISTA-2 with four total adaptation steps
still outperforms EATA-2 proving that DISTA reduces the overfitting with the proposed auxiliary task.

C.8 Evolution of )\, and )\,

At last, we report the evolution of the data selection functions A; and A; throughout the adaptation with
DISTA. Figure 4 summarizes the evolution. We observe that: (i) as the number of batches increases, \;
increases due to the increase of the confidence of the model in predicting data from the domain shift. (ii) On
the other hand, A\s remains stable at a higher level than A\, due to the original high confidence in predicting
the source domain along with our proposed distillation loss.
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Figure 4: Evolution of \; and )\; during adaptation.
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