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ABSTRACT

Many applications in traffic, civil engineering, or electrical engineering revolve
around edge-level signals. Such signals can be categorized as inherently directed,
for example, the water flow in a pipe network, and undirected, like the diameter
of a pipe. Topological methods model edge signals with inherent direction by
representing them relative to a so-called orientation assigned to each edge. They
can neither model undirected edge signals nor distinguish if an edge itself is
directed or undirected. We address these shortcomings by (i) revising the notion of
orientation equivariance to enable edge direction-aware topological models, (ii)
proposing orientation invariance as an additional requirement to describe signals
without inherent direction, and (iii) developing EIGN, an architecture composed
of novel direction-aware edge-level graph shift operators, that provably fulfills the
aforementioned desiderata. It is the first work that discusses modeling directed and
undirected signals while distinguishing between directed and undirected edges. A
comprehensive evaluation shows that EIGN outperforms prior work in edge-level
tasks, improving in RMSE on flow simulation tasks by up to 23.5%.

1 INTRODUCTION

Most research on Graph Neural Networks (GNN) research has focused on node- or graph-level tasks
(Wu et al., 2021; Kipf & Welling, 2017; Hamilton et al., 2017; Velickovic et al., 2018; Gasteiger
et al., 2020; AlQuraishi, 2021) while edge-level problems remain underexplored. Edge-level signals
describe the properties of existing edges and are either the features, hidden representations of a GNN,
or the targets. They naturally arise in applications involving traffic and many areas of engineering
(e.g. electric circuits (Dörfler et al., 2018) or hydraulics (Garzón et al., 2022; Herrera et al., 2016)).

Signals on edges come in two different modalities: (a) They can have an inherent orientation, like
the water flow in a pipe network or traffic flow on streets. We call them orientation-equivariant
signals as they are naturally expressed as scalar values relative to a chosen orientation as reference
(see Section 2). (b) The other signal modality has no intrinsic direction, like pipe diameter or speed
limits. We refer to such signals as orientation-invariant. Similar concepts also exist in continuous
domains, e.g. a scalar field assigns a single value to each point in space, while a vector field describes
magnitude and direction.

At the same time, edges themselves may be directed or undirected. Examples that induce directed
edges include valves in water networks, one-way roads in street networks, or diodes in electrical
circuits. Often, in these applications, directed edges prohibit (to a large extent) a signal that is
oriented against the edge direction. Such constraints can have a big impact on the targets. For
example, imagine a one-way street that forces cars to take a detour.

There are two relevant streams of work that, however, fall short of either representing orientation-
equivariant or orientation-invariant signals. (a) One strategy is to map between orientation-invariant
edge-level signals using Line Graphs. (b) The other line of work relies on Algebraic Topology
(Schaub et al., 2021; Ebli et al., 2020; Bunch et al., 2020) to cope with orientation-equivariant
signals. Topological models define an arbitrary reference direction for each edge, a so-called
orientation, and use positive values to indicate that an orientation-equivariant signal aligns with
this reference orientation whereas negative values indicate misalignment (see how in Figures 1a
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(a) Application: Traffic (b) Graph representations (c) EIGN (d) EIGN Predictions

Figure 1: EIGN models an arbitrary combination of orientation-equivariant and -invariant edge-level
inputs or targets. In this example, the car flow is equivariant and represented relative to two different
(top and bottom) arbitrary direction-consistent orientations O and Ô (notice the sign of equivariant
signals), while speed limits are invariant. EIGN makes consistent predictions for O and Ô: It outputs
the same invariant signals while the sign of equivariant outputs is determined by the orientation.

and 1b, the signal 1.3 is represented as −1.3). For undirected edges, there is no preferred reference
orientation. Consequently, a common requirement for topological models is to be orientation-
equivariant (Roddenberry et al., 2021): The sign of the (orientation-equivariant) signal must change
together with the orientation of the corresponding edge (see Figure 1). Orientation equivariance is a
property of a topological model that allows it to deal with orientation-equivariant signals.

Many applications have both orientation-equivariant and invariant features with an arbitrary com-
bination of orientation-equivariant and invariant targets. Moreover, real scenarios are often only
accurately modeled if using both undirected and directed edges. However, Line Graph approaches
ignore the properties of orientation-equivariant signals entirely, while topological approaches treat
every signal as orientation-equivariant and can not distinguish edge direction. Arguably, the inductive
biases of prior methods render them ineffective in a large range of applications, which is consistent
with our experimental findings.

We address these shortcomings and are the first to model edge-level tasks with orientation-equivariant
and -invariant signals on graphs with directed and undirected edges. Our key contributions are:

a) Desiderata. We formalize suitable desiderata: (i) Joint orientation equivariance for orientation-
equivariant signals, and (ii) joint orientation invariance for orientation-invariant signals.

b) EIGN: A general-purpose edge-level topological GNN. EIGN provably fulfills these desider-
ata, leveraging novel direction-aware convolution operators. and a fusion operation between
both modalities to model their interactions ( see Section 4.2).

c) Benchmarking. We devise a suite of challenging and diverse benchmarks covering synthetic
and real-world tasks, including a novel dataset for electric circuits that requires dealing with
orientation-equivariant and orientation-invariant signals on graphs with directed and undirected
edges. EIGN outperforms prior work by reducing the RMSE up to 23.5% in our experiments.1

2 BACKGROUND

Algebraic Topology is a principled framework for representing orientation-equivariant edge sig-
nals (Roddenberry & Segarra, 2019; Roddenberry et al., 2021; Ebli et al., 2020). In the interest of
notational clarity, we simplify many concepts by directly applying them to the edge domain and omit
general topological definitions. For a comprehensive introduction, we refer to Schaub et al. (2021).

Notation. We consider edge-level problems on a graph G = (V, E) with n = |V| nodes and m = |E|
edges. We distinguish between: (i) directed edges, represented by ordered tuples ED ⊆ V × V ,
and undirected edges EU ⊆ {{u, v} : u, v ∈ V}, represented by unordered sets. (ii) edge-signals

1We provide our code at cs.cit.tum.de/daml/eign/
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(inputs, hidden representations, outputs) that come with inherent direction as orientation-equivariant
Xequ ∈ Cm×dequ and orientation-invariant Xinv ∈ Cm×dinv otherwise.

Orientation. While orientation-invariant edge signals can be represented by scalar values as they are,
orientation-equivariant edge signals need to be defined relative to the orientation of the associated
edge. To that end, topological methods define an arbitrarily chosen orientation O : E → V × V for
every edge, also represented by ordered tuples. If an orientation-equivariant signal x aligns with
the orientation of its edge, we represent it with x and −x otherwise. Changing from orientation O
to another orientation Ô induces sign flips for all orientation-equivariant signals of edges whose
orientation was flipped. We can represent this orientation change for signals with a diagonal matrix
∆O,Ô ∈ Rm×m with entries [∆O,Ô]e,e = 1 if O(e) = Ô(e) and −1 otherwise.

Edge direction and orientation are different concepts. While the former is part of the given problem
topology and may influence model predictions, the latter can be thought of as a basis in which
orientation-equivariant edge signals are represented. For undirected edges, which orientation is
chosen must not impact the problem itself. However, unlike previous work, we fix the orientation of
directed edges to match their direction (O(eD) = eD) and, consequently, represent their orientation-
equivariant signals relative to their direction. We refer to such orientations as direction-consistent.
They can encode information about the direction of directed edges.

Boundary and Laplace Operators. For a given orientation O, one can define a boundary operator
that maps signals on m edges defined with respect to orientation O to the domain of n nodes. Reusing
the analogy of water flow, the boundary operator sums all flow coming into a node and subtracts all
outgoing flow. It can be represented by a matrix Bequ ∈ Rn×m:

[Bequ]v,e =


−1 if O(e) = (v, ·)
1 if O(e) = (·, v)
0 otherwise

. (1)

The boundary operator can be used to define a Laplace operator on the edges of the graph, the
so-called (Equivariant) Edge Laplacian (Schaub et al., 2021): Lequ = BT

equBequ. This operator can
be understood as message passing between edges that are incident to a shared node (see Section 4.3).

3 RELATED WORK
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Figure 2: Two scenarios (top, bottom)
that differ in the direction of one edge but
model different situations (flame in bottom
left). Their representations are indistin-
guishable for models that are orientation-
equivariant for directed edges.

Topological Models. Methods grounded in Algebraic
Topology often represent orientation-equivariant signals
on undirected graphs relative to an arbitrary orientation
(Schaub et al., 2021). Some of these approaches also
utilize higher-order structures composed of edges that,
however, often need to be handcrafted (Bunch et al.,
2020; Giusti et al., 2022). HodgeGNN (Roddenberry
& Segarra, 2019) and similar architectures (Park et al.,
2023; Roddenberry et al., 2021) satisfy a more limited
notion of orientation equivariance compared to our pro-
posal. This results in major shortcomings of these mod-
els in practice: (i) They treat all input and output sig-
nals as orientation-equivariant and, therefore, can not
model orientation-invariant edge signals appropriately.
In the example of Figure 1, they do not predict the same
orientation-invariant output under different orientations
O and Ô but instead induce sign flips as if they were
orientation-equivariant signals leading to inconsistent
predictions for different (arbitrary) orientations of the
same topology. (ii) These approaches are equivariant re-
garding the orientation of all edges, whereas our desider-
ata relax this requirement to hold for undirected edges
only. As depicted in Figure 2 , edge direction often
alters the nature of the problem: In one scenario cars
go against the direction of a one-way street while in the
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other they do not. For fully orientation equivariant models, both representations are indistinguishable:
The edge orientation serves only as a representation basis and can not encode directionality. An
exception among topological methods is concurrent work (Lecha et al., 2024) that implicitly distin-
guishes between directed and undirected edges by representing undirected edges with two directed
yet antiparallel edges in a directed graph that is augmented with higher-order structures. However,
they neither discuss the combination of equivariant and invariant features/targets nor is their model
applicable to this setting without modifications.

Flow Interpolation. An orthogonal line of research studies flow interpolation problems (Ford &
Fulkerson, 1956; Lippi et al., 2013). Even though both features and targets are technically orientation-
equivariant, many methods do not approach this task from a topological perspective. Instead, they
utilize specialized inductive biases such as flow conservation (Jia et al., 2019) or physics-informed
constraints (Smith et al., 2022). da Silva et al. (2021) frame interpolation as a bi-level optimization
problem where edge-level models serve as learned regularizers. Such approaches are limited to flow
interpolation problems while our model is a general framework that can be applied to a broader range
of edge-level tasks. As we find in Section 5.3, EIGN can learn the physical properties of a problem
without explicitly encoding physics-informed inductive biases.

Edge-Level GNNs. Beyond flow-based problems, GNNs have been applied to (orientation-invariant)
edge-level tasks as well. One family of approaches employs node-level GNNs and a successive
readout function (Zhao et al., 2023). Such approaches have been particularly popular for link
prediction (Zhou, 2021), where target edges are not present in the input data. Another paradigm
is to apply node-level GNNs to the dual Line Graph (Jiang et al., 2019; Jo et al., 2021) of the
topology. Only a few approaches rely on edge-specific methods (Zhang et al., 2020). Models that
are not grounded in a topological framework lack appropriate inductive biases to model orientation-
equivariant signals with inherent direction. These approaches can be categorized as treating both
input and target as orientation-invariant signals. In the context of Figure 1, they would not represent
orientation-equivariant signals relative to the respective orientation.

GNNs for Directed Graphs. Directed graphs have received a lot of attention for node-level problems.
Many approaches discriminate between adjacent in-neighbors and out-neighbors (Li et al., 2016;
Rossi et al., 2023). Also, spectral convolutions, that are based on the Node Laplacian, have been
generalized to directed settings (Ma et al., 2019; Monti et al., 2018). From the different possible
direction-aware Laplacians (Tong et al., 2020), our work takes inspiration from the Magnetic Node
Laplacian (Zhang et al., 2021) which can be defined using a complex-valued boundary operator. It
was recently utilized to compute direction-aware positional node encodings (Geisler et al., 2023).
The Laplace operators of our approach generalize this concept to edge-level problems.

4 METHOD

4.1 DESIRABLE PROPERTIES FOR EDGE-LEVEL GNNS

At the core of our work stand novel desiderata which enforce a model to make consistent predictions
for both orientation-equivariant and -invariant edge signals among different orientations. We restrict
our novel constraints to undirected edges by requiring equivariance/invariance among direction-
consistent orientations only. We additionally prove that EIGN is also equivariant with respect to edge
permutations, which we defer to Appendix A.2.
Definition 4.1 (Joint Orientation Equivariance). Let O, Ô be arbitrary direction-consistent ori-
entations of edges on G. We say that a mapping f is jointly orientation-equivariant if for any
orientation-equivariant input Xequ ∈ Cm×dequ and any orientation-invariant input Xinv ∈ Cm×dinv :

∆O,Ôf(Xequ,Xinv,G,O) = f(∆O,ÔXequ,Xinv,G, Ô) .

Definition 4.2 (Joint Orientation Invariance). Let O, Ô be arbitrary direction-consistent orientations
of edges on G. We say that a mapping g is jointly orientation-invariant if for any orientation-
equivariant input Xequ ∈ Cm×dequ and any orientation-invariant input Xinv ∈ Cm×dinv :

g(Xequ,Xinv,G,O) = g(∆O,ÔXequ,Xinv,G, Ô) .

Both definitions ensure that a model predicts the same output signal when the orientation is changed
from O to Ô: While Definition 4.1 ensures that the orientation-equivariant output is represented
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relative to the new orientation Ô, Definition 4.2 requires the same orientation-invariant predictions
which are not relative to the new orientation. In both desiderata, the orientation-equivariant input Xequ
needs to be represented relative to the respective orientation as well. Restricting these properties to
direction-consistent orientations means that both properties only need to hold regarding the arbitrary
orientation of undirected edges. This allows models to break both desiderata for the orientation of
directed edges, which enables using their orientation to encode direction.

4.2 EIGN: AN ORIENTATION-EQUIVARIANT AND ORIENTATION-INVARIANT MODEL
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Figure 3: EIGN architecture: In each layer, message
passing using novel Laplacians is performed within
and between orientation-equivariant and orientation-
invariant signals. The two aggregated modalities Z(l)

equ

and then Z
(l)
inv are then fused.

We propose EIGN (Figure 3), a model that
satisfies these desiderata. It consists of
L layers each of which takes orientation-
equivariant and -invariant input edge sig-
nals H(l−1)

equ , H(l−1)
inv and transforms them

into outputs of the corresponding modal-
ity H

(l)
equ and H

(l)
inv . Its message passing

between edge signals is based on different
graph shift operators (see “Convolutions”
in Figure 3 and Section 4.3 for details) both
within and between edge signal modalities.
We set H

(0)
equ = Xequ, H

(0)
inv = Xinv and

H
(L)
equ and H

(L)
inv are the equivariant and

invariant output signals, respectively. In
the following, we denote with W

(l)
(·) model

parameters of appropriate dimensions, with
σequ an element-wise sign equivariant acti-
vation function, i.e. σequ(−x) = −σequ(x),
and with σinv an arbitrary non-linearity. We
detail the implementation of EIGN in Appendix D.3.

Z(l)
equ = σequ(f

(l)
equ(H

(l−1)
equ )W (l)

equ→equ + f
(l)
inv→equ(H

(l−1)
inv )W

(l)
inv→equ +H(l−1)

equ W (l)
equ) . (2)

Z
(l)
inv = σinv(f

(l)
inv (H

(l−1)
inv )W

(l)
inv→inv + f

(l)
equ→inv(H

(l−1)
equ )W

(l)
equ→inv +H

(l−1)
inv W

(l)
inv ) . (3)

The intra-modality message passing schemes f (l)
equ and f

(l)
inv update the orientation-equivariant and

-invariant signal representation of an edge by aggregating orientation-equivariant and -invariant
signals of adjacent edges. Similarly, the inter-modality schemes f

(l)
inv→equ and f

(l)
equ→inv aggregate

messages from adjacent edges of one modality and transform it into the other. While this enables
information exchange between directed and undirected edge signals, it restricts their interaction to
local aggregates: The edge orientation-equivariant signal only depends on the average of adjacent
orientation-invariant signals and vice versa. This makes modeling interactions between orientation-
equivariant and –invariant edge signals of the same edge difficult. Therefore, EIGN uses a second
fusion operation that does not use Laplacians (depicted as “Fusion” in Figure 3):

H(l)
equ = σequ(Z

(l)
equW

(l)
F,equ→equ ⊙Z

(l)
invW

(l)
F,inv→equ +Z(l)

equ) . (4)

H
(l)
inv = σinv(Z

(l)
invW

(l)
F,inv→inv ⊙ abs(Z(l)

equW
(l)
F,equ→inv) +Z

(l)
inv ) . (5)

Table 1: Convolution and self- interac-
tion operators for both input and out-
put signal modalities.

Output
Input Equ. Inv.

Equ. L
(q)
equ

Wequ

L
(q)
equ→ inv

WF,equ→inv

Inv. L
(q)
inv→ equ

WF,inv→equ

L
(q)
inv

Winv

Here, ⊙ and abs denote element-wise multiplication and ab-
solute value. In general, the fusion operation can be realized
arbitrarily. We chose point-wise multiplication and absolute
values as they are jointly orientation-equivariant / -invariant
fusion operations respectively (see Appendix A).

EIGN models all possible types of interactions between
edge signal modalities (Table 1): The Laplacian operators
of Equations (2) and (3) describe interactions of orientation-
equivariant and -invariant signals with local aggregates of
both the same and different modality. The residual connec-
tions in Equations (2) and (3) and the fusion operation of
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Equations (4) and (5) model interactions between orientation-equivariant and -invariant signals of the
same edge. The design choices of the fusion operation in Equations (4) and (5) and the definition of
the message passing schemes f (l)

equ, f (l)
inv , f (l)

inv→equ and f
(l)
equ→inv, which we detail next, enforce EIGN

to conform to all desiderata proposed in Section 4.1.

4.3 ORIENTATION-EQUIVARIANT AND ORIENTATION-INVARIANT LAPLACIANS

Equivariant and Invariant Edge Laplacians. The Equivariant Edge Laplacian (see Section 2) arises
from an (equivariant) boundary operator as Lequ = BT

equBequ. Its sparsity pattern corresponds to the
adjacency matrix of the dual Line Graph (Jiang et al., 2019; Jo et al., 2021), i.e. edges are adjacent if
they are incident to the same node. It is a jointly orientation-equivariant mapping (see Lemma 4.1)
and therefore suitable to convole orientation-equivariant edge signals. Intuitively, Lequ performs
message passing: A target edge e ∈ E aggregates the orientation-equivariant signals of adjacent
edges. Additionally, it re-orients the signal of an adjacent edge e′ ∈ E by multiplying with −1 if the
orientations of e and e′ misalign. The orientations of two edges misalign if they are consecutive, i.e.
the endpoint of one is the starting point of the other (see Figure 4).

[Lequ]e,e′ =


2 if e = e′

−1 if O(e),O(e′) consecutive
1 if O(e),O(e′) not consecutive, but e, e′ adjacent
0 otherwise

. (6)

We propose a novel Laplacian for orientation-invariant edge signals by using the orientation-
independent unsigned boundary operator (Bodnar et al., 2021; Papillon et al., 2023):

[Binv]v,e =

{
1 if v ∈ e

0 otherwise
. (7)

It induces the Invariant Edge Laplacian Linv = BT
invBinv which has the same sparsity pattern as Lequ.

In particular, the Invariant Edge Laplacian can be obtained by taking the element-wise absolute value
Linv = abs(Lequ). Its message passing scheme is similar to Lequ as well: It, too, aggregates messages
of adjacent edges but does not re-orient them if their orientations are consecutive. Thus, it is a jointly
orientation-invariant mapping and suitable to convolve orientation-invariant edge signals.

𝜋𝑞

𝐼𝑚

𝑅𝑒

𝐼𝑚

𝑅𝑒

𝐼𝑚

𝑅𝑒

Orientation
Directed
Undirected

Figure 4: The Equivariant Mag-
netic Edge Laplacian L

(q)
equ induces

a complex phase shift of πq for sig-
nals of directed edges that are ag-
gregated by the black undirected
edge. Signals of misaligned edges
are re-oriented.

Direction-aware Edge Laplacians. Neither Lequ nor Linv can
distinguish directed from undirected edges as they do not ex-
plicitly model them differently. However, following a recent
line of work on Magnetic Node Laplacians (Forman, 1993;
Shubin, 1994; Colin de Verdière, 2013; Furutani et al., 2019;
Geisler et al., 2023), we generalize both operators to make
them direction-aware. Intuitively, the Magnetic Node Lapla-
cian represents edge direction through complex phase shifts of
magnitude πq for some fixed hyperparamter q ∈ R. It can be
computed using a complex-valued boundary operator (Fanuel
& Bardenet, 2024):

[
B(q)

equ

]
v,e

=



− exp(iπq) if e = (v, ·) and e ∈ ED

exp(−iπq) if e = (·, v) and e ∈ ED

−1 if O(e) = (v, ·) and e ∈ EU

1 if O(e) = (·, v) and e ∈ EU

0 otherwise

.

(8)
This boundary operator B(q)

equ extends Bequ by inducing complex
phase shifts of πq along directed edges. Consequently, q = 0 recovers the direction-agnostic
boundary operator of Equation (1). Using the boundary operator B(q)

equ , we can define a direction-
aware Equivariant Magnetic Edge Laplacian analogously to its direction-agnostic counterpart as
L

(q)
equ = (B

(q)
equ)HB

(q)
equ , with (.)H denoting the conjugate transposed . Its sparsity pattern is the same

as Lequ and for undirected edges both operators coincide. Thus, its aggregation scheme is similar as
well: The key difference is that L(q)

equ applies a complex phase shift to the signals of directed edges
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before aggregating them instead of just re-orienting them by flipping their sign. The direction of the
phase shift is determined by how the edges relate to their shared incident node. The phases of ingoing
edges will be shifted in a different direction than the phases of outgoing edges. Figure 4 depicts
this mechanism for adjacent edges that are (i) undirected and aligned in orientation (ii) undirected
and misaligned in orientation (iii) directed and aligned in orientation. L(q)

equ is a jointly orientation-
equivariant operator as per Definition 4.1 for the (arbitrary) orientation of undirected edges (even
if they are adjacent to directed edges). It, however, specifically breaks orientation equivariance for
directed edges by inducing complex phase shifts: Changing the direction of a directed edge flips the
sign of the complex phase shift that is applied before aggregation (see Table 7).

Defining Laplace operators through boundary maps also enables a different interpretation of the
induced message passing schemes. First, each node aggregates information from incident edges.
Then each edge computes its representation from the information at its endpoints. In the case of
equivariant signals, the node representations are analogous to potentials and the edge representations
to the flow they induce. We utilize this through learnable node feature transformations and realize the
message passing in Equations (2) and (3) as f (l)

(·) (X) = BH
(·)h

(l)
(.)(B(·)X) instead of directly using

the corresponding Laplacian (B(·))
HB(·) as a graph shift operator.

Lemma 4.1. The Magnetic Equivariant Edge Laplacian implies a jointly orientation-equivariant
mapping f(Xequ,Xinv,G,O) = (B

(q)
equ)Hh(B

(q)
equXequ).

Analogously, we use complex phase shifts to encode direction into the boundary operator Binv
(Equation (7)) that induces the Laplacian Linv for orientation-invariant signals:

[
B

(q)
inv

]
v,e

=


exp(iπq) if e = (v, ·) and e ∈ ED

exp(−iπq) if e = (·, v) and e ∈ ED

1 if v ∈ e and e ∈ EU

0 otherwise

. (9)

It induces a Magnetic Invariant Edge Laplacian L
(q)
inv = (B

(q)
inv )

HB
(q)
inv that performs message passing

analogous to the Magnetic Equivariant Edge Laplacian. Like its direction-agnostic counterpart Linv,
it is defined independently of orientation and does not re-orient its inputs. Instead, it generalizes Linv
by only encoding edge direction through the direction of a complex phase shift similar to L

(q)
equ. It is a

jointly orientation-invariant mapping as per Definition 4.2.
Lemma 4.2. The Magnetic Invariant Edge Laplacian implies a jointly orientation-invariant mapping
g(Xequ,Xinv,G,O) = (B

(q)
inv )

Hh(B
(q)
inv Xinv).

Fusing Invariant and Equivariant Signals. Both L
(q)
equ and L

(q)
inv are convolutions within edge

signals of the same modality, i.e. orientation-equivariant or orientation-invariant signals. We enable
information exchange between both by combining the boundary operators of Equations (8) and (9).
First, we define a Laplacian to transform orientation-equivariant edge signals into orientation-invariant
edge signals as L

(q)
equ→ inv = (B

(q)
inv )

HB
(q)
equ . This operator allows modeling orientation-invariant

outputs even if no orientation-invariant inputs are available. Since it is constructed from direction-
aware boundary operators it, too, induces complex phase shifts to encode directed edges.

Analogously, a fusion operator that transforms orientation-invariant edge signals into orientation-
equivariant edge signals can be constructed as L(q)

inv→ equ = (Bequ)
HBinv. It transforms orientation-

invariant inputs into an orientation-equivariant edge signal. Again, directed edges are encoded with
complex phase shifts. The outputs of both operators satisfy joint orientation equivariance/invariance
(Definitions 4.1 and 4.2) for undirected edges for which no complex phase shift is applied.
Lemma 4.3. The Invariant and Equivariant Fusion Magentic Edge Laplacians implies a
jointly orientation-invariant and jointly orientation-equivariant mapping g(Xequ,Xinv,G,O) =

(B
(q)
inv )

Hh(B
(q)
equXequ) and a f(Xequ,Xinv,G,O) = (B

(q)
equ)Hh(B

(q)
inv Xinv) respectively.

Since EIGN is composed of Laplacians that are jointly orientation-equivariant/-invariant mappings
respectively, it satisfies the desiderata for edge-level GNNs stated in Section 4.1. The proof follows
Lemmata 4.1 to 4.3 and is supplied in Appendix A.
Theorem 4.1. (i) H(L)

equ is a jointly orientation-equivariant mapping. (ii) H(L)
inv is a jointly orientation-

invariant mapping. (iii) Both H
(L)
equ and H

(L)
inv are permutation equivariant mappings.
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Table 2: Modelling capabilities of all archi-
tectures. “-” denotes that the modality is
modeled without satisfying orientation invari-
ance/equivariance.

Model Edges Features Targets
Dir. Undir. Equ. Inv. Equ. Inv.

MLP ✗ ✗ ✗ - ✗ -
LINEGRAPH ✗ ✓ ✗ ✓ ✗ ✓
HODGEGNN ✗ ✓ ✓ ✗ ✓ ✗
HODGE+INV ✗ ✓ ✓ - ✓ ✗
HODGE+DIR ✓ ✗ - ✗ - ✗
LINE-MAGNET ✓ ✓ - ✓ - ✓
Dir-GNN* ✓ ✓ ✓ ✓ ✓ ✓

EIGN* ✓ ✓ ✓ ✓ ✓ ✓

Table 3: Datasets in terms of edge direction and
input/target feature modality.

Dataset Edges Features Targets
Dir. Undir. Equ. Inv.

RW Comp ✓ ✓ Inv.
LD Cycles ✓ ✓ Inv.
Tri-Flow ✓ ✓ ✓ ✓ Equ.

Anaheim ✓ ✓ (✓) ✓ Equ.
Barcelona ✓ ✓ (✓) ✓ Equ.
Chicago ✓ (✓) ✓ Equ.
Winnipeg ✓ ✓ (✓) ✓ Equ.

Circuits ✓ ✓ ✓ ✓ Equ.

5 EXPERIMENTS

We showcase the efficacy of EIGN on three synthetic problems and three tasks on five real-world
datasets. We devise the synthetic tasks to require proper handling of directionality as well as
orientation-equivariant and orientation-invariant information. We categorize all datasets in terms of
whether the graphs are (partially) directed and if features and/or targets are orientation-equivariant or
orientation-invariant in Table 3 (see details in Appendix D).

Baselines. We compare EIGN to five baselines: (i) An MLP. (ii) LINEGRAPHGNN, a node-
level spectral GNN applied to the line graph of the problem (Bandyopadhyay et al., 2020)).
(iii) HODGEGNN (Roddenberry et al., 2021; Park et al., 2023), based on the Edge Laplacian
Lequ (see Section 2): It assumes inputs to be orientation-equivariant and edges to be undirected.
(iv) HODGE+INV as a variant of HODGE+INV that models orientation-invariant features as orientation-
equivariant. (v) HODGE+DIR, a variant of HODGEGNN that breaks orientation equivariance, and,
thus, treats all edges as directed. We also adapt two node-level GNNs for directed graphs (see
Appendix D.3): (vi) LINE-MAGNET, a graph transformer similar to Geisler et al. (2023) and
(vii) DIR-GNN, an edge-level GNN that represents directed edges through separate message-passing
operations (Rossi et al., 2023; Battaglia et al., 2018). As depicted in Table 2, EIGN is applicable
in every possible scenario. While Dir-GNN can be adapted to all modalities using our proposed
Laplacians, this comes with significant drawbacks (see Appendix D.3). To mitigate side-effects from
the cyclical nature of complex phase shifts, we choose q = 1/m (see Appendix E).

5.1 SYNTHETIC TASKS

Table 4: Average performance of different models
on synthetic tasks (best and runner-up). EIGN is
particularly effective on the hard Tri-Flow problem
with interactions between orientation-equivariant
and orientation-invariant inputs.

Model RW Comp
AUC-ROC(↑)

LD Cycles
AUC-ROC(↑)

Tri-Flow
RMSE(↓)

MLP 0.720 0.500 0.547
LINEGRAPH 0.758 0.683 0.497
HODGEGNN 0.500 0.500 0.458
HODGE+INV 0.811 0.754 0.293
HODGE+DIR 0.819 0.799 0.293
LINE-MAGNET 0.729 0.502 0.542
Dir-GNN 0.757 0.768 0.453

EIGN 0.864 0.996 0.022

Random Walk Completion (RW Comp). The
first synthetic problem we devise is completing
random walks on a directed graph. We input
the (orientation-invariant) transition probabili-
ties and a subset of the edges that were traversed.
The task is to classify if an edge is part of the ran-
dom walk (details in Appendix D.1). Therefore,
this problem tests if a model can distinguish
different edge directions.

Longest Directed Cycle Prediction (LD Cy-
cles). We increase the problem difficulty by
including both directed and undirected edges:
We generate different graphs that contain cycles
entirely composed of each respective edge type.
The task is to predict which edges belong to the
largest cycle of only directed edges (details in
Appendix D.1). Since there are no additional inputs, this task tests a model’s ability to distinguish
directed and undirected edges.
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Triangle Flow Orientation (Tri-Flow). This is the most challenging synthetic task as it requires
combining orientation-equivariant and orientation-invariant features in a partially directed graph. We
create multiple graphs containing disjoint triangles and provide an (orientation-equivariant) flow
input. The task is to reorient the flow such that for triangles satisfying certain conditions there is no
excess flux. These constraints are based on direction and an orientation-invariant attribute assigned to
every edge, thus introducing a relationship between direction and both edge feature modalities.

Results. Table 4 shows that on all three synthetic tasks, EIGN is the superior architecture. Its high
efficacy on the RW Comp and LD Cycles problems confirm its merits in modeling edge direction: It
distinguishes between edges of different directions as well as undirected edges. As it satisfies our
desiderata, it can model the relationship between orientation-equivariant and orientation-invariant
features and relate them to edge direction. This is reflected in its impressive performance on the
Tri-Flow task while the direction-aware HODGEGNN as well as HODGE+DIR, which also combines
both orientation-equivariant and -invariant inputs, struggle to achieve comparable results.

5.2 REAL-WORLD PROBLEMS

Table 5: Average RMSE (↓) of different models for the simulation
task on real-world datasets (best and runner-up). EIGN achieves
substantial improvements over all baselines.

Model Anaheim Barcelona Chicago Winnipeg Circuits

MLP 0.105 0.149 0.109 0.167 1.030
LINEGRAPH 0.101 0.149 0.109 0.164 1.037
HODGEGNN 0.280 0.170 0.107 0.173 1.016
HODGE+INV 0.098 0.146 0.108 0.151 0.828
HODGE+DIR 0.091 0.144 0.109 0.132 0.760
LINE-MAGNET 0.119 0.151 0.105 0.170 1.027
Dir-GNN 0.278 0.170 0.106 0.173 1.029

EIGN 0.090 0.133 0.078 0.101 0.696

Datasets. We also apply
EIGN to real-world traffic
networks and electrical
circuits. (i) We select four
transportation networks
(Stabler et al., 2016) (Ana-
heim, Barcelona, Chicago,
Winnipeg) where the targets
are the best-known flow
solutions in terms of lowest
Average Excess Cost
(Boyce et al., 2004). While
these datasets only con-
tain orientation-invariant
features, two tasks use
information from the orientation-equivariant targets as additional inputs. (ii) We generate different
electrical circuits consisting of resistances, diodes, and one power outlet with a given voltage. We then
simulate currents and voltages using LTSpice (Asadi, 2022). Each circuit has orientation-equivariant
(voltage at the source) and orientation-invariant features (resistance, component type), while the
target current is also orientation-equivariant (details in Appendix D.1 ).

Table 6: Ablation of different components of EIGN on syn-
thetic tasks and simulation on real data (best and runner-up).
We omit (i) direction-awarenes (q = 0), (ii) the fusion op-
eration of Equations (4) and (5), (iii) the fusion operators
fequ→inv and finv→equ, and (iv) the node embedding h.

Dataset EIGN
w/o Direction

EIGN
No Fusion

EIGN
No Fusion-Conv.

EIGN
No h

EIGN

A
U

C ↑ RW Comp 0.762 0.853 0.845 0.862 0.864
LD Cycles 0.689 0.987 0.926 0.996 0.996

R
M

SE ↓

Tri-Flow 0.362 0.088 0.074 0.034 0.022
Anaheim 0.289 0.097 0.283 0.099 0.090
Barcelona 0.172 0.139 0.177 0.163 0.133
Chicago 0.079 0.093 0.110 0.082 0.078
Winnipeg 0.132 0.170 0.175 0.138 0.101
Circuits 0.957 0.974 0.727 0.707 0.696

Tasks. For each dataset, we study
three problems of increasing difficulty
for each of which the edge flow needs
to be predicted: (i) Denoising: We
noise the target flow and provide it
as an (additional) equivariant input.
(ii) Interpolation: We supply the tar-
get flow on a subset of edges as an (ad-
ditional) equivariant input. (iii) Sim-
ulation: The target flow is to be pre-
dicted without any additional inputs.

Results. We report the RMSE (↓) of
all models for the simulation task in
Table 5 and defer results for the easier
denoising and interpolation problems
to Appendix E. EIGN substantially
improves over all baselines in interpolation. On the challenging simulation task, EIGN shows the
merit of treating orientation-equivariant and orientation-invariant signals in a principled way.
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5.3 ABLATIONS

Fusion Operators. In Section 4.3, we introduce Laplacian operators to fuse orientation-equivariant
and orientation-invariant features by transforming a signal from one modality into the other. This
is particularly useful as it allows EIGN to output orientation-equivariant signals in the absence of
orientation-equivariant inputs and vice versa. Omitting them and only relying on Equations (4) and (5)
for interaction between the two modalities is problematic for equivariant signals:

The only choice for an equivariant input signal in the absence of such features is 0. Intuitively, this
is because the sign of an orientation-equivariant input indicates its direction relative to the chosen
orientation. However, the ”absence“ of an input has no inherent direction. Setting the equivariant
input to zero while at the same time omitting the finv→equ term in Equation (2) results embeddings
Z

(l)
equ = 0 for undirected edges (see Appendix A.4), and, consequently, H(l) = 0 for Equation (4) as

well. Therefore, omitting the Laplacian fusion operation from Equation (2) prohibits the model from
learning any non-zero orientation-equivariant output in the absence of orientation-equivariant inputs.
Table 6 confirms that omitting these fusion operators results in considerably worse performance in
simulation tasks where no orientation-equivariant features are available.

At the same time, omitting the fusion operation of Equations (4) and (5) and only relying on the
Laplacian fusion operators fequ→inv, finv→equ restricts the information exchange between orientation-
equivariant and orientation-invariant features to only exchanging aggregated information through the
convolutions fequ→inv and finv→equ. Therefore, it is more difficult to learn direct interactions between
the signal modalities of the same edge. Both on Tri-Flow and real data, where these interactions are
relevant, omitting the operators of Equations (4) and (5) leads to worse performance, see Table 6.

One-Way All Streets
−0.10

−0.05
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0.05
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w/o Direction
w/ Direction

Figure 5: Distribution of simulated traffic
flow on Anaheim for EIGN and a direction-
agnostic variant. Direction-awareness makes
predictions that obey flow constraints of one-
way streets more likely.

Direction-Awareness. We also study the im-
pact of using complex-valued Laplace operators to
make EIGN direction-aware by ablating a direction-
agnostic version of EIGN in Table 6 (q = 0).
First, the RW Comp and LD Cycles tasks that test
direction-awareness benefit greatly from encoding
direction with complex phase shifts. Second, many
real-world datasets contain directed edges that con-
strain flows. Accurately modeling the system requires
distinguishing between directed and undirected edges
which is reflected in the superior performance of the
direction-aware EIGN. Finally, Figure 5 shows that
the direction-aware EIGN yields more plausible pre-
dictions than the direction-agnostic variant for one-
way roads. It learns the problem constraints without
encoding them into the architecture explicitly.

6 LIMITATIONS

We address lack of benchmarks for edge-level tasks by designing three synthetic tasks and propose
a novel task involving real-world electric circuits. Even though EIGN is grounded in Algebraic
Topology, we limit our study to edge-level problems and do not model higher-order structures. W use
Magnetic Laplacians to encode edge direction but other frameworks satisfying our formal desiderata
may be effective as well in practice. Lastly, since our Laplacians are normal matrices, they enable
global propagation similar to Geisler et al. (2024) to extend upon the local scheme used in our work.

7 CONCLUSION

We propose EIGN, a framework for edge-level problems that allows modeling orientation-equivariant
and orientation-invariant features and can encode edge direction. It relies on novel graph shift
operators that provably preserve novel notions of joint orientation-equivariance and -invariance for
undirected edges while also being sensitive to flipping directed edges. On a benchmark of synthetic
tasks and real-world flow modeling problems from two domains, we show the high efficacy of the
inductive biases encoded by EIGN.

10



Published as a conference paper at ICLR 2025

ETHICS STATEMENT

We acknowledge that we thoroughly read and adhere to the code of ethics. Since our work can be
categorized as foundational research, we do not see any immediate implications beyond the risk
of advancing Machine Learning, in general. We, nonetheless, encourage readers and practitioners
building on our work to keep in mind the potential risks in the context of reliability, interpretability,
fairness, and privacy for which we do explicitly account.

REPRODUCABILITY STATEMENT

We detail assumptions and proofs for all claims made in our work clearly in Appendix A. Furthermore,
we describe in detail how the data and models are tuned in Appendix D. Additionally, we provide our
code and the optimal hyperparameter configurations we found in the supplementary material.

REFERENCES

Mohammed AlQuraishi. Machine learning in protein structure prediction. Current Opinion
in Chemical Biology, 65:1–8, 2021. ISSN 1367-5931. doi: https://doi.org/10.1016/j.cbpa.
2021.04.005. URL https://www.sciencedirect.com/science/article/pii/
S1367593121000508. Mechanistic Biology * Machine Learning in Chemical Biology.

Farzin Asadi. Essential circuit analysis using LTspice®. Springer Nature, 2022.

Sambaran Bandyopadhyay, Kishalay Das, and M. Narasimha Murty. Line hypergraph convolution
network: Applying graph convolution for hypergraphs, 2020. URL https://arxiv.org/
abs/2002.03392.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio, and
Michael Bronstein. Weisfeiler and lehman go topological: Message passing simplicial networks.
In International Conference on Machine Learning, pp. 1026–1037. PMLR, 2021.

David Boyce, Biljana Ralevic-Dekic, and Hillel Bar-Gera. Convergence of traffic assignments: how
much is enough? Journal of Transportation Engineering, 130(1):49–55, 2004.

Eric Bunch, Qian You, Glenn Fung, and Vikas Singh. Simplicial 2-complex convolutional neural
nets. CoRR, abs/2012.06010, 2020. URL https://arxiv.org/abs/2012.06010.

Yves Colin de Verdière. Magnetic interpretation of the nodal defect on graphs. Analysis & PDE, 6
(5):1235–1242, 2013.

Arlei Lopes da Silva, Furkan Kocayusufoglu, Saber Jafarpour, Francesco Bullo, Ananthram Swami,
and Ambuj K. Singh. Combining physics and machine learning for network flow estimation. In
9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
l0V53bErniB.
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A PROOFS

A.1 JOINT ORIENTATION EQUIVARIANCE AND JOINT ORIENTATION INVARIANCE

Proposition A.1. Let O, Ô be two direction-consistent orientations of edges on G. Let Xequ ∈ Cm×d.
Then:

B(q)
equ(G,O)∆O,Ô = B(q)

equ(G, Ô)

Proof. By assumption, for any eD ∈ ED we have that Ô(eD) = O(eD) = ∆O,ÔO(eD). Now

consider the case eU ∈ EU. If O(eU) = Ô(eU), then B
(q)
equ(G,O)v,eU = B

(q)
equ( ˆG,O)v,eU for all v ∈ V .

Similarly, if O(eU) ̸= Ô(eU), then [B
(q)
equ(G,O)]v,e = −[B(q)

equ(G, Ô)]v,eU for all v ∈ V .

Lemma 4.1. The Magnetic Equivariant Edge Laplacian implies a jointly orientation-equivariant
mapping f(Xequ,Xinv,G,O) = (B

(q)
equ)Hh(B

(q)
equXequ).

Proof. Let O, Ô be two direction-consistent orientations of edges on G. Let Xequ ∈ Cm×dequ and
Xinv ∈ Cm×dinv . Then:

f(∆O,ÔXequ,Xinv,G, Ô) = (B(q)
equ(G, Ô))Hh(B(q)

equ(G, Ô)∆O,ÔXequ)

= (B(q)
equ(G,O)∆O,Ô)Hh(B(q)

equ(G,O)∆O,Ô∆O,ÔXequ)

= (∆O,Ô)H(B(q)
equ(G,O))Hh(B(q)

equ(G,O)Xequ)

= ∆O,Ôf(Xequ,Xinv,G,O)

Here, we used Proposition A.1 and the facts that ∆O,Ô∆O,Ô = Im by definition and ∆O,Ô =

(∆O,Ô)H as it is a diagonal real matrix. The proof holds for arbitrary node feature transformations h.

Proposition A.2. Let O, Ô be two direction-consistent orientations of edges on G. Let Xequ ∈ Cm×d.
Then:

B
(q)
inv (G,O) = B

(q)
inv (G, Ô)

Proof. By assumption, for any eD ∈ ED we have that ˆO(eD) = O(eD) = ∆O,ÔO(eD) and con-

sequentially, [B(q)
inv (G,O)]v,eD = [B

(q)
inv (G, Ô)]v,eD for all v ∈ V . For eU ∈ EU, the claim follows

directly from Equation (9).

Lemma 4.2. The Magnetic Invariant Edge Laplacian implies a jointly orientation-invariant mapping
g(Xequ,Xinv,G,O) = (B

(q)
inv )

Hh(B
(q)
inv Xinv).

Proof. Let O, Ô be two direction-consistent orientations of edges on G. Let Xequ ∈ Cm×dequ and
Xinv ∈ Cm×dinv . Then:

g(Xequ,Xinv,G, Ô) = (B
(q)
inv (G, Ô))Hh(B

(q)
inv (G, Ô)Xinv)

= (B
(q)
inv (G,O))Hh(B

(q)
inv (G,O)Xinv)

= g(Xequ,Xinv,G,O)

Here, we directly applied Proposition A.2. The proof holds for arbitrary node feature transformations
h.

Lemma 4.3. The Invariant and Equivariant Fusion Magentic Edge Laplacians implies a
jointly orientation-invariant and jointly orientation-equivariant mapping g(Xequ,Xinv,G,O) =

(B
(q)
inv )

Hh(B
(q)
equXequ) and a f(Xequ,Xinv,G,O) = (B

(q)
equ)Hh(B

(q)
inv Xinv) respectively.
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Proof. Let O, Ô be two direction-consistent orientations of edges on G. Let Xequ ∈ Cm×dequ and
Xinv ∈ Cm×dinv . Then:

g(∆O,ÔXequ,Xinv,G, Ô) = (B
(q)
inv (G, Ô))Hh(B(q)

equ(G, Ô)∆O,ÔXequ)

= (B
(q)
inv (G,O))Hh(B(q)

equ(G,O)∆O,Ô∆O,ÔXequ)

= (B
(q)
inv (G,O))Hh(B(q)

equ(G,O)Xequ)

= g(Xequ,Xinv,G,O)

Here, we used Propositions A.1 and A.2 and the fact that ∆O,Ô∆O,Ô = Im.

Let O, Ô be two direction-consistent orientations of edges on G. Let Xequ ∈ Cm×dequ and Xinv ∈
Cm×dinv . Then:

f(∆O,ÔXequ,Xinv,G, Ô) = (B(q)
equ(G, Ô))Hh(B

(q)
inv (G, Ô)Xinv)

= (B(q)
equ(G,O)∆O,Ô)Hh(B

(q)
inv (G,O)Xinv)

= (∆O,Ô)H(B(q)
equ(G,O))Hh(B

(q)
inv (G,O)Xinv)

= ∆O,Ôf(Xequ,Xinv,G,O)

Here, we used Propositions A.1 and A.2 and the fact that (∆O,Ô)H = ∆O,Ô as it is a diagonal real
matrix.

We now prove that the composition of orientation-equivariant / invariant functions preserves ori-
entation equivariance / invariance, which allows us to prove Theorem 4.1 by using Lemmata 4.1
to 4.3.

Proposition A.3. Let f1 and f2 be jointly orientation-equivariant mappings according to Def-
inition 4.1. Then f1 ◦equ f2 = f1(f2(Xequ,Xinv,G,O),Xinv,G,O) is also jointly orientation-
equivariant.

Proof.

(f1 ◦equ f2)(∆O,ÔXequ,Xinv,G, Ô) = f1(f2(∆O,ÔXequ,Xinv,G, Ô),Xinv,G, Ô)

= f1(∆O,Ôf2(Xequ,Xinv,G,O),Xinv,G, Ô)

= ∆O,Ôf1(f2(Xequ,Xinv,G,O),Xinv,G,O)

= ∆O,Ô(f1 ◦equ f2)(Xequ,G,O)

Next we discuss the relationship between sign-equivariant and jointly orientation-equivariant map-
pings.

Proposition A.4. Let σ be a sign-equivariant mapping, i.e. σ(−x,−y) = −σ(x, y)
and f1 and f2 be jointly orientation-equivariant mappings. Then f(Xequ,Xinv,G,O) =
σ(f1(Xequ,Xinv,G,O), f2(Xequ,Xinv,G,O)) is a jointly orientation-equivariant mapping as well.

Proof.

f(∆O,ÔXequ,G, Ô) = σ(f1(∆O,ÔXequ,Xinv,G, Ô), f2(∆O,ÔXequ,Xinv,G, Ô))

= σ(∆O,Ôf1(Xequ,Xinv,G,O),∆O,Ôf2(Xequ,Xinv,G,O))

= ∆O,Ôσ(f1(Xequ,Xinv,G,O), f2(Xequ,Xinv,G,O))

= ∆O,Ôf(Xequ,Xinv,G,O)
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Note that Proposition A.4 generalizes to sign equivariant functions with one argument by defining
σ′(x) = σ(x, 0).

We can now prove that H(l)
equ as defined in Equation (2) is a jointly equivariant mapping.

Lemma A.5. H
(l)
equ as defined in Equation (2) is a jointly orientation-equivariant mapping. H(l)

inv as
defined in Equation (3) is a jointly orientation-invariant mapping.

Proof. The proof is done inductively. Therefore, assume H
(l−1)
equ to be a jointly orientation-

equivariant mapping and H
(l−1)
inv to be a jointly orientation-invariant mapping. For notational

simplicitly, we absorb the dependency on Xequ, Xinv, G and O into the mapping itself: That is, for a
mapping F , we denote F (Xequ,Xinv,G,O) = F and F (∆O,ÔXequ,Xinv,G, Ô) = F̂ .

We first show that Z(l)
equ to be a jointly orientation-equivariant mapping.

Ẑ(l)
equ = σequ(f

(l)
equ(Ĥ

(l−1)
equ )W (l)

equ→equ + f
(l)
inv→equ(Ĥ

(l−1)
inv )W

(l)
inv→equ + Ĥ(l−1)

equ W (l)
equ)

= σequ(f
(l)
equ(∆O,ÔH(l−1)

equ )W (l)
equ→equ + f

(l)
inv→equ(H

(l−1)
inv )W

(l)
inv→equ +∆O,ÔH(l−1)

equ W (l)
equ)

= σequ(∆O,Ôf (l)
equ(H

(l−1)
equ )W (l)

equ→equ +∆O,Ôf
(l)
inv→equ(H

(l−1)
inv )W

(l)
inv→equ +∆O,ÔH(l−1)

equ W (l)
equ)

= ∆O,Ôσequ(f
(l)
equ(H

(l−1)
equ )W (l)

equ→equ + f
(l)
inv→equ(H

(l−1)
inv )W

(l)
inv→equ +H(l−1)

equ W (l)
equ)

= ∆O,ÔZ(l)
equ

Here, we first used the induction assumption, then applied the joint orientation equivariance property
of L(q)

equ and L
(q)
inv→ equ proven in Lemmata 4.1 and 4.3 and lastly used the fact that we assume σequ to

be sign-invariant function to apply Proposition A.4.

Similarily, we can show that Z(l)
equ to be a jointly orientation-equivariant mapping.

Ẑ
(l)
inv = σinv(f

(l)
inv (Ĥ

(l−1)
inv )W

(l)
inv→inv + f

(l)
equ→inv(Ĥ

(l−1)
equ )W

(l)
equ→inv + Ĥ

(l−1)
inv W

(l)
inv )

= σinv(f
(l)
inv (H

(l−1)
inv )W

(l)
inv→inv + f

(l)
equ→inv(∆O,ÔH(l−1)

equ )W
(l)
equ→inv +H

(l−1)
inv W

(l)
inv )

= σinv(f
(l)
inv (H

(l−1)
inv )W

(l)
inv→inv + f

(l)
equ→inv(H

(l−1)
equ )W

(l)
equ→inv +H

(l−1)
inv W

(l)
inv )

= Z
(l)
inv

Here, we first used the induction assumption, then applied the joint orientation invariance property of
L

(q)
inv and L

(q)
equ→ inv proven in Lemmata 4.2 and 4.3.

Next, we can show that H(l)
equ is an orientation-equivariant mapping.

Ĥ(l)
equ = σequ(Ẑ

(l)
equW

(l)
F,equ,equ ⊙ Ẑ

(l)
invW

(l)
F,equ,inv + Ẑ(l)

equ)

= σequ((∆O,ÔZ(l)
equW

(l)
F,equ,equ)⊙Z

(l)
invW

(l)
F,equ,inv +∆O,ÔZ(l)

equ)

= σequ(∆O,Ô(Z(l)
equW

(l)
F,equ,equ ⊙Z

(l)
invW

(l)
F,equ,inv) + ∆O,ÔZ(l)

equ)

= ∆O,Ôσequ((Z
(l)
equW

(l)
F,equ,equ ⊙Z

(l)
invW

(l)
F,equ,inv) +Z(l)

equ)

= ∆O,ÔH(l)
equ

We first use the previously proven joint orientation equivariance of Z(l)
equ, and then the fact both ∆O,Ô

and ⊙ are element-wise multiplications and, therefore, are associative operations. Lastly, we again
make use of Proposition A.4 for the sign-equivariant function σequ.
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Lastly, we can show that H(l)
inv is an orientation-invariant mapping.

Ĥ
(l)
inv = σinv(Ẑ

(l)
invW

(l)
F,inv,inv ⊙ abs(Ẑ(l)

equW
(l)
F,inv,equ) + Ẑ

(l)
inv )

= σinv(Z
(l)
invW

(l)
F,inv,inv ⊙ abs(∆O,ÔZ(l)

equW
(l)
F,inv,equ) +Z

(l)
inv )

= σinv(Z
(l)
invW

(l)
F,inv,inv ⊙ abs(Z(l)

equW
(l)
F,inv,equ) +Z

(l)
inv )

= H
(l)
inv

Here, we first use the previously proven joint orientation invariance of Z(l)
inv . Then, we notice that

∆O,Ô corresponds to an element-wise multiplication with ±1 and is therefore canceled out by the
element-wise absolute value function.

A.2 PERMUTATION EQUIVARIANCE

A common requirement for GNNs is equivariance with respect to the ordering of input to enable
generalization (Maron et al., 2018; Wu et al., 2021). While node-level GNNs are equivariant with
respect to node permutations, we require edge-level permutation equivariance.

Definition A.1 (Permutation Equivariance). Let O be an orientation of edges on G and P ∈ Rm×m

be a permutation matrix on the edges. Let OP and GP be its application to O and G respectively.
We say that a mapping f satisfies permutation equivariance if for any orientation-equivariant signal
Xequ ∈ Cm×dequ and any orientation-invariant signal Xinv ∈ Cm×dinv :

P f(Xequ,Xinv,G,O) = f(PXequ,PXinv,GP ,OP ) .

We now proceed to prove that EIGN is a permutation equivariant mapping according to Definition A.1.
Again, we first concern boundary operators and show results for the generalized, directed case and
recover Equations (4) and (5) with q = 0.

Proposition A.6. L
(q)
equ induces a permutation equivariant mapping according to Definition A.1.

Proof. Let O be an orientation of edges on G and P be a permutation matrix. Let OP and GP its
application to O and G respectively.

f(PXequ,PXinv,GP ,OP ) = (B(q)
equ(GP ,OP ))Hh(B(q)

equ(GP ,OP )PXequ)

= (B(q)
equ(G,O)PH)Hh(B(q)

equ(G,O)PHPXequ)

= P (B(q)
equ(G,O))Hh(B(q)

equ(G,O)Xequ)

= P f(Xequ,Xinv,G,O)

Proposition A.7. L
(q)
inv induces a permutation equivariant mapping according to Definition A.1.

Proof. Let O be an orientation of edges on G and P be a permutation matrix. Let OP and GP its
application to O and G respectively.

g(PXinv,PXinv,GP ,OP ) = (B
(q)
inv (GP ,OP ))Hh(B

(q)
inv (GP ,OP )PXinv)

= (B
(q)
inv (G,O)PH)Hh(B

(q)
inv (G,O)PHPXinv)

= P (B
(q)
inv (G,O))Hh(B

(q)
inv (G,O)Xinv)

= P g(Xinv,Xinv,G,O)

Proposition A.8. L
(q)
equ→ inv induces a permutation equivariant mapping according to Definition A.1.
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Proof. Let O be an orientation of edges on G and P be a permutation matrix. Let OP and GP its
application to O and G respectively.

f(PXequ,PXinv,GP ,OP ) = (B
(q)
inv (GP ,OP ))Hh(B(q)

equ(GP ,OP )PXequ)

= (B
(q)
inv (G,O)PH)Hh(B(q)

equ(G,O)PHPXequ)

= P (B
(q)
inv (G,O))Hh(B(q)

equ(G,O)Xequ)

= P f(Xequ,Xinv,G,O)

Proposition A.9. L
(q)
inv→ equ induces a permutation equivariant mapping according to Definition A.1.

Proof. Let O be an orientation of edges on G and P be a permutation matrix. Let OP and GP its
application to O and G respectively.

f(PXequ,PXinv,GP ,OP ) = (B(q)
equ(GP ,OP ))Hh(B

(q)
inv (GP ,OP )PXinv)

= (B(q)
equ(G,O)PH)Hh(B

(q)
inv (G,O)PHPXinv)

= P (B(q)
equ(G,O))Hh(B

(q)
inv (G,O)Xinv)

= P f(Xequ,Xinv,G,O)

Lemma A.10. H
(l)
equ and H

(l)
inv as defined in Equation (2) are permutation equivariant mappings.

Proof. The proof is done inductively. Therefore, assume H
(l−1)
equ and H

(l−1)
inv to be a permutation

equivariant mappings. For simplicitly, we, again, absorb the dependency on Xequ, Xinv, G and
O into the mapping itself: That is, for a mapping F , we denote F (Xequ,Xinv,G,O) = F and
F (PXequ,PXinv,GP ,OP ) = F̃ .

We first show that Z(l)
equ to be a permutation equivariant mapping.

Z̃(l)
equ = σequ(f

(l)
equ(H̃

(l−1)
equ )W (l)

equ→equ + f
(l)
inv→equ(H̃

(l−1)
inv )W

(l)
inv→equ + H̃(l−1)

equ W (l)
equ)

= σequ(f
(l)
equ(PH(l−1)

equ )W (l)
equ→equ + f

(l)
inv→equ(PH

(l−1)
inv )W

(l)
inv→equ + PH(l−1)

equ W (l)
equ)

= σequ(P f (l)
equ(H

(l−1)
equ )W (l)

equ→equ + P f
(l)
inv→equ(H

(l−1)
inv )W

(l)
inv→equ + PH(l−1)

equ W (l)
equ)

= Pσequ(f
(l)
equ(H

(l−1)
equ )W (l)

equ→equ + f
(l)
inv→equ(H

(l−1)
inv )W

(l)
inv→equ +H(l−1)

equ W (l)
equ)

= PZ(l)
equ

Here, we first used the induction assumption, then applied the permutation equivariance property of
L

(q)
equ and L

(q)
inv→ equ proven in Propositions A.6 and A.9 and lastly used the fact that we assume σequ to

be an element-wise function which, hence, commutes with permutations.

Similarily, we can show that Z(l)
equ to be a permutation equivariant mapping.

Z̃
(l)
inv = σinv(f

(l)
inv (H̃

(l−1)
inv )W

(l)
inv→inv + f

(l)
equ→inv(H̃

(l−1)
equ )W

(l)
equ→inv + H̃

(l−1)
inv W

(l)
inv )

= σinv(f
(l)
inv (PH

(l−1)
inv )W

(l)
inv→inv + f

(l)
equ→inv(PH(l−1)

equ )W
(l)
equ→inv + PH

(l−1)
inv W

(l)
inv )

= σinv(P f
(l)
inv (H

(l−1)
inv )W

(l)
inv→inv + P f

(l)
equ→inv(H

(l−1)
equ )W

(l)
equ→inv + PH

(l−1)
inv W

(l)
inv )

= Pσinv(f
(l)
inv (H

(l−1)
inv )W

(l)
inv→inv + f

(l)
equ→inv(H

(l−1)
equ )W

(l)
equ→inv +H

(l−1)
inv W

(l)
inv )

= PZ
(l)
inv

Here, we first used the induction assumption, then applied the permutation equivariance property of
L

(q)
equ and L

(q)
inv→ equ proven in Propositions A.7 and A.8 and lastly used the fact that we assume σequ to

be an element-wise function which, hence, commutes with permutations.
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Next, we can show that H(l)
equ is an permutation equivariant mapping.

H̃(l)
equ = σequ(Z̃

(l)
equW

(l)
F,equ,equ ⊙ Z̃

(l)
invW

(l)
F,equ,inv + Z̃(l)

equ)

= σequ((PZ(l)
equW

(l)
F,equ,equ)⊙ (PZ

(l)
invW

(l)
F,equ,inv) + PZ(l)

equ)

= σequ(P (Z(l)
equW

(l)
F,equ,equ ⊙Z

(l)
invW

(l)
F,equ,inv) + PZ(l)

equ)

= Pσequ(Z
(l)
equW

(l)
F,equ,equ ⊙Z

(l)
invW

(l)
F,equ,inv +Z(l)

equ)

= PH(l)
equ

We first use the previously proven joint permutation equivariance of Z(l)
equ, and then the fact both σequ

and ⊙ are element-wise operations and, therefore, commute with permutations.

Lastly, we can show that H(l)
inv is an orientation-invariant mapping.

H̃
(l)
inv = σinv(Z̃

(l)
invW

(l)
F,inv,inv ⊙ abs(Z̃(l)

equW
(l)
F,inv,equ) + Z̃

(l)
inv )

= σinv((PZ
(l)
invW

(l)
F,inv,inv)⊙ (abs(PZ(l)

equW
(l)
F,inv,equ)) + PZ

(l)
inv )

= σinv((PZ
(l)
invW

(l)
F,inv,inv)⊙ (P abs(Z(l)

equW
(l)
F,inv,equ)) + PZ

(l)
inv )

= σinv(P (Z
(l)
invW

(l)
F,inv,inv ⊙ abs(Z(l)

equW
(l)
F,inv,equ)) + PZ

(l)
inv )

= Pσinv(Z
(l)
invW

(l)
F,inv,inv ⊙ abs(Z(l)

equW
(l)
F,inv,equ) +Z

(l)
inv )

= PH
(l)
inv

Here, we first use the previously proven joint permutation equivariance of Z(l)
inv , and then the fact σinv,

abs and ⊙ are element-wise operations and, therefore, commute with permutations.

A.3 THE MAIN RESULT

We can now plug Lemmas A.5 and A.10 together and prove Theorem 4.1.

Theorem 4.1. (i) H(L)
equ is a jointly orientation-equivariant mapping. (ii) H(L)

inv is a jointly orientation-
invariant mapping. (iii) Both H

(L)
equ and H

(L)
inv are permutation equivariant mappings.

Proof. The proof of (i) and (ii) is directly given by Lemma A.5. The proof of (iii) is directly given by
Lemma A.10.

A.4 INTER-MODALITY CONVOLUTIONS TO LEARN ORIENTATION-EQUIVARIANT
REPRESENTATIONS FROM ORIENTATION-INVARIANT REPRESENTATIONS

Here, we show that not using the inter-modality convolutions f (l)
inv→equ results in the model outputting

for the orientation-equivariant edge representations in case there are no orientation-equivariant inputs
available (Xequ = 0). Therefore, omitting these convolutions prevents the model from predicting
any non-zero orientation-equivariant output for undirected edges if orientation-equivariant inputs are
unavailable.

Lemma A.11. Computing Z
(l)
equ as per Equation (2) but without using f

(l)
inv→equ) implies that if

H
(l−1)
equ = 0, then also (Z

(l)
equ)EU = 0 for undirected edges.
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Proof.

(Z(l)
equ)EU = σequ(f

(l)
equ(H

(l−1)
equ )W (l)

equ→equ +H(l−1)
equ W (l)

equ)EU

= σequ(f
(l)
equ(0)W

(l)
equ→equ + 0W (l)

equ)EU

= σequ((B
(q)
equ)

Hh(B(q)
equ0)W

(l)
equ→equ)EU

= σequ((B
(q)
equ)

Hh(0)W (l)
equ→equ)EU

= σequ((B
(q)
equ)

H
EU
h(0)W (l)

equ→equ)

= σequ((B
(q)
equ)

H
EU
c)W (l)

equ→equ)

= σequ(0W
(l)
equ→equ)

= σequ(0))

= 0

Here, we have used that the node feature mapping h will get zeros as input and therefore produce
the same constant embedding c for all nodes. Along undirected edges, the flow that is induced by
(B

(q)
equ)H corresponds to the differences between its endpoints, which consequently will be zero as well.

Note that similarly each directed edge will be assigned the representation (exp(iπq)− exp(−iπq)c.
While being non-zero, this layer architecture is only able to produce a constant feature for both
directed and undirected edges which heavily limits its expressivity. This is also well reflected in
Table 15.

B CONSIDERATIONS FOR MODELLING ORIENTATION EQUIVARIANT AND
ORIENTATION INVARIANT SIGNALS

Here, we provide additional considerations for how orientation equivariant and invariant signals
should be modeled on graphs that contain both directed and undirected edges. This discussion
supplements Figure 2. We begin by highlighting the limitations of previous architectures that treat all
edge signals as fully orientation invariant or orientation equivariant respectively.

Orientation Invariant Architectures. Most architectures that are not grounded in Algebraic
Topology treat all inputs and targets as orientation invariant. That is, the input features and the
output features are assumed to not have an inherent direction. This is, however, limiting, as in many
real-world applications (traffic, electrical engineering, water flow networks, etc.) accounting for the
direction of a signal is crucial. Therefore, these architectures are not applicable to these settings.

Orientation Equivariant Architectures. Note that it is impossible to represent the direction of
a signal through a scalar value without defining a reference orientation for the associated edge:
Either the signal direction matches the reference orientation or it does not. For example, topological
methods use the sign of a signal to indicate if its direction matches the reference orientation. In
the case of directed edges, there is a clear choice for defining this reference. For undirected edges,
however, an arbitrary reference must be fixed which is typically done in topological approaches.
Since the reference orientation is used only to represent direction in signals and can be seen as a
representational basis it should not affect the predictions of a model. This leads to an equivariance
condition for these architectures: If the reference orientation changes, inputs, and outputs of a model
should be represented with respect to this new orientation but not change apart from that. Topological
models typically satisfy this notion (Roddenberry & Segarra, 2019; Roddenberry et al., 2021).

They, however, treat all inputs and outputs as signals that have inherent direction, i.e. represent
them with respect to an orientation. Therefore, they can not model information that does not come
with inherent direction like the number of lanes in a street, resistance, or pipe diameter. Enforcing
orientation equivariance for all inputs and outputs of a model does not apply to settings where also
orientation invariant signals that are irrespective of a reference orientation are available. In particular,
these models require representing input and output signals with respect to an orientation and it is
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ill-defined to define how an orientation invariant signal should be represented with respect to a
reference orientation, e.g. through its sign.

Edge Direction. In addition to the inherent direction to the signal of an edge, the edge itself can be
directed. In practice, the direction of an edge implies constraints on the solutions admissible to a
problem: One-way streets in traffic networks prohibit a certain traffic flow direction, and diodes and
valves play a similar role in electrical circuits or pipe networks. However, orientation equivariant
models are insensitive to the (arbitrarily chosen) orientation of edge edge. Therefore, even if the
orientation of directed edges is fixed to coincide with their direction, this information can not be
utilized by a fully orientation equivariant architecture. Figure 2 exemplifies this issue: Figures 2a
and 2b differ only in the orientation chosen to represent the scenario and, thus, any orientation
equivariant model will output the same value for both. In Figure 2a, however, the flow orientation is
defined opposite to the direction of a directed edge. In traffic applications, this drastically affects the
scenario: In one case, one-way constraints are violated while in the other they are not.

This motivates our adopted notions of orientation equivariance and invariance: The concept of
orientation is needed only for undirected edges. Directed edges already provide a reference orientation
for representing signals through their direction. Furthermore, models should not be equivariant with
respect to the direction of directed edges. In our work, we represent equivariant signals of directed
edges with respect to their inherent direction and use an arbitrary orientation only for undirected
edges. Consequently, the notions of orientation equivariance and orientation invariance only need to
hold for undirected edges.

C THE LAPLACE OPERATORS OF EIGN

Here, we explicitly list the definitions of all Laplace operators and briefly describe some intuition.
This is supplementary to the description for the Equivariant Edge Laplacian Lequ in Section 4.3.
Intuitively speaking, each Laplacian is a composition of two boundary operators. Therefore, the
message passing from an adjacent edge e′ ∈ E to a target edge e ∈ E can be understood as a two-step
procedure: 1. The signal of e′ is expressed relative to the node both e and e′ are incident to. This
corresponds to the right-hand term in the construction of the Laplacian. Expressing the signal on
the node level makes it invariant to the orientation (if the suitable boundary operator was used, i.e.
the orientation-equivariant boundary for an orientation-equivariant signal and vice versa). 2. The
signal of e′, currently expressed in reference to the shared node (ingoing versus outgoing), is then
expressed relative to e. This corresponds to the left-hand term in the construction of the Laplacian
from composing two boundaries. Depending on which boundary operator is used, this signal will be
orientation-equivariant or orientation-invariant.

The values in Table 7 assume values based on if (i) e and e′ align (i.e. are not consecutive). If they
align, the first value is assumed, if they misalign, the second. (ii) The direction of e relative to the
node. For the direction depicted in Table 7, the first value is assumed. Flipping the orientation /
direction of both edges gives the second value.

Based on this intuition, we interpret how the Laplacians of EIGN materialize in Table 7. We can
see that only the Magnetic Laplacians are direction-aware and Lequ and Linv do not depend on the
direction. Furthermore, messages between two directed edges experience phase shifts twice: Once
when being emitted from the directed source edge and once when being aggregated by the target

edge. If the two directions are aligned, these phase shifts cancel out ( e−→ e′←−). Otherwise, they
add to a total phase shift of 2πq. One can also see that which direction an edge has (relative to the
shared incident node) is encoded in the sign (i.e. direction) of the complex phase shift for both L

(q)
equ

and L
(q)
inv . The key difference between the orientation-equivariant L(q)

equ and the orientation-invariant
L

(q)
inv is that the former also re-orients signals depending on if the edges align, similar to Lequ. The

Fusion Laplacians L(q)
equ→ inv and L

(q)
inv→ equ mix both modalities and therefore can not be categorized

intuitively as easily.

Since all Laplacians can be constructed without materializing any boundary operator by following
Table 7, our approach scales in the number of edge pairs connected by a shared node. Put differently,
EIGN can be seen as node-level GNN on the line graph of the problem with a sparse convolution
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Table 7: Realization of different Laplacian operators for directed edges −→ and undirected (oriented)
edges =⇒. Equivariant operators encode if two edge orientations/directions align, i.e. whether they
are non-consecutive through the sign of the real part. The sign of the complex phase determines the
direction relative to the reference node both edges are incident to, i.e. whether they are in- or outgoing.
The relative orientation (alignment) of two edges is ignored by orientation-invariant operators. We
omit the cases for which the direction/orientation of both e and e′ are flipped (this realizes a different
sign in the complex phase).

Adjacency [Lequ]e,e′ [L
(q)
equ]e,e′ [Linv]e,e′ [L

(q)
inv ]e,e′ [L

(q)
equ→ inv]e,e′ [L

(q)
inv→ equ]e,e′

e = e′ 2 2 2 2 2 2

e−→ e′−→ ±1 exp(±2πq)
1

exp(±2πiq) ∓ exp(±2πiq) ± exp(±2πiq)
e−→ e′←− 1 1 ±1 ±1
e−→ e′
=⇒

±1 ± exp(±πiq) 1 exp(±πiq)
∓ exp(±πiq) ± exp(±πiq)

e
=⇒ e′−→
e−→ e′⇐= ± exp(±πiq) ± exp(±πiq)
e

=⇒ e′←− ± exp(∓πiq) ± exp(∓πiq)
e

=⇒ e′
=⇒ ±1 ±1 1 1

∓1 ±1
e

=⇒ e′⇐= ±1

operator that has non-zero entries only when two of its nodes (i.e. edges) are adjacent. EIGN,
therefore, has the same runtime complexity as all line-graph-like methods.

D EXPERIMENTAL DETAILS

D.1 DATASETS

Here, we detail statistics for all datasets and the exact generation process for synthetic data. An
overview of the statistics of each dataset is given in Table 8.

Table 8: Average performance of models on synthetic tasks (best and runner-up) with 95% confi-
dence intervals of the mean.

Dataset #Graphs #Nodes #Edges #Features
Dir. Total Equ. Inv.

RW Comp 1000 50 161–249 161–249 0 2
LD Cycles 1000 12–16 16–31 25–33 0 1
Tri-Flow 100 300 245–282 400 1 3

Anaheim 1 416 354 634 0 8
Barcelona 1 930 1074 1798 0 9
Chicago 1 933 0 1475 0 10
Winnepeg 1 1040 354 1595 0 8
Circuits 591 8–12 0–7 12–20 1 4

RW Comp. In this inductive setting, we generate 1, 000 Erdős–Rényi graphs Erdos et al. (1960) with
n = 50 nodes and choose the edge probability such that the expected number of edges is 200. All
edges are directed. Each graph is assigned a transition probability sampled uniformly from [0, 1]. For
each graph, we sample a random walk starting from a randomly selected node (uniform probabilities)
up to length 100. We then randomly select 20% of the sampled transitions and provide them as
orientation-invariant features as one-hot encoding and the transition probabilities. The task is to
predict if a node is part of the 80% nodes in the random walk that are not provided as an input, i.e. a
binary classification problem. We use a 70/10/20 split to assign graphs to train, validation, and test
sets respectively.
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LD Cycles. In this inductive setting, we generate 1, 000 graphs and sample a cycle size c uniformly
from [6, 8]. We then generate two cycles, each consisting of c nodes: The first one contains only
directed and consecutive edges. The second one is similar but contains one undirected edge. To
each cycle, we then add additional c random edges between its nodes, each of which is directed with
a probability of 25%. We ensure that no second consecutive, purely directed cycle of length c is
manually formed in this process. Lastly, we connect both cycles with an edge that, too, is directed
with a probability of 25%. Therefore, each graph can be seen as consisting of two components: One
contains one consecutive, purely directed cycle of length c, while the other contains a non-purely
directed, consecutive cycle of the same length. The task is to classify edges as being part of the longest
purely-directed cycle or not. We provide the constant 1 vector as a surrogate orientation-invariant
input, and, therefore, this task is purely topological. Models need to understand the concept of edge
direction to perform well in this setting. Again, we use a 70/10/20 split for the graphs.

Tri-Flow. In this inductive setting, we construct 100 graphs with n = 300 nodes and m = 400
edges. We want to induce a relationship between orientation-invariant and orientation-equivariant
features. We assign each edge one of c = 3 colors as an orientation-invariant feature. We then plant
t = 100 disjoint triangles in the graph. Each triangle is constructed according to one of three patterns:
(i) Triangles with at least one directed edge, all edges of the same color. (ii) Triangles with edges of
the same color, but at least two edges are directed and ensure that the triangle can not be consecutive.
(iii) Triangles with edges of different colors. We generate 50% of triangles with mechanism (i),
and 25% with mechanisms (ii) and (iii) respectively. We then add 100 random edges to connect the
triangles and ensure that no new triangles are formed. For the task of this problem, we introduce
an orientation-equivariant flow at each edge and the task is to re-orient these flow labels such that
flows within triangles are closed. To that end, in the solution to this task, flow along directed edges
must follow the edge direction while undirected edges permit flow in both directions. We introduce a
dependency to orientation-invariant features by requiring that flow can only pass through triangles of
the same color. That is, the target for triangles of type (i) is to re-orient the flow correctly such that it
is closed within the monochromatic triangle. Triangles of type (ii) contain two directed edges that
prevent consecutiveness and therefore, the target is 0 as no flow is permitted through such triangles.
The same holds for triangles of type (iii) that prohibit flow as their edges are not monochromatic. We
then add 100 edges, while ensuring no new triangles of type (i) are formed, that, consequentially, also
have a target of 0. This task, therefore, involves understanding and relating the concepts of direction,
orientation, color (which is orientation-invariant), and flow (which is orientation-equivariant). It
probes all possible modalities an edge-level GNN can be exposed to. We again split each of the
graphs into train, validation, and test sets using a 70/10/20 split.

Traffic Datasets. We collect the Anaheim, Barcelona, Chicago, and Winnipeg datasets from the
TNTP transportation network repository (Stabler et al., 2016). This project studies the Traffic
Assignment Problem (Patriksson, 2015) and provides flows that correspond to the best-known
solutions in terms of lowest Average Excess Cost (Boyce et al., 2004). We select these graphs based
on that they are decently sized, provide both orientation-invariant features, and contain directed edges.
Nodes correspond to intersections while edges represent links, e.g. streets. We use the following
as orientation-invariant inputs (if available): (i) capacity, (ii) length, (iii) free flow time (i.e. travel
time with no congestion), (iv) B factor and power, which are calibration parameters for the Traffic
Assignment Problem, (v) if there is a toll on the link, and (vi) the link type, e.g. highway. (vii) if
the edge corresponds to excess flow on a source / sink node The optimal flow solution is computed
with respect to pre-defined demand for given source-target node pairs. To represent this as edge
features, we identify all edges incident to edges that correspond to sources or sinks in terms of the
transportation problem, add them to the training set and identify these edges with an invariant feature.
By keeping these edges in the training set, the model can infer the problem constraints and predict
flow on all edges that are not incident to sources or targets. The problem topology is preprocessed
as follows: The input data is entirely directed, and, therefore, we aggregate edges (u, v) and (v, u)
into one undirected edge if both are present. The flow labels are combined using subtraction (i.e. we
subtract the from the edge direction that is used as a reference orientation to represent the flow). We
then normalize the orientation-invariant features to follow a standard normal and normalize the target
flows to [0, 1].

Electrical Circuits. We generate random topologies with the following procedure: First, a cycle of
length cinit = 3 is generated. Then, we iteratively attach new nodes v to the graph by selecting random
source and sink nodes s, t and adding the edges (s, v) and (v, t). We then randomly assign different
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component types to each edge: (i) exactly one power outlet, (ii) resistors with a resistance uniformly
sampled from [100Ω, 10, 000Ω], (iii) diodes with saturation current 18.8nA, parasitic resistance 0Ω,
reverse breakdown voltage 0.5µV , zero-bias junction capacitance 30F , a linearly graded junction,
emission coefficient of 2.0 and transit time of 0s. Diodes only permit current to flow in one direction.
The ratio of resistors and diodes is 80/20. We then use LTSpice (Asadi, 2022) to simulate the currents
at each edge and voltages at each node until a steady state is reached. We use the component type and
resistance at resistors as orientation-invariant features and normalize the latter to follow a standard
normal distribution. The voltage along the power outlet is the only orientation-equivariant input
signal, and we assign 0 to all the other edges. For each graph we individually normalize the currents:
First, we divide by the voltage at the power outlet. We then also normalize the currents again by
dividing by the standard deviation of all flows on all graphs, i.e. a constant.

D.2 TASKS

Denoising. The first task is denoising the flow signal of traffic data and circuits. To that end, for each
graph, we compute the standard deviation σy of all flows and then add noise sampled uniformly from
[−σy, σy] to all edges. The task is to recover the original signal, which we measure with the Root
Mean Squared Error (RMSE) (↓). Since the additional orientation-invariant input, the noisy flow
provides a strong signal for the direction of the target, it is, arguably, considered to be the easiest of
the three tasks.

Interpolation. The second task is predicting the traffic flow / current from only a few ground-truth
values. To that end, for each graph, we provide 10% of the true flow labels as an additional orientation-
equivariant input and set the rest to 0. The task is to predict the orientation-equivariant flow at edges
for which flow was not provided. Again, we use RMSE as the main evaluation metric. Similar to the
denoising task, the auxiliary orientation-invariant input signal can provide information about the true
direction of the orientation-equivariant target. Since this information is now only available at some
edges, we consider the interpolation task to be harder.

Simulation. The third task is predicting the orientation-equivariant target (traffic flow / electrical
current) from just the topology and available orientation-equivariant and orientation-invariant features.
This task can be seen as learning to simulate the traffic flow / electrical current. An effective model
has to learn the underlying physical processes the data is derived from. Since we do not provide
any input regarding the direction of the orientation-equivariant target, we consider this task to be the
hardest problem among the three. Again, we can measure the performance of a model using RMSE
but also report the Mean Absolute Error (MAE) (↓) and R2 value (↑).

D.3 MODEL ARCHITECTURE

MLP. We use a standard MLP with ReLU activations. We concatenate both orientation-equivariant
and orientation-invariant inputs as a model input. This, effectively, mistreats orientation-equivariant
input signals as orientation-invariant. The same is true for the orientation-equivariant model out-
put/target.

LINEGRAPH. Similar to the MLP, we concatenate orientation-equivariant and orientation-invariant
inputs, thereby mistreating the equivariant modality, and successively apply convolutions with the
Line Graph Laplacian LLINEGRAPH = DLINEGRAPH −ALINEGRAPH:

[ALINEGRAPH]e,e′ =

{
1 if e ̸= e′ and e, e′ adjacent
0 otherwise

. (10)

Here, DLINEGRAPH is a diagonal matrix of edge degrees, i.e. [DLINEGRAPH]e,e =
∑

e′ [ALINEGRAPH]e,e′ .
A LINEGRAPH convolution is then realized as:

H(l) = σ(LLINEGRAPHH
(l−1)W (l) + b(l)) . (11)

Here, σ is the ReLU non-linearity, and W (l) and b(l) are the trainable model parameters.

HODGEGNN. We use the HODGEGNNarchitecture of Roddenberry & Segarra (2019), which is a
(jointly) orientation-equivariant architecture. It, however, can not model orientation-invariant inputs,

26



Published as a conference paper at ICLR 2025

as it treats all input signals as equivariant. We therefore do not input this modality at all. Each layer
uses the Equivariant Edge Laplacian Lequ as a convolution operator.

H(l) = σequ(LequH
(l−1)W (l)) . (12)

Here, σequ is a sign-equivariant activation function, which we initialize as tanh. To not break (joint)
orientation equivariance, we can not use a bias term.

HODGE+INV. We use the same architecture as for HODGEGNN, but also concatenate the orientation-
invariant inputs to the orientation-equivariant inputs. This incorrectly models orientation-invariant
signals as orientation-equivariant.

HODGE+DIR. We use the same architecture as for HODGEGNN, but use the ReLU as an activation
function instead of the sign-equivariant tanh. This breaks (joint) orientation equivariance: The model
is now sensitive to the chosen orientation and, therefore, can be seen as direction-aware. However,
this holds for all edges, and hence HODGE+DIR can also not model undirected edges anymore.

LINE-MAGNET. We adopt the node-level graph transformer of Geisler et al. (2023) for edge-
level problems on directed graphs as follows: We first compute the spectral decomposition of the
orientation equivariant and invariant Laplacians L(q)

equ and L
(q)
inv as they are both normal matrices:

L(q)
equ = (Γ(q))

H

equΛ
(q)
equΓ

(q)
equ L

(q)
inv = (Γ(q))

H

invΛ
(q)
inv Γ

(q)
inv . (13)

We then concatenate orientation equivariant and invariant edge features together with the k = 32

(complex-valued) eigenvectors Γ
(q)
equ and Γ

(q)
inv associated with the corresponding eigenvalues of

smallest magnitude. We flatten real and complex parts. Similar to Geisler et al. (2023), these can be
understood as direction-aware positional encodings of the edges in the graph. We then feed this as an
input to a 4-layer transformer with hidden dimension d = 32, mirroring the hyperparameter choices
for EIGN. Note that while this model can distinguish directed and undirected edges it is not a jointly
orientation equivariant or invariant model according to Definitions 4.1 and 4.2 despite utilizing L

(q)
equ

and L
(q)
inv .

Dir-GNN. We also ablate an alternative mechanism to represent directed edges while correctly
modeling orientation equivariant and invariant signals. The core idea closely follows the node-level
GNN proposed by Rossi et al. (2023) and distinguishes directed from undirected edges through two
different message-passing schemes. To that end, we separate the boundary operators Bequ and Binv
into three boundary maps each:

[
←→
B equ]v,e =


−1 if O(e) = (v, ·) and e ∈ EU

1 if O(e) = (·, v) and e ∈ EU

0 otherwise
. (14)

[
←−
B equ]v,e =

{
−1 if e = (v, ·) and e ∈ ED

0 otherwise
. (15)

[
−→
B equ]v,e =

{
1 if e = (·, v) and e ∈ ED

0 otherwise
. (16)

[
←→
B inv]v,e =

{
1 if v ∈ O(e) and e ∈ EU

0 otherwise
. (17)

[
←−
B inv]v,e =

{
1 if e = (v, ·) and e ∈ ED

0 otherwise
. (18)

[
−→
B inv]v,e =

{
1 if e = (·, v) and e ∈ ED

0 otherwise
. (19)

They imply three separate Edge Laplacians each set corresponding to one of the Magnetic operators
proposed in our work through a similar construction. Instead of relying on complex numbers to
represent directionality, this approach represents directed edges through three separate message-
passing operations: One between undirected edges, one between directed edges that are both incoming
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edges concerning a shared node, and one between edges that are outgoing concerning a shared node.
One natural drawback of this approach is that there is no direct message passing between all three types
of edges (like in EIGN). We construct the Dir-GNNarchitecture similar to EIGN: In Equations (2)
and (3), we replace our Magnetic Laplacian convolutions with the aforementioned three Laplacians
and associate a separate set of learnable weight matrices for each of the three. Summation serves
to aggregate the result of the three distinct convolutions. All remaining design choices of EIGN
remain. Therefore, this baseline closely ablates an alternative representation of edge directionality.
Importantly, since the boundary operators are adapted from the ones proposed in our work, Dir-GNN,
too, is a jointy orientation equivariant and invariant model according to Definitions 4.1 and 4.2.

EIGN. We realize EIGN according to Equations (2) to (5). We realize the sign-equivariant
activation σequ as tanh to ensure joint orientation equivariance (see Appendix A. In the main
text, we omitted biases for brevity. However, to not violate joint orientation equivariance, biases
can only be used when the output of the affine transformation is not orientation-equivariant, i.e.
orientation-invariant. Consequently, the following linear transformations are supplied with biases:
W

(l)
inv→inv,W

(l)
equ→inv,W

(l)
inv ,W

(l)
F,inv→equ,W

(l)
F,inv→inv. For each message passing operation, we realize

the node transformation h as a simple 1-layer MLP with hidden dimension 32 for each of the inter-
modality convolutions f (l)

inv→equ and f
(l)
equ→inv, and as identities for the intra-modality convolutions

f
(l)
equ→equ and f

(l)
inv→inv which we empirically find to perform better.

A second caveat is that EIGN’s convolution operators output complex-valued signals. While one
could, in general, backpropagate through such signals as well, we instead flatten the output signal of
each convolution operation by concatenating real and imaginary parts. Notice that this operation is
sign-invariant:

FLATTEN(−X) = (−Re(X)) ∥ (− Im(X)) (20)
= −(Re(X) ∥ Im(X)) (21)
= −FLATTEN(X) (22)

By Proposition A.4, applying this flattening operation, therefore, preserves orientation-equivariance.
Orientation invariance is trivially preserved as there are no restrictions on the mappings applied
to this signal modality as long as they are orientation-independent. This way, all model weights
act on real-valued signals. Due to the concatenation of real and imaginary values, we keep hidden
dimensions consistent by letting the affine / linear transformations project into a space of half the
desired dimension. We fix the complex phase shift to q = m−1, as this is the longest cycle length
possible in any graph. Consequently, potential side-effects due to the cyclical nature of complex
phase shifts are avoided.

Third, we apply a final linear/affine transformation to the representation of the last layer (for the
respective signal modality) H(L)

(·) . In the case of orientation-invariant outputs, we can use an affine
transformation with biases as orientation-independent transformations do not affect joint orientation
invariance. For orientation-equivariant outputs, we have to omit biases and use a linear transformation
only. This linear transformation is a sign-equivariant function and, again, preserves joint orientation
equivariance as per Proposition A.4.

Lastly, we also omit the normalization of the Laplacians in the main text. Each Laplacian L
(·)
(·) =

(B
(·)
(·))

HB
(·)
(·) is normalized symmetrically by normalizing the corresponding boundary maps:

B̃
(·)
(·) = B

(·)
(·)(D

(·)
(·))

−0.5 . (23)

Here, [(D(·)
(·))

−0.5]e,e =
∑

e′ [abs(L
(·)
(·))]e,e′ is a diagonal matrix of degrees of the Laplacian.

Since the normalization is independent of the orientation (due to the absolute value), it does not affect
joint orientation equivariance or invariance.
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D.4 TRAINING SETUP

For all models, including the baselines, we perform an extensive hyperparameter search to select the
most suitable configuration. To that end, we perform 20 different data splits for each hyperparameter
configuration and compare the average performance to select the best hyperparameter configuration
for each model. We search a cartesian grid of the following hyperparameter options:

• Learning Rate: {0.03, 0.01, 0.003, 0.001}
• Hidden Dimension: {8, 16, 32}
• Number of Layers: {2, 3, 4}

For the LD Cycles, we always fix the number of layers to the cycle size c since our convolution
operators are local and cycles can not be detected if the receptive field of an edge can not access the
entire cycle.

In all reported results here, we compute average metrics over 50 different dataset splits and also
provide the 95% confidence interval for the mean.

All models are trained with the ADAM optimizer with no weight decay, a mean-squared error
objective for regression problems, and cross-entropy for classification tasks. We clip gradients to
norm 1 and apply dropout (Srivastava et al., 2014) with probability 0.1 after every layer. We use the
following configurations for each dataset:

• Electrical Circuits: Batch size of 10 graphs, 200 epochs.
• Traffic Datasets: Batch size of 1, 500 epochs.
• RW Comp, LD Cycles: Batch size of 10 graphs, 50 epochs.
• Tri-Flow: Batch size of 1 graph, 50 epochs.

For the denoising, interpolation and simulation tasks we use a dataset split of 80/10/10 for traffic
and 50/25/25 for the circuits dataset. For synthetic tasks, we use 70/10/20. We track the validation
RMSE over all epochs and select the model with the best validation metric. We implement our models
in PyTorch (Paszke et al., 2017) and PyTorch Geometric (Fey & Lenssen, 2019) and train on these
types of GPUs: (i) NVIDIA GTX 1080TI GPU (ii) NVIDIA A100 GPU (iii) NVIDIA H100 GPU .

E ADDITIONAL RESULTS

Here, we report average results over 50 runs with the best-found hyperparameter configuration for
every model. We also report the 95% confidence interval for the mean.

Synthetic Tasks and Simulation. We supply the confidence intervals for tables Tables 4 and 5 in
Tables 9 and 12. Additionally, we report Mean Absolute Error (MAE) (↓) and R2 score (↑) for the
simulation task in Tables 13 and 14. The findings are consistent with the RMSE metric.

Denoising and Interpolation. We show the RMSE for the denoising task in Table 10. EIGN
achieves the best results on four out of five datasets. Because the noisy flow input makes this problem
significantly easier, some baselines achieve satisfactory performance and the gap to EIGN is not as
pronounced as in the challenging simulation task. We make similar observations for the interpolation
problem in Table 11.

Ablation. We supply the confidence intervals for the mean RMSE of Table 6 in Table 15. Additionally,
we visualize the distribution of simulated electrical currents (orientation-equivariant targets) in
Figure 6. Similar to Figure 5, we find that the direction-aware EIGN provides physically more
plausible predictions. The non-negativity constraint imposed by diodes is learned to a lesser extent
than on the Anaheim dataset (Figure 5).

Phase shift q. Figure 7 showcases the performance of EIGN and two variants without inter-modality
convolutions and fusion respectively for different relative phase shifts q/m. EIGN suffers from
phase shifts that are picked too small as such shifts become too small to notice. In contrast, if the
phase shift is picked too large, accumulated phase shifts may overshoot 2π. For example, choosing
q = 2πk for k ∈ N is equivalent to applying a phase shift of 0, i.e. no phase shift. However, even
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Table 9: Average performance of models on synthetic tasks (best and runner-up) with 95% confi-
dence intervals of the mean.

Model RW Comp
AUC-ROC(↑)

LD Cycles
AUC-ROC(↑)

Tri-Flow
RMSE(↓)

MLP 0.720±0.001 0.500±0.000 0.547±0.001

LINEGRAPH 0.758±0.001 0.683±0.001 0.497±0.002

HODGEGNN 0.500±0.000 0.500±0.000 0.458±0.001

HODGE+INV 0.811±0.001 0.754±0.005 0.293±0.002

HODGE+DIR 0.819±0.001 0.799±0.008 0.293±0.003

LINE-MAGNET 0.729±0.001 0.502±0.002 0.542±0.001

Dir-GNN 0.757±0.001 0.768±0.004 0.453±0.002

EIGN 0.864±0.001 0.996±0.001 0.022±0.002

Table 10: Average RMSE (↓) of different for the denoising task on real-world datasets (best and
runner-up) with 95% confidence intervals of the mean.

Model Anaheim Barcelona Chicago Winnipeg Circuits

MLP 0.076±0.001 0.063±0.001 0.028±0.000 0.055±0.000 0.462±0.009

LINEGRAPH 0.070±0.001 0.059±0.000 0.030±0.000 0.054±0.000 0.443±0.013

HODGEGNN 0.084±0.001 0.063±0.000 0.048±0.001 0.069±0.000 0.360±0.007

HODGE+INV 0.062±0.001 0.056±0.000 0.030±0.000 0.051±0.000 0.346±0.011

HODGE+DIR 0.053±0.001 0.048±0.000 0.025±0.000 0.041±0.000 0.262±0.009

LINE-MAGNET 0.096±0.001 0.066±0.000 0.034±0.000 0.062±0.000 0.508±0.011

Dir-GNN 0.069±0.001 0.066±0.001 0.036±0.000 0.061±0.001 0.422±0.020

EIGN 0.050±0.001 0.053±0.000 0.039±0.001 0.050±0.001 0.266±0.017

smaller values of q may cause problems as discussed in (Geisler et al., 2023): Consider any pair
of directed edges connected through a sequence of L other directed edges (e.g. in a cycle). After
repeatedly applying the Magnetic Laplacian operators we propose the relative phase shift of these
two edges will be L ∗ q. Since these relative phases are, however, taken modulo 2π this introduces
ambiguities if L ∗ q exceeds 2π.

To mitigate this issue, we choose q = 1/m which ensures such issues can not arise. In practice,
this may be a conservative value and we, in fact, also observe in Figure 7 that slightly larger values
improve performance in interpolation and simulation problems. Interestingly, the pattern slightly
deviates for the easier denoising task: We conjecture that there identifying directed edges may not
play as large of a role as much of the information is already encoded in the noisy input signal.

Hidden Size and Number of Layers. Table 16 ablates different hyperparamter configurations of
EIGN on the electrical circuits simulation task. In particular, we vary the learning rate, number of
hidden dimensions and number of layers as described in Appendix D.4. In general, we observe that
both under-parametrized models (i.e. small number of layers and / or hidden dimension) and too
larger learning rate lead to worse performance. However, models that are sufficiently deep and wide
enough are consistently able to outperform the baselines in terms of RMSE.

E.1 VARIATIONS ON EIGN AND BASELINES

GCN-like Convolutions. Instead of using our proposed (Magnetic) Laplacians as graph-shift
operators according to Equations (2) and (3), we also ablate an operator A(.)

(.) that is defined as

A
(.)
(.) = I −L

(.)
(.)/2 akin to GCNs Kipf & Welling (2017) in Table 17 In particular, we replace each

Laplacian with its corresponding GCN-like counterpart A(.)
(.) and leave all other components of EIGN

unaffected.

Chebyshev Convolutions. Similarly, following a recent line of work on using polynomials of the
Node Laplacian as graph-shift operator Defferrard et al. (2016). In particular, for each Magnetic
Laplacian operator L(q)

(.) we instead convole an input signal H(.) of each respective modality with a
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Table 11: Average RMSE (↓) of different for the interpolation task on real-world datasets (best and
runner-up) with 95% confidence intervals of the mean.

Model Anaheim Barcelona Chicago Winnipeg Circuits

MLP 0.103±0.001 0.150±0.001 0.110±0.002 0.166±0.001 1.030±0.034

LINEGRAPH 0.103±0.001 0.148±0.002 0.109±0.002 0.165±0.001 1.025±0.032

HODGEGNN 0.250±0.003 0.166±0.001 0.105±0.001 0.166±0.001 0.997±0.034

HODGE+INV 0.095±0.001 0.144±0.001 0.108±0.001 0.145±0.001 0.778±0.026

HODGE+DIR 0.088±0.001 0.141±0.002 0.112±0.002 0.133±0.001 0.753±0.029

LINE-MAGNET 0.116±0.001 0.151±0.002 0.106±0.001 0.171±0.001 1.031±0.033

Dir-GNN 0.277±0.003 0.169±0.002 0.109±0.002 0.160±0.002 0.945±0.026

EIGN 0.081±0.002 0.125±0.002 0.081±0.001 0.100±0.001 0.600±0.032

Table 12: Average RMSE (↓) of different for the simulation task on real-world datasets (best and
runner-up) with 95% confidence intervals of the mean.

Model Anaheim Barcelona Chicago Winnipeg Circuits

MLP 0.105±0.001 0.149±0.001 0.109±0.002 0.167±0.001 1.030±0.035

LINEGRAPH 0.101±0.001 0.149±0.002 0.109±0.002 0.164±0.002 1.037±0.038

HODGEGNN 0.280±0.003 0.170±0.001 0.107±0.001 0.173±0.001 1.016±0.034

HODGE+INV 0.098±0.001 0.146±0.001 0.108±0.001 0.151±0.001 0.828±0.026

HODGE+DIR 0.091±0.001 0.144±0.002 0.109±0.001 0.132±0.001 0.760±0.030

LINE-MAGNET 0.119±0.002 0.151±0.002 0.105±0.001 0.170±0.001 1.027±0.032

Dir-GNN 0.278±0.002 0.170±0.001 0.106±0.001 0.173±0.001 1.029±0.033

EIGN 0.090±0.002 0.133±0.002 0.078±0.001 0.101±0.001 0.696±0.038

Chebyshev polynomial of order k = 5. The resulting filter can be defined recursively as follows:

C
(1)
(.) = H(.) (24)

C
(2)
(.) = L

(q)
(.)H(.) (25)

C
(k)
(.) = 2L̂

(q)
(.)C

(k−1)
(.) −C

(k−2)
(.) (26)

For the convolution operators within a signal modality L
(q)
equ and L

(q)
inv , we set L̂(q)

equ = L
(q)
equ and

L̂
(q)
inv = L

(q)
inv . For the inter-modality Laplacians, however, using higher powers would break joint

orientation equivariance and invariance respectively. That is, because the operators transform one
signal modality into the other and repeated application would apply the wrong Laplacian to different
modalities. We therefore only apply the inter-modality Laplacians for the first term C

(2)
(.) and use

the Laplacians of the target modality for higher order terms, i.e. we set L̂(q)
equ→inv = L

(q)
inv and

L̂
(q)
inv→equ = L

(q)
equ respectively.

Large Baselines. While the search space over which we optimize the hyperparameters for each
baseline is shared different architectures can result in models with different parameter counts even
for the same hyperparameter settings. To that end, we evaluate our baselines for a hidden dimension
of d = 80 for four layers. These models roughly have the same number of parameters as EIGN. In
Table 17, we find that even for comparable parameter counts EIGN outperforms the competitors.
This underlines that it is the inductive biases that carefully follow from our theoretical considerations
which are responsible for the high efficacy of EIGN and not its larger number of parameters.

31



Published as a conference paper at ICLR 2025

Table 13: Average MAE (↓) of different for the simulation task on real-world datasets (best and
runner-up) with 95% confidence intervals of the mean.

Model Anaheim Barcelona Chicago Winnipeg Circuits

MLP 0.069±0.001 0.098±0.001 0.066±0.001 0.106±0.001 0.542±0.014

LINEGRAPH 0.068±0.001 0.095±0.001 0.066±0.001 0.104±0.001 0.549±0.014

HODGEGNN 0.183±0.002 0.102±0.001 0.065±0.001 0.109±0.001 0.514±0.013

HODGE+INV 0.067±0.001 0.098±0.001 0.067±0.001 0.100±0.001 0.459±0.010

HODGE+DIR 0.062±0.001 0.094±0.001 0.066±0.001 0.089±0.001 0.420±0.011

LINE-MAGNET 0.079±0.001 0.097±0.001 0.065±0.001 0.108±0.001 0.536±0.012

Dir-GNN 0.181±0.002 0.103±0.001 0.065±0.001 0.109±0.001 0.518±0.013

EIGN 0.061±0.001 0.088±0.001 0.049±0.001 0.069±0.001 0.373±0.014

Table 14: Average R2 (↑) of different for the simulation task on real-world datasets (best and runner-
up) with 95% confidence intervals of the mean.

Model Anaheim Barcelona Chicago Winnipeg Circuits

MLP 0.890±0.003 0.298±0.008 0.003±0.015 0.216±0.009 0.116±0.011

LINEGRAPH 0.897±0.002 0.319±0.012 n.a. n.a. 0.097±0.015

HODGEGNN 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 −0.039±0.014

HODGE+INV 0.905±0.002 0.339±0.006 −0.025±0.009 0.444±0.008 0.599±0.015

HODGE+DIR 0.919±0.002 0.402±0.010 −0.033±0.009 0.640±0.008 0.656±0.011

LINE-MAGNET 0.855±0.004 0.347±0.011 0.006±0.008 0.213±0.009 0.090±0.011

Dir-GNN 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 −0.014±0.023

EIGN 0.917±0.003 0.535±0.013 0.679±0.010 0.806±0.005 0.744±0.019

Table 15: Ablation of different components of EIGN on synthetic tasks and simulation on real data
(best and runner-up) with 95% confidence intervals of the mean. We omit (i) direction-awareness
by setting q = 0, (ii) the fusion operation of Equations (4) and (5), (iii) the fusion operators using
convolutions L(q)

equ→ inv and L
(q)
inv→ equ

Dataset EIGN
w/o Direction

EIGN
No Fusion

EIGN
No Fusion-Conv.

EIGN
No h

EIGN

A
U

C ↑ RW Comp 0.762±0.001 0.853±0.001 0.845±0.001 0.862±0.001 0.864±0.001

LD Cycles 0.689±0.002 0.987±0.001 0.926±0.003 0.996±0.000 0.996±0.001

R
M

SE ↓

Tri-Flow 0.362±0.002 0.088±0.002 0.074±0.007 0.034±0.003 0.022±0.002

Anaheim 0.289±0.016 0.097±0.004 0.283±0.009 0.099±0.005 0.090±0.002

Barcelona 0.172±0.004 0.139±0.005 0.177±0.004 0.163±0.007 0.133±0.002

Chicago 0.079±0.004 0.093±0.003 0.110±0.006 0.082±0.005 0.078±0.001

Winnipeg 0.132±0.005 0.170±0.005 0.175±0.004 0.138±0.004 0.101±0.001

Circuits 0.957±0.042 0.974±0.043 0.727±0.028 0.707±0.035 0.696±0.038
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Figure 6: Distribution of simulated traffic on the electrical circuits dataset for EIGN and a direction-
agnostic variant that sets q = 0. Direction-awareness leads to more more plausible predictions, i.e.
current that follows the constraints of diode components that only permit one flow direction.
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Figure 7: Ablation of the relative phase shift strength q ∗m on the performance for all three tasks on
the Circuits dataset. Phase shifts that are too small become hard to notice while too large phase shifts
may accumulate to total phase shifts larger than 2π.

Table 16: Average RMSE (↓) of the simluation task on the circuits dataset for EIGN at different
hyperparameter configurations with 95% confidence intervals of the mean. Bold numbers indicate
improvements over all baselines. We vary the learning rate (LR), hidden dimension d and number of
layers.

LR Hidden Dim. 2-layers 3-layers 4-layers

0.001 8 1.003±0.033 0.948±0.040 0.799±0.036

0.001 16 0.974±0.039 0.917±0.044 0.810±0.044

0.001 32 0.983±0.037 0.931±0.034 0.746±0.042

0.003 8 0.977±0.037 0.827±0.034 0.707±0.033

0.003 16 1.002±0.036 0.834±0.038 0.701±0.035

0.003 32 0.993±0.030 0.837±0.034 0.671±0.033

0.01 8 0.944±0.040 0.769±0.027 0.675±0.031

0.01 16 0.965±0.035 0.776±0.045 0.716±0.030

0.01 32 0.986±0.031 0.828±0.040 0.896±0.039

0.03 8 0.909±0.033 0.939±0.032 0.966±0.033

0.03 16 0.971±0.024 0.994±0.032 1.023±0.033

0.03 32 0.968±0.035 1.016±0.033 0.994±0.031

33



Published as a conference paper at ICLR 2025

Table 17: Average RMSE (↓) of different for the simulation task on real-world datasets (best
and runner-up) with 95% confidence intervals of the mean for baselines with paramater counts
comparable to EIGN as well as variations on EIGN.

Model # params Anaheim Barcelona Chicago Winnipeg Circuits

MLP 209 0.105±0.001 0.149±0.001 0.109±0.002 0.167±0.001 1.030±0.035

LINEGRAPH 753 0.101±0.001 0.149±0.002 0.109±0.002 0.164±0.002 1.037±0.038

HODGEGNN 2k 0.280±0.003 0.170±0.001 0.107±0.001 0.173±0.001 1.016±0.034

HODGE+INV 2k 0.098±0.001 0.146±0.001 0.108±0.001 0.151±0.001 0.828±0.026

HODGE+DIR 2k 0.091±0.001 0.144±0.002 0.109±0.001 0.132±0.001 0.760±0.030

LINE-MAGNET 554k 0.119±0.002 0.151±0.002 0.105±0.001 0.170±0.001 1.027±0.032

Dir-GNN 42k 0.278±0.002 0.170±0.001 0.106±0.001 0.173±0.001 1.029±0.033

MLP-L 20k 0.109±0.005 0.146±0.004 0.115±0.006 0.166±0.005 1.008±0.029

LINEGRAPH -L 40k 0.103±0.005 0.152±0.006 0.112±0.007 0.163±0.005 0.994±0.036

HODGEGNN-L 39k 0.279±0.007 0.172±0.004 0.109±0.005 0.173±0.004 1.035±0.036

HODGE+INV-L 39k 0.099±0.004 0.146±0.004 0.109±0.006 0.157±0.005 0.847±0.030

HODGE+DIR-L 40k 0.098±0.004 0.152±0.006 0.115±0.006 0.135±0.004 0.792±0.028

EIGN-GCN 36k 0.104±0.004 0.146±0.007 0.111±0.006 0.139±0.004 0.869±0.034

EIGN-Cheb 134k 0.078±0.006 0.159±0.007 0.068±0.004 0.101±0.005 0.705±0.037

EIGN 36k 0.090±0.002 0.133±0.002 0.078±0.001 0.101±0.001 0.696±0.038
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