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Abstract

Spatial Transcriptomics (ST) is a method that cap-
tures gene expression profiles aligned with spatial
coordinates. The discrete spatial distribution and
the super-high dimensional sequencing results
make ST data challenging to be modeled effec-
tively. In this paper, we manage to model ST in a
continuous and compact manner by the proposed
tool, SUICA, empowered by the great approxi-
mation capability of Implicit Neural Representa-
tions (INRs) that can enhance both the spatial den-
sity and the gene expression. Concretely within
the proposed SUICA, we incorporate a graph-
augmented Autoencoder to effectively model the
context information of the unstructured spots
and provide informative embeddings that are
structure-aware for spatial mapping. We also
tackle the extremely skewed distribution in a
regression-by-classification fashion and enforce
classification-based loss functions for the opti-
mization of SUICA. By extensive experiments of
a wide range of common ST platforms under vary-
ing degradations, SUICA outperforms both con-
ventional INR variants and SOTA methods regard-
ing numerical fidelity, statistical correlation, and
bio-conservation. The prediction by SUICA also
showcases amplified gene signatures that enriches
the bio-conservation of the raw data and bene-
fits subsequent analysis. The code is available at
https://github.com/Szym29/SUICA.
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Figure 1. Starting with the discretely sampled spots (a) of ST,
SUICA performs continuous modeling (b) by aid of the great
approximation power of INRs. This approach enables complete
profiling of cell heterogeneity, as visualized in the UMAP (c),
which further facilitating the discovery of new biology.

1. Introduction
Spatial Transcriptomics (ST) enables scientists to quantify
gene expression while preserving spatial information in tis-
sue sections (Marx, 2021). These platforms use various
strategies to capture mRNA transcripts from tissue sections
and perform sequencing to quantify the gene expressions at
spatially defined locations (Moses & Pachter, 2022). How-
ever, various degradation patterns are being observed due
to some limitations throughout the data acquisition pro-
cess. For instance, achieving higher resolution is essen-
tial for accurately modeling and analyzing cellular func-
tions (Williams et al., 2022), while for now, ST data can still
be rather expensive, e.g., $3,500/cm2 for the capture chip
and $800/cm2 for the high-density sequencing according to
Chen et al. (2022a). Beyond the cost constraints to get high-
resolution ST, another key technical challenge lies in the
drop-out rates (high sparsity of ST data) that makes the gene
expressions less informative for analysis (Qiu, 2020). Com-
pounding this challenge, different sequencing techniques
and platforms exhibit significant heterogeneity in terms of
spatial distribution, sequencing depth (number of mRNA
readouts per spot), and drop-out rates (Moses & Pachter,
2022). As a result, such the difference makes a general
backbone to model and analyze data across different tissues
by different platforms less feasible. To address these tech-
nical challenges, we propose a computational framework
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that transforms discrete ST data into a continuous, compact
representation, and thus enables complete reconstruction of
ST slides by recovering the degradations in the raw data
without the need to know the specific type of degradation.

Recently, Implicit Neural Representations (INRs) have
drawn great attention from researchers for their compact,
continuous, and differentiable properties as a novel repre-
sentation of general coordinate-based signals. INRs map
coordinates to corresponding values with a neural network
with wide applications in inverse graphics (Mildenhall et al.,
2020), geometric modeling (Park et al., 2019), and video
compression (Chen et al., 2021). Motivated by INRs’ inher-
ent smoothness property, we leverage this characteristic to
interpolate between ST spots, enabling more comprehensive
spatial transcriptomics analysis. However, applying INRs to
ST data faces two major challenges. First, scaling INRs to
the super-high dimensional space of gene expression is non-
trivial, as simply widening or deepening the network cannot
effectively overcome the curse of dimensionality. Second,
the low mRNA transcript capture rate in ST, combined with
varying gene expression patterns across cellular states, re-
sults in zero-inflated ST data with high sparsity (Piwecka
et al., 2023). This sparsity makes it particularly challenging
for conventional INRs to accurately capture the underlying
complex, non-linear spatial patterns.

Building upon this approach, we introduce SUICA, a power-
ful variant of INR designed especially for ST data. SUICA
fully accounts for the unique properties of ST and the di-
versity of current mainstream ST platforms. In SUICA, we
employ an Autoencoder (AE) based on Graph Convolutional
Network (GCN) (Kipf & Welling, 2017) to bridge the gap
between conventional INRs and ST. The GCN enhances
the approximation capability for unstructured data by lever-
aging contextual information and making the embeddings
structure-aware. By the aid of the strong profiling power of
Graph Autoencoder (GAE) regarding the sparse and skewed
distribution, we perform the fitting of INRs at the expressive
low-dimensional embedding space, which has been proven
to be compact and more suitable for INRs. To enforce the
sparsity within the regression-based scheme of INRs, we
construct pseudo-probabilities and adopt a regression-by-
classification approach for training.

With SUICA, we are enabled to reconstruct diverse ST data
from several popular platforms and sequencing protocols
using a unified representation, facilitating comprehensive
analysis as illustrated in Figure 1. In particular, we apply
SUICA to enhance the spatial resolution (spatial imputa-
tion), to alleviate the drop-out rates (gene imputation), and
to smooth the noisy expressions (denoising), respectively.
Extensive experimental results demonstrate that SUICA out-
performs existing INR variants as well as the state-of-the-art
methods in both numerical fidelity and statistical correla-

tion. Moreover, SUICA’s imputation ability leads to more
cell-type informed clustering results of ST. To summarize,
our contributions in this paper are three-fold as follows:

• We introduce SUICA to model ST data as a continu-
ous and compact representation while preserving data
authenticity;

• We address the issue that prevent INRs from scaling
to the super-high dimensional gene expression of ST
by leveraging Graph Autoencoder and a classification-
based loss function;

• Extensive experiments show that SUICA achieves su-
perior reconstruction quality and imputation capabil-
ities on various ST datasets, facilitating subsequent
analyses.

2. Related Work
2.1. Implicit Neural Representations

INRs model signals by mapping input coordinates to cor-
responding signal values using neural networks. Unlike
conventional discrete grid-based signal representations, e.g.,
images, videos, and voxels, INRs are known for continuous
modeling, allowing queries at arbitrary locations within the
definition domain. Typically implemented as Multi-Layer
Perceptrons (MLPs), INRs leverage the smoothness bias of
MLPs to provide a certain level of interpolability, allowing
effective generalization to unseen coordinates.

The idea of neural networks for function approximation
dates back to the 1980s and 1990s (Cybenko, 1989; Hornik,
1991) as universal function approximation theories. From
a relatively modern perspective, SIREN (Sitzmann et al.,
2020) adopts periodic sine functions as the activation func-
tion and learns INRs rich in fine details. Equipped with
Random Fourier Features, FFN (Tancik et al., 2020) multi-
plies the coordinates with a random feature sampled from
a normal distribution. BACON (Lindell et al., 2022) fur-
ther explores the spectral bandwidth of the target signal and
progressively regresses in a coarse-to-fine manner.

INRs have been applied across various downstream
tasks, including inverse graphics and video compression.
NeRF (Mildenhall et al., 2020) parameterizes the 3D scene
as an MLP-based radiance field with colors and densities.
It applies differential volume rendering to query a series
of points in the field and then calculate the weighted sum
as the pixel value. Following this parameterization, subse-
quent works (Liu et al., 2020; Yu et al., 2021; Sun et al.,
2022; Hu et al., 2022; Fridovich-Keil et al., 2022; Müller
et al., 2022; Peng et al., 2020; Chan et al., 2022; Chen
et al., 2022b) further improve the radiance field for efficient
training and rendering. Additionally, the continuity of INR
is well-suited for application in 3D geometric reconstruc-
tion methods (Park et al., 2019; Wang et al., 2021; Yariv
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non-zero values, we leverage Dice Loss [26] originated302
from semantic segmentation that is known to be sensitive303
in skewed classes, and model the regression task as as a304
quasi-classification one. Intuitively, Dice Loss targets the305
Intersection over Union (IoU) between the prediction map306
and the binary ground truth. Concretely, we use the non-307
negative half of tanh(·) to map the network output into a308
pseudo probability in the range of [0, 1), and compute the309
element-wise Hadamard product with the ground truth as310
the intersection. To prevent the division by 0, we have311

Ldice = 1 � 2
P

(tanh(ŷ) � sgn(ygt)) + ✏P
tanh(ŷ) +

P
sgn(ygt) + ✏

, (3)312

where sgn(·) denotes the sign function returning 0 when the313
input is 0 and +1/-1 when the input is positive/negative. The314
loss function for reconstruction is then formulated as315

Lrecons =
1

|M+|
X

M+

(ŷ�ygt)
2+

1

|M|
X

M

|ŷ�ygt|+�Ldice,

(4)316317
LMAE = LMSE (5)318

where M+ represents the binary mask where the condition319
of ygt > 0 stands and a weight � is leveraged providing the320
numerical instability of Dice Loss.321

4. Experiments322

4.1. Datasets & Metrics323

To thoroughly verify the general modeling capability of324
SUICA across varying ST platforms against conventional325
INRs. For a quantitative benchmarking, we involve a326
nanoscale resolution Stereo-seq (SpaTial Enhanced REs-327
olution Omics-sequencing) dataset, namely MOSTA [1].328
MOSTA consists of a total of 53 sagittal sections from329
C57BL/6 mouse embryos at 8 progressive stages using330
Stereo-seq, from which we take 1 slice for each stage (from331
E9.5 to E16.5) for benchmarking.332

In addition to Stereo-seq, we also leverage ST data by333
other common platforms, including Slide-seqV2, MER-334
FISH (Multiplexed Error-Robust Fluorescence In Situ Hy-335
bridization), and 10x Genomics Visium, to demonstrate the336
generalization of SUICA.337

As for evaluation of the fitting performance of SUICA338
with super-high dimensional data, we focus on 3 aspects,339
namely numerical fidelity, statistical correlation, and bio-340
conservation. For numerical fidelity, we apply MSE, MAE341
(Mean Absolute Error) and cosine similarity to measure the342
significant, subtle and directional errors between the pre-343
dicted and ground-truth values respectively. Note that we344
only measure numerical fidelity on non-zero values con-345
sidering the zero-inflated distribution of ST. To measure346
the statistical correlation, we employ Pearson Correlation347
Coefficient and Spearman’s Rank Correlation Coefficient348

(Spearman’s ⇢), with both of them ranging from -1 to 1. 349
Lastly, to evaluate how well the prediction preserves cellu- 350
lar heterogeneity and spatial coherence within the microen- 351
vironment of the slice, we use the Adjusted Rand Index 352
(ARI) as a metric for quantifying bio-conservation lever- 353
aging the independent hand-crafted cell type annotations. 354

4.2. Implemented Details 355

We implemented SUICA using PyTorch Lightning, sam- 356
pling 80% of spots within a spatial transcriptomics (ST) 357
slice for training and retaining the remaining 20% for eval- 358
uation. Notably, this evaluation protocol may place some 359
validation spots outside the convex hull of the training 360
set, making interpolation challenging. To construct the 361
K-nearest neighbors (KNN) graph for the GCN, we set 362
the number of neighbors to 5, including the given cell. 363
The input for the GAE consists of a cell-by-gene expres- 364
sion matrix E 2 Rm⇥n, where m is the number of cells 365
and n is the number of genes, along with the KNN graph 366
A 2 Rn⇥n. During the pre-training phase for the GAE, we 367
used the Adam optimizer with a learning rate of 0.00001 368
for 200 epochs. After obtaining low-dimensional cell em- 369
beddings, we trained the INR with the Adam optimizer at 370
a learning rate of 0.0001 for 1000 epochs to fit the embed- 371
dings learned from the GAE. Subsequently, the INR was 372
frozen, and the initialized decoder was trained for an ad- 373
ditional 1000 epochs using the Adam optimizer with the 374
same learning rate of 0.0001. For SIREN and FFN, each 375
model was trained for 2000 epochs with a learning rate 376
of 0.0001. The deep learning-based reference-free spatial 377
imputation model, STAGE, was trained to convergence for 378
benchmarking purposes. All experiments were conducted 379
on 1 NVIDIA RTX 4090 GPU. 380

4.3. Benchmarking Results 381

Stereo-seq MOSTA dataset SUICA outperforms Near- 382
est Interpolation, vanilla INR methods (FFN and SIREN), 383
and STAGE in predicting the gene expression of unseen 384
spots in the MOSTA dataset [1]. Tab. 1 presents the de- 385
tailed quantitative benchmarking results. SUICA achieves 386
the lowest MAE and MSE and the highest cosine similar- 387
ity, exceeding the second-best method by 5.6%. SUICA 388
achieves higher correlation with ground truth, with Pearson 389
and Spearman coefficients of 0.792 and 0.447—exceeding 390
other methods by at least 4.5% and 4.7%. Due to its ca- 391
pacity to not only predict the gene expression of each spot 392
but also strengthen their biological signals, it obtains a bio- 393
conservation score 5.4% higher than the runner-up method 394
and even 3.9% above the ARI of the ground truth. 395

Fig. 4 illustrates SUICA’s ability to closely predict 396
ground-truth gene expression levels. RPLP0 gene highly in- 397
volves in the ribosomal function and consistently expresses 398
across various regions of mouse embryo. SUICA accurately 399
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(ŷ�ygt)
2+

1

|M|
X

M
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3.2.3 Embedding Mapping287

Now that we obtain a pre-trained GAE as well as the en-288
coded zgt, we start training the INR to learn the mapping289
of x ! z. Benefited from the compact and dense embed-290
dings by GAE, the work load of the subsequent INR, to fit291
the extremely skewed distribution, is greatly reduced. Em-292
pirically, we choose FFN [26] and SIREN [23] as two base-293
lines for SUICA, that are both tested by time and effective294
for general data. We also include some discussions regard-295
ing the choice between FFN and SIREN when applied to296
different ST slices.297

Similar to conventional INRs, we assume the error in the298
predicted ẑ follow a Gaussian distribution and apply MSE299
loss for optimization as300

Lembd =
1

|M|
X

M

(ẑ � zgt)
2, (1)301

where M represents the binary mask for all the elements302
in zgt. It is worth noting that although it is feasible to em-303
ploy the mapping output, ẑ, for downstream analysis, we304
consider it as an intermediate result and attempt to decode305
such latent code back to the raw space for a more holistic306
reconstruction.307

3.2.4 Decoding Head308

A straightforward solution to decoding ẑ to the raw rep-309
resentations is to directly employ the decoder of the pre-310
trained GAE. However, in the actual situation, this scheme311
will suffer from two main issues.312

INRs usually rely on norm-based loss functions for opti-313
mization, e.g., `2 norm. Such norm, which is also referred314
as Mean Squared Error (MSE), implicitly assumes that pre-315
diction errors are normally (Gaussian) distributed because316
it corresponds to the maximum likelihood estimator for a317
Gaussian distribution. However, for ST data,318

After we have pre-trained a GAE, we use its encoder to319
generate the embeddings for all of the spots, which we de-320
note as zgt.321

To tackle the extremely imbalanced distribution of zero322
and non-zero values, we leverage Dice Loss [25] in seman-323
tic segmentation that is known to be sensitive in skewed324
classes, and model the regression task as as a quasi-325
classification one. Intuitively, Dice Loss targets the In-326
tersection over Union (IoU) between the prediction map327
and the binary ground truth. Concretely, we use the non-328
negative half of tanh(·) to map the network output into a329
pseudo probability in the range of [0, 1), and compute the330
element-wise Hadamard product with the ground truth as331
the intersection. To prevent the division by 0, we have332

Ldice = 1 � 2
P

(tanh(ŷ) � ygt) + ✏P
ŷ +

P
ygt + ✏

. (2)333

The loss function for reconstruction is then formulated as 334

Lrecons =
1

|M+|
X

M+

(ŷ�ygt)
2+

1

|M|
X

M

|ŷ�ygt|+�Ldice,

(3) 335
where M+ represents the binary mask where the condition 336
of ygt > 0 stands and a weight � is leveraged providing the 337
numerical instability of Dice Loss. 338

Two-stage methods will definitely accumulate the error 339
so we finetune the decoder while fitting INRs. 340

Regression-by-classification 341

L = Lembd + Lrecons (4) 342

4. Experiments 343

4.1. Datasets & Metrics 344

To thoroughly verify the general modeling capability of 345
SUICA across varying ST platforms against conventional 346
INRs. For a quantitative benchmarking, we involve a high- 347
quality Stereo-seq (SpaTial Enhanced REsolution Omics- 348
sequencing) dataset, namely MOSTA [1]. MOSTA consists 349
of a total of 53 sagittal sections from C57BL/6 mouse em- 350
bryos at 8 progressive stages using Stereo-seq, from which 351
we take 1 slice for each stage (from E9.5 to E16.5) for 352
benchmarking. 353

In addition to Stereo-seq, we also leverage ST data by 354
other common platforms, including Slide-seqV2, MER- 355
FISH (Multiplexed Error-Robust Fluorescence In Situ Hy- 356
bridization), and 10x Genomics Visium, to demonstrate the 357
generalization of SUICA. 358

As for evaluation of the fitting performance of SUICA 359
with super-high dimensional data, we focus on 3 aspects, 360
namely numerical fidelity, statistical correlation, and bio- 361
conservation. For numerical fidelity, we apply MSE (Mean 362
Squared Error), MAE (Mean Absolute Error) and cosine 363
similarity to measure the significant, subtle and directional 364
errors between the predicted and ground-truth values re- 365
spectively. Note that we only measure numerical fidelity on 366
non-zero values considering the zero-inflated distribution of 367
ST. To measure the statistical correlation, we employ Pear- 368
son Correlation Coefficient and Spearman’s Rank Correla- 369
tion Coefficient (Spearman’s ⇢), with both of them rang- 370
ing from -1 to 1. Lastly, to evaluate how well the predic- 371
tion preserves cellular heterogeneity and spatial coherence 372
within the microenvironment, we use the Adjusted Rand 373
Index (ARI) as a metric for quantifying bio-conservation 374
leveraging the independent hand-crafted cell type annota- 375
tions. 376

4.2. Implemented Details 377

We randomly sample 80% of the spots within a ST slice for 378
training, with the left 20% kept for evaluation. Note that 379
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so we finetune the decoder while fitting INRs. 340

Regression-by-classification 341

L = Lembd + Lrecons (4) 342

4. Experiments 343

4.1. Datasets & Metrics 344

To thoroughly verify the general modeling capability of 345
SUICA across varying ST platforms against conventional 346
INRs. For a quantitative benchmarking, we involve a high- 347
quality Stereo-seq (SpaTial Enhanced REsolution Omics- 348
sequencing) dataset, namely MOSTA [1]. MOSTA consists 349
of a total of 53 sagittal sections from C57BL/6 mouse em- 350
bryos at 8 progressive stages using Stereo-seq, from which 351
we take 1 slice for each stage (from E9.5 to E16.5) for 352
benchmarking. 353

In addition to Stereo-seq, we also leverage ST data by 354
other common platforms, including Slide-seqV2, MER- 355
FISH (Multiplexed Error-Robust Fluorescence In Situ Hy- 356
bridization), and 10x Genomics Visium, to demonstrate the 357
generalization of SUICA. 358

As for evaluation of the fitting performance of SUICA 359
with super-high dimensional data, we focus on 3 aspects, 360
namely numerical fidelity, statistical correlation, and bio- 361
conservation. For numerical fidelity, we apply MSE (Mean 362
Squared Error), MAE (Mean Absolute Error) and cosine 363
similarity to measure the significant, subtle and directional 364
errors between the predicted and ground-truth values re- 365
spectively. Note that we only measure numerical fidelity on 366
non-zero values considering the zero-inflated distribution of 367
ST. To measure the statistical correlation, we employ Pear- 368
son Correlation Coefficient and Spearman’s Rank Correla- 369
tion Coefficient (Spearman’s ⇢), with both of them rang- 370
ing from -1 to 1. Lastly, to evaluate how well the predic- 371
tion preserves cellular heterogeneity and spatial coherence 372
within the microenvironment, we use the Adjusted Rand 373
Index (ARI) as a metric for quantifying bio-conservation 374
leveraging the independent hand-crafted cell type annota- 375
tions. 376

4.2. Implemented Details 377

We randomly sample 80% of the spots within a ST slice for 378
training, with the left 20% kept for evaluation. Note that 379
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non-zero values, we leverage Dice Loss [26] originated302
from semantic segmentation that is known to be sensitive303
in skewed classes, and model the regression task as as a304
quasi-classification one. Intuitively, Dice Loss targets the305
Intersection over Union (IoU) between the prediction map306
and the binary ground truth. Concretely, we use the non-307
negative half of tanh(·) to map the network output into a308
pseudo probability in the range of [0, 1), and compute the309
element-wise Hadamard product with the ground truth as310
the intersection. To prevent the division by 0, we have311

Ldice = 1 � 2
P

(tanh(ŷ) � sgn(ygt)) + ✏P
tanh(ŷ) +

P
sgn(ygt) + ✏

, (3)312

where sgn(·) denotes the sign function returning 0 when the313
input is 0 and +1/-1 when the input is positive/negative. The314
loss function for reconstruction is then formulated as315

Lrecons =
1

|M+|
X

M+

(ŷ�ygt)
2+

1

|M|
X

M

|ŷ�ygt|+�Ldice,

(4)316317
LMAE = LMSE (5)318

where M+ represents the binary mask where the condition319
of ygt > 0 stands and a weight � is leveraged providing the320
numerical instability of Dice Loss.321

4. Experiments322

4.1. Datasets & Metrics323

To thoroughly verify the general modeling capability of324
SUICA across varying ST platforms against conventional325
INRs. For a quantitative benchmarking, we involve a326
nanoscale resolution Stereo-seq (SpaTial Enhanced REs-327
olution Omics-sequencing) dataset, namely MOSTA [1].328
MOSTA consists of a total of 53 sagittal sections from329
C57BL/6 mouse embryos at 8 progressive stages using330
Stereo-seq, from which we take 1 slice for each stage (from331
E9.5 to E16.5) for benchmarking.332

In addition to Stereo-seq, we also leverage ST data by333
other common platforms, including Slide-seqV2, MER-334
FISH (Multiplexed Error-Robust Fluorescence In Situ Hy-335
bridization), and 10x Genomics Visium, to demonstrate the336
generalization of SUICA.337

As for evaluation of the fitting performance of SUICA338
with super-high dimensional data, we focus on 3 aspects,339
namely numerical fidelity, statistical correlation, and bio-340
conservation. For numerical fidelity, we apply MSE, MAE341
(Mean Absolute Error) and cosine similarity to measure the342
significant, subtle and directional errors between the pre-343
dicted and ground-truth values respectively. Note that we344
only measure numerical fidelity on non-zero values con-345
sidering the zero-inflated distribution of ST. To measure346
the statistical correlation, we employ Pearson Correlation347
Coefficient and Spearman’s Rank Correlation Coefficient348

(Spearman’s ⇢), with both of them ranging from -1 to 1. 349
Lastly, to evaluate how well the prediction preserves cellu- 350
lar heterogeneity and spatial coherence within the microen- 351
vironment of the slice, we use the Adjusted Rand Index 352
(ARI) as a metric for quantifying bio-conservation lever- 353
aging the independent hand-crafted cell type annotations. 354

4.2. Implemented Details 355

We implemented SUICA using PyTorch Lightning, sam- 356
pling 80% of spots within a spatial transcriptomics (ST) 357
slice for training and retaining the remaining 20% for eval- 358
uation. Notably, this evaluation protocol may place some 359
validation spots outside the convex hull of the training 360
set, making interpolation challenging. To construct the 361
K-nearest neighbors (KNN) graph for the GCN, we set 362
the number of neighbors to 5, including the given cell. 363
The input for the GAE consists of a cell-by-gene expres- 364
sion matrix E 2 Rm⇥n, where m is the number of cells 365
and n is the number of genes, along with the KNN graph 366
A 2 Rn⇥n. During the pre-training phase for the GAE, we 367
used the Adam optimizer with a learning rate of 0.00001 368
for 200 epochs. After obtaining low-dimensional cell em- 369
beddings, we trained the INR with the Adam optimizer at 370
a learning rate of 0.0001 for 1000 epochs to fit the embed- 371
dings learned from the GAE. Subsequently, the INR was 372
frozen, and the initialized decoder was trained for an ad- 373
ditional 1000 epochs using the Adam optimizer with the 374
same learning rate of 0.0001. For SIREN and FFN, each 375
model was trained for 2000 epochs with a learning rate 376
of 0.0001. The deep learning-based reference-free spatial 377
imputation model, STAGE, was trained to convergence for 378
benchmarking purposes. All experiments were conducted 379
on 1 NVIDIA RTX 4090 GPU. 380

4.3. Benchmarking Results 381

Stereo-seq MOSTA dataset SUICA outperforms Near- 382
est Interpolation, vanilla INR methods (FFN and SIREN), 383
and STAGE in predicting the gene expression of unseen 384
spots in the MOSTA dataset [1]. Tab. 1 presents the de- 385
tailed quantitative benchmarking results. SUICA achieves 386
the lowest MAE and MSE and the highest cosine similar- 387
ity, exceeding the second-best method by 5.6%. SUICA 388
achieves higher correlation with ground truth, with Pearson 389
and Spearman coefficients of 0.792 and 0.447—exceeding 390
other methods by at least 4.5% and 4.7%. Due to its ca- 391
pacity to not only predict the gene expression of each spot 392
but also strengthen their biological signals, it obtains a bio- 393
conservation score 5.4% higher than the runner-up method 394
and even 3.9% above the ARI of the ground truth. 395

Fig. 4 illustrates SUICA’s ability to closely predict 396
ground-truth gene expression levels. RPLP0 gene highly in- 397
volves in the ribosomal function and consistently expresses 398
across various regions of mouse embryo. SUICA accurately 399
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(ŷ�ygt)
2+

1

|M|
X

M
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Abstract

Spatial Transcriptomics (ST) is a method that captures001
spatial gene expression profiles within histological sec-002
tions. The discrete spatial distribution and the super-high003
dimensional sequencing results make ST data challenging004
to be modeled effectively. In this paper, we manage to005
model ST in a continuous and compact manner by the pro-006
posed tool, SUICA, empowered by the great approxima-007
tion capability of Implicit Neural Representations (INRs).008
Concretely within the proposed SUICA, we incorporate a009
graph-augmented Autoencoder to effectively model the con-010
text information of the unstructured spots and provide in-011
formative embeddings that are structure-aware for spatial012
mapping. We also tackle the extremely skewed distribu-013
tion in a regression-by-classification fashion and enforce014
classification-based loss functions for the optimization of015
SUICA. By extensive experiments of a wide range of com-016
mon ST platforms, SUICA outperforms both conventional017
INR variants and SOTA methods for ST super-resolution re-018
garding numerical fidelity, statistical correlation, and bio-019
conservation. The fitted and densified prediction by SUICA020
also showcases improvements in downstream tasks that is021
able to benefit biological analysis. The code will be made022
available. [Qingtian: check Prof. Ding’s version]023

1. Introduction024

[Qingtian: technical flaws in ST, Stereo-seq suffers from025
drop-out rates]026

Spatial Transcriptomics (ST) technology has been un-027
der rapid development over the past few years. The plat-028
forms use various strategies to capture mRNA from tissue029
sections and perform sequencing to quantify the gene ex-030
pressions at spatially defined locations. Achieving higher031
resolution is essential for accurately modeling and analyz-032
ing cellular functions, while for now, ST data could still033
be rather expensive ($3,500/cm2 for the capture chip and034
$800/cm2 for the high-density sequencing [1]). Besides,035

Figure 1. Starting with the discretely sampled spots (a) of ST,
SUICA performs continuous modeling (b) by aid of the great ap-
proximation power of INRs. Such enhancement also enables a
comprehensive analysis as shown as the UMAP of (c).

ST data are usually captured as discrete, unordered points 036
in a tissue section, which poses unique challenges for data 037
organization and analysis. Different sequencing techniques 038
and platforms [18] exhibit significant heterogeneity in terms 039
of spatial distribution, sequencing depth, and drop-out rates. 040
Such heterogeneity makes a general backbone to model and 041
analyze data across different tissues by different platforms 042
less feasible. In this paper, we seek for a solution to the 043
modeling of ST data as a continuous and compact repre- 044
sentation, that manages to densify the spatial resolution and 045
benefit downstream analysis of ST. 046

Recently, Implicit Neural Representations (INRs) have 047
drawn great attention of researchers for their compact, con- 048
tinuous, and differentiable properties as a novel representa- 049
tion for general coordinate-based signals. Typically, INRs 050
map coordinates to corresponding values with a neural net- 051
work and have been widely employed to inverse graph- 052
ics [16], geometric modeling [22], and video compres- 053
sion [2]. It comes to us that the inherent smooth bias in 054
INRs could also bring intepolatability to the ST spots for a 055
more comprehensive analysis. However, scaling INRs up 056
to super-high dimensional data of ST is challenging due to 057
the curse of dimensionality, and can barely be achieved triv- 058
ially via widening or deepening the network. Besides, ST 059
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Training and Inference

Figure 2. The overall pipeline of SUICA. At training-time, a GAE based on cell graphs is trained, with whose pre-trained decoder
concatenated to a INR. The INR then maps spot coordinates to the corresponding gene expressions. SUICA is capable of performing
spatial imputation, gene imputation, and denoising.

et al., 2021; Oechsle et al., 2021). As for video compres-
sion, NeRV (Chen et al., 2021) and subsequent variants (Li
et al., 2022; Chen et al., 2023) employ compact INRs to
reduce data redundancy. It is noteworthy that existing INR
applications map from low-dimensional to low-dimensional
spaces, e.g., R2 → R3 for image regression, and R5 → R4

for inverse graphics. The use of INRs for mapping from
low dimension (i.e., R2) to super-high dimension (i.e., over
20,000 channels) remains unexplored.

2.2. Deep Learning for Spatial Transcriptomics

Deep learning methods are increasingly adopted in ST to en-
hance spatial resolution, denoise raw data, improve spatial
domain clustering, and support more accurate downstream
analysis (Zahedi et al., 2024). Given the complexity of cap-
turing cell-to-cell and spatial dependencies, graph-based
methods leveraging cell relationships have gained signifi-
cant traction. Notable examples include GCN-based meth-
ods like SpaGCN (Hu et al., 2021), STAGATE (Dong &
Zhang, 2022), GraphST (Long et al., 2023), and SEDR (Xu
et al., 2024) as well as graph transformer-based model like
SiGra (Tang et al., 2023). These graph-based methods pro-
gressively refine the modeling of ST data, enabling more
nuanced interpretation of complex tissue structure.

ST data often require a higher resolution to accurately cap-
ture fine spatial patterns within tissues. Several methods
leverage histological images to enhance the spatial resolu-
tion of gene expression data, including Convolution Neural
Network (CNN)-based models ST-Net (He et al., 2020) and
DeepSpaCE (Monjo et al., 2022), and Vision Transformer-
based methods such as Hist2ST (Zeng et al., 2022) and
TRIPLEX (Chung et al., 2024). In cases without histological
images, other approaches (Zhao et al., 2021; 2023; Li et al.,
2024) rely solely on spatial and gene expression data to

improve resolution. To generate unmeasured spots profiles,
STAGE (Li et al., 2024) trains a spatial location-supervised
Autoencoder that enhances resolution by integrating spatial
coordinates with gene expression data. In summary, these
resolution enhancement methods significantly improve ST
quality, improving spatial visualization and facilitating more
accurate downstream analyses.

3. SUICA
3.1. Preliminary

3.1.1. SPATIAL TRANSCRIPTOMICS

ST data can be viewed as an unordered point set, where
each point is parameterized by spatial coordinates x. The
mRNA readouts are bounded at these sampled locations
and represented by a high dimensional vector, where each
channel reflects the numerical abundance of a particular
mRNA transcript (0 indicates absence or failed capture).

In terms of the spatial distribution of the sampled spots, dif-
ferent ST platforms follow different sampling protocols, e.g.,
Visium applies a fixed array of probes so the sampled points
are distributed uniformly over the whole slice, whereas other
common platforms do not guarantee such regularity. Thus,
to accommodate general use cases, ST data is often modeled
as unstructured without being quantized into regular grids
to make CNN-based analysis inapplicable.

3.1.2. CHALLENGES

The key challenge in modeling ST lies in the super-high di-
mensional representation, often exceeding 20,000 channels.
Due to low mRNA capture rates and varying gene expres-
sion patterns across cellular states, ST data are typically
highly sparse, with zero values comprising up to 90%. A
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satisfying model must maintain the inherent sparsity of ST
data, as it reflects the true gene expression. However, vanilla
INRs are observed to have the tendency to yield normally
distributed outputs that are smooth (Lee et al., 2018), rather
than the zero-inflated ones of ST, presenting a significant
challenge. It is also crucial to ensure the numerical fidelity
of non-zero values for accurate cell type identification. It is
worth noting that high sparsity complicates the evaluation of
reconstruction quality, as an entirely empty prediction may
still result in low loss, yet be entirely unacceptable. To this
end, the design of the representations and evaluation proto-
col must address both sparsity and numerical fidelity—an
aspect that has, to our knowledge, not been fully explored
in the context of INRs.

3.2. Method

3.2.1. OVERVIEW

The overall pipeline is illustrated in Figure 2. To construct a
compact and dense embedding domain for subsequent INRs,
we first incorporate a graph-based encoder and pre-train
Graph Autoencoder (GAE) using the given ST slice in a self-
regressing manner. With the pre-trained GAE, we obtain the
encoded latent representation for all spots, denoted as zgt.
We then initiate INR tuning to optimize the neural mapping
from ST coordinates to embeddings, targeting zgt. Once
the INR reaches a stable state, we attach a decoder that is
pre-trained in our GAE. Subsequently, we fix the INR and
train the decoder to fit the raw dataset readouts ygt.

Concretely, we perform 3 different tasks with SUICA,
namely spatial imputation, gene imputation, and denoising,
whose data flows are summarized as follows.

• Spatial Imputation: Say an ST slice {(x,y)}, whose
data spots are split into a training subset and a test
subset. With the training subset, we train SUICA
(GAE+INR), and infer the test subset for evaluation.

• Gene Imputation: We randomly mute a part of the gene
expressions of the data matrix, fit SUICA with all of
the data, and infer all of the x.

• Denoising: The data flow is basically the same as gene
imputation, but with injected noise as the degradation.

3.2.2. GRAPH-AUGMENTED AUTOENCODER

The sequenced readouts of ST are known for an extremely
skewed distribution, represented as high-dimensional,
sparse data. This sparsity exacerbates the curse of dimen-
sionality, rendering data points increasingly dissimilar and
challenging to organize efficiently.

To address this, we leverage an AE to transform the high-
dimensional raw space into a compact, dense, and infor-
mative embedding space. Given the irregular structure, the
context information, context or neighborhood information

GTV: 16.54
Variance: 0.73

(a) AE (b) GAE

GTV: 37.02
Variance: 2.79

Figure 3. Spectral analysis with the embeddings of AE and GAE.
GAE yields structure-aware and disentangled embeddings with
high-frequency details. GTV: Graph Total Variation.

is integrated through a graph structure, which we model
using a Graph Convolutional Network (GCN). Importantly,
the GCN is incorporated solely in the encoder, as the de-
coder—responsible for reconstructing interpolated embed-
dings back into the raw space—lacks the requisite graph
structure for such integration.

As illustrated in Figure 3, we conduct a graph-based spectral
analysis of embeddings generated by both the AE and the
GAE. Specifically, we construct a connectivity graph using
Euclidean distance between spots (k = 5) and calculate the
Graph Total Variation (GTV) for embeddings defined on
the built graph. Figure 3 is colored based on aggregated
edge-wise variations of each vertex, revealing that the GAE
produces shaper structural clues. Additionally, we compute
the channel-wise variance for both embeddings. Together
with the GTV results, these findings demonstrate that GAE
offers a more expressive and informative representation,
effectively capturing disentangled embeddings for ST.

To train GAE, we adopt the conventional Mean Square Error
(MSE) for supervision as

Lgae =
1

|My|
∑

My

(ŷ − ygt)
2, (1)

where My represents the mask over all of the elements in y
to compute the element-wise average.

3.2.3. EMBEDDING MAPPING

With the pre-trained GAE and encoded representation zgt in
place, we proceed to train the INR to map x → z. The com-
pact, dense embeddings provided by the GAE significantly
reduce the workload of the subsequent INR, which must fit
an otherwise highly skewed distribution.

For SUICA, we empirically select two baseline architec-
tures: FFN (Tancik et al., 2020) and SIREN (Sitzmann et al.,
2020), both of which have demonstrated effectiveness across
various data types. In our experiments, we apply SIREN for
spatially sparse ST and FFN for denser spatial distributions.

Following conventional INR approaches, we assume
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Gaussian-distributed error in the predicted ẑ and use
element-wise mean MSE loss for optimization:

Lembd =
1

|Mz|
∑

Mz

(ẑ− zgt)
2. (2)

While ẑ can serve as the mapping output for downstream
analysis, we consider it as an intermediate result, decoding
this latent code back into the raw space to achieve a more
comprehensive reconstruction.

3.2.4. DECODING HEAD

A straightforward approach to decoding ẑ back to raw repre-
sentations is to directly use the pre-trained GAE decoder for
end-to-end INR tuning. However, this method encounters
two primary challenges. (1) The embedding mapping of
x → z is error-prone, and domain shifts can severely im-
pair decoding performance, compounding with the inherent
imperfections in GAE’s reconstruction. (2) A pre-trained
decoder can become trapped in local minima, impeding the
optimization of the embedding mapping if the INR depends
on gradients from the decoder. To address (1)(2), we first
warm up the INR with Equation (2) alone to stabilize the
mapping, then attach the pre-trained decoder to learn the
mapping from z → y, leaving the INR fixed. This decoder-
only training phase is designed to finetune a case-specific
decoder that compensates for mapping errors and minimizes
cumulative errors.

In INR regression tasks, norm-based loss functions (e.g.,
ℓ2 norm or MSE) are typically used, as they assume nor-
mally (Gaussian) distributed errors. However, for zero-
inflated ST data, this assumption is invalid. To handle the
imbalanced distribution of zero and non-zero values, we
apply Dice Loss (Sudre et al., 2017), which is sensitive to
class imbalance and treats the regression task as a quasi-
classification one. Dice Loss optimizes for Intersection
over Union (IoU) between the prediction map and binary
ground truth. Specifically, we use the non-negative half of
tanh(·) to map network outputs into a pseudo-probability
range [0, 1), and compute the intersection using element-
wise Hadamard products with the ground truth. To avoid
division by 0, Dice Loss is computed as:

Ldice = 1− 2
∑

(tanh(ŷ) ◦ sgn(ygt)) + ϵ∑
tanh(ŷ) +

∑
sgn(ygt) + ϵ

, (3)

where sgn(·) denotes the sign function returning 0 when the
input is 0 and +1/-1 when the input is positive/negative. The
full reconstruction loss function is then defined as:

Lrecons =
1

|M+
y |

∑

M+
y

(ŷ−ygt)
2+

1

|My|
∑

My

|ŷ−ygt|+λLdice,

(4)
where M+

y represents the binary mask for ygt > 0, and λ
mitigates Dice Loss’s numerical instability.

4. Experiments
4.1. Datasets & Metrics

For a quantitative benchmarking, we involve a nanoscale
resolution Stereo-seq (SpaTial Enhanced REsolution Omics-
sequencing) dataset, MOSTA (Chen et al., 2022a). MOSTA
consists of a total of 53 sagittal sections from C57BL/6
mouse embryos at 8 progressive stages using Stereo-seq,
from which we take 1 slice for each stage (from E9.5 to
E16.5) for benchmarking. In addition to Stereo-seq, we
also leverage ST data by other common platforms, i.e.,
Slide-seqV2, 10x Genomics Visium (see Appendix) and
MERFISH (see Appendix), to further demonstrate the gen-
eralization of SUICA.

As for evaluation of the fitting performance with super-high
dimensional data, we focus on 3 aspects, namely numeri-
cal fidelity, statistical correlation, and bio-conservation. For
numerical fidelity, we apply MSE, MAE (Mean Absolute Er-
ror) and cosine similarity to measure the significant, subtle
and directional errors between the predicted and ground-
truth values respectively. Note that we only measure numer-
ical fidelity on non-zero values considering the zero-inflated
distribution of ST. To measure the statistical correlation,
we employ Pearson Correlation Coefficient and Spearman’s
Rank Correlation Coefficient (Spearman’s ρ), with both of
them ranging from -1 to 1. Lastly, to evaluate how well
the prediction preserves cellular heterogeneity and spatial
coherence within the microenvironment of the slice, we use
the Adjusted Rand Index (ARI) as a metric for quantifying
bio-conservation leveraging the independent hand-crafted
cell type annotations.

4.2. Evaluation Protocol

As is the conventional data flow for INRs, SUICA infers
gene expressions with coordinates as inputs after fitting the
given (x,y) pairs. We apply SUICA to perform degradation-
agnostic reconstruction upon ST data under various common
degradations, including spatial sparsity, gene drop-out, and
noise, to which we refer as spatial imputation, gene imputa-
tion and denoising respectively for clarity. Accordingly, we
follow different evaluation protocols: for spatial imputation,
we randomly sample 80% of the spots for training, leaving
the rest 20% for evaluation; for gene imputation, we ran-
domly mute 70% of the elements in the data matrices; for
denoising, a standard Gaussian noise is injected to the raw
data. Note that, such reconstruction is completely based on
the great approximation power and internal smoothness of
INRs without any beforehand knowledge of the degradation
type in a reference-free manner.

For comparison, we compare SUICA with rule-based
well-known INR variants (FFN (Tancik et al., 2020) and
SIREN (Sitzmann et al., 2020)), and the SOTA learning-
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Figure 4. Visual comparisons of predicted marker gene expressions on MOSTA dataset (Chen et al., 2022a) and Slide-seqV2 Mouse
hippocampus dataset (Stickels et al., 2021), with the descriptions of the markers attached below the results.

based reference-free baseline model STAGE (Li et al.,
2024).

4.3. Implemented Details

We implement SUICA with PyTorch. To construct the k-
NN graph for GCN, we set k = 5, including the given cell
itself. During the pre-training phase of GAE, we use Adam
with a learning rate of 1e−5 for 200 epochs. After obtaining
low-dimensional cell embeddings, we train the INR with
Adam at a learning rate of 1e−4 for 1k epochs to learn the
embedding mapping. Subsequently, the INR is frozen, with
the pre-trained decoder trained for an additional 1k epochs
using Adam with the same learning rate. STAGE (Li et al.,
2024) is trained till convergence for benchmarking. All
experiments can be conducted on 1 NVIDIA RTX 4090.

4.4. Spatial Imputation

Stereo-seq MOSTA SUICA outperforms INR meth-
ods (Tancik et al., 2020; Sitzmann et al., 2020) and
STAGE (Li et al., 2024) in predicting the gene expression of
unseen spots in the MOSTA dataset (Chen et al., 2022a)
as presented in Table 1. SUICA not only achieves the
best MAE, MSE and cosine similarity, but also achieves
higher correlation. Besides, SUICA surprisingly manages
to strengthen the biological signals, even 3.9% above the
ARI calculated with the ground truth.

Figure 4 showcases SUICA’s ability to closely predict
ground-truth gene expression levels, e.g., for RPLP0 gene
that highly involves in the ribosomal function and con-
sistently expresses across various regions of mouse em-
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Table 1. Quantitative benchmarking results of spatial imputation on MOSTA dataset (Chen et al., 2022a) and Slide-seqV2 Mouse
hippocampus dataset (Stickels et al., 2021). Bold figures are best scores and underlined figures are second-best. The respective reference
ARI scores are 0.312 (Stereo-seq MOSTA) and 0.182 (Mouse hippocampus Slide-seqV2). MAE/MSE: ×10−2 for Stereo-seq MOSTA.

Methods Stereo-seq MOSTA Mouse hippocampus Slide-seqV2
MAE↓ MSE↓ Cosine↑ Pearson↑ Spearman↑ ARI↑ MAE↓ MSE↓ Cosine↑ Pearson↑ Spearman↑ ARI↑

FFN (Tancik et al., 2020) 6.51 1.20 0.706 0.718 0.400 0.143 0.378 0.215 0.499 0.442 0.274 0.0523
SIREN (Sitzmann et al., 2020) 7.21 1.31 0.661 0.678 0.247 0.289 0.383 0.216 0.494 0.452 0.248 0.110

STAGE (Li et al., 2024) 6.52 1.11 0.732 0.747 0.365 0.139 0.351 0.198 0.587 0.483 0.314 0.0361

SUICA (Ours) 5.66 0.85 0.797 0.792 0.447 0.343 0.265 0.125 0.752 0.473 0.308 0.111

bryo (Taylor & Pikó, 1992; Ozadam et al., 2023), SUICA
accurately predicts this uniform expression pattern, while
other methods overemphasize it in specific regions. SUICA
also accurately localizes AFP expression to the liver in the
mouse embryo (Kwon et al., 2006). Beyond accurately pre-
dicting gene expression in unobserved regions, SUICA is
also capable for imputation, enhancing the data to better
reflect true underlying biological signatures. For example,
despite its low expression level in the ground-truth, SUICA
successfully imputes SEPT3, a gene involved in neuronal
development, effectively restoring this signal in the brain
region. These results highlight SUICA’s capacity not only
to interpolate but also to enrich underlying biological sig-
natures, making it a useful tool for imputing and enhancing
spatial gene expression data with high fidelity preserved.

Mouse hippocampus Slide-seqV2 Slide-seqV2 allows to
sequence RNAs with a spatial resolution of 10 mm. The
Mouse hippocampus dataset (Stickels et al., 2021) is ap-
plied to evaluate the effectiveness of SUICA. As shown in
Table 1, SUICA achieves a substantially lower MAE and a
notably higher cosine similarity (marking a 16.5% improve-
ment) compared to other methods. Figure 4 illustrates the
ground-truth and predicted gene expression from the bench-
marking methods. Like other methods, SUICA accurately
predicts the expression of hippocampus marker genes, such
as HPCA (Hippocalcin) (Park et al., 2017) and MALAT1, a
gene abundantly expressed in the mouse brain (Park et al.,
2017). SUICA also demonstrates its ability to impute the
underlying biological signals, as evidenced by GABRB3,
which is consistently and strongly expressed in the mouse
hippocampus (Tanaka et al., 2012). These findings suggest
that SUICA provides reliable predictions that closely reflect
ground-truth data, capturing key gene expression patterns
in the Slide-seqV2 platforms.

4.5. Bio-conservation Analysis of Predicted Cell Type
Clusters

Biological variance conservation (Bio-conservation) refers
to the degree to which a computational method or model pre-
serves biologically meaningful features, such as cell types,
gene expression patterns, or cellular relationships, relative

grid

SUICAGT SIRENFFN STAGE

Adipose tissue Adrenal gland Bone Brain Cartilage Cartilage primordium Cavity Choroid plexus Connective tissue
Dorsal root ganglion Epidermis GI tract Heart Inner ear Jaw and tooth Kidney Liver Lung Meninges

Mucosal epithelium Muscle Smooth muscle Spinal cord Sympathetic nerveSubmandibular gland

Astrocytes CA1_CA2_CA3_subiculum DentatePyramids Endothelial Ependymal
Interneurons Microglia Mural Oligodendrocytes Polydendrocytes Subiculum_Entorhinal

Cortex_1 Cortex_2 Cortex_3 Cortex_4 Cortex_5 Fiber_tact Hippocampus Hypothalamus_1
Hypothalamus_2 Thalamus_1 Thalamus_2Pyramidal_layer_dentate_gyrus StriatumLateral_ventricle Pyramidal_layer

Figure 5. Spatially visualized comparison on bio-conservations of
predicted spots on MOSTA mouse embryo E16.5, Slide-seqV2
mouse hippocampus, and Visium-Mouse brain.

to the ground-truth data (Luecken et al., 2022). A high bio-
conservation score indicates that the predicted data aligns
closely with biological reality, capturing key aspects of cell
identity, functional states, or tissue structure that are essen-
tial for accurate analysis.

In addition to quantitative bio-conservation metrics like ARI,
Figure 5 provides a visual assessment of bio-conservation
by coloring predicted spots according to dominant cell types
in individual clusters. For a fair comparison, we ensured
that the number of clusters matched the number of cell-type
labels in the dataset.

In E16.5, apart from the highest ARI among benchmarking
methods, SUICA also offers the closest spatial visualization
of cell types to the ground truth. Compared to other meth-
ods, SUICA captures fine-grained structures, such as the
choroid plexus in the brain, the gastrointestinal (GI) tract,
and the muscle cells surrounding the heart. FFN’s (Tancik
et al., 2020) predictions appear chaotic, with most cell-type
predictions misaligned with the ground-truth labels. While
SIREN (Sitzmann et al., 2020) correctly captures general
cell types patterns, it overlooks many details detected by
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Table 2. Quantitative benchmarking results of gene imputation and denoising on MOSTA dataset (Chen et al., 2022a). Bold figures are
best scores and underlined figures are second-best. MAE/MSE: ×10−2.

Methods Gene Imputation Denoising
MAE↓ MSE↓ Cosine↑ Pearson↑ Spearman↑ MAE↓ MSE↓ Cosine↑ Pearson↑ Spearman↑

FFN (Tancik et al., 2020) 4.88 0.963 0.731 0.610 0.251 7.90 1.95 0.266 0.285 0.0523
SIREN (Sitzmann et al., 2020) 6.44 1.12 0.675 0.652 0.124 7.91 1.97 0.112 0.103 0.0166

STAGE (Li et al., 2024) 4.69 0.738 0.802 0.705 0.264 7.60 1.66 0.606 0.630 0.182

SUICA (Ours) 4.30 0.724 0.798 0.714 0.317 6.03 0.934 0.733 0.737 0.379

SUICA, such as the connective tissue around the cartilage
primordium in the mouse’s foot region and the cavity sur-
rounding the heart. STAGE (Li et al., 2024) identifies sev-
eral major cell types in the mouse embryo—such as liver and
brain—but misses smaller, yet important, cell populations.

In the Mouse hippocampus dataset, SUICA also demon-
strates its ability to capture both global and fine-grained
features, accurately identifying endothelial cells, Ependy-
mal cells, and inter-neurons. In contrast, FFN and STAGE
fail to detect smaller cell populations, while SIREN mis-
classifies inter-neurons. Similarly, on the Visium-Mouse
Brain dataset, SUICA uniquely identifies specific cell popu-
lations, such as Lateral Ventricle cells and Cortex 5, which
are absent from the predictions of other methods.

4.6. Gene Imputation & Denoising

Since INRs are known for its internal smoothness, SUICA is
able to perform channel-wise gene imputation and denoising
upon muted or contaminated gene expressions. In this way,
SUICA can be seen as a reference-free degradation-agnostic
restoration method for ST.

We benchmark the quantitative results in Table 2 upon
Stereo-seq MOSTA (Chen et al., 2022a). Note that the
pipeline is exactly identical except for the degradation pat-
tern. SUICA manages to handle the contaminated inputs in
almost all metrics. It also shows that GAE manages to make
it easier for INRs to model the smoothness in the super-high
dimensional space of gene expressions.

4.7. Ablation Study

We showcase two examples to illustrate how the pro-
posed modules in SUICA contribute to the final model
performance, namely the E16.5 embryo of Stereo-seq
MOSTA (spatially dense, 121,756 cells, 26,159 genes, with
FFN (Tancik et al., 2020) as backbone) and the Visium
Human Brain (spatially sparse, 4,910 cells, 36,592 genes,
with SIREN (Sitzmann et al., 2020) as backbone), under the
setting of spatial imputation.

As can be indicated from Table 3, the spatial density and
sequencing depth may influence SUICA’s effectiveness. For

Table 3. Ablation study on model design of SUICA. MSE: ×10−2

for Embryo E16.5 while ×10−3 for Human Brain.

Settings Embryo E16.5 Human Brain
MSE↓ Cosine↑ Pearson↑ MSE↓ Cosine↑ Pearson↑

Vanilla INR 2.35 0.668 0.653 9.33 0.756 0.747
+AE 1.60 0.789 0.751 11.27 0.695 0.691
+Dice 1.48 0.806 0.747 7.05 0.826 0.800
+Graph 1.47 0.807 0.761 5.67 0.860 0.846

the Embryo E16.5 dataset, the primary performance im-
provement comes from the AE and the quasi-classification
loss. In contrast, in the Human Brain dataset, adding AE
causes a performance decrease, while the GCN has a more
significant impact on overall performance. Intuitively, we
attribute this difference to the varying spatial sparsity of
different ST techniques and GAE alleviates such issue by
incorporating spatial context.

5. Conclusion
In this paper, we seek to model the super-high dimensional
and sparse nature of ST data, enhancing both spatial reso-
lution and gene expression with the smooth prior inherent
in INRs. To this end, we present SUICA, a powerful INR
variant tailored to model ST in a continuous and compact
manner. Using a Graph Autoencoder, SUICA maps zero-
inflated raw data into a lower-dimensional embedding space,
preserving high-frequency details and making the complex
embedding mapping more feasible for INRs. The INR fitted
embeddings are then decoded to the raw expression with the
decoding head preventing the prediction error from accu-
mulating. To encourage the sparsity in the final predictions,
we leverage a quasi-classification loss term as a regular-
izer, preserving both the sparsity and numerical fidelity of
non-zero values. Extensive experiments on Stereo-seq, 10x
Genomics Visium, and Slide-seqV2 datasets demonstrate
SUICA’s effectiveness, yielding improvements in both in-
silico metrics and biologically meaningful analyses, with
enhanced spatial resolution and biological signatures. It
is firmly believed by us that SUICA will be an inspiring
attempt from both INRs and ST perspectives. We encourage
readers to check the appendix for complementary insights
and extended evaluations.
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A. Background
Spatial Transcriptomics (ST) is a technique that represent-
ing the gene expression at individual spots within a slice of
sample, providing a detailed picture of cellular activity and
composition in the micro-environment. ST sequencing is
typically performed on fresh frozen tissue samples and is
broadly categorized into two main types: sequencing-based
ST and imaging-based ST. Despite differences in method-
ology, both technologies deliver complementary measure-
ments of in situ gene expression. The sequencing-based
ST technologies, including Stereo-seq, 10x Visium, Slide-
seqV2, usually rely on spatially indexed surfaces to encode
spatial information (Figure 6). These methods employ dif-
ferent spatial indexing strategies: 10x Visium uses a mi-
croarrayer spotting robot, these spots are 50–200 µm in
size, to deliver a unique barcode to a fixed, known location
on the surface of a slide (Tian et al., 2023); Slide-seq ap-
plies 10 µm diameter nanobeads for spatial barcoding (Tian
et al., 2023); Stereo-seq uses DNA nanoball-patterned ar-
rays for in situ RNA capture to create high-resolution spatial
transcriptomics sequencing (Chen et al., 2022a). Follow-
ing barcoding, mRNA diffuses to spatially indexed primers,
undergoes reverse transcription, cDNA amplification, and
short-read sequencing. This process generates transcript
reads paired with barcode sequences, localizing each de-
tected transcript to specific pixels.

For the imaging based-ST methods, RNA molecules are
specifically tagged with fluorescent probes by complemen-
tary hybridization. These probes are then imaged using
fluorescence microscopy. MERFISH, for instance, maps
RNA molecules with binary barcodes encoded with error-
correcting codes to ensure accuracy. Sequential rounds of
fluorescence imaging detect the presence or absence of fluo-
rescence, decoding the RNA identity and precisely mapping
molecules to their spatial locations.

We also want to mention the fact that ST data are not al-
ways delivered jointly with histology images as a reference.
For example, Slide-seq, DBiT-seq, MERFISH offer high-
resolution spatial gene expression data but lack correspond-
ing histological images. Even in cases where histology is
available, challenges in precise alignment between histolog-
ical features and ST data can arise due to tissue deformation,
sectioning artifacts, or registration inaccuracies. These limi-
tations highlight the importance of designing reference-free
models that do not rely on histological guidance, making
them more broadly applicable and robust across different
ST platforms and experimental conditions.

B. Model Details & Insights
FFN vs. SIREN As mentioned in the main body, it is
observed that when applied to ST with low spatial density,
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Figure 6. Workflow of sequencing-based spatial transcriptomics
sequencing. (a) Spatially indexing, with microarrayer for 10x Vi-
sium, nanobead technology for Slide-seqV2 and nanoball-based
strategy for Stereo-seq; (b) Placing the slice of tissue on the in-
dexed surface and capturing mRNA from each spot; (c) Collecting
spots and conducting sequencing; (d) The generated data matrix
with gene expression and location information for each spot.

SIREN (Sitzmann et al., 2020) outperforms FFN (Tancik
et al., 2020) as the backbone of SUICA, while for high-
resolution ST slices, FFN prevails. To better showcase such
phenomenon, we provide two representative cases of the
mouse embryos E9.5 and E16.5 in Table 4. We globally set
the angular velocity ω of the periodical activation function
in SIREN (Sitzmann et al., 2020) as 30 which is adopted
by default and the mapping size of the Random Fourier
Features as 256. For more information for these two magic
numbers, please refer to the respective papers. Note that
we do not intend to showcase any superiority among INR
variants. Since we adopt a modular design that is agnostic to
specific INR implementations, we are able to take advantage
of different implementations to meet varying requirements.
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Table 4. Quantitative results of SUICA empowered by different
INR backbones. MSE: ×10−2.

Backbones Embryo E9.5 Embryo E16.5
MSE↓ Cosine↑ Pearson↑ MSE↓ Cosine↑ Pearson↑

FFN (Tancik et al., 2020) 0.55 0.752 0.799 1.47 0.807 0.761
SIREN (Sitzmann et al., 2020) 0.52 0.766 0.814 1.62 0.786 0.745

Table 5. Quantitative comparison on Stereo-seq MOSTA
dataset (Chen et al., 2022a) between SUICA and NGP (Müller
et al., 2022). MAE/MSE: ×10−2.

Methods MAE↓ MSE↓ Cosine↑ Pearson↑ Spearman↑
NGP (Müller et al., 2022) 6.39 1.14 0.729 0.742 0.415
SUICA 5.66 0.85 0.797 0.792 0.447

Explicit Alternatives Recently, researchers are employ-
ing explicit or hybrid alternatives (Müller et al., 2022;
Chen et al., 2022b) to replace the fully implicit represen-
tations (Tancik et al., 2020; Sitzmann et al., 2020; Lindell
et al., 2022) for a faster inference speed. For a more compre-
hensive benchmarking, we here compare SUICA with the
trainable hash-based encoding (Müller et al., 2022) (denoted
as NGP) on Stereo-seq MOSTA dataset (Chen et al., 2022a).
The quantitative results are shown in Table 5. For the imple-
mentation, we re-compile the library of tiny-cuda-nn
to support float32, to align with other methods.

CNN It is easy to notice that the network architecture
in SUICA is almost fully MLP-based except for the GCN.
Such architecture does not explicitly involve any local in-
ductive bias that CNNs usually do. The underlying reason
for doing so is that along the sequencing depth of ST, it
is assumed that the channels (i.e., specific gene segments)
are permutation-invariant even though there might be some
statistical correlations. In this way, it is not supposed to rely
on the context information along the sequencing depth, but
for the correlation among cells, we model such context by
the GCN.

PCA In SUICA, we reduce the dimension of raw gene
expressions from thousands to 32 by the encoder of GAE,
which is recovered later by the decoder. The function of
the GAE could be replaced by PCA (Principal Component
Analysis), by a pre-fitted linear projection. However, it
is obviously challenging for the linear transformation of
PCA and inverse PCA to model the complex distribution
of ST, leading to a great loss in the reconstructed signal.
Empirically, it is observed that when encoding and decoding
with PCA and inverse PCA, the IoU between the predicted
zero maps and the ground truth decreases to 0, indicating a
complete failure of recovering the sparsity, while SUICA
maintains an IoU of around 0.9.

VAE Variational Autoencoders (VAEs) are a common al-
ternative to AEs, designed to generate samples from a prob-

abilistic latent space, typically modeled as Gaussian distri-
butions. While VAEs offer generative capabilities through
variational inference and learn smoother, more continuous
latent spaces compared to AEs, they often produce blurry
outputs (Zhao et al., 2017) and struggle to match AEs in re-
construction accuracy (Dai et al., 2020). These issues might
lead to ambiguity in gene expression that is not wanted.
These limitations stem from the inherent trade-off between
the quality of latent representation learning and reconstruc-
tion fidelity in VAEs. Although variants like beta-VAE (Hig-
gins et al., 2017) allow for adjustable weighting between
these objectives, the issue persists. In our setting, where
numerical fidelity and reconstruction accuracy take prece-
dence over generative and latent representation quality, we
select AE over VAE for SUICA’s design, leveraging its
ability to accurately reconstruct high-dimensional raw gene
expression data.

Reconstruction Loss In SUICA, we train the INR and the
decoder separately to minimize the accumulated prediction
error, on which we would like to further offer some insights.
Obviously, a pre-trained decoder is necessary; otherwise the
decoder would become a trivial extension of the INR. It is
also easy to understand that such decoder requires finetuning
to bridge the gap between the pseudo ground-truth embed-
dings zgt and the predicted embeddings ẑ. The problem that
prevents this two-stage training strategy from merging into
one end-to-end stage is that when using Lrecons through the
decoder to supervise the INR, the loss will become unstable.
We attribute this observation to the optimizing objectives of
Lembd and Lrecons are somehow contradictory. Though this
problem can be alleviated by carefully adjusting the training-
relevant hyper-parameters, we opt to adopt the two-stage
training strategy for simplicity and stable performance.

C. STAGE
In the main text, we involve STAGE (Li et al., 2024) for
both quantitative and qualitative comparisons as a baseline
for histology-free spatial imputation (densification) of gene
expressions. In addition to solely showing the superiority of
SUICA, we would like to shed some light on this matter.

Regarding the benchmarking task of imputation, we identify
two critical sub-tasks, namely the reconstruction of gene
expression and the spatial mapping. STAGE models im-
putation as a generative task, where an AE is adopted to
self-regress the raw representations while enforcing the la-
tent as the corresponding 2D coordinates. In this way, the
two sub-tasks are coupled as one. Considering the chal-
lenges posed, the closely coupled paradigm may not lead
to satisfactory results. On the contrary in SUICA, the two
sub-tasks are well decoupled, where the spatial mapping is
performed by the INR while the description as well as the
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Table 6. Quantitative benchmarking results of spatial imputation on two Visium ST cases (Palla et al., 2022; Wei et al., 2022). Note that
for Visium-Human Brain, there is no annotation of cell type for the evaluation of ARI, while reference ARI is 0.428 for Mouse Brain.
Bold figures are best scores and underlined figures are second-best. MAE/MSE: ×10−2 for Human Brain while ×10−1 for Mouse Brain.

Methods Visium-Human Brain Visium-Mouse Brain
MAE↓ MSE↓ Cosine↑ Pearson↑ Spearman↑ MAE↓ MSE↓ Cosine↑ Pearson↑ Spearman↑ ARI↑

FFN (Tancik et al., 2020) 5.76 0.881 0.772 0.786 0.402 5.95 5.85 0.832 0.741 0.581 0.000587
SIREN (Sitzmann et al., 2020) 6.58 0.933 0.756 0.747 0.196 5.35 4.29 0.878 0.804 0.647 0.359

STAGE (Li et al., 2024) 6.19 0.805 0.795 0.772 0.223 4.55 3.20 0.918 0.825 0.666 0.140
TRIPLEX (Chung et al., 2024) 4.75 0.560 0.881 0.850 0.319 9.35 14.0 0.00 -0.00682 -0.00715 0.358
UNIv2 (Chen et al., 2024) 7.30 1.41 0.723 0.633 0.129 6.94 7.88 0.790 0.631 0.425 0.228

SUICA (Ours) 4.99 0.567 0.860 0.846 0.445 3.68 2.45 0.932 0.800 0.660 0.393

reconstruction is taken care of the GAE. The progressive
training paradigm also guarantees that each module is doing
the assigned job, keeping the coupling at minimum.

According to the experimental results, SUICA not only
achieves better quantitative scores for benchmarking, but
also exhibits much richer bio-conservation for downstream
applications.

D. Human and Mouse Brains Visium
Different from Stereo-seq datasets, Visium is a lower-
resolution but more affordable ST technology, on which
we additionally compare the model performance. The exper-
iments are conducted under the task of spatial imputation.
Due to the lack of independent cell-type annotations, ARI
is not applicable in Visium-Human Brain dataset (Wei et al.,
2022). On the Visium-Mouse Brain dataset (Palla et al.,
2022), SUICA demonstrates improved ARI, which indi-
cates that the predictions can more accurately describe the
underlying cellular heterogeneity. Note that for readers’
information, we also involve SOTA histology-aided imputa-
tion methods TRIPLEX (Chung et al., 2024) and UNI (Chen
et al., 2024) for comparison, which additionally has access
to extra reference. We have also found that TRIPLEX is
rather sensitive to dataset-specific characteristics.

E. MERFISH
MERFISH is an imaging-based ST technique that enables
the highly multiplexed imaging of RNA molecules in cells
while maintaining their spatial context. Compared to the
Slide-seqV2, 10x Visium, and Stereo-seq technologies used
in our manuscript, MERFISH data can quantify significantly
fewer genes for individual cells. In Table 7, we evaluate
the performance of SUICA using a human heart MERFISH
dataset (Farah et al., 2024) with 228,635 cells and 238 genes,
with the setting of spatial imputation. SUICA achieves a sig-
nificant lower mean absolute error (MAE) and mean square
error (MSE), and the cosine similarity is at least 2.28%
higher than other methods, showing its high numerical fi-
delity. Following the bio-conservation analysis scheme, we
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Figure 7. Spatially visualized predicted spots on MERFISH human
heart (Farah et al., 2024).

Table 7. Quantitative results of spatial imputation on MERFISH
human heart (Farah et al., 2024). MAE/MSE: ×10−1.

Methods MAE↓ MSE↓ Cosine↑ Pearson↑ Spearman↑
FFN (Tancik et al., 2020) 6.06 5.86 0.840 0.717 0.554
SIREN (Sitzmann et al., 2020) 5.54 4.98 0.864 0.759 0.606
STAGE (Li et al., 2024) 5.48 5.10 0.870 0.709 0.558
SUICA 4.65 3.92 0.892 0.718 0.548

annotate the cell types for predicted spots of MERFISH data
using dominant cell types in individual clusters. We visu-
alize the spatial bio-conservation by coloring the cell types
in Figure 7. The results show that the SUICA predictions
mimic the ground-truth evidenced the capability of SUICA
to predict unseen spots in the MERFISH datasets.

F. Ablation on Resolution
To help with the data-efficiency analysis of SUICA, we per-
form experiments under the task of spatial imputation with
E16.5 embryo of Stereo-seq MOSTA (Chen et al., 2022a),
the results of which are shown in Table 8. The percentage
refers to the the proportion of training samples with regard
to the whole dataset, while the test set remains the same
(20% of all spots).

G. Data Pre-processing
To enable the evaluation of Pearson Correlation Coefficient
and Spearman’s Rank Correlation Coefficient, before the
experiments we remove empty rows and lines to make sure
each spot is at least expressed by a limited number of genes.

Note that the outputs of conventional INR-based tasks are
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Table 8. Ablation study on the data-efficiency of SUICA. % rep-
resents the proportion of the spots used for training while test set
remains 20%. MAE/MSE: ×10−2.

% MAE↓ MSE↓ Cosine↑ Pearson↑
80% 8.01 1.47 0.807 0.761
60% 7.96 1.52 0.801 0.752
40% 8.00 1.59 0.790 0.739
20% 8.14 1.62 0.786 0.738

strictly bounded, where the linear layer is usually clamped
or compressed by sigmoid. For ST data, we do not have such
assumption and only employ ReLU as the final activation.
Therefore, as a common practice in ST analysis (Melsted
et al., 2021; Hwang et al., 2018), we remove the genes
whose expressions are overly high and normalize each cell
by total counts over all genes of the cell so that every cell
has the same total count after normalization while keeping
the original sparsity.

H. Limitations
One of the significant limitations in SUICA roots in
the case-by-case training paradigm of INRs. Similar to
NeRF (Mildenhall et al., 2020), for each case, i.e., each
ST slice, we need to training a new model from scratch.
Considering the overwhelming heterogeneity of different
ST data, we temporarily compromise in this issue but ac-
knowledge that incorporating domain knowledge to make
SUICA generalizable is an interesting future work.

Another potential limitation is that SUICA prefers high-
quality ST data, in terms of both spatial density and se-
quencing depth, as can be indicated from the experimental
results we provide. SUICA exhibits the most performance
gain in Stereo-seq compared to other platforms and when the
gene expressions no longer meet the super-high dimensional
sparse assumption, SUICA will degenerate to a vanilla INR,
as is consistent with the results of MERFISH in Table 7.
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