Under review as a conference paper at ICLR 2025

DATA-CENTRIC GRAPH CONDENSATION VIA
DIFFUSION TRAJECTORY MATCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces Data Centric Graph Condensation (named DCGC), a data-
centric and model-agnostic method for condensing a large graph into a smaller one
by matching the distribution between two graphs. DCGC defines the distribution of
a graph as the trajectories of its node signals (such as node features and node labels)
induced by a diffusion process over the geometric structure, which accommodates
multi-order structural information. Built upon this, DCGC compresses the topolog-
ical knowledge of the original graph into the orders-of-magnitude smaller synthetic
one by aligning their distributions in input space. Compared with existing methods
that stick to particular GNN architectures and require solving complicated optimiza-
tion, DCGC can be flexibly applied for arbitrary off-the-shelf GNNs and achieve
graph condensation with a much faster speed. Apart from the cross-architecture
generalization ability and training efficiency, experiments demonstrate that DCGC
yields consistently superior performance than existing methods on datasets with
varying scales and condensation ratios.

1 INTRODUCTION

Graphs are a generic representation for systems of certain interactions and structures, such as large
online social networks (Fan et al., 2019), user-item recommender systems (Wu et al., 2019), chemical
molecules (Stirk et al., 2022), and biological protein interactions (Réau et al., 2023). Recent advances
in deep learning-based methods on graph-structured data, such as graph neural networks (Kipf &
Welling, 2017; Velickovic et al., 2018), have garnered significant attention and research interest.
However, training deep graph networks on large real-world graphs requires tremendous computational
and infrastructural resources due to the necessity of performing message passing layer by layer among
inter-connected nodes (Zeng et al., 2020).

To address this challenge, a natural idea is to compress the dataset involving data structures, which,
in particular, entails reducing the number of nodes and edges in the graph. To this end, traditional
methods include graph sparsification (Spielman & Teng, 2011) and graph coarsening (Loukas &
Vandergheynst, 2018; Cai et al., 2021): the former aims to obtain a sparser graph by removing
edges from the original graph, while the latter targets reducing the number of nodes by extracting
a subset from the node-set. However, these methods often rely on some predefined heuristics and
lack guidance from training (Yang et al., 2023), making it difficult to achieve satisfactory results on
downstream tasks.

Existing Works. Another technical path showing empirical success in recent studies resorts to a
synthesis-based approach that directly learns the node feature matrix and the adjacency matrix of
the target compressed graph (a.k.a. synthetic graph), which is called graph condensation or graph
distillation (Jin et al., 2022; Liu et al., 2022; Yang et al., 2023; Zheng et al., 2023). These methods
share a similar spirit, aiming to learn a synthetic graph that can replicate the same gradient trajectory
of model parameters as the original graph, named gradient-matching (Zhao et al., 2021). Although
these methods have achieved promising performance, their design philosophies lead to unsatisfactory
capabilities (Gupta et al., 2024) due to failure to fulfill the following criteria:

1. Efficiency of condensation process. The primary goal of graph condensation is to circumvent the
need for training on the original large graph, which would be memory and time-inefficient. However,
current methods based on gradient-matching require training GNN models on the original full graph,

Under review as a conference paper at ICLR 2025

which contradicts the fundamental objective of graph condensation. In addition, existing works are
formulated as a bi-level optimization problem, which further exacerbates the computational cost.

2. Independence from models and hyper-parameters. Existing methods based on gradient match-
ing are model-centric and rely on specific GNN architectures and the associated hyper-parameters.
This means that any change in the GNN architecture (such as switching from GCN to GAT) or even
any change in hyper-parameters (like the number of GNN layers) can lead to significant change in
the condensed graph, necessitating a new round of condensation.

3. Cross-architecture generalization ability. The stickiness to particular GNNs means that synthetic
graphs condensed by one GNN may not adapt well to training with other GNN architectures, a
problem we refer to as poor cross-architecture generalization ability. More seriously, synthetic graphs
condensed by an inappropriate GNN can lead to a significant performance drop, even when using the
appropriate GNN model for training and testing on the condensed graph. This issue is particularly
evident in heterophilic graphs.

Presented Work. To address these limitations, this paper proposes Data-Centric Graph Condensation
via Diffusion Trajectories Matching (DCGC in short). DCGC inherits the spirit of distribution
matching (Zhao & Bilen, 2023), learning the condensed graph by minimizing the divergence between
the distributions of the original graph and the synthetic graph. Observing that a graph is a mixture of
the node signals (e.g., node features and labels) and their connections, we seek a principled means to
characterize and extract the topological knowledge from the original graph entangled with these node
signals. In particular, we resort to an analogy between a geometric diffusion process that updates
node signals through time and a non-parametric propagation on graphs that returns aggregated node
features at different layers. On top of this, we decompose a graph into a collection of node signals,
where each node’s signal is aggregated from its multi-order structural information, and the distribution
of a graph is subsequently defined as the distribution of the aggregated node signals. The divergence
between the original graph and the synthetic graph is further measured by the Maximum Mean
Discrepancy, which can be easily optimized in linear time w.r.t. the graph size.

DCGC addresses the limitations of the above works in the following ways: 1) Operated in the data
space and without relying on training a GNN on the full graph, DCGC eliminates the burdensome bi-
level optimization and, therefore, has a much faster training speed. 2) DCGC’s condensation process
is unsupervised, so it does not rely on tuning the hyper-parameters of a specific GNN for the node
classification task. 3) The data-centric property frees DCGC from specifying a GNN architecture for
condensation, therefore endowing DCGC with desired cross-architecture generalization capability.
The consideration of the label’s distribution over the graph structure also enables DCGC to adapt to
heterophilic graphs easily.

We evaluate the proposed DCGC on eight graph datasets of varying scales and properties. The
experimental results demonstrate that the synthetic graphs condensed by DCGC yield comparable
or even better performance than existing SOTA gradient-matching methods. In cross-architecture
settings and on heterophilic datasets, DCGC exhibits superior and more stable performance across
different GNN architectures. Specifically, apart from improving the averaged accuracy, DCGC
reduces the cross-architecture standard deviation by an average of 26.3%. In terms of training speed,
compared to the current fastest graph condensation methods, DCGC reduces the training time by
96.4%. These results clearly demonstrate the superiority of DCGC in terms of efficacy, generalization
ability, and efficiency.

2 RELATED WORKS

To reduce the high computational and memory costs when training on large graphs, recent research
has started exploring dataset condensation techniques for condensing graph-structured data. As a
pioneering work, GCond (Jin et al., 2022) follows the gradient matching paradigm (Zhao et al., 2021)
to learn the node features of synthetic nodes. The edges are parameterized as a function of the learned
features of two end nodes. SGDD (Yang et al., 2023) follows the similar gradient-matching paradigm
in GCond (Jin et al., 2022) but explicitly broadcasts the original graph structure to the synthetic
graph to prevent overlooking the structure information in the original graph. SFGC (Zheng et al.,
2023) introduces a training trajectory meta-matching scheme for effectively synthesizing small-scale
graph-free data. All of the above methods are based on gradient-matching and require specifying a
GNN architecture and training its parameters, which not only leads to a challenging training process

Under review as a conference paper at ICLR 2025

but also results in poor cross-architecture generalization ability. To deal with these limitations, this
paper explores graph condensation by distribution matching.

We are not the first to utilize distribution matching for graph condensation. The pioneering work
GCDM (Liu et al., 2022) treats the original graph and the synthetic graph as two distributions of
receptive fields and learns by distribution matching (Zhao & Bilen, 2023). However, GCDM fails to
generate the condensed graph of satisfying quality as the gradient-matching methods. Also, GCDM’s
condensation process still requires specific GNN architectures and complicated bi-level optimization,
leaving the limitations of the above gradient-matching methods unresolved.

3 METHODOLOGY

3.1 PROBLEM FORMULATION AND PRELIMINARIES

Graph Notations. Given a graph dataset G = {X, A, Y}, where X € RV*P is the node feature
matrix, A € RV*V is the graph adjacency matrix, and Y € RV*C is the (one-hot) node label
matrix. The target of graph condensation is to learn a synthetic graph S = {X', A’, Y’} of N’
nodes (N’ < N) such that machine learning models trained on the synthetic dataset S can perform
similarly to those trained on the original graph G. For any classc =1,2--- ,C, we use N, and N/ to
denote the number of nodes from class c in the original graph G and synthetic graph S, respectively.

Graph Condensation via Distribution Matching. To compress a large dataset into a smaller
synthetic one, a natural approach is to ensure that the distribution of synthetic data closely resembles
the distribution of real data (Zhao & Bilen, 2023). Denote the original and synthetic graph distribution
by G and S, and the class-conditional ones as G, and S, respectively. Distribution matching
minimizes the discrepancy between G and S:
c
msin Z D(G.,S.), where D is a measure of distribution difference.)
c=1

G.(S.) can be viewed as the subset of the original(synthetic) graph consisting of nodes (and their
corresponding contexts) from the c-th class. When the distribution of a graph, as well as the difference
between the two distributions, is appropriately defined, we are able to solve the graph condensation
problem by solving the above optimization problems.

Maximum Mean Discrepancy. There are various means to measure the difference between two
distributions, and we use Maximum Mean Discrepancy (MMD) since it is differentiable and easy to
compute. Given two distributions G, S, and a mapping f € R” — R in the unit ball in a Reproducing
Kernel Hilbert Space(RKHS) #, MMD measures the divergence between G and S by:

MMD(G, S) = S (Ec(f(g)] = Es[f(s)]) = llne — pslla; @)

H _1

where g ~ G, s ~ S are samples, uc = Eg ¢(g), us = Es ¢(s), and ¢(-) is a feature mapping
from X to R such that f(-) = (f, #(-))n ({-,)3 denotes the inner product in). Minimization of
MMD(G, S) is often reduced to minimization of MMD?(G, S) using the kernel trick:

MMD*(G,S) =(ug — ps, bc — ps)m = (g, te)w + (s, us)r — 2 (iG, ps)n
=Ec(p(9), (9')))n + Es(d(s), d(s"))n — 2 Ecs(¢(g), #(8)))n 3)
=Egk(g,9') + Esx(s,s’) — 2 Egsr(g, s),

where (-, -) is the kernel function in H, e.g., the Gaussian kernel function k(g, s) = exp(—||g —
s||2/(20?)), and o is the bandwidth.

3.2 GRAPH DISTRIBUTION AS NODE-WISE DIFFUSION TRAJECTORIES

For i.i.d. data, such as images, the definition of its distribution is self-evident, i.e., the collection of
the matrix-form (or vector-form) representations of each single data record, e.g., the pixels of an
image (Zhao & Bilen, 2023). However, graph data are non-i.i.d. generated, considering that nodes in
the graph are inter-dependent due to the graph structure. While the definition of node feature/label
distribution is straightforward, defining the corresponding structural roles of nodes in the entire graph
can be challenging. Additionally, we need to fuse node features/labels with their structural attributes
to obtain an overall vector form serving as a well-posed representation of their distributions.

Under review as a conference paper at ICLR 2025

feature signal diffusion

Original full graph ‘ > O ClassA ClassB () Class C
:' ﬂ] j O @)
ﬂﬂ > C O ™~ /—\ \/é\
> N ’,,\; [~ O
homophily-dominant
matchlng matching matchlng
x '(0) X' o O
. LT NN / _
dﬂ FilI m] 3)/ 0)
. > Cor . o /’
-) heterophily-dominant

Synthetic small graph

(a) (b)

Figure 1: (a) Illustration of graph diffusion process and trajectory matching. The distribution of a
graph is defined as the diffusion trajectories of the node features/labels over the graph. The condensed
graph is learned by minimizing the MMD distance between the original and synthetic graph. (b) Top:
For homophily-dominant graphs, most of the neighboring nodes of the centered node have the same
label. Bottom: For heterophily-dominant graphs, connected nodes usually have distinct labels.

Node feature distribution with graph structure To resolve this challenge, we resort to graph
diffusion process (Kondor & Vert, 2004; Wang et al., 2021; Wu et al., 2023), which utilizes the
diffusion ODE to characterize the evolution of a graph signal (e.g., node features) under the spatial
constraint of the graph structure:

dX(t)
at

In general, Eq. 4 defines the node feature as a type of graph signal, evolving over the graph structure
as t increases. At different time points ¢, X (¢) represents the specific response of the node feature
signal under the influence of graph structural information to varying degrees, e.g., X (0) denotes the
raw node features without the impact of structure, X (1) considers the impacts of first-order proximity,
whereas X (t) considers even higher-order graph structure information for large ¢. Since the entire
diffusion trajectory is a continuous dynamics that is intractable to compute, we use discretization to
obtain a series of X (t) in discrete time steps. With the explicit Euler’s method, we have

X(t 4 At) = X(t) — AtLX(t) = [(1 — AT 4+ AtA]X(¢).)

= -LX(t), X(0)=X,L=1I-A, A=D/2AD"'/2 @)

The explicit diffusion scheme in Eq. 5 is determined by the time interval At, and it is proved to be
stable under the following conditions:

Proposition 1. (Numerical stability, Theorem 1 in Chamberlain et al. (2021)) The step-wise diffusion
scheme in Eq. 5 is stable for 0 < At < 1.

The proof is in Appendix B. Therefore, for a given time interval At and step k, we are able to obtain
the signals of nodes at step k, in the following format:

X*® =X (k- At) = [(1 - AT+ AtA]FX O, (©6)

With steps £ = 0,1,2,..., K, we can obtain a sequence of graph feature signals influenced by
increasing degrees of the graph structure. Based on this, we define the distribution of the node
features over a given graph structure as the trajectories of the diffusion process with finite K steps:

Definition 1. Given a graph G with initial node features X(©) = X, the adjacency matrix A, and the
maximum step I. We define the node feature distribution over G at step k, G5 as follows:

GHk) & xk) | gh k) - ~G P k=0,1,--- K.)

where glf &) denotes the feature signal of node i at step k, and the superscript ¥ is short for feature.

For the class-conditional version, we use the subscript ¢ to denote the corresponding symbols specified

to nodes from class ¢, i.e., G;’f’(k) = X(k), gcfl(k) ikl) ~ Gz’(k)

Under review as a conference paper at ICLR 2025

Node label distribution with graph structure In addition to the distribution of node features
over the graph structure, we further extend the definition to the distribution of node labels in the
graph. Our approach is motivated by an observation that real-world graphs usually exhibit different
interconnecting patterns for nodes belonging to different classes, e.g., homophily v.s. heterophily.
We provide an illustrative example in Fig. 1 (b): In homophilic graphs, a node is usually connected to
other nodes sharing the same label. Therefore, we expect that nodes from the same class are also
connected in the condensed graph. By contrast, when the original graph is a heterophilic one, e.g.,
nodes from different classes are more likely to connect, we wish the condensed graph had similar
properties. In this regard, we consider a similar diffusion process to the one-hot node label matrix Y
and obtain the signal of the node label matrix at step k as:

\F
Y® = ¢;norm [((1 — At)I + AtA) Y] € RVXC, (®)

Notice that here we apply ¢; normalization such that the entry Y() represents the proportion of label
¢ in node 7’s k-hop neighborhoods. Then, we define the label dlstnbutlon over a graph as the labels’
evolution in a diffusion process:

Definition 2. Given a graph G with adjacency matrix A and node label matrix Y, and the maximum
step K. We define its label distribution over graph at step k as follows:

Gk 2y (k) gﬁ’(k) _ yl(k) ~G®) k=0, K 9)
where gi’(k) denotes the label signal of node i at step k, and the superscript [is short for label.

Similarly, we use Gé’(and g, (Z) to denote the corresponding class-conditional versions. Note that

the above notations are for the orlginal graph G and its distribution g ~ G. For the synthetic graph S,
we use s ~ S instead.

3.3 TRAINING OF DCGC

The training of our model DCGC seeks to learn the synthetic graph by minimizing the MMD between
the feature/label distribution of the original full graph G and the synthetic graph S of class c at step k:

£5H® = MMD*(GH) sf (k) = Eﬁ(F(k) g Ik))—FE/{(S{’(k),S;f’(k)) 2 IE k(gh® | sl (k)
s

/ / NC
fi(k ,(k k)
=33 k(s L) 2 3 (gl 81,
i=1 j=1 i=1 j=1
(10)
fi(k) ’f,(k))

The last step discards the term E x(gz""", g¢ since it only depends on the original graph G and
G

is not involved in the optimization process. Similarly, the label distribution matching loss of class c at
step k can be derived as:
N. N,

£ = 33wl o) - 23 et an

=1 j=1

Contrastive Alignment Minimizing Eq. 10 and Eq. 11 enables the condensed graph to preserve
the k-th order feature/label distribution over the graph structure. Yet, it does not ensure the alignment
between the node features and labels in the condensed graph. For example, given the feature
distribution {s{, sg, cee sé,} and label distribution {s}, s}, , sL,} of the synthetic graph S, the
exchange of entries (e.g., s{ — sg , 84 > s}) does not affect the values of losses. Yet, s{ and s! no
longer correspond to the signals of the same node, i.e., node 1 in the synthetic graph.

To address the above issue, we leverage the contrastive InfoNCE loss (van den Oord et al., 2018) for
aligning the node-wise feature distribution and label distribution of the condensed graph:

exp(¢(sDN T p(sh™) /1)
Zl p C,t ’
= zexp< (L3 T w(s2f)/m)

Lreg ,(k) (12)

Under review as a conference paper at ICLR 2025

where ¢(-) : RP — R% and (-) : RP? — R? are two linear projectors mapping s/ and s' to the
same dimension and 7 is the temperature hyper-parameter. We set d = D and 7 = 0.5 in this work.
Based on contrastive learning, Eq. 12 maximizes the mutual information between the feature signal

slf and label signal s! of the same node 7, encouraging their alignment.

Overall learning objective Integrating Eq. 10, Eq. 11, and Eq. 12 over all classes and time steps,
we obtain the overall learning objective:

K C
min L= 3 (L00 4 L0 4 w0 13

We provide an algorithmic illustration of the condensation process in Algorithm | in Appendix A.

Complexity Finally, we analyze the complexity of DCGC. 1) Computing the feature/label distribu-
tion of the original graph G requires O(EK (D + ('), while this process is non-parametric and can
be obtained via one-step preprocessing. Therefore, the computation overhead of this step is negligible
compared with the entire condensation process. 2) Computing the feature/label distribution of the
condensed graph requires O(E'K (D + C)) = O(N?K (D + C)). 3) Computing the MMD loss for
all k and c takes O(K - (D + C) - Ele N/(N. + N.)), which depends on the number of nodes in
each class. Yet, notice that Zle N!(N.+ N!) < N'(N + N’), and the equality holds if and only
if there is only one class. 4) Similarly, the contrastive alignment loss takes O(K DN'?). Combining
all the steps together, the overall complexity of DCGC is O(K (D + C)NN’). Considering that

N’ < N and K is small in practice, the overall complexity is slightly greater than O(N) and much
smaller than O(NN?), and therefore DCGC is time and memory-efficient.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets. Following previous literature (Jin et al., 2022; Liu et al., 2022), we mainly evaluate the
quality of the condensed graphs on six node classification datasets: Cora, Citeseer, Pubmed (Yang
et al., 2016), Flickr, Reddit (Zeng et al., 2020), and Ogbn-arXiv (Hu et al., 2020). For a fair
comparison, we use the public splits for all datasets. We also The details of these datasets are deferred
to Appendix C.1. In addition to the above-mentioned homophily-dominated graphs, we consider two
more heterophilic graphs, Chameleon and Actor.

Competitors. We compare our proposed method with four SOTA graph condensation methods:
GCond (Jin et al., 2022), GCDM (Liu et al., 2022), SGDD (Yang et al., 2023), and SFGC (Zheng
et al., 2023). Following (Jin et al., 2022), we also compare with three traditional selection-based
methods: Herding (Welling, 2009), K-center (Sener & Savarese, 2018), and graph coarsening (Huang
et al., 2021). The training performance using the original full graph is provided for reference as well.

Implementation Details. We implement the proposed method with Pytorch and DGL (Wang et al.,
2019). In the training stage, we first initialize the node feature matrix X’ and A’ according to the
proposed strategies. Then X’ and A’ are optimized using Eq. 13. In the evaluation stage, we train a
2-layer GCN model (Kipf & Welling, 2017) of hidden dimension 512 using the condensed graph and
then report the accuracy on the testing nodes of the original graph. We repeat all experiments for 20
times and report the average performance with standard deviation. We provide more implementation
details in Appendix C.3.

Given a condensation ratio r, the number of nodes in the condensed graph is N’ = N x r. Then, we
initialize the labels of a condensed graph Y such that the proportion of each class in the condensed

graph is the same as that in the original full graph, i.e., % = [%] and)" N/ = N. The optimization

of Eq. 13 is straightforward, yet might be challenging if the initial states of parameters (X’ and
A’) are far from the optimal ones. Empirically, we found that the traditional random initialization
methods (e.g., Xavier initialization) lead to poor performance due to the difficulty in optimization. To
this end, we adopt a simple strategy to initialize the node feature matrix X’ and the graph adjacency
matrix A’. For each class ¢, we randomly select N/ nodes from the original graph having the same

Under review as a conference paper at ICLR 2025

Table 1: Comparison with SOTA methods regarding testing accuracy (%). Bold entries are the best
results. DCGC outperforms existing methods on almost all datasets and all condemnation ratios.

. Other graph size reduction methods Condensation Methods

Dataset Ratio ()

Herding K-Center Coarsening GCond GCDM SGDD SFGC DCGC Whole

1.30% 67.0+1.3 64.0+2.3 31.240.2 79.841.3 69.4+1.3 80.1+0.7 80.1+0. 81.1+0.6

Cora 2.60% 73.4+1.0 T73.2+1.2 65.24+0.6 80.1+0.6 77.2+0.4 80.6+0.8 81.9+0.5 81.7+0.6 82.7+0.5
5.20% 76.8+0.1 76.7+0.1 70.6+0.1 79.3+£0.3 79.4+0.1 80.4+1.6 81.6+0.8 82.1+0.5
0.90% 57.1+1.5 52.4+2.8 52.2+0.4 70.5+1.2 62.0+0.1 69.5+0.4 714405 T71.6+0.6

Citeseer 1.80% 66.7+1.0 64.3£1.0 59.0+0.5 70.6+0.4 69.5+1.1 70.2+0.8 T72.4+04 72.2405 724404
3.60% 69.0+0.1 69.1+0.1 65.3+0.5 69.8+1.4 69.8+0.2 70.3+1.7 70.6+0.7 72.7+0.5
0.08% 76.7+0.7 64.5+2.7 18.1+0.1 76.5+0.2 75.7+0.3 76.7+0.4 77.1+05 78.4+05

Pubmed 0.15% 76.2+0.5 69.4+0.7 28.7+4.1 77.1+05 77.3+0.1 77.5+0.4 77.6+0.5 78.9+0.3 79.8+0.4
0.30% 78.0+0.5 69.1+0.1 65.3+0.5 77.941.4 78.3+0.9 78.2+0.8 78.840.6 79.5+0.3
0.10% 42.5+1.8 42.0+0.7 41.94+0.2 46.5+0.4 46.840.2 46.940.1 46.6+0.6 47.6+0.3

Flickr 0.50% 43.9+09 43.2+0.1 44.5+0.1 47.1+01 47.940.3 47.1+0.3 47.0+£0.1 48.2+0.3 50.2+0.3
1.00% 44.4+0.6 44.14+0.4 44.6+0.1 47.1+01 47.5+0.1 47.140.1 47.1+0.1 48.910.1
0.05% 53.1+2.5 46.6+2.3 40.9+0.5 88.0+1.8 86.5+1.1 90.5+2.1 89.7+0.2 90.8+1.4

Reddit 0.10% 62.7+1.0 53.0+3.3 42.8+0.8 89.6+0.7 88.3+0.8 91.6+1.0 90.0+0.3 91.5+0.9 93.9+0.0
0.20% 71.0£1.6 58.5+2.1 47.4+0.9 90.1+0.5 89.24+0.7 91.6+1.8 89.9+0.4 92.0+0.6
0.05% 52.4+1.8 47.243.0 35.44+0.3 59.2+1.1 56.2+0.3 60.8+1.3 65.5+0.7 65.1+0.7

arXiv 0.25% 58.6+1.2 56.8+0.8 43.5+0.2 63.2+0.3 59.6+0.4 65.8%1.2 66.1+0.4 66.8t0.6 T71.4+0.1
0.50% 60.4+0.8 60.3+0.4 50.4+0.1 64.0+£0.4 62.4+0.1 66.3+0.8 66.8+0.4 67.9+0.4

label and use their features to initialize X/,. In this way, we wish the synthetic graph had individual
node features similar to those of the original graph.

For the adjacency matrix A’, we initialize its on-diagonal terms to be a value ¢4, close to 1, while
off-diagonal terms to be a small value e.. In this way, we initialize a synthetic graph that primarily
consists of self-loops, thereby reducing the noisy edges that random initialization may introduce. The
parameters of A’ are obtained via the Sigmoid function such that they are restricted within the range
(0,1). Note that the obtained condensed graph S with adjacency matrix A’ is a dense, undirected
graph with edge weights in the range (0, 1).

Hyperparameter settings. For the initialization of the adjacency matrix A’, we set €5, = 0.999.
and eor = 0.001. The diffusion time interval is set as A¢ = 1, and the maximum diffusion step is set
as K = 3. For the bandwidth of the Gaussian kernel function when computing the MMD distance,
we set 202 as the median ¢ distance of the samples since it is dataset-sensitive.

4.2 MAIN RESULTS

Comparison on common benchmarks. In Table 1, we present the performance comparison between
the proposed DCGC and the baseline methods under node classification tasks. The experimental
results demonstrate that our proposed method performs on par or even better than SOTA gradient-
matching methods on all datasets and condensation ratios, which strongly illustrates the effectiveness
of DCGC across different datasets.

Cross-architecture generalization performance. One important limitation of existing methods is
that they all rely on a predefined GNN encoder during the condensation process, which might lead to
poor cross-architecture generalization ability. In this section, we empirically validate the generaliza-
tion ability of the proposed DCGC on Cora, Citeseer, Pubmed, and Ogbn-arXiv. The condensation
process of DCGC involves no encoders. In evaluation, we consider different-architectured GNN
classifiers: GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT (Velickovic
et al., 2018), Cheby (Defferrard et al., 2016), and APPNP (Klicpera et al., 2019). We also report
the average performance with standard deviation across different architectures. A small standard
deviation indicates that the condensed graph has relatively stable performance across classifiers with
different architectures, so a model with a higher average accuracy and a smaller standard deviation is
preferred. As demonstrated in Table 2, the proposed DCGC achieves the highest average accuracy
across different GNN architectures on the four datasets. In addition, DCGC achieves the lowest
Std., indicating its superior generalization ability across different architectures. These results clearly
demonstrate the superior advantages of DCGC as a data-centric condensation method.

Under review as a conference paper at ICLR 2025

Table 2: Cross-architecture generalization performance comparison. The condensed graphs are
obtained via GCN (except DCGC, which is data-centric), while tested using six different GNN
architectures: SGC, GCN, SAGE, GAT, Cheby, and APPNP, and the overall performance is reflected
by the average testing accuracy (Avg.) and its standard deviation (Std.).

Datasets Methods Architectures Statistics
SGC GCN SAGE GAT Cheby APPNP Avg. Std.
GCond 79.3 80.1 78.2 66.2 76.0 78.5 76.4 5.18
Cora GCDM 787 794 78.5 73.2 75.4 77.8 772 2.38
r=2.6% SGDD 78.5 79.8 80.4 75.8 78.5 78.4 78.6 1.59
SFGC 79.1 81.1 81.9 80.8 79.0 78.8 80.1 1.31
DCGC 80.7 81.7 81.5 82.1 80.6 82.3 81.4 0.80
GCond 70.3 70.6 66.2 55.4 68.3 69.6 66.7 5.78
Citeseer GCDM 68.7 69.5 67.1 62.5 68.9 69.1 67.6 2.65
r=1.8% SGDD 69.9 70.2 67.8 65.7 68.5 70.7 68.8 1.87
SFGC 71.8 716 71.7 72.1 71.8 70.5 71.6 0.56
DCGC 70.6 72.2 70.5 71.2 69.4 72.0 71.8 0.44
GCond 75.8 77.1 76.2 74.8 73.5 77.9 75.9 1.58
Pubmed GCDM 76.5 77.3 75.7 77.9 75.4 78.2 76.8 1.15
r=0.15% SGDD 771 775 76.9 76.8 76.2 78.7 772 0.85
SFGC 76.8 77.6 77.4 77.1 75.3 78.2 77.2 0.69
DCGC 786 789 78.6 79.4 78.4 79.5 78.9 0.46
GCond 63.7 63.2 62.6 60.0 54.9 63.4 61.3 3.41
Ogbn-arXiv GCDM 61.9 61.6 55.4 61.7 44.5 52.3 56.2 6.99
r=0.25% SGDD 59.8 64.2 61.2 62.7 53.7 60.1 60.3 3.62
SFGC 64.8 65.1 64.8 65.7 60.7 63.9 64.2 1.79
DCGC 64.6 66.8 65.2 65.9 62.3 65.8 65.1 1.56

Table 3: Performance of graph condensation methods on heterophilic graphs. The column C
denotes the GNN model for condensation, while the row T denotes the GNN model for evaluation
(training/testing). GNNs good at heterophilic graphs fail on graphs condensed by homophilic GNNs.

Datasets C\T GCN GPRGNN
GCond SFGC DCGC Full GCond SFGC DCGC Full
Amazon-Rating GCN 44.37 46.43 41.18 42.06
r=0.4% GPRGNN 40.92 42.38 46.98 48.70 41.59 42.89 43.71 4488
Actor GCN 27.35 28.92 31.29 34.11 .
r=13% GPRGNN 2841 29.18 2993 30.59 36.68 38.48 38.77 39.30

Performance on condensing heterophilic graphs Another potential limitation of existing gradient-
matching methods is that when the model used for graph condensation is sub-optimal, the subsequent
GNN model might suffer from significant performance degradation even if it has a proper architecture.
To verify this, we perform experiments on two heterophilic datasets, Chameleon and Actor (Pei
et al., 2020). In Table 3, we present the performance of GCond and SFGC using distinct GNN
architectures for condensing heterophilic graphs. Note that GCN (Kipf & Welling, 2017) usually
performs sub-optimally on heterophilic graphs, while GPR-GNN (Chien et al., 2021) is good at
both homophilic and heterophilic graphs. We can observe that when using the same architecture for
condensation and testing, all methods achieve close performance to training the architecture on the
full graph. However, graphs condensed by GCN fail to give satisfying performance when evaluated
using GPRGNN and are far from training GPRGNN on the full graph. By contrast, the proposed
DCGC is able to give a consistently close performance to the full graph regardless of the architecture.

4.3 ABLATION STUDIES AND EFFICIENCY COMPARISON

Effects of the components in DCGC. Next, we investigate the importance of each component
of DCGC. The loss function of DCGC (in Eq. 13) consists of three parts: feature-level matching

Under review as a conference paper at ICLR 2025

Table 4: Performance of removing fea- Training losses
ture/label/reg loss on Ogbn-arXiv dataset. 50 —— wo feat init.
40 —=— wj/o adj init
w30 —=— DCGC
Variants 7 =0.05% r=025% r=0.50% S0
wio £f 56.1138% 1 59.8105%) 61.110.0% | 101N
wio L} 34.3473% 1 39.9403%] 43.236.4% | 0
wlo L 63.920%1 66.209%1 66.91.5% 0 200 400 600 800

Testing accuracy

DCGC 65.1 66.8 67.9 o7 W
Table 5: Training time on Ogbn-arXiv 205

o g ©
dataset for 50 epochs, on an Nvidia 4090. 500 .
o —e— w/o feat init.
< 0.2 —s=— w/o adj init
r | GCond GCDM SGDD DCGC o ——eee
200 400 600 800
0.05% 351s 325s 349 s 11.69 s Condensation Epoch
0.25% 448 s 358 s 417 s 12.21s
0.50% | 603s 4lls 5765 13.84s Figure 2: Ablation study on initialization strategies

loss, label-level matching loss, and alignment loss, while the last only takes effect when both the
former ones exist. Therefore, we investigate the impact of using each individual loss separately on
the performance of DCGC. Note that removing either £/ or £! indicates that £ is removed as
well. In Table 4, we present the results on Ogbn-arXiv dataset. It is observed that using merely the
feature-level matching loss can only achieve sub-optimal performance. This indicates that solely
considering the feature distribution over the graph is insufficient to capture the distribution of the
entire graph, especially when the graph’s structure is complex and there are a significant number of
labeled nodes. Furthermore, merely using the label-level matching loss results in extremely poor
performance (an average accuracy drop of 40%), which underscores the importance of node features.

Effects of the DCGC'’s initialization strategies. Next, we investigate the importance of the initial-
ization strategies, which are assessed by removing the feature matrix initialization and adjacency
matrix initialization from DCGC, respectively. In Fig. 2, we present the training curves of training
loss and test accuracy w.r.t. the epoch on Ogbn-arXiv dataset (r = 0.5%). It can be observed that
with the proposed two initialization strategies, the initial loss is set to be very low, resulting in a
good starting point in the optimization space. This not only significantly accelerates the model’s
convergence speed but also makes it easier for the model to converge to better values, reducing the
risk of getting stuck in local optima. Removing any one of the initialization methods significantly
increases the training difficulty of the model, which may lead to sub-optimal performance.

Comparison of training time. Finally, we validate the efficiency of the proposed DCGC by
comparing its training time with SOTA graph condensation methods. Following previous evaluation
settings (Jin et al., 2022; Yang et al., 2023), we report the training time of 50 epochs on Ogbn-arXiv
dataset in Table 5. As shown in Table 5, DCGC achieves a much faster training speed compared
with existing methods for all condensation ratios. To be specific, DCGC reduces the epoch-wise
training time by 96.4% Furthermore, as the graph condensation r increases, the training time of
DCGC increases to a lesser extent compared to other methods. This indicates that our proposed
DCGC exhibits better scalability relative to other methods.

5 CONCLUSIONS

In this paper, we have proposed DCGC for condensing a large-scale graph into a small one. We
define the distribution of a graph as the trajectories obtained by conducting diffusion on its nodes’
features (as well as labels) over the graph structure. Following the idea of distribution matching,
we learn a small-scale graph by minimizing the Maximum Mean Discrepancy (MMD) distance
between the distribution of the original graph and the synthetic graph. To address the convergence
challenges in distribution matching, we propose a sophisticated parameter initialization strategy
that not only accelerates convergence but also reduces the risk of getting stuck in local optima.
Extensive experimental results demonstrate that our proposed DCGC achieves state-of-the-art results
on the selected datasets and exhibits excellent cross-architecture generalization ability. Moreover, it
significantly reduces the training time for condensation compared to current methods.

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We provide the algorithms of DCGC in Appendix A, the PyTorch-style pseudo codes for implement-
ing DCGC in Appendix C.3, and the proof in Appendix B. The detailed hyperparameter settings are
in Section 4.1.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Chen Cai, Dingkang Wang, and Yusu Wang. Graph coarsening with neural networks. In International
Conference on Learning Representations, 2021.

Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and
Emanuele Rossi. Grand: Graph neural diffusion. In /CML, pp. 1407-1418. PMLR, 2021.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In ICLR, 2021.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Proceedings of the 30th International Conference
on Neural Information Processing Systems, pp. 3844-3852, 2016.

Wengqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The world wide web conference, pp. 417-426, 2019.

Mridul Gupta, Sahil Manchanda, HARIPRASAD KODAMANA, and Sayan Ranu. Mirage: Model-
agnostic graph distillation for graph classification. In The Twelfth International Conference on
Learning Representations, 2024.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Proceedings of the 31st International Conference on Neural Information Processing Systems,
pp. 1025-1035, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In NeurIPS,
2020.

Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up graph neural
networks via graph coarsening. In Proceedings of the 27th ACM SIGKDD conference on knowledge
discovery & data mining, pp. 675-684, 2021.

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph condensation
for graph neural networks. In International Conference on Learning Representations, 2022.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Giinnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. In ICLR, 2019.

Risi Kondor and Jean-Philippe Vert. Diffusion kernels. kernel methods in computational biology, pp.
171-192, 2004.

Mengyang Liu, Shanchuan Li, Xinshi Chen, and Le Song. Graph condensation via receptive field
distribution matching. arXiv preprint arXiv:2206.13697, 2022.

Andreas Loukas and Pierre Vandergheynst. Spectrally approximating large graphs with smaller
graphs. In International Conference on Machine Learning, pp. 3237-3246. PMLR, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: an imperative style, high-
performance deep learning library. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems, pp. 8026-8037, 2019.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In ICLR, 2020.

Manon Réau, Nicolas Renaud, Li C Xue, and Alexandre MJJ Bonvin. Deeprank-gnn: a graph neural
network framework to learn patterns in protein—protein interfaces. Bioinformatics, 39(1):btac759,
2023.

11

Under review as a conference paper at ICLR 2025

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In International Conference on Learning Representations, 2018.

Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM Journal on
Computing, 40(4):981-1025, 2011.

Hannes Stirk, Dominique Beaini, Gabriele Corso, Prudencio Tossou, Christian Dallago, Stephan
Gilinnemann, and Pietro Lio. 3d infomax improves gnns for molecular property prediction. In
International Conference on Machine Learning, pp. 20479-20502. PMLR, 2022.

Adron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang,
Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang Li, Alexander J.
Smola, and Zheng Zhang. Deep graph library: Towards efficient and scalable deep learning on
graphs. arXiv, 1909.01315, 2019.

Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Dissecting the diffusion process in
linear graph convolutional networks. Advances in Neural Information Processing Systems, 34:
5758-5769, 2021.

Max Welling. Herding dynamical weights to learn. In Proceedings of the 26th Annual International
Conference on Machine Learning, pp. 1121-1128, 2009.

Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Peng He, Paul Weng, Han Gao, and Guihai Chen.
Dual graph attention networks for deep latent representation of multifaceted social effects in
recommender systems. In WWW, pp. 2091-2102, 2019.

Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. Difformer: Scal-
able (graph) transformers induced by energy constrained diffusion. In The Eleventh International
Conference on Learning Representations, 2023.

Beining Yang, Kai Wang, Qingyun Sun, Cheng Ji, Xingcheng Fu, Hao Tang, Yang You, and Jianxin
Li. Does graph distillation see like vision dataset counterpart? In NeurIPS, 2023.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40—48. PMLR, 2016.

Hanqging Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In /CLR, 2020.

Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 6514-6523, 2023.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching. In
International Conference on Learning Representations, 2021.

Xin Zheng, Miao Zhang, Chunyang Chen, Quoc Viet Hung Nguyen, Xingquan Zhu, and Shirui Pan.
Structure-free graph condensation: From large-scale graphs to condensed graph-free data. arXiv
preprint arXiv:2306.02664, 2023.

12

Under review as a conference paper at ICLR 2025

A ALGORITHMS

We provide the algorithmic illustration of the condensation of DCGC in Algorithm 1.

Algorithm 1: Algorithm for DCGC

Input: A graph G = (X, A,Y) = (V, €) with N nodes and E edges, where X € RV*P s
node feature matrix, A € RY*Y js the adjacency matrix, and Y € RN *C s the one-hot
node label matrix. Condensation ratio . Diffusion steps K. Kernel function:

K(z,y) = exp(—[lz — y[|*/(20?)).
Output: A condensed graph S = (X/, A/, Y’). X’ e RN' XD A’ ¢ RN XNy’ ¢ RN'xC
1 Number of Labels: N’ = [N x r|
2 Generate Y’
3 Initialize X’ and A’
s for k € [0, K] do

s | X)) = AFX ¢ RVNXD
o | YO = ARY/|ARY |, € RVXC
7 while not converging do
s | fork e [0,K]do
) X' = A’FX! e RN XD
0 i Y/(k) :A/kY//HA/kY/H eRN’XC
1 for k € [0, K] do
12 for c € [1,C] do
0 109, 18 O (N X poy gk
13 L = Z Z (»Se.j) -2 E ’%(gc,’i 780,7j)
i=1j= c=1 \i=1j=1
L _ (k) A N
14 [’07 = Z Z K(Sc),i 7807,3’) -2 Z Z K(gc’,i S¢ c,j)
i= 13 1 =1 \i=1j=1
ex sf’(k) T sl’(,m T
15 Ereg - ZlO N/ P(¢(ci) w(c,i)/)
3 exp(d(sf M) Tw(sh () /)
| = , .
16 L= % f: (L‘Z’(k) +Lo™ £fg’(k))
k=0 c=1
17| Gradient backward to update X', A’, ¢, ¢

B PROOF

B.1 PROOF FOR PROPOSITION 1
Proof. First, we can rewrite Eq. 5 as follows:
XA — (1 — AT + AtA)X® = QXD

where Q = (1 — At)T + AtA.

We require that the amplification factor ||Q|| < 1. It is sufficient to show that Q is a right stochastic
matrix, which has the property that its spectral radius A4, < 1. Q is right stochastic if:

2. qij > O,Vi,j

13

Under review as a conference paper at ICLR 2025

N N
Condition 1 is met since Y ¢;; = (1 — At) + At > a;; = 1.

j=1 j=1
When ¢ # j, Condition 2 is met, since ¢;; = At - a;; > 0. When ¢ = j, we require ¢; =
1 — At + At -az; =1 — (1 — a;)At > 0, which indicates At < —L— < 0 < At < 1.

1—aq;

Therefore, the proof is complete. O

C EXPERIMENTAL DETAILS

C.1 DATASETS

We evaluate the proposed methods on three widely used small-scale citation networks: Cora, Citeseer,
and Pubmed, two large-scale graphs, Flickr and Reddit from the GraphSAINT (Zeng et al., 2020)
paper, one large-scale graph Ogbn-arXiv from Open Graph Benchmark (OGB) (Hu et al., 2020), and
two heterophilic graphs obtained from Geom-GCN paper (Pei et al., 2020). In Table 6, we provide the
statistical information of these datasets, including the number of nodes, number of classes, number of
classes, the feature dimension, and the training/validation/testing split of the original graph.

Table 6: Statistics of datasets

Datasets #Nodes #Edges #Classes #Features Training / Validation / Testing
Cora 2,708 10,556 7 1,433 140/1500/1000
Citeseer 3,327 9,228 6 3,703 120/1500/1000
Pubmed 19,717 88,651 3 500 60/1500/1000

Flickr 89,250 899,756 7 500 44,625/22,312/22,312
Reddit 232,965 114,615,892 41 602 15,3932/23,699/55,334
Ogbn-arXiv 169,343 2,332,486 40 128 90,941/ 29,799/48,603
Amazon-Ratings 24,492 93,050 5 300 50%/25%/25%

Actor 7,600 26,659 5 932 60%,/20%/20%

C.2 BASELINES

In this section, we detailedly introduce existing graph condensation methods that are used as baselines
in this paper, including GCond (Jin et al., 2022), GCDM (Liu et al., 2022), SGDD (Yang et al., 2023),
and SFGC (Zheng et al., 2023). GCond (Jin et al., 2022), SGDD (Yang et al., 2023), and SFGC (Zheng
et al., 2023) are gradient-matching-based methods, whereas GCDM is a distribution-matching-based
method.

Gradient-matching-based methods. Gradient matching (Zhao et al., 2021) aims to match the
network parameters w.r.t. to the large-real and small-synthetic training data by matching the task’s
gradients at each step. In this way, it wishes the models trained on the original dataset and the
synthetic dataset can converge to similar solutions. This is a bi-level optimization problem that can
be formulated as following:

T—1
msinEgONpgo [Z D(Gf,ef)]
t=0
5. 09y, = opt—algy(L(GNNgs(S))) and 0F,, = opt-algys(L(GNN,g(G))),

(14)

where D(-,-) is a distance metric measuring the distance between two gradient matrixes. 7" is the
number of steps in the training trajectory. opt—alg is a specific optimization procedure with a fixed
number of steps. In other words, the gradient matching algorithm wishes to generate a condensed
graph S such that the GNN parameters trained on them (6) are similar to the ones trained on the

original training graph Htg .

14

Under review as a conference paper at ICLR 2025

Since the distance between 67 and Gtg is usually small during the training process (Zhao et al., 2021;
Jin et al., 2022), the above objective can be simplified as follows,

T—1
minE90Np90 [Z D(V@ﬁ(GNN@f (S)), VQE(GNN@ (g)))‘| (15)
0

where 6 and 6 are replaced by 6;, which is trained on S. Let GS € R %% and GY € R % be
the gradient matrixes of a specific layer of 6 on the synthetic graph S and original graph G, then the
distance function for condensation is defined as follows,

d
2 GS.GY
D(G%,GY) =) |1—- —+_~i_). (16)
IGSIIGE

i=1

The above is the standard gradient matching process proposed in (Zhao et al., 2021), which is adopted
by GCDM (Liu et al., 2022), SGDD (Yang et al., 2023), and SFGC (Zheng et al., 2023). Then, these
methods have distinct designs in how to generate the adjacency matrix A’ of the condensed graph S,
and we recommend the readers read the paper for details.

Distribution-matching-based methods. Distribution matching (Zhao & Bilen, 2023) learns the
condensed graph by directly minimizing the discrepancy (typically the MMD distance) between the
distributions of the original graph G and the synthetic graph S:

mgnMMD(g,S) (17)

GCDM defines the distribution of a graph as the set of its multi-hop receptive fields. Formally, R(, L),
denotes node i’s L-hop receptive fields. For example, R(1, 1) denotes the first-order neighbors of
node 1, and R(1,2) denotes the second-order neighbors of node 1 (including the first-order ones).

According to the definition of Maximum Mean Discrepancy, the class-wise loss function can be
formulated as follows:

1 1
MMD.(G,S) = supyen W > é(Rg(i, L)) — w0 > ¢(Rs(j, L)) (18)
“licv, ¢l jev!

GCDM treats the above optimization problem as a bi-level optimization problem in the following
form:

min max ﬁ S 6(Ra(i, L) — = 3 6(Rs(j, L)|| (19)
liev.

¢ is parameterized as a graph neural network model which outputs the embedding of a node. Then,
the above optimization process involves alternatively updating the parameters of the GNN encoder ¢,
and the parameters of the synthetic graph S.

The proposed DCGC is also based on distribution matching. Yet, we leveraged the characteristics of
MMD in RKHS and kernel tricks to directly optimize in the input space, avoiding the formulated min-
max bi-level optimization problem in GCDM that operates in the embedding space. This significantly
accelerated the training speed. It also eliminated the reliance on a specific GNN model, resulting in
excellent cross-architecture generalization ability.

C.3 IMPLEMENTATION DETAILS

C.3.1 CONFIGURATIONS.
We conduct all experiments with:

* Operating System: Ubuntu 22.04.3 LTS
e CPU: Intel 13th Gen Intel(R) Core(TM) i9-13900K
* GPU: NVIDIA GeForce RTX 4090 with 24 GB of Memory

» Software: CUDA 12.2, Python 3.9.16, PyTorch (Paszke et al., 2019) 1.12.1, DGL (Wang
etal., 2019) 1.0.1+cul17

15

Under review as a conference paper at ICLR 2025

C.3.2 IMPLEMENTATIONS OF INITIALIZING X’ AND A’

We provide the pytorch-style code for initializing X’ and A’ in Algorithm 2.

Algorithm 2: PyTorch-style code for the initialization of X’ and A’

number of classes

s: number of nodes in the synthetic graph

s_c: number of nodes from class c in the synthetic graph

: node feature matrix of the original graph: N % D

: list of the idxes of training nodes for each class

s: list of node feature matrix of the synthetic graph: [Ns_1 = D, N
Ns_C * D]

As: adjacency matrix of the synthetic graph

S o S S o S

N
N
X
Y
X

%)
N

alpha_on: factor for initializing the on-diagonal terms of As
alpha_off: factor for initializing the off-diagonal terms of As

initialize Xs

for ¢ in range(C):
Nc = Y[i].shape[O0]
idx = np.arange (Nc)
np.random.shuffle (idx)
keep_idx = idx[:Ns_c]

if Nc >= Ns_c:
Xc.data[i] = X[Y[i]] [keep_idx]
else:
Xc.data[i][:Nc] = X[Y[1i]] [keep_idx]
initialize As
As = Parameter (torch.ones((Ns, Ns)))
As = As * alpha_off

for 1 in range (Ns):
As[i, 1] = alpha_on

force A to be in (0,1)

on-diag terms being eps_on

off-diag terms being eps_off

As = torch.nn.functional.sigmoid (As)

return Xs, As

C.3.3 IMPLEMENTATIONS OF GRAPH DIFFUSION PROCESS.

We provide the pytorch-style code for the graph diffusion process in Algorithm 3.

Algorithm 3: PyTorch-style code for the graph diffusion process

X: node feature matrix
Y: node label matrix
ot
K:

A: normalized
number of steps

ijacency matrix
diffusion

X_1list
Y list

[l
[

X_list.append[X]

for k in range (K):
feature diffusion
X = torch.mm(t_A, X)
X_list.append (X)

label diffusion

Y = torch.mm(t_A, Y)

y = torch.nn.functional.normalize (Y, p
Y list.append(Y)

return X_list, Y_list

16

Under review as a conference paper at ICLR 2025

C.3.4 IMPLEMENTATIONS OF THE MAXIMUM MEAN DISCREPANCY BETWEEN TWO
DISTRIBUTIONS.

We provide the pytorch-style code for computing the MMD loss in Algorithm 4.

Algorithm 4: PyTorch-style code for the MMD loss

X: distribution of source: N1 =
Y: distribution of target: N2 x
tau: bandwidth

ol w}

def gaussian_kernel (source, target, tau):
L2_distance = torch.cdist (source.unsqueeze (0), target.unsqueeze (0)) =x* 2

kernel_val = torch.exp(-L2_distance / tau)
return kernel_val.squeeze (0)

XX = gaussian_kernel (X, Y, tau)
XY = gaussian_kernel (X, Y, tau)
YX = gaussian_kernel(Y, X, tau)
YY = gaussian_kernel (Y, Y, tau)
return — XY.mean() - YX.mean() + YY.mean() + XX.mean ()

C.4 ADDITIONAL EMPIRICAL RESULTS

Impacts of the number of diffusion steps K. The maximum diffusion step K is an important
hyperparameter of DCGC, which decides the maximum order of graph structure information to
be considered. We here examine DCGC'’s sensitivity to them. In Fig. 3, we plot the influences of
increasing K on DCGC'’s performance. The observations are summarized as follows: 1) K = 0
results in poor performance since it only considers the individual node features without considering
the graph structure information. The label distribution information will not be considered by DCGC
as well. 2) Increasing K7/ can increase DCGC’s performance initially, while the performance
begins to become stable from K = 3. Considering that further increasing K will not improve the
performance significantly and will bring additional computational cost, we simply set K = 3.

Cora Citeseer 80 Pubmed arXiv
380
o 70 65
570 75
[U) 60
Q
< 60 65 70
0 2 4 0 2 4 0 2 4 0 2 4
K K K K

Figure 3: Sensitivity analysis of the number of diffusion steps K.

Impacts of the number of time interval At. We further study the impacts of the time interval
At. As shown in Proposition 1, the diffusion process is stable as long as 0 < At < 1, while a small
At might help learn more sophisticated evolution of node feature distribution w.r.t. ¢. Therefore,
we perform an ablation study on At with four values 0.25, 0.5, 0.75, and the default 1. For a fair
comparison, we set the maximum diffusion time as K - At = 3 for all A¢, which will lead to different
maximum steps .

As demonstrated in Fig. 4, while using a short time interval At usually helps obtain better performance,
the improvement is relatively marginal. This demonstrates that the proposed DCGC’s performance is
not sensitive to A¢. Considering that the overall training time is linear w.r.t. K, we prefer to select
the maximum possible time interval At = 1.

17

Under review as a conference paper at ICLR 2025

Cora Citeseer 82 Pubmed 70 arXiv

>

>84 74 Y D S S |

C le—e o . 68—,

§82 72 78

< 76 66

8425 050 075 1.00'D25 050 075 1.00 025 050 075 1.00 025 050 075 L.00

Delta t Delta t Delta t Delta t

Figure 4: Sensitivity analysis of the time interval At.

18

	Introduction
	Related Works
	Methodology
	Problem Formulation and Preliminaries
	Graph Distribution as Node-wise Diffusion Trajectories
	Training of DCGC

	Experiments
	Experimental Setups
	Main Results
	Ablation Studies and Efficiency Comparison

	Conclusions
	Algorithms
	Proof
	Proof for Proposition 1

	Experimental Details
	Datasets
	Baselines
	Implementation details
	Configurations.
	Implementations of initializing X' and A'
	Implementations of graph diffusion process.
	Implementations of the Maximum Mean Discrepancy between two distributions.

	Additional Empirical Results

