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Abstract

In this work, we propose a novel prior learning
method for advancing generalization and uncer-
tainty estimation in deep neural networks. The
key idea is to exploit scalable and structured pos-
teriors of neural networks as informative priors
with generalization guarantees. Our learned priors
provide expressive probabilistic representations
at large scale, like Bayesian counterparts of pre-
trained models on ImageNet, and further produce
non-vacuous generalization bounds. We also ex-
tend this idea to a continual learning framework,
where the favorable properties of our priors are
desirable. Major enablers are our technical contri-
butions: (1) the sums-of-Kronecker-product com-
putations, and (2) the derivations and optimiza-
tions of tractable objectives that lead to improved
generalization bounds. Empirically, we exhaus-
tively show the effectiveness of this method for
uncertainty estimation and generalization.

1. Introduction

Within the deep learning approach to real-world AI prob-
lems such as autonomous driving, generalization and uncer-
tainty estimation are one of the most important pillars. To
achieve this, Bayesian Neural Networks (BNNs) (MacKay,
1992; Hinton & van Camp, 1993; Neal, 1996) leverage the
tools of Bayesian statistics in order to improve generaliza-
tion and uncertainty estimation in deep neural networks.
Due to their potential and advancements so far, BNNs have
become increasingly popular research topics (Gawlikowski
et al., 2021). However, one of the open problems in BNNs
is the prior specifications. While it is widely known that
prior selection is a crucial step in any Bayesian model-
ing (Bayes, 1763), the choice of well-specified priors is
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generally unknown in neural networks. Consequently, many
current approaches have resorted to uninformative priors,
like isotropic Gaussian, despite reported signs of prior mis-
specifications (Wenzel et al., 2020; Fortuin, 2022).

To address the problem of prior specification, we propose a
prior learning method for BNNs. Our method is grounded
in sequential Bayesian inference (Opper, 1999), where the
posteriors from the past are used as the prior for the future.
We achieve this by relying on Laplace Approximation (LA)
(MacKay, 1992) with Kronecker-factorization of the poste-
riors (Ritter et al., 2018b; Daxberger et al., 2021). Within
this framework, we devise key technical novelties to learn
expressive BNN priors with generalization guarantees. First,
we demonstrate the sums-of-Kronecker-product computa-
tions so that the posteriors in matrix normal distributions,
i.e., Gaussian with Kronecker-factorized covariance matri-
ces (Gupta & Nagar, 2000), can be tractably used as expres-
sive BNN priors. Second, to explicitly improve generaliza-
tion, we derive and optimize over a tractable approximation
of PAC-Bayes bounds (McAllester, 1999b; Germain et al.,
2016) that lead to non-vacuous bounds, i.e., smaller than
the upper bound of the loss. Finally, as an added benefit of
our idea, a Bayesian re-interpretation to a popular continual
learning architecture, namely progressive neural networks
(Rusu et al., 2016), is provided for uncertainty-awareness,
generalization, and resiliency to catastrophic forgetting.

By design, our method has many advantages for generaliza-
tion and uncertainty estimation in neural networks. The pro-
posed method achieves non-vacuous generalization bounds
in deep learning models, while potentially avoiding prior
misspecification for uncertainty estimation using BNNs.
For these features, we provide computationally tractable
techniques in order to learn expressive priors from large
amounts of data and deep network architectures. We con-
tend that such probabilistic representation at a large scale,
e.g., pre-trained BNNs on ImageNet, can be beneficial in
downstream tasks for both transfer and continual learning
set-ups. Therefore, we further provide ablation studies and
various experiments to show the aforementioned benefits
of our method within the small and large-scale transfer
and continual learning tasks. In particular, we empirically
demonstrate that our priors mitigate cold posterior effects
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(Wenzel et al., 2020) — a potential sign of a bad prior — and
further produce generalization bounds. Moreover, within a
practical scenario of robotic continual learning (Denninger
& Triebel, 2018), and standardized benchmarks of few-shot
classification (Tran et al., 2022) for the recent uncertainty
baselines (Nado et al., 2021), considerable performance
improvements over the popular methods are reported.

Contributions To summarize, our primary contribution
is a novel method for learning scalable and structured
informative priors (Section 2), backed up by (a) the
sums-of-Kronecker-product computations for computa-
tional tractability (Section 2.2), (b) derivation and optimiza-
tions over tractable generalization bounds (Section 2.3), (c)
a Bayesian re-interpretation of progressive neural networks
for continual learning (Section 2.4), (d) exhaustive experi-
ments to show the effectiveness of our method (Section 4).

2. Learning Expressive Priors
2.1. Notation and Background

Consider a neural network fg with layers | € [L] :=
{1,...,L} which consists of a parameterized function
o1 ¢ Qi—1 — €U and a non-linear activation function
o; :  — ;. We denote an input for a network as
x € Qp =: X and all learnable parameters as a stacked vec-
tor 8. Then the pre-activation s; and activation a,; are recur-
sively applied with ag = x, s; = ¢;(a;—1) and a; = 7;(s;).
The output of the neural network y is given by the last
activation y = a; = fg(x). The structure of the learn-
ing process is governed by different architectural choices
such as fully connected, recurrent, and convolutional lay-
ers (Goodfellow et al., 2016). The parameters @ are typically
obtained by maximum likelihood principles, given training
data D = ((xi,yi))fvzl. Unfortunately, these principles
lead to the lack of generalization and calibrated uncertainty
in neural networks (Jospin et al., 2020).

To address these, BNNs provide a compelling alternative by
applying Bayesian principles to neural networks. In BNNs,
the first step is to specify a prior distribution 7(8). Then
the Bayes theorem is used to compute the posterior distribu-
tion over the parameters, given the training data: p(0|D)
m(0) Hf\il p(yi|xi, fo). This means that each parameter
is not a single value, but a probability distribution, repre-
senting the uncertainty of the model (Gawlikowski et al.,
2021). The posterior distribution provides a set of plausible
model parameters, which can be marginalized to compute
the predictive distributions of a new sample (x*,y*) ¢ D
for BNNs: p(y*|x*,D) = [p(y*|x*, fo)p(0)d6. In the
case of neural networks, the posteriors cannot be obtained
in closed form. Hence, many of the current research efforts
are on accurately approximating the posteriors of BNNs.

For this, LA (MacKay, 1992) approximates the BNN poste-

riors with a Gaussian distributions around a local mode.
Here, a prior is first specified as an isotropic Gaussian.
With this prior, the maximum-a-posteriori (MAP) estimates
of the parameters 6 are obtained by training the neural
networks. Then, the Hessian H = %22 lnp(0|D) =
Hiiketinood + Hprior 1s computed to obtain the BNN pos-
teriors. In practice, the covariance matrix is usually further
scaled which more generally corresponds to temperature
scaling. In summary, the priors-posteriors pairs of LA are:

Prior:

m(8) = N(0,71), (D
Posterior:  p(0|D) =~ N(é, (Hyiketihood + Hpm-or)_l).

As the Hessian is computationally intractable for modern
architectures, the Kronecker-Factored Approximate Curva-
ture (KFAC) method is widely adopted (Martens & Grosse,
2015). KFAC approximates the true Hessian by a layer-
wise block-diagonal matrix, where each diagonal block is
the Kronecker-factored Fisher matrix F';. Therefore, defin-
ing the layer-wise activation a; and loss gradient w.r.t pre-
activation Ds;, the inverse covariance matrix of the posteri-
ors is (Ritter et al., 2018b):

H ~ F = diag(F,,Fy, - ,F1) + 71, 2)
where F; ~ E[Ds;(Ds;)"] @ E[a(a;)"] = L ® Ry.

In this way, using LA, BNN posteriors can be obtained by
approximating the Hessian of neural networks. We provide
more details on LA and KFAC in Appendix A.1.

We note several ramifications of this formulation for learn-
ing BNN priors from data. First, the BNN posteriors can
be obtained by approximating the Hessian, which can be
tractably computed from large amounts of data and deeper
neural network architectures (Lee et al., 2020; Ba et al.,
2017). Second, the resulting BNN posteriors can capture
the correlations between the parameters within the same
layer (Ritter et al., 2018b). Moreover, several open-source
libraries exist to ease the implementations (Daxberger et al.,
2021; Humt et al., 2020). All these points result in easily-
obtainable BNN posteriors with expressive probabilistic
representation from large amounts of data, deep architec-
tures, and parameter correlations. As opposed to isotropic
Gaussian, we next demonstrate that these BNN posteriors
can be used to learn expressive prior distributions in order
to advance generalization and uncertainty estimation within
the transfer and continual learning set-ups.

2.2. Empirical Prior Learning with
Sums-of-Kronecker-Product Computations

Intuitively, the idea is to repeat the LA with the prior cho-
sen as the posterior from Equation (1), similar to Bayesian
filtering. Since we use the LA with a Kronecker-factored
covariance matrix in both the prior and the posterior, we
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want to approximate the resulting sum of Kronecker prod-
ucts with a single Kronecker product. We denote the task to
compute the prior as source task T and the task to compute
the posterior as target task ‘¥1, both consisting of a data-set
D, from a distribution P, t € {0,1}.

Applying LA on Dy, we obtain the model parameters 6(*)
and the posteriors p(6|Dy) as before (equations 1 and 2).
Then, for the target task, we specify the prior using the
posteriors from Dy: 7(0) = p(0|Dy). The ultimate goal
is to compute the new posteriors on Dy, ie., p(0|D1) x
p(D1|fe)m(0). To achieve this, we train the neural networks
on D; by optimizing:

6 ¢ arg max{p(0|D;)}
0

In (p(D1lfe)) ©)

= argmin{—
0

—_

+5(0 =8 NT(FD +41)(6 —6)},

[\)

where (1) is the MAP estimate of the model parameters for
task T, and F(©) is the block-diagonal Kronecker-factored
Fisher matrix from task T¢. The final step is to approximate
new Hessian on D; using the KFAC method. This results in

Prior: 7= N(8©, (F© 4~1)~

p=N(0",

D) )

Posterior: 7(FO  FO A1)~

where 7 is the temperature scaling (Wenzel et al., 2020;
Daxberger et al., 2021). Here, the precision matrix of
the new BNN posteriors is represented by the sum-of-
Kronecker-products, i.e., F1) = F1 4 FO 4 41 =
LY 2RO + LW @RM 4I® L

Algorithm 1 Power method for sums of Kronecker products

1: Input: left matrices (L*)yc(xy, right matrices
(R¥)j.e (], number of steps n™*® = 100, and stop-
ping precision § = 10°. A
Output: The solutions L and R. B
vec(L(®) <— N(0,T) {initialization of L(?)}
£, -

L HI_JI(JT”F {normalize L(®}
for n = 1ton™*" do

R™ « lef:l(L’ﬂ L(=D) - RF {first power step}

n R(™ =
R(™ « HISTH {normahze R}
L0 « % (RF, R™)pLF {second power step}

{normalize L™

o)

Lt HEI;")HF
if L™ — L=V < then

break {stopping criterion}
end if
: end for
L L™
R« Z,If:l (LF, L) nR* {first power step}

D T AR o

—_— = = e =

Unfortunately, the sum-of-Kronecker-products is not a
Kronecker-factored matrix. As a result, the above formu-
lation loses all the essence of Kronecker factorization for
modeling high-dimensional probability distributions. For
example, we can no longer exploit the rule: (L ® R)™! =
(L~! @ R™!) where L and R are smaller matrices to store
and invert when compared to (L ® R). Even more, the
storage and the inverse of F® may not be computationally
tractable for modern architectures.

To this end, we devise the sum-of-Kronecker-products
computations. Concretely, we approximate the sum-of-
Kronecker-products as Kronecker-factored matrices by an
optimization formulation:'?

K

L,R € argmin [ ZL" @R —LoR|r. (5
LerM <M 1}
ReRVXN

A solution to this problem is not unique, e.g., one could
scale L by a # 0 and R by = L Hence, we assume that L is
normalized, HL|| r = 1 (or alternatively, we can also assume
[R||r = 1). For the solution, we show the equivalence to
the well-known best rank-one approximation problem.

Lemma 2.1. Let M, N, K € N, L*¥ ¢ RM*M gud R¥ ¢
RN*N for k € [K]. Then

K
1Y L"eRF¥~LeR|F 6)
k=1
K
= > vec(L¥) vec(R¥)" — vec(L) vec(R) | .
k=1
Proof. The proof can be found in Appendix C.1. O

This result indicates that the solution to equation 5 can be
obtained using the power method, which iterates:

R™ Z§=1<LkvL(n71)>FRk and
IS (Lk, L=D) pRF | p
K
L(n) — Zk:l(Rk7R>FLk
i .
| S (RE,R) pLF|

Given randomly initialized matrices, the power method iter-
ates until the stop criterion is reached. The full procedure
is presented in Algorithm 1, whereas in Appendix B, we
discuss the computational complexity of the algorithm.

!For the similar causes to maintain the Kronecker factorization,
Ritter et al. (2018b;a) assume (L@ R +14I) "' = (L++I)7' ®
(R + ~I)~* which does not hold in general (see Section 4.1).

2Qur formulation for one single Kronecker-factored matrix is
similar to Kao et al. (2021).
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Importantly, we can now obtain a single Kronecker factoriza-
tion from the sum of Kronecker products. Such Kronecker-
factored approximations have advantages on tractable mem-
ory consumption for the storage and the inverse computa-
tions, which enables sampling from the resulting matrix
normal distributions (Martens & Grosse, 2015). Therefore,
such computations allow us to learn expressive BNN priors
from the posterior distributions of previously encountered
tasks. Finally, we can also prove the convergence of the
power method to an optimal rank-one solution.

Lemma 22. Let A = Y, vec(L¥)vec(RF)T and
A=5%", o;u; vl be its singular value decomposition
with o1 > o9 > -+ > o0, > Oandufuj = viij =
1[i = j]. Then there is a solution of Equation 5 with
vec(I:) = ul,vec(f{) = o1vy. If o1 > 09, the solution
is unique up to changing the sign of both factors, and our
power method converges almost surely to this solution.

Proof. The proof can be found in Appendix C.2. O

2.3. Derivations and Optimizations over Tractable
PAC-Bayes Bounds

So far, we have presented a method for learning a scalable
and structured prior. In this section, we show how gener-
alization bounds for the LA can be adapted to explicitly
minimize the generalization bounds with the learned prior.
In particular, the proposed approach allows tuning the hyper-
parameters of the LA on the training set without a costly grid
search. This is achieved by optimizing a differentiable cost
function that approximates generalization bounds for the
LA. We choose to optimize generalization bounds to trade
off the broadness of the distribution and the performance on
the training data to improve generalization.

A common method in BNNs, and especially in LA, is to
scale the covariance matrix by a positive scalar called the
temperature 7 > 0 (Wenzel et al., 2020; Daxberger et al.,
2021). In addition, often either the Hessian (or Fisher ma-
trix) of the likelihood (Ritter et al., 2018b; Lee et al., 2020)
or the prior (Gawlikowski et al., 2021) is scaled. Including
all these terms, the posterior has the following form:

p=N(@OD r(BFY) + aF ), @)

where F(© = F©) 4 AT is the precision matrix of the
prior. This reweighting of the three scalars allows us to
cope with misspecified priors (Wilson & Izmailov, 2020),
approximation errors in the Fisher matrices, and to improve
the broadness of the distribution. While these values are
usually hyperparameters that have to be manually scaled
by hand, we argue that these values should be application-
dependent. Therefore, we propose to find all three scales —
«, 3, and 7 — by minimizing generalization bounds.

In the following, we will first introduce our two approaches
and then explain how the optimization of PAC-Bayes bounds
can be made tractable for the LA.

Method 1: Curvature Scaling Previous approaches typi-
cally scale only one or two of the scales (Daxberger et al.,
2021; Ritter et al., 2018b; Lee et al., 2020). With our au-
tomatic scaling, we can optimize all three scales for each
individual layer, allowing the model to decide the weighting
in a more fine-grained way. We can use this method not only
to scale the posterior, but also to compute the prior. Thus,
the prior and posterior are defined as

= N(é(()), (F(O))—1)7 p= N(g‘(l)7 (ﬁ(l))—1)7 (8)
where the diagonal blocks of the precision matrix
corresponding to each layer are defined as Fl(o) =

0) (0 0 =(1 D(1
3O a0 and B = b (VR +
l 1

1) (0
ofVF

), respectively.
Remark 2.3. Although the temperature scaling could be
captured within the other curvature scales, we find it easier

to optimize the bounds with all three parameters per layer.

Method 2: Frequentist Projection Going one step further,
we propose to scale not only the curvature but also the net-
work parameters using PAC-Bayes bounds. Since the Fisher
matrix is known only after training, we assume the same
covariance for the posterior as for the prior when optimiz-
ing the network parameters. Since this method does not
optimize for the MAP parameters, but only for minimizing
the PAC-Bayes bounds, we call it frequentist projection.

Both methods aim at improving the generalization of our
model. To do this, we use PAC-Bayes bounds (Germain
et al., 2016; Guedj, 2019) to derive a tractable objective
that can be optimized without going through the data-set.
The main idea of PAC-Bayes theory is to upper bound the
expected loss on the true data distribution PV with high
probability. The bounds typically depend on the expected
empirical loss on the training data and the KL-divergence
between a data-independent prior and the posterior distribu-
tion. For € > 0, that is

Pp pnv(Vp <L m: EQNP[,ClP(fgﬂ &)
< 5(]E9~P[["l2)(f9)]7KL(p”7T)v N, 5)) >1-—¢

where the loss on the true data distribution is denoted as
L%(fo) = E(xy)~pr[l(fo(x),y)] and the empirical loss on
the training data is £5(fo) = = SN | 1(fo(x),y). In gen-
eral, the bounds balance the fit to the available data (empiri-
cal risk term) and the similarity of the posterior to the prior
(the KL-divergence term), and the bounds hold with a prob-
ability greater than 1 — . Various forms of the § bound can
be found in the literature, with varying degrees of tightness.
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For classification, we rely on the McAllester (McAllester,
1999b) and Catoni (Catoni, 2007) bounds.

Since these bounds depend on the expected empirical loss,
we have to iterate over the entire training data and sam-
ple from the posterior multiple times at each step in order
to evaluate the bound once. This makes optimization in-
tractable. Using the error function as a loss, we propose to
compute an approximate upper bound by only using quan-
tities that were already computed during the LA, i.e. the
Fisher matrix diag({F;};c[z)) and the network parameters

0:

N
1

Eovp | 57 > ll[argyljﬂaxp(y'lxz» fo) # yi}]

=1

1~ Inp(yilxi, fo)

|y JO
< Eory NZ_M] (19)
=1

~Inp(D|fg) + 5 Liepy T tr (Fz(ﬁlFl + alﬁzfl)
Nln2 ’

~
~

where F is from the precision matrix of the prior. Here,
we first use a second-order Taylor approximation of around
0. Furthermore, the expectation can be converted to a trace
by using the cyclic property of the trace together with the
fact that the posterior is a multivariate Gaussian. The neg-
ative data log-likelihood of the optimal parameters can be
computed jointly with the Fisher matrix during the LA. We
denote this approximation as aer(«, 3,7). On the other
hand, the KL-divergence can also be computed in closed
form for our prior-posterior pair, since both distributions are
multivariate Gaussians. Thus, we can plug both terms into
the McAllester bound (Guedj, 2019) to obtain the objective

kl(a,3,7) + In @
2N

ma(a, 8,7) = aer(a, 5, 7) + \/
(11)

where we write kl(«,3,7) = KL(p||w) for the KL-
divergence to emphasize the dependence on the scales. Sim-
ilarly for the Catoni bound (Catoni, 2007), we obtain

1 — exp(—caer(a, §,7) - Kefa)ine)

ca(a, B, 7) = inf

>0 1 —exp(—c)

(12)

Overall, these objectives can be evaluated and minimized
without using any data samples. As opposed to the cross-
validated marginal likelihood or other forms of grid search-
ing, we (a) obtain generalization bounds and analysis, (b)
do not need a separate validation set, (c) can find multiple

3This work focuses on classification tasks as PAC-Bayes frame-
work is usually for bounded losses. Yet, using recent theories of
PAC-Bayes, we also comment on regression in Appendix D.

Figure 1. Illustration of our continual learning architecture.
BPNNS use the empirically learned prior from task Tq (blue) in all
columns. The prior for the lateral connections is the posterior from
the lateral connection (orange and green). Best viewed in color.

hyperparameters, i.e., scale better with the dimensionality
of the considered hyperparameters due to the differentiabil-
ity of the proposed objectives, and (d) the complexity of
the optimization is independent of the data set size and the
complexity of the forward pass. The last point is because
we only use the precomputed terms from the LA. A full
derivation of our objective is given in Appendix C.

2.4. Bayesian Progressive Neural Networks

Having the essentials of learning BNN priors with gen-
eralization guarantees, we now present our extension to
continual learning, which shows the versatility of our prior
learning method. Here, we use so-called Progressive Neural
Networks (PNNs) (Rusu et al., 2016), where a new neural
network (column) is added for each new incoming task, and
features from previous columns are also added for positive
transfer between each task. Thus, PNNs are immune to
catastrophic forgetting at the cost of an increase in memory,
while being also applicable in transfer learning more gen-
erally (Wang et al., 2017; Rusu et al., 2017). As such, we
extend the set-up in Section 2.2 by sequentially considering
T tasks: %5, ...,%T . Moreover, to keep the generality of
our method, an additional task ¥ is defined for the priors.

The idea behind our Bayesian re-interpretation of PNNs,
dubbed as BPNNs for Bayesian PNNs, is as follows. First,
the BNN posteriors are learned at task ¥ (depicted in Fig-
ure 1). Then, for an incoming sequence of tasks, the BNN
priors are specified from the BNN posteriors from ¥. The
proposed methods of the sums-of-Kronecker-products and
PAC-Bayes bounds are used. For the lateral connections, the
BNN posterior from which the lateral connection originates
is used. This ensures that the weight distribution from the
prior already produces reasonable features given the activa-
tions from the previous column. Altogether, the resulting
architecture accounts for model uncertainty, generalization,
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(a) PAC-Bayes bounds on the NotMNIST data-set using five different seeds. The ablations, namely baseline (zero mean isotropic
Gaussian), grid search, learned prior (our method without PAC-Bayes objectives), curvature scaling, and frequentist projection, validate the
design of our approach by each step improving the PAC-Bayes bounds, leading to a non-vacuous bound when all methods are combined.

METHOD BASELINE + GRID SEARCH + LEARNED PRIOR + CURVATURE SCALING + FREQUENTIST PROJECTION
CATONI BOUND 0.999 + 0.001 0.990 + 0.003 0.978 + 0.001 0.925 + 0.010 0.885 + 0.015
MCALLESTER BOUND 2.185 4+ 0.557 1.489 £ 0.041 1.347 £+ 0.004 1.098 £+ 0.026 1.006 £+ 0.031
zero mean & isotropic -« - - isotropic —— learned ‘ ’ zero mean & isotropic -« - isotropic —— learned ‘
100 100 T
80 T \
> >
g 60 g 60r 1
bl i
3 Gt
Q Q - 4
g 40 g 40
20 20 1
O Ll L ] L ] 0 L L L L L
10° 10" 10° 10° 10 100" 100° 107° 107"

Number of samples per class

(b) The learned prior (blue, solid) needs a magnitude fewer data to
have the same accuracy as an isotropic prior around zero (green,
dashed) or around the pre-trained weights (orange, dotted). Note
that we use a log-log scale.

Temperature scaling 7

(c) The cold posterior effect is more prominent for the isotropic pri-
ors (zero mean: green, dashed; pre-trained mean: orange, dashed)
than for the learned prior (blue, solid). This means that the temper-
ature scale can be larger without degrading accuracy.

Figure 2. The results of the ablation studies. The results show that the combination of our approaches can lead to non-vacuous bounds (a)
and that the learned prior is more data-efficient (b) and needs less temperature scaling (c) than isotropic priors.

and resiliency to catastrophic forgetting. All these prop-
erties are desirable to have within one unified framework.
We note that BPNN is in line with our PAC-Bayes theory,
i.e., we increase the complexity without increasing the PAC-
Bayes bounds. This is because we can reuse features from
previous columns even though they do not contribute to the
bounds due to their a-priori fixed weight distribution. In
Appendices B and C, we provide more details such as its
full derivations, and its training and testing procedures.

3. Related Work

There are different work streams related to this paper. The
primary area is on BNN priors while we also contribute to
Bayesian continual learning and PAC-Bayes theory.

Bayesian Neural Networks Priors A prior specification
is a prerequisite in Bayesian modeling. However, for neu-
ral network parameters, the choice of the prior is generally
unknown. So far, uninformative priors such as isotropic
Gaussian have been the de-facto-standard for BNNs (For-
tuin, 2022). Such uninformative priors may cause undesir-
able effects such as cold posteriors and worse predictive
performance than standard neural networks (Wenzel et al.,
2020; Fortuin et al., 2021). To this end, recent research
efforts have focused on exploiting function-space (Sun
et al., 2019), sparsity-inducing weight-space (Carvalho et al.,

2009; Ghosh et al., 2018), structured (Louizos & Welling
Max, 2016), and learning-based priors (Immer et al., 2021;
Fortuin et al., 2021; Wu et al., 2019). Amongst these, we
build upon learning-based priors. Learning-based priors
can be an alternative to uninformative prior when no useful
prior knowledge is available to encode, or when there exists
relevant data and tasks to learn from (Fortuin, 2022).

The idea of learning a prior distribution on a similar task
is certainly not new. In this domain, Bayesian meta-
learning (Thrun & Pratt, 1998) and their modern exten-
sions (Rothfuss et al., 2021a; Finn et al., 2018) can be
viewed as another form of learning the prior from data,
although their focus is typically not on advancing BNNss.
Empirical prior learning is closely related to our work (Rob-
bins, 1992). For BNNs, Fortuin et al. (2021) learns the
empirical weight distributions during stochastic gradient
descent. Wu et al. (2019) used a moment-matching ap-
proach, while Immer et al. (2021) exploited the so-called
Laplace-Generalized-Gauss-Newton method. In (Krishnan
et al., 2020), the mean of a Gaussian prior distribution is
learned from a relevant data-set. The concurrent approaches
of Shwartz-Ziv et al. (2022); Tran et al. (2022) share a
similar spirit of learning expressive priors from large-scale
data-set and architectures. The former utilizes so-called the
SWAG (Maddox et al., 2019) framework with an inspiring
idea of combining self-supervised learning, while the latter
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(a) Relative Frobenius error as a function of iteration. The convergence was reached in the second iteration.

ITERATION 1 2 3 5 6 7
ERROR 0.793 + 0.010 0.049 + 0.001 0.049 + 0.001 0.049 + 0.001 0.049 + 0.001 0.049 + 0.001 0.049 + 0.001
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(b) Approximation quality on the sums-of-Kronecker products as two Kronecker factors, i.e., relative error to approximate Zle L*®

R* — L ® R. We vary the sizes of the matrices, the scale of the fisher matrix, weight decays within (L ® R + ~I), and the number of
matrices for the sums-of-Kronecker products. The results show that the proposed method can be more accurate.

Figure 3. The results of the ablation studies. The results show the accuracy of the proposed sums-of-Kronecker product computations.

builds upon Frequentist batch ensembles (Wen et al., 2019).
All these works show the strong relevance of learning-based
priors for the current BNNs. Inspired by the aforementioned
works, our main idea is to learn scalable and structured
posterior as expressive informative priors, like Bayesian
foundation models from broader data and models.

Bayesian Continual Learning Continual learning (Thrun
& Mitchell, 1995) methods can be broadly divided into
replay-based, regularization-based, and parameter-isolation
methods (De Lange et al., 2022). We build on parameter-
isolation methods, e.g. Rusu et al. (2016), where different
model parameters are dedicated to new tasks. Within this
branch, Bayesian methods have been investigated (Ebrahimi
et al., 2020; Ardywibowo et al., 2022; Kumar et al., 2021),
which could benefit from our work on advancing the BNN
priors. Rudner et al. (2022) shares a similar spirit of bring-
ing the state-of-the-art BNN priors to Bayesian continual
learning by relying on the function space priors (Sun et al.,
2019). On the other hand, using learning-based expressive
priors, we design a single unified framework of continual
learning for generalization, uncertainty-awareness, and re-
siliency to catastrophic forgetting.

Generalization Theory In supervised learning, we can ob-
tain models with a bound on the true expected loss from
its true data-generating process. Typical early works in-
volved Vapnik-Chervonenkis theory and Rademacher com-
plexity (Vapnik & Chervonenkis, 1968; Shalev-Shwartz &
Ben-David, 2014). However, for high-dimensional models
like neural networks, these methods often provide vacuous
bounds. In recent years, PAC-Bayes theory (McAllester,
1999b; Germain et al., 2016) has become an alternative
method with wide applications. The seminar paper of (Ger-
main et al., 2016) showed the connection to approximate

Bayesian inference. Rothfuss et al. (2021b;a) devise com-
pelling meta-learning priors for BNNs with generalization
guarantees. These works form our inspiration to explore
PAC-Bayes theory for learning-based BNN priors. We note
that our goal is not to advance PAC-Bayes theory, but to
investigate a method for scaling the BNN priors with an
approximate differentiable objective for generalization.

4. Results

The goal of the experiments is to investigate whether our
approach provides generalization and calibrated uncertainty
estimates. To this end, in addition to ablation studies on
the presented algorithm, we show its utility for continual
learning and uncertainty estimation. Implementation de-
tails are presented in Appendix E. The code is released at
https://github.com/DLR-RM/BPNN.

4.1. Ablation Studies

Our method is to improve generalization in the LA and also
to provide an informative prior for the posterior inference.
Therefore, in the ablation studies, we want to investigate
the impact of each of our methods on the generalization
bounds. Moreover, we want to study the learned prior in the
small-data regime and see if it can mitigate the cold poste-
rior effect, i.e. phenomena in BNNs where the performance
improves by cooling the posterior with a temperature of
less than one (Wenzel et al., 2020). This effect highlights
the discrepancy of current BNNs, where no posterior tem-
pering should be theoretically needed. For this, we use a
LeNet-5 architecture (LeCun et al., 1989), learn the prior
on MNIST (LeCun et al., 1998) and compute the posterior
on NotMNIST (Bulatov, 2011). In our experiments, we
compare the performance of our learned prior against an
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Table 1. Continual learning experiment. BPNN with a learned prior (our method) improves the averaged accuracy over all tasks compared
to using an isotropic prior around zero or around a learned mean. Our method also improves over PNN with and without MC Dropout.
Following Denninger & Triebel (2018), each column represents incoming continual learning tasks, where we receive new objects.

OTHER BANANA COFFEE MUG STAPLER FLASHLIGHT APPLE AVERAGE
PNN (WEIGHT DECAY 10 %) 95.7+ 0.4 98.5+ 2.3 100.0£0.0 91.7+£1.0 93.8+09.1 93.3+4.7 95.5 £ 2.9
PNN (WEIGHT DECAY 107%) 96.7+0.3 99.0+1.2 100.0 £ 0.0 90.7+2.3 99.7 £ 0.4 94.1 + 3.2 96.7 £ 1.2
MC DROPOUT 96.3 £ 0.1 99.3 +£0.9 100.0 £0.0 92.7+0.8 99.8 +£ 0.4 90.4 £ 5.1 96.4 £ 1.2
ZERO MEAN & ISOTROPIC 96.3 £ 0.3 95.5 + 4.2 100.0 £ 0.1 91.9+ 1.7 100.0 £ 0.1 87.7+ 7.8 95.2+2.4
ISOTROPIC 96.1 £ 0.3 98.7 £ 1.0 100.0 £ 0.0 93.1+0.6 100.0 £ 0.0 87.8+6.6 96.0+ 1.4
LEARNED 96.2 + 0.2 98.4+ 1.6 100.0 £ 0.0 93.9+0.9 100.0 £ 0.0 95.1 £4.7 97.3+1.2

isotropic Gaussian prior with multiple weight decays, either
with a mean zero or using the pre-trained model as the mean.

In Table 2a, one can see the contribution of each method
to the final generalization bounds. For this, we report the
mean and standard deviation using 5 different seeds. We
observe that learning the prior improves the generalization
bounds, as the posterior can reuse some of the pre-trained
weights. The curvature further controls the flexibility of
each parameter, leading to a smaller KL-divergence while
still providing a small error rate. In addition, we show
that scaling the curvature with our approximate bounds
reduces the bounds. In particular, the generalization bounds
are also better than a thorough grid search. Frequentist
projection further leads to a non-vacuous bound of 0.885.
In the small data regime, we train our method on a random
subset of NotMNIST, i.e., we vary the number of available
samples per class. Figure 2b shows that the learned prior
requires a magnitude fewer data to achieve similar accuracy
compared to isotropic priors. In Appendix F.2, we further
evaluate the impact of using different temperature scalings
and weight decays in this experiment. We observe larger
improvements when the model is more probabilistic, i.e.
when the temperature scaling is large, and when the weight
decay is small and thus the learned prior is more dominant.
Finally, following Wenzel et al. (2020), we examine the
cold posterior effect using the learned prior in Figure 2c.
Although the optimal value for the temperature scaling is
less than one, the temperature scaling can be closer to one
compared to the isotropic priors. This suggests that the cold
posterior effect is reduced by using a learned prior.

Additionally, we further validate the proposed sums-of-
Kronecker product computations (see Figure 3). In Ap-
pendix F, further experimental results are provided, includ-
ing qualitative analysis of our tractable approximate bound
used to optimize the curvature scales (Appendix F.1). Fur-
thermore, results for a larger cold posterior experiment us-
ing ResNet-50 (He et al., 2016), ImageNet-1K (Deng et al.,
2009), and CIFAR-10 (Krizhevsky, 2009) are presented in
Appendix F.3. Here, the learned prior improves the accuracy
but does not reduce the cold posterior effect for all evaluated
weight decays. This suggests the use-case of our method.
Overall, our results demonstrate the effectiveness of our
method in improving the generalization bounds. Further-

more, we show that the learned prior is particularly useful
for BNNs when little data is available.

4.2. Generalization in Bayesian Continual Learning

Another advantage of our prior is its connection to contin-
ual learning. In the following experiments, we, therefore,
evaluate our method for continual learning tasks. To do so,
we closely follow the setup of Denninger & Triebel (2018),
who introduces a practical robotics scenario. This allows
us to also obtain meaningful results for practitioners. We
do not use the typical MNIST setup here because we also
want to test the effectiveness of the expressive prior from
ImageNet (Deng et al., 2009). Each continual learning task
consists of recognizing the specific object instances of the
Washington RGB-D data-set (WRGBD) (Lai et al., 2011),
while only a subset of all classes is available at a given time.
We neglect the depth information and split the data similar
to Denninger & Triebel (2018). The prior is learned with
the ImageNet-1K (Deng et al., 2009) and the ResNet-50 (He
et al., 2016) is used. We specify a total of four lateral con-
nections, each at the downsampling 1 x 1 convolution of
the first “bottleneck” building block of the ResNet layers.
The baselines are PNNs with several weight decays and
using MC dropout (Gal & Ghahramani, 2016). Moreover,
we compare to both isotropic priors as in the ablations.

Table 1 shows the mean and the standard deviation of the
accuracy for each task of the continual learning experiment
for 5 different random seeds. We report the mean and the
standard deviation of two independent runs. Overall, in
our experiments, the accuracy averaged over all tasks is
improved by 0.6 percent points compared to the second best
approach PNN with weight decay 10~°. In addition, the
increase in accuracy is 1.3 percent points greater compared
to an isotropic prior, and 2.1 percent point greater when
using zero as the prior mean. Therefore, these experimental
results illustrate that with our idea of expressive posterior
as BNN prior, we can improve the generalization on the test
set for practical tasks of robotic continual learning.

4.3. Few-Shot Generalization and Uncertainty

Finally, we consider the task of few-shot learning. Our key
hypothesis is that the choice of prior matters more in the
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Figure 4. Few-shot learning experiments. Results are averaged over eight data-sets. Higher is better for accuracy and AUC measures,
while lower is better for ECE measures. The results show the benefits of our method in uncertainty calibration and generalization.

small data regime, i.e., the prior may dominate over the like-
lihood term. To this end, closely following Tran et al. (2022),
we use a few-shot learning set-up across several data-sets,
namely CIFAR-100, UC Merced, Caltech 101, Oxford-IIIT
Pets, DTD, Colorectal Histology, Caltech-UCSD Birds 200,
and Cars196. CIFAR-10 is used as an out-of-distribution
(OOD) data-set *. Standardized metrics such as accuracy,
ECE, AUROC, and OOD AUROC are examined. The imple-
mentations are based on uncertainty baselines (Nado et al.,
2021). We use ResNet-50 for the architecture.

For the baselines, we choose MC dropout (Gal & Ghahra-
mani, 2016) (MCD) and additionally include deep ensemble
(Lakshminarayanan et al., 2017) (Ens) and a standard net-
work (NN). These uncertainty estimation techniques are
often used methods in practice (Gustafsson et al., 2020). We
do not use the plex (Tran et al., 2022) due to the lack of
industry-level resources to comparably train our Bayesian
prior. To increase their competitiveness, we uniformly
searched over ten weight decays in the range from 10~ to
1019, We also tried fixed representation or only last-layer
fine-tuning. Additionally, we add LA which represents the
use of isotropic prior. To facilitate the fair comparison be-
tween isotropic and learned prior, we carefully searched the
following combinations: (a) curvature scaling without PAC-
Bayes, with McAllester and Cantoni, (b) ten temperature
scaling ranging from 10710 to 10728, and (c) three weight
decays 1076 to 1078 and 107!, For all hyperparameters,
we selected the best model using validation accuracy.

The results are reported in Figure 4, where we averaged
across eight data-sets, closely following Tran et al. (2022).
The results per data-set are in Appendix F.4 whereas in Ap-
pendix F.1, we also analyze the influence of these weight
decays and temperature scales with varying numbers of
available samples per class against accuracy. For shots up
to 25 per class, we observe that our method often outper-
forms the baselines in terms of generalization and uncer-
tainty calibration metrics. In particular, in the experiments,

“Unlike Tran et al. (2022), we did not use few-shot learning on
ImageNet since we obtain our prior using the entire training set.

our learned prior from ImageNet significantly outperforms
the isotropic prior within directly comparable set-ups. We
interpret that the prior learning method is effective in this
small data regime. This motivates the key idea of expres-
sive posteriors as informative priors for BNNs. Moreover,
for isotropic and learned prior, the McAllester bound often
resulted in the best model. This also motivates the use of
explicit curvature scaling for the generalization bounds.

5. Conclusion

This paper presents a prior learning method for BNNs. Our
prior can be learned from large-scale data-set and architec-
ture, resulting in expressive probabilistic representations
with generalization guarantees. Empirically, we demon-
strated how we mitigate cold posterior effects and further
obtain non-vacuous generalization bound as low as 0.885 in
neural networks using LA. In our benchmark experiments
within continual and few-shot learning tasks, we further
showed advancements over the prior arts.

Importantly, we find that the use-case of our prior learning
method is more within the small data regime, e.g., when
prior may dominate over the likelihood term. Finally, one of
the fundamental assumptions of prior learning methods is
on the existence of relevant data and tasks to learn the prior
from. Moreover, for a valid PAC-Bayes analysis, the data-
sets for individual tasks should not share common examples.
In the future, we would like to see follow-ups that address
this limitation, by either (a) learning prior in larger scale
data-set and architectures like foundational models, or (b)
combining self-supervised pre-training to quickly fine-tune
the prior for the domain of the relevant task (Bommasani
et al., 2021). Another direction is to obtain tighter general-
ization bounds by adapting clever tricks such as optimizing
the entire covariance instead of individual scales with our
objectives and using a subset of the training data to improve
the prior (Pérez-Ortiz et al., 2021).
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Figure 5. In the left plot one can see the log-posterior and the corresponding Taylor approximation. The middle and right plots show the
posterior and the unnormalized and normalized Laplace approximation, respectively.

A. Appendix: Preliminaries

Here, we first give an overview of the concept on Laplace approximation. Moreover, we discuss the main idea of the
PAC-Bayesian theory.

A.1. Laplace Approximation

Laplace approximation (MacKay, 1992) locally approximates the posterior around a mode 6, namely the MAP estimate, by
a normal distribution. For this, the second-order Taylor approximation of the log-posterior around 8 is considered,

Inp(0|D) ~ Inp(6|D) + %(0 —-6)TH(6 - 6),

with the Hessian of the log-posterior at the mode

2

d? d? d
H=—1 0|D =—=1 D ‘ — 1 0‘ ::Hieioo Hrior-
162 np(6| )9:9* 162 np(D|fo) 0—o- + 102 np( )9:0* likelihood + Hp

This is shown in the left plot in Figure 5. As the Taylor approximation is around a mode, the first-order term vanishes. The
unnormalized Laplace approximation (shown in the middle of Figure 5) can then be obtained by taking the exponential,

(01D) % p(01D) exp (30~ 6)7HO - 0)). 13)

The resulting normalized Laplace approximation is then a normal distribution at the mode with the precision matrix H, i.e.

p(0|D) ~ N(,HY). (14)

Fisher Information Matrix As 6 could be a saddle point or because of numerical instabilities, the Hessian could be
indefinite in which case the normal distribution in Equation 14 is not well defined (Martens, 2014; Botev et al., 2017).
Therefore, positive semi-definite approximations of the Hessian are used like the Fisher Information Matrix (or the Fisher
matrix) or the Gauss-Newton matrix. For a likelihood of an exponential family, e.g. categorical and normal distributions,
both approximations are the same and for piece-wise linear activation functions like ReLU (Nair & Hinton, 2010), they
moreover coincide with the Hessian (Martens & Grosse, 2015).

Definition A.1 (Fisher Information Matrix (Martens & Grosse, 2015)). Let P be a distribution over X x ) and p(+|x, fg)
be a conditional distribution over ) dependent on the parameter vector 8. Then the Fisher matrix is defined as

dlnp(y|x, fo) dlnp(ylx, fo) "
F= E(x»—)NPEyNP('\XJe) 4o 4o

Here, the underscore denotes that the corresponding variable is not used.
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Remark A.2. Note that the targets from the training data are not used to compute the Fisher matrix. Using the ground truth
targets instead of samples from the predictive model distribution would lead to the empirical Fisher matrix.

For an easier notation, we write [E instead of E(x y.pEyp(.|x,f) and D- = % for the derivative of the log-

likelihood in the following. Moreover, we drop the layer index for the activations and pre-activations, i.e. a = a; and
S = Sj.

The Fisher Approximations The full Fisher matrix and even a block-diagonal approximation without correlations between
different layers are usually not feasible to store or compute for modern neural networks (Martens & Grosse, 2015). Common
approximations of the block-diagonal form are by a diagonal or a Kronecker-factored matrix. The Kronecker-factored
approximation comes from the fact that for a single sample, the Fisher matrix is the sum of Kronecker-factored matrices.
For fully-connected layers, the derivative after the weight matrix can be computed as DW = Ds(a)”. With this, the block
of the Fisher matrix corresponding to layer [ is given by F; = E[Ds(Ds)” @ a(a)?].

As convolutional layers share the weight tensor among the spatial positions, the derivative is a sum of outer prod-
ucts: DW,; ;. = Ztef/—psmﬁk,t- Therefore, the Fisher matrix block for layer [ can be formulated as F; =

E[Y e Y ver Dse(Ds)f @ a. ¢(a. )"

Kronecker-Factored Approximate Curvature The Kronecker-Factored Approximate Curvature (KFAC) approximates
this Fisher matrix of a fully-connected layer (Martens & Grosse, 2015) and a convolutional layer (Grosse & Martens, 2016)
by

F, ~E[Ds(Ds)"] @ E[a(a)’] and F;~E[Ds) Ds]® %E[Q(E)T],
respectively. In particular, KFAC approximates the expected Kronecker product as a Kronecker product of expectations,
which is not true in general but leads to Kronecker-factored blocks of the Fisher matrix. The Kronecker factorization enables
the storage of two smaller matrices rather than one large matrix (Martens & Grosse, 2015). However, these factorizations
assume that the activations and the corresponding pre-activations are statistically independent, which is usually not met
in practice (Tang et al., 2021). Furthermore, additional assumptions like the independence of the first and second-order
statistics of the spatial positions are used for convolutional layers, which might impair its approximation quality.

Kronecker-Factored Optimal Curvature Another tractable approximation of the Fisher matrix is the Kronecker-factored
Optimal Curvature (KFOC) (Schnaus et al., 2021) which finds optimal Kronecker factors for each batch of data points and
approximates both, the linear and the convolutional layer, as Kronecker product with two factors,

F,~L;, ®R;.

It transforms the problem of finding optimal Kronecker-factors into the best rank-1-problem and solves it with a scalable
version of the power method. The approximation is usually closer to the Fisher matrix than the approximation by KFAC in
terms of the Frobenius error.

Laplace Approximation for KFAC and KFOC Given a block-diagonal Kronecker-factored precision matrix H =
diag(L; ® Ry, Ls ® Ra,- -+ , Lz, ® Ry), the normal distribution of Equation 14 reduces to L independent matrix normal:

L
N(@.F) = [[MN (W', L,,R)).

=1

In the following, we assume a block-diagonal approximation of the Fisher matrix where each block F; € R™ %™ corresponds
to a layer [ € [L]. For fully-connected and convolutional layers, the dimensionality n; is the size of the vectorized weight
matrix, i.e. for fully-connected layers n; = d;(d;—; + 1) and for convolutional layers n; = ¢;(c;_1|A!| + 1).

A.2. PAC-Bayesian Bounds

Even though Bayesian neural networks were introduced in the Bayesian framework, Probably Approximately Correct
(PAC)-Bayesian bounds introduce a frequentist method to bound the generalization of statistical functions like Bayesian
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neural networks (Germain et al., 2016). PAC bounds aim to upper bound the risk, i.e. the expected loss on the true data
distribution, with high probability using properties of the architecture and optimization of neural networks (Wolf, 2018).
PAC-Bayesian bounds obtain similar bounds for Bayesian neural networks by comparing the posterior distribution with a
data-set independent prior distribution (Guedj, 2019).

Let G = {g : X — Y| g is measurable} be the set of hypotheses and a corresponding o-algebra & such that (G, &) is a
measurable space. Denote the set of probability distributions on this measurable space as

M ={p:G —[0,1] | 4 is a probability distribution on (G, &)}.
Moreover, letl : G x X x J — R be a loss function. Then define the risk for g € G as

ElP(g) = IE:(x,y)NP [l(gv X, Y)]
and its empirical counterpart on the training data as

N
4 1
Elp(g) =N Z g, %i,yi)-

Note that the neural network fg as defined above is not in G because its output does not have to be in ). It only
specifies the parameters of a distribution p(-|x, fg) over ). Nonetheless, for example, the function defined by x

arg max, ¢y p(y|x, fo) isin G.

Given a data-set independent prior distribution over the hypothesis set 7 € M, the PAC-Bayesian theory bounds the
probability that the expected risk is large for hypotheses sampled from another probability distribution p € M which is
absolutely continuous w.r.t. 7:

Pppn (Vp € M, p <7 EguplLp(9)] < 0(p,m,Dse)) > 1 ¢, (15)

for e > 0 and the PAC-Bayesian bound 6(p, 7, D, £) (Guedj, 2019).

The first bound was introduced by McAllester (McAllester, 1999b;a; 2003b;a) for bounded loss functions.
Definition A.3 (McAllester Bound (Guedj, 2019)). Lete > 0, p,m1 € M,p < wandl: G x X x Y — [0, 1], then

2VN
)]+ \/KL([)||7T)+1H £ (16)

(5([),71’,2),5) = ]E.(JNP[[’D g ON

is an upper bound for Equation 15.

The bound was improved for the error loss function by Catoni (2007) when w

0-1-loss, is defined as

is large. The error loss function, or

er: Gx X xY—{0,1}, er(g,x,y) = 1[f(x) # y], (17

where 1[s] is one if statement s is true and else zero.

Definition A.4 (Catoni Bound (Catoni, 2007)). Lete > 0, p, 7 € M and p < =, then

1- —cE, . [£er(q)] — Kllelm)—Ine
§(p,m,D,¢e) = inf exp(—cBy~p[L3(9)] m)—lne)

>0 1 —exp(—c) (18)

is an upper bound for Equation 15.

Remark A.5. Note that in the PAC-Bayesian literature, p is called posterior even though it is an arbitrary distribution that is
dependent on the data (Guedj, 2019). To distinguish this from the posterior computed by Bayes’ rule, we will explicitly
write PAC-Bayes posterior if we do not use Bayes’ rule.

The PAC-Bayes bounds depend mainly on two terms: the KL-divergence of the PAC-Bayes prior and posterior and the
empirical risk. Therefore, these bounds are small when the posterior is close to the prior and the loss on the training data
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Weight Lateral Column Full
Weight 01(1/’” ') = Vec(O(tl’t))ze[L] oY = Vec(e(t/’t))ue[t] 0=t = VeC(o(t/))t/E[t]
Prior 7Tl(t’,z) a2 Hz T (t ,t) a0 = Hi/:1 ) (ED — Hi’:l )
Posterior pl(t,’t> (t = Hz 1P (t & Pm = H;:l P(t,’t) P(§t> = H§/=1 PW)

Fisher matrix Flw’w F(t ) = dlaug(Fl< MNiew FO = diag(F ey FED = diag(FC) ey

Table 2. The notation for BPNN. Here, 1 < ¢ < tand! € [L] fort = ' and ! € £ for ¢’ < ¢. For task 0, we write (0) instead of (0, 0)
as no inter-column weights are used.

is low. Thus, a good model should explain the training data well while depending not too much on it. In PAC-Bayesian
bounds, the prior and the posterior are both distributions over the functions and not over the weights like in Bayesian neural
networks. Hence, to apply the PAC-Bayesian bounds for Bayesian neural networks, one needs to identify each weight sample
with a sample in the function space. However, neural networks are not identifiable (Brea et al., 2019; Pourzanjani et al.,
2017). Thus, multiple different weight vectors can explain the same function given by a neural network architecture. The
KL-divergence is, therefore, smaller in function space than in weight space and one obtains an upper bound by considering
the distributions over the weights (Dziugaite & Roy, 2017).

In this work, we use the two bounds introduced above. Nonetheless, we find an approximate upper bound of the expected
empirical error for Laplace approximation and can compute the KL-divergence in closed form for our models. Hence, all
results of this work can directly be applied to other PAC-Bayesian bounds given that they depend on the expected empirical
error and the KL-divergence of the posterior and the prior.

B. Appendix: Algorithmic Overview, Complexity and Extensions

This section summarizes the training of BPNNs and their computational complexity. After that, we present the details about
the proposed sums-of-Kronecker-product computations. First, we review the basic idea of progressive neural networks
(PNNs) (Rusu et al., 2016) and their extension to arbitrary network architectures such as ResNets (Rusu et al., 2016). We
then describe the training process and present a pseudocode for it. Finally, we analyze the complexity of training BPNNss.
We use the same setup as in Section 2.4 by considering the tasks %o, ..., Tr, where T is used to learn the prior. Each task

- ini CIMONSS
¥, contains a training data-set D; = (( VY, )) .
i=1

Implementation of PNNs Given a network architecture, PNNs create a copy of that network, called a column, for each
new task and also add lateral connections between different columns to promote a positive transfer between tasks. Lateral
connections are parameterized functions that combine the features of previous layers with the current layer. Unlike Rusu et al.
(2016), we use the same function for the lateral connections as for the main column, instead of their adapter architecture. Let

s® and a¥

and a; ' denote the activations and pre-activations at layer [ from column ¢, then we compute the lateral connection as

Z¢(t it) (t)

flf

Here, we use a superscript (¢',t) to denote the lateral connection from column ¢’ to t. We also use this notation for the main
column with ¢ = ¢/, for the weights, the prior and the posterior over the weights and the Fisher matrix as summarized in
Table 2.

We implement PNNss for arbitrary network architectures by storing intermediate activations on the one hand and on the other

hand by introducing aggregation layers that combine the stored activations at the layer level. The first part is implemented

by creating forward hooks for the lateral connection layers I € £ that store the activations of the previous layer al( )1 during

the forward pass in the base network. To combine the activation, the aggregation layers apply the lateral layers to the stored
activations of the previous columns, d)l(t *) (al(t )1) and compute the mean over the resulting pre-activations. The aggregation
layer is incorporated into the base network by replacing each layer [ € £ with the composition of the layer followed by the

aggregation layer. With this architectural change, PNNs can be applied to complex network architectures.
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Training of BPNNs In Bayesian Progressive Neural Networks (BPNNs), we combine this architecture with Bayesian
neural networks and, in particular, LA with our learned prior. Therefore, we start by learning a prior on the data-set Dg. This
prior is then used as the prior for the main columns excluding the lateral connections. As a prior for the lateral connections,
we use the posterior from the corresponding layer of the originating column as shown in Figure 1. Unlike the learned prior,
this layer was trained to produce reasonable features given the features from the previous layer of the same column, so
we use it here instead. After training the prior, the training for each column is similar to LA with the learned prior and
curvature scaling. That is, we first optimize the parameters of the column, including all incoming lateral connections, using
either MAP estimation or the frequentist projection. During the training, we already sample the weights from the previous
columns to make the new column robust to small changes in the activations from the lateral connections. After finding the
optimal network parameters for a column, we compute the Fisher matrix. We keep the previous weights and distributions
fixed, so the Fisher matrix is computed only for the new parameters for the current task. Finally, the curvature is scaled
using a PAC-Bayes objective as explained in Section 2.3. The complete training procedure is also shown in Algorithm 2.

Algorithm 2 Training of Bayesian Progressive Neural Networks

Input: network architecture f., datasets (D;)7_,, lateral connections £, weight decay for task T
Output: The posterior distribution for BPNNs p(=7) = A/((=T) (F(sT))~1)
00 optimal parameters for f. by MAP estimation or a PAC-Bayes objective (Appendix C.3.1) using Dy
F(© « compute the Fisher using Dy {simultaneously compute the negative data log-likelihood for f4) }
0,80 70« argmin, 4 . g(cv, B,7) {here, g is ma (Equation (11)) or ca (Equation (12))}
F ﬁ(@}%l(o’ + (V1) forl € [I]
fort =1to T do
add a new column and new lateral connections
6" optimize the new parameters by MAP estimation or a PAC-Bayes objective using D,
FO® compute the Fisher using D,
a®, 8M 7 « argmin, 5, g(a, B,7)
R 9 (BDFD + “ YEO) for [ €[]

—_ =
TeYeR & LR

,_
»

130 R (”)(BWF” af‘“Ff”))forie[t—u,le):

14: pl(i’t) — N( ) (Fl(L Y=1) for all available i, , [
15: end for

Computational Complexity For each task and additionally for the prior task, the computational complexity boils down to
finding the optimal parameters, computing the Fisher matrix, and scaling the curvature. Parameter optimization is equivalent
to finding the MAP estimate. This can be solved efficiently by computing the negative log-likelihood over mini-batches
using common variants of stochastic gradient descent (Kingma & Ba, 2015). In addition, the quadratic term induced by the
prior must be computed in each update step. For a diagonal F,, it can be computed with two element-wise multiplications of
vectors of size n; with (01 6,)TF (0, — 6,) = (0, — 6,) © diag(F;) © (6; — 6;), where diag(F;) is the vector containing
the diagonal elements of F,. The computations for Kronecker-factored matrices involve two matrix-matrix products with
the Kronecker-factors and one element-wise product:

(él — ég)Tﬁl(él — él) = (él — él)T(L ® R)(Wl — Wl)
= (6, — ;) ® vec(L(W! = WHR),

where W' and W' are the weight matrices, which correspond to 6, and 6, respectively. Hence, this term can be computed
efficiently, so that the parameter optimization has a complexity similar to standard MAP training. For common approx-
imations of the Fisher matrix, such as the KFAC (Martens, 2014) and KFOC (Schnaus et al., 2021), the computation of
the Fisher matrix corresponds to an additional epoch over the training data (Martens & Grosse, 2015; Grosse & Martens,
2016), although an update step is usually slightly slower than updating the weights. The curvature scaling is an optimization
problem with a total of 3L parameters, where L is the number of layers in the network when all three scales are optimized.
Thus, it is usually a much lower-dimensional optimization than finding the weights. Also, the computation of the negative
log-likelihood can be incorporated into the computation of the Fisher matrix. Therefore, no additional pass through the data
is needed. Overall, BPNNs have a similar computational complexity during training as PNNs, with the main overhead being
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the training of an additional task. However, this overhead can be reduced by using a pre-trained model which then leads to
the minor overhead of about one additional epoch to compute the Fisher matrix for each task. During inference, BPNNs use
multiple network samples and thus, have a computational complexity comparable to multiple forward passes in PNN.

We further comment on the complexity of the existing baseline methods. Deep ensemble corresponds to training ensembles
of deep learning models with different initializations and is known to be more expensive than Kronecker-factored Laplace
approximation (Daxberger et al., 2021). Full LA involves the Hessian, which requires the memory complexity of storing
matrices and inverting these matrices, which is cubic in cost. Therefore, full LA is known not to scale, and previous research
introduced several approximations such as layer-wise Kronecker-factorization. Of course, learning the prior incurs more
cost than relying on an isotropic Gaussian prior.

B.1. Complexity of the Power Method for Sums of Kronecker Products

For all posteriors in BPNN, the final covariance matrix is a sum of Kronecker products. Hence, in general, we are interested
in approximating

K
LR e argmin | Y L"@R* -~ Lo R|F, (19)

L RJMXJ\/I —
ReeRNXN =1

for M, N,K € N, L¥ € RM*M and R* € R¥*N for k € [K]. Lemma 2.1 shows that this problem is equivalent to a
rank-one approximation. Therefore, one can use the power method to solve the problem. Nonetheless, each step of the
plain power method consists of a matrix multiplication with an M? x N2-sized matrix. The complexity can be reduced
by utilizing that the matrix is a sum of few rank-one matrices. This is shown in Algorithm 3. With this, the convergence
properties of the power method are achieved with a computational complexity of O (n"““”K (N2 + M 2)) Also, only
O (K(N? + M?)) memory is needed. Here, we assume that a matrix multiplication AB for A € R™*™ and B € R"**
has the complexity O(mnk) while a Hadamard product A ® C for C € R™*"™ can be computed in O(mn).

Algorithm 3 Power method for sums of Kronecker products

Input: left matrices (L*) ¢k, right matrices (R") ¢k, number of steps n*® = 100, stopping precision § = 1075
Output: L, R € argminy, g, || S LF@RF—LoR|r
vec(L(®)) <— A(0,T) {standard normal initialization of L(%)}
L) « % {normalize L")}
for n = 1ton™*" do
R « YK (LF, L) oR¥ {first power iteration step}

n R : R (n
R( ) — W {normallze R( )}

L™ «— Zéil(Rk’, R ™) -L* {second power iteration step}

. L(n) . =
LW i {normalize L(™}

if |[L™ — LYz < ¢ then
break {stopping criterion}
end if
: end for
s L LM
C R S8 (LF L) pRF {first power iteration step}

AN A R o

N

—_ = = e = =

C. Appendix: Proof and Derivations

This section contains proofs for the presented theory. Detailed remarks and follow up derivations are further provided.
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C.1. Proof of Lemma 2.1
Lemma 2.1. Let M, N, K € N, L* € RM*M gpd R* € RN*N for k € [K]. Then

K K
1Y L*@RF—LeR|r =Y vec(L")vec(R*)" — vec(L) vec(R)"| . (6)
k=1 k=1

Proof. Leti,j € [M N]. Then the i, j-th entry of the left matrix is

K K
(ZLk®Rk_L®R> Z i1.,41 127J2 Lil,lei27j2
,J

k=1 k=1

K
= (Z vec(LF) vec(R¥)T — vec(L) vec(R)” ) (20)

k=1 >M(i11)+j1,N(i21)+j2

withi = N (i3 — 1) + 42, j = N(j1 — 1) + j2. Hence, both matrices have the same entries and only the order of the entries
is in general different. Therefore, the sum over the squared entries and thus the Frobenius norm is the same:

M? N?
||ZL’“®R’“ L®R||FZZ<ZLk®Rk L®R>
=1 j=1 i,j

N 2
=Y Z (Z LFoRF-L® R)

i1,j1=1142,j2=1 \k=1 N(i1—1)+i2,N(j1—1)+j2
N M

2
Z Z (Z Llh]l ® sz 2J2 Lilvjl ® Riz,jz)

i1,J1=1142,j2=1
2

N
Z Z (Z vec(LF) vec(R*)T — vec(L) vec(R)T>
i1,J1=1142,72=1 \k=1 M(i1—1)+71,N(i2—1)+j2
K
=D vec(L¥) vec(R*)" — vec(L) vec(R)"|| . (21)
k=1
O
C.2. Proof of Lemma 2.2

Lemma 2.2. Let A = Zszl vec(LF) vec(R*)T and A = Y7 oyu;v] be its singular value decomposition with
o1>09>--->0,>0and uZTuj = ViTVj = 1[i = j|. Then there is a solution of equation 5 with

vec(L) = uy, vec(R) = oy vy. (22)

If 01 > 09, the solution is unique up to changing the sign of both factors, and Algorithm 3 converges almost surely to this
solution.

Proof. The main idea of the proof is to use Lemma 2.1 to identify the problem with a best rank-one approximation. The
algorithm then corresponds to the power method that utilizes the Kronecker factorization for a faster and memory-efficient
computation of the matrix-vector products in the Kronecker matrix space.

By the Eckart—Young-Mirsky theorem (Eckart & Young, 1936), an optimal rank-one approximation for A in the Frobenius
norm is

owvi € arg min |A - AllF, (23)
AeRM?x N2 pank(A)=1
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which is unique up to changing the sign of both factors if o1 > 0.

Therefore, the matrices L and R that satisfy equation (22) are optimal solutions of equation (5). Moreover, the left factor is
normalized, e.g. | L||p = |ui|l2 = 1.

The equivalence of Algorithm 3 with the power method can be seen by multiplying AA” with vec(L(”_l)) for L*~1 ¢

RN’
K
AT vece(L(™ V) = Z vee(RF) vec(LF)T vec(L("Y) (24)
k=1
K
= Z(Lk, L") 1 vec(RF) (25)
k=1
= vec(R™), (26)
and
K
AAT vece(L"Y) = Z vec(LF) vec(RF)T vec(R™) 27
k=1
K
= > (R" RM)pvec(L¥) (28)
k=1
K
= |R™|| ¢ Z(Rk, R™) g vec(L¥) (29)
k=1
= [|R™ || p vec(L™). (30)
Hence, we can compute the same iterations as the standard power method, like Algorithm 3:
AAT L1 RM™ L™ L™
T L ) RO pvee @) veel£) o, an
IAAT vec(Le=D)[ly RO p|LO)p  [LO]|p
The final right factor then corresponds to AT vec(L(™) ~ o v.
For o1 > 09, the convergence properties are inherited from the power method, e.g., see the work of Bindel (2016). O

Remark C.1. Even in the case when the first singular value is not (much) larger than the other singular values and no
convergence is achieved, the resulting matrices of Algorithm 3 are with high probability in the span of the singular vectors
corresponding to the set of large singular values (Blum et al., 2020). Hence, in this case, the approximation will still
converge to good Kronecker factors with high probability.

C.3. Derivation of the PAC-Bayes Objectives

In this section, we provide further information on the PAC-Bayes objectives of Equation (11) and Equation (12). In
particular, we first derive the upper bound and its approximation that is shown in Equation (10) together with computing the
KL-divergence in dependence on the curvature scales. This is then used to derive the PAC-Bayes objectives. Next, we show,
how these objectives can be adapted for network parameter optimization in the frequentist projection. Finally, we present
the extension of the objectives to continual learning setup, in particular the proposed BPNNs.

Upper Bound of the Expected Empirical Error Here, we show the first equation of Equation (10):

N
NZ Inp yl|x17f9) . (32)

Eonp Z 1[arg maxp(y |xi, fo) # Vil 5

For this, as a first step, we present Lemma C.2:
Lemma C.2. Let f : X — Qp, (x,y) € X x Y and

er(f,x,y) = l[argrerlyaxp(Y’lx, ) #vl,
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then

Inp(ylx, f)
< — .
er(f,x,y) < 102
Proof. The proof examines the case of a correct prediction first and of a wrong prediction second. For the correct prediction,
the error is 0 and the bound reduces to the negative log-likelihood being larger than 0. In the case of a wrong prediction, we
use that there is a class with a higher probability and that the correct and the most probable class have together a probability
that can be bounded by 1 from above.

First, consider the case of a correct classification, which means that y has the largest probability: arg max, ¢, p(y'|x, f) =
y. Then, er(f,x,y) = 0. As p(y|x, f) is a discrete probability, p(y|x, f) < 1 and hence, by taking the negative logarithm

. In X,
on both sides, —% >0=cecr(f,x,y).

Now, let arg maxy, ¢y p(y'[x, f) # y. Therefore, er(f,x,y) = 1 and there exists a y’ € Y such that p(y'[x, f) >
p(y|x, f). Additionally, we have that 1 > p(y'|x, f) + p(y|x, f) > 2p(y|x, f). This can be written as p(y|x, f) < %
Due to the monotony of the logarithm, we can take the natural logarithm on both sides and divide by — In 2 to obtain that
—meyiel) > 1 = er(f,x.y):

Inp(y|x,f)

125~ is an upper bound of er(f,x,y). O

Consequently, —

Remark C.3. We can see from the proof that the bound is tighter when the correct class has a high likelihood. Hence, the
bound will be best for good-performing models, while it might be loose when the negative data log-likelihood is large.

We can directly apply Lemma C.2 to the empirical error of our neural network fg to get

_Inp(ysfxi, fo) (33)

]l[argr/naxp(y/|xi7f9) 7é yz] = er(fevxiayi) S In2

y
for each element ¢ in the data-set. Therefore, also the sum and the expectation is larger or equal leading to Equation (32).

Moreover, we can plug this upper bound into the PAC-Bayes bounds to receive new upper bounds on the expected loss on
the true data distribution:

Corollary C4. Lete > 0, N € N, and p < w distributions over the weight space. Then

KL(p||7)—Ine )
N

| KL(p|/7) + In 24X g g Lo CLupper —
upper + 2N and.1ug 1 —exp(—c)

are upper bounds of the expected error Eg.. p[ﬁﬂp( fo)] in Equation (9) with probability larger or equal to 1 — e.

Proof. Both bounds come from using the upper bound instead of the expected empirical error in the McAllester (Gued;,
2019) and Catoni (Catoni, 2007) bounds. Since both bounds are monotone with respect to the expected empirical error, we
get a new bound for each of them. O

Approximation of the Expected Empirical Error Next, we address the approximation of the upper bound from
Equation (10):

Lyh_plyibx fo) | Z PP 3 Bt (Fu(piF + k) ) G4
N P In2 NlIn2 '

First, we observe that the upper bound in Equation (32) is the scaled negative data log-likelihood:

Eo~p

N
E i _hlp(Yi‘Xivfe) — 1 E [_ 1np(D\f )]
or NZZ,Z1 In2 N2 on
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For the approximation, we use the idea from LA to use the second-order Taylor polynomial around the optimal parameters 0
and replace the Hessian by the Fisher matrix:

g o~ [ (Do)
Nll NigEer {— Inp(D|fs) — DO (6 — ) + %(0 —0)TF(0 — é)} .

In contrast to LA, we don’t use the Taylor approximation on the posterior but on the likelihood. Therefore, the quadratic
term only includes the Fisher matrix and not the precision of the prior. In the next step, we can move the expectation in

because Inp(D| f4) is independent of 8 and Eg.., {DGT(B - é)} =DO" (Eg., (0] — ) = DO (6 — 6) = 0:

o~p |~ Inp(D|f5) - ~0)+50-6 —0)]  —lnp(Dlf) + 3Ee~, (6~ 6 -6
E [1 (D|fs) —DOT (0 — ) + L0 — H)TF(O 0)] Inp(D|fs) + LE [(0 6)"F(0 0)]

NlIn2 Nln2

Finally, we can use that the posterior is a normal distribution p = N (é, F_l), where F' is a block-diagonal matrix, where
each block is given by F; = T% (BiF; + oy F;). Therefore, we can reformulate the expectation of the quadratic term as a trace

—~p(DIfg) + Eony |6 = 0)'F(O—0)]  —Ip(Dlfg) +} Vet (Fu(BF +aiF) ")
Nin2 - Nn2 =: aer(a, 5, 7).
This approximation is only dependent on quantities that were already computed during the LA, such as the Fisher matrix

and the optimal parameters, or that can be computed without extra effort during the computation of the LA like the negative
data log-likelihood for the optimal parameters.

KL-divergence The PAC-Bayes bounds are not only dependent on the expected empirical risk but also on the KL-
divergence between the prior and posterior. Since we use LA for both, this boils down to the KL-divergence between
two multivariate normal distributions which can be computed in closed form. For the prior p = A (8, F~1) and posterior
N (é, ]?"1) defined as above, the KL-divergence can be computed as

KL(p||7) = KLV DIV, F)
1 detﬁ A~ NTA ~
:2<tr —n—lndetﬁ‘—&-(O—B) F(0_0)>

det Fl

+(6,-6)TF,(6, - 6
det( (5, 4 i) (6, — 6,)" Fi (6, — 6,)

1
=3 Z (Frn(BF +aF) ) —ny —
clL]

det Fl
det(ﬁlFl + Oélil)

1 s A g o s
-2 Z 7 tr(F (BF 4+ F) ) — (1 +1n7) —In +(6: - 6)"Fi(6, - )

=: kl(« (35

Similar to the approximation of the expected empirical error, all relevant quantities to compute the KL-divergence are
already given after the LA.

PAC-Bayes Objectives Combining the approximation of the expected empirical error aer(«, 8, 7) and the KL-divergence
kl(«, 8, 7), we get approximations of the McAllester bound (Guedj, 2019):

kl In 2N
ma(a,ﬂ,T)—aer(avﬂﬁ)Jr\/ whith e
and Catoni bound (Catoni, 2007):

kl(a,B,7)—Ine
ﬁ)

. 1—exp(—caer(a, 3,7) —
ca(, B,7) = g% 1 —exp(—c)

These objectives can be evaluated and minimized without going through any data samples.
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C.3.1. FREQUENTIST PROJECTION

In addition to the curvature scaling, we also propose frequentist projection, which also uses approximations of the bounds to
optimize the network parameters. This has the goal of further minimizing the PAC-Bayesian bounds also with the choice of
the parameters and not only with the curvature scaling. Nonetheless, as the Fisher matrix is only available after the weights
are found, we neglect the terms that depend on the curvature. For the McAllester Bound, this results in the optimization
problem

_ Inp(D|fe) 30 —)TF(6 — 6) + In(2Y)
min — + .
[ In(2)N 2N

The Catoni Bound is difficult to optimize with variations of stochastic gradient descent because of the exponential in the

objective function. Nonetheless, when the Catoni scale ¢ > 0 is fixed, minimizing the upper bound of the Catoni Bound is
equivalent to calculating

Inp(D|fs) | 2:(0 —6)"F(6—6) —Ine
In(2)N N '

min —c
0

Therefore, we heuristically alternate between optimizing € and c in practice, where the optimization after the Catoni scale is
done using the objective

Inp(D = (0-6)"F(0—6)-1
1= explclnpBge - EO-OTEO- 0
min
>0 1 —exp(—c)

C.3.2. EXTENSION TO BPNNS

For BPNNs, we also have to consider the parameters and posteriors from previous distributions. Therefore, we present the
adaptions for BPNNss in this section. Since we still use the same approximations as in the transfer learning setup, we need
to estimate the upper bound of the expected empirical risk and the KL-divergence as a function of the curvature scales.
We reuse the notation from Appendix B. Hence, we denote the correspondence to a given column by a superscript. In
addition, we denote the precision matrix of the posterior with a tilde, i.e. f‘l(z’t) = %(ﬂl(z’t)Fl(z’t) + al(l’t)f‘l(z’z)) for a lateral
connection at layer [ from column ¢ to column j. One can see from f‘l(l’z)
prior for this lateral connection.

that we use the posterior from the column 7 as the

Approximation of the Expected Empirical Error To compute the approximate upper bound of the expected empirical
error, we need to compute the expected empirical error on the training data as in Equation (34). For the proposed continual
learning architecture, we can compute the upper bound of the expected empirical error and its approximation with

Eg(gt)Np(gt) [ Zer f9(<f)7 \ 7yl(t))‘|

1
< WEG(SUNP(SO [—Inp(D:| foc<n)]
1 2] ~
~ N, In2 (lnp(théKw) + §E9<gt)mp<gt) [(Q(St) — Q(St))TF(gt)(g(St) B 9(<t))D ,

where F(=) denotes the Fisher matrix on task ¢ for all weights up to column t. The quadratic term in the expectation can be
computed exactly, i.e., we can use p(=!) as a normal distribution with mean §(=*). Moreover, we can decompose this into:
Egcsonp(so {(9@) _GENTRED (g(=0) _ g(gw)} = tr(FED(F(ED) -1

t—1 J

Z Z tr F(%]) F(%] + Z tr F(z t) (4, t)) )

j=11:=1

The weights from previous columns, i.e. for ¢ < j < ¢, are frozen and their corresponding posterior together with their
curvature scales are fixed. Therefore, the first term is constant with respect to the new curvature scales. To avoid computing
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the Fisher matrix with respect to previous network weights, we reuse the fixed Fisher matrix from the corresponding task of
the given column. This simplifies the upper bound:

J

t—1
SN (RED(ECD))- +Ztr ()=
j=1q

1

t
At S0 LN (RO (FCD) ),

i=1
— (St 1)+Zztr F(z i) (ﬁl(l t)F(z RIS (Z t)F(l z) +Ztr F(t t) (@(f t)F(f RIS (t t)F(O)) b,
i=11ecg =1

Here, we introduce the trace for all fixed previous columns and Fisher matrices as tr(=¢=1)_ This term is not dependent on
the curvature scales. Moreover, the set of the lateral connections is £.

KL-divergence With a block-diagonal covariance matrix, we assume that the weights of different layers are independent.
Using this, the KL-divergence between the posterior and the prior can be written as

KL <p<ét> ||7T<St>) - zt: XJ: KL (pu:,j) ||7r<i,j>)

j=1 i=1
_ ;K]L <p(1 |7 t)) + ;Zé;:md (p(i,j)”ﬂ.(i,j))
t
- (i,0) |- (i,
;Km(p 9= 0) 56
- 5 L (AN ) ) + 3K (A1),
Le[L] leg i=1

where it was used that the prior is equal to the posterior for all fixed columns in Equation (36). We approximate the posterior
with LA and curvature scaling. Therefore, we can compute the KL-divergence again in closed form:

KL(p=0|7(=0) = 37 KL (WO, m (8" F( + o OF) 1) (O, (B() 1) 37)
le[L]
+ZZKL( N0 n (8RR V@D F D)) 6
leg i=1

Altogether, this shows the advantage of BPNN that some related feature embeddings can increase the performance even
though only the current column contributes to the KL-divergence.

D. Some thoughts on the regression

In this section, we share potential extensions of the given PAC-Bayes framework in LA, to regression problems. PAC-Bayes
traditionally assumed bounded losses like in classification problems, while in recent years, the theory is being also extended
to unbounded loss functions, as in regression problems. Let us start with a general bound from Alquier et al. (2016):
Definition D.1 (Alquier et al. (2016)). Given a distribution D over X’ x )/, a hypothesis set G, a loss function : G x X' x Y,
a prior distribution 7 over G, a ¢ € (0,1] and a real number v > 0, with probability at least 1 — ¢ over the choice of
(X,Y) ~ D", we have

N 1 1
U on Gi Epeylhle) < EpmplLiy (o) + 3 [KLGl) + 1o+ BunpOhn)] 39)

where U p(A,n) =InE;uEx/ y/upn exp {)\ (Elp(g) — L ,7y,(g))] . (40)
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A special case for the unbounded loss functions have been examined in Germain et al. (2016). The results showed that,
for regression problems, the Alquier bound holds for certain classes of loss functions. One of them is the so-called
sub-gamma losses. Sub-gamma losses, given variance factor s2 and scale parameter c, has a variable ¥y ()\) := InEe*V
with V = L5(g) — I(g, z,y):
52 252 1
A< = (-In1l-X)) < ——, A€ (0,-). 41
vr() < % (=2 < 5 Ae (0 @

For these types of losses, the PAC-Bayes bound can be obtained as shown in the theorem below.

Definition D.2 (Germain et al. (2016)). Given D, G, [, 7 and § defined in the statement of the above theorem (definition D.1),
if the loss is sub-gamma with variance factor s? and scale ¢ < 1 we have, with probability at least 1 — § over (X,Y) ~ D",

2

. 1 1 s
U on G Bymplhlo) < ByplLle0) + 57 KL +Ing ] + 5

(42)
One concrete example is the case for Bayesian linear regression. Here, our model is: fg(x) = 0¢(x) with the modelling
choices of: @ ~ N(0,021) and ¢(x) ~ N (0, o2I). Also, we add white noise: y = 6*x + ¢ where ¢ ~ N(0, 02), resulting
in p(y[x) ~ N (®(x) - 0*,02). As in Bishop (2009), p(0|D, 0, 0) = N'(8]0, A~!) where A := L &7® + L 1. Under
these settings and using negative log likelihood, Germain et al. (2016) shows:

1 1
2> — |o2(c2d + |6*|]7) + 02(1 — Ac)} and ¢> —(o0202). 43)
o2 2

Moreover, under Gaussian assumptions, the Alquier bound is closed, e.g., NEg~. pﬁl)“('"y (0) =FEg~p >y —Inp(y;|x;, 0) =
N ﬁl)"(“y(O) + giztr(®@T®A 1), and also the KL-divergence term between two Gaussian distributions. These results are
given generalized linear models, while our paper is about neural networks. On the other hand, if neural networks can be
approximated with linear regression in some sense, we should intuitively be able to exploit the results so far. Hence, we next
make the connections between BNNs and linear regression via LA.

To start with, let us denote p(0|D) ~ N(6]6*,X) as the posterior distribution of BNNs, which is obtained using LA, i.e.,
B =S 92,0:(0%) + 01 with V3,1(8) ~ Jo(x)T Ag(x,y) T (x). Here, Jo(x) is the first derivative of the output w.r.t
the weights or jacobians of neural networks and Ag(x,y) is the output noise precision term. These quantities are defined at
6*, and additionally, we define the residual term 7(x;, y;) similarly. We note that V3,1() here represents an output space
formulation of the Hessian, while previously, we described the weight space formulation for the Hessian. These are different
ways of representing the Hessin in neural networks. Then, a transformed data-set can be defined: D = {(xi, yi)}iN:l where
yi = J(x;)0* — A(x;,y;) " *r(x;,y:). Given at the mode, assuming that the residual term is close to zero, i.e., the model
fits the data well, a linear model that fits this data-set D as a subspace, can be defined:

y = J(x)0 + e where e ~ NV (0, A '(x,y)) and 6 ~ N(0,5'I). (44)

This alternative LA-based BNN formulation has interesting implication, as Khan et al. (2019) shows that the posterior of
this linear model is the same as that of original BNNs p(6|D) ~ N (0|6*,X):

Definition D.3 (Khan et al. (2019)). The Laplace approximation of a neural network posterior p(8|D) is equal to the
posterior distribution p(8|D).

This means that we can then bring these results together in order to obtain a valid PAC-Bayes bound. Overall, there
exists a valid PAC-Bayes bound for Bayesian linear regression models which can be obtained in closed form for tractable
optimization. As with LA, a neural network has a linear subspace defined by a Bayesian linear model (equation 44), one
could also analyze LA-based BNNs using PAC-Bayes bound, and consequently the curvature scaling.

E. Appendix: Implementation Details

Now, we present the implementation details, which have been used in our experiments. We plan to officially release the code
for the community. While implementation details are provided per different experiments, the general setting is as follows.
Our software is based on Pytorch when possible, while only in few-shot learning experiments, we also use TensorFlow and
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JAX in order to utilize the "uncertainty baselines’ repository. In all our experiments, the Fisher matrix is computed with the
K-FOC method (Schnaus et al., 2021), which is a sub-class of the KFAC method from Section 2. Our computing cluster
consists of multiple GPUs, from NVIDIA’s Pascal to Ampere architecture. No multi-GPU training was used for the results.
The largest GPU memory is 24GB, while CPU RAM of 120GB is available for these large GPUs.

E.1. Implementation Details: Section 4.1

The implementation details for section 4.1 is as follows. We use 90% of the training data for training and 10% for validation.
Furthermore, we use the Adam optimizer with a batch size of 256 and a learning rate of 5 - 10~*. The learning rate is halved
if the validation loss does not decrease for five consecutive steps and training is stopped after 100 epochs or if the loss does
not improve for ten consecutive steps. We also optimize the curvature scales using Adam with an exponential learning
rate decay with a decay factor of 0.999999 per step. In our experiments, we compare the performance of our learned prior
against an isotropic prior with weight decay 1072, 10~°, and 10~® either with mean zero or using the pre-trained model
as mean. We also use the same weight decay to compute the learned prior. For all Bayesian neural networks, we use 100
samples from the posterior to estimate the predictive distribution. The PAC-Bayes bounds are evaluated with ¢ = 0.1.
Hence, the bounds are satisfied with at least 90% probability.

We note that cross-validation would be a reasonable method to use the entire training set. However, this would mean
that with k folds, one would have to retrain the model k times with each hyperparameter configuration. Even with only
one separate validation set, grid search would quickly become infeasible when optimizing three parameters per layer,
each with multiple values. This is primarily because one would need to sample multiple weights for each validation
sample to estimate the predictive distribution, and then repeat this for the entire validation set for each hyperparameter
optimization. Meanwhile, for PAC-Bayes objectives, we reuse some of the quantities that can be estimated during the
Laplace approximation (the Fisher matrix, the optimal network parameters, and the log-likelihood of the training data using
the optimal parameters). In this way, our objectives can be evaluated without additional forward passes. Therefore, the
complexity of hyperparameter optimization is independent of the size of the data-set and the complexity of the model forward
pass, and thus in practice, its convergence can be faster than grid search. To illustrate this point, we compared to a grid search
over a € {0.01,0.1,0.3,0.5,0.8,0.9,0.99,1, 2}, 5 € {0.01,0.1,0.3,0.5,0.8,0.9,0.99,1,2}, and 7 € {10‘%’ € [26]}
shared over each layer. The models maximizing the validation accuracy were chosen. Other ablations are similar to the
setting of Figure 2a and we have used five different seeds. Thus, curvature scaling and frequentist projection refer to our
PAC-Bayes-based approaches. The results are shown in the corresponding table.

We also quantitatively evaluated the quality of the approximation on the sums-of-Kronecker-products. For this, we measured
the relative error in terms of a Frobenius norm, where we compared the approximates to the true sums-of-Kronecker
product with positive definite matrices. The baseline is the approximation adapted by Ritter et al. (2018b;a), which assumes
(LOR+1I) ! = (L++I)"'® (R+~I)"! (denoted as *Sum’). We note again that this rule does not hold in general, and
therefore, we proposed a power method to better approximate the sum-of-the-Kronecker products as a Kronecker product.
We denote our approach as the’ power method’ here.

First, we evaluate by generating positive definite matrices L € RM*M R € R¥*Y with M = N. One variation can be
the size of the matrices from 2 to 20. We obtain them by sampling the elements from a standard normal distribution, then
multiplying its transposed, and finally adding 10~ - I. We also scale the resulting matrix by a scale from 10~°t010* and
also use different weight decays 10719 to 1 within (L ® R + ~I). For each size, scale, and weight decay, we use further 100
different random seeds. The results are shown in Figure 3. In the plots, we show the mean and the 95% confidence interval
of the relative Frobenius error for the two different approximations. Within these settings, we find that the power method
has a relative Frobenius error of 0.01020 £ 0.03129. On the other hand, computing the sum of each factor as in (Ritter et al.,
2018b) by (L + /71I) ® (R + \/71), has a relative Frobenius error of 0.10167 £ 0.22935. So, our experiments show that
the power method yields at least one magnitude smaller in terms of the Frobenius error.

Furthermore, we also evaluate the sums-of-Kronecker-products for more than two matrices. Such evaluation is important for
settings such as BPNN, where such computations are needed for each task. To do so, we compute the relative Frobenius
error for Zszl L* ® R*¥ — L ® R with K ranging from 2 to 9. We use M = N = 5 and sample the matrices similar to the
aforementioned way: L and R (see Figure 3). The baseline is again the ’sum’. As in (Ritter et al., 2018a), we sum over
more than two Kronecker factored matrices, where the first matrix is an identity matrix, scaled by the weight decay . The
results are depicted in Figure 3. We observed that the relative error is not only low with the power iteration method but also,
the relative error of the baseline ’sum’ significantly increases. These results motivate the proposed method to compute the
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sums-of-Kronecker-products as two Kronecker factors.

E.2. Implementation Details: Section 4.2

The implementation details for section 4.2 is as follows. Following Grosse & Martens (2016), we do not set a prior on
the parameters of batch normalization. All images are normalized by the mean and standard deviation from the ImageNet
data-set and resized to 224 x 224. We further use the Adam optimizer with batch size 4 and learning rate 10~%. We compare
our method to PNNs with weight decays 10~%,1072, ... 10~ !°, PNNs using Monte Carlo dropout (Gal & Ghahramani,
2015) without weight decay with dropout probability 0.01. Moreover, the learned prior is compared to an isotropic Gaussian
prior around zero and around the pre-trained weights on the ImageNet-1K data-set with weight decay 10~8. The temperature
scaling is inferred after the training of each task with a coarse grid search.

E.3. Implementation Details: Section 4.3

The implementation details for section 4.3 is as follows. Similar to the continual learning experiments (section 4.2), we do
not set a prior for batch normalization. All images are resized to 224 x 224 after normalization. For comparing isotropic
priors and learned priors, we use the Adam with a batch size of 4 and learning rate of 10~%. On the other hand, for
other baselines, we tried four learning rates more: 10~2,1073,10~% and 10~° in order to increase the few-shot learning
performance. We did not use one-shot learning due to the validity of LA, but rather increased the number of evaluation
points. While we use the software of Tran et al. (2022) for creating the few-shot learning data-set pairs. On top of, we
created separate validation sets from the remaining pool of data with 1:1 ratio to the few-shot training set. For the baselines,
we use a deep ensemble with five members. Lakshminarayanan et al. (2017) showed that for therein presented classification
experiments, the five members were able to closely match the performance with more members. The dropout rates in Monte
Carlo dropout the same as what is available. In all the experiments, we used 100 samples from the posterior for computing
the predictive distribution.

F. Appendix: Additional Experiments and Results
F.1. Qualitative Analysis of the Approximate Upper Bound

Here, we want to qualitatively analyze the quality of the upper bound, and obtain further insights about their validity. To do
so, we used the same setting as our presented ablation studies in Section 4. One advantage is that the scale is small enough
that we can directly compare the true PAC-Bayes bound, and the proposed approximation to that bound. However, unlike
other experiments, we share o and 3 across the layers. This was to meaningfully see the shape of the bound in 3D plots.
The results are depicted in Figure 6. Within this experiment, we observe that the true bound (orange) is tighter, but follows
qualitatively similar behavior as the proposed approximation (blue). In particular, we find that the optima (orange cross for a
true bound, blue cross for approximation) are close to each other. Therefore, we think this data shows the quality of the
proposed approximation at a small scale.

F.2. Ablations in the Small-Data Regime

Next, we extend the ablation studies from Section 4 in order to provide the influence of hyper-parameters namely temperature
scaling and weight decays. To achieve this, we keep the same setting as the ablations again and plot for a specified range.
Similarly again, as often done in PAC-Bayes literature, we vary the availability of the data and compute the accuracy as
a metric. The results can be found in Figure 7. Importantly, this figure shows that the learned prior is in general, more
data-efficient. On the other hand, the results also show the conditions when our method is effective. To explain, we observe
that for small temperature scaling and large weight decays (top right), the performance of learned prior deteriorates. The
results are expected because in the case of large weight decay, the isotropic prior becomes a more dominant term in the
learned prior. Thus, the differences become smaller. On the other hand, for a small weight decay, BNNs become closer
to deterministic. In that case, learning the prior only helps for small weight decay. Lastly, we find that in a vast range of
hyperparameter settings, the learned prior helps to learn more data efficiently, when compared to isotropic priors.
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Figure 6. True bound (orange) Versus the proposed approximation (blue). The results show that the proposed approximation exhibits a
similar shape to the true bound, providing qualitative insights about the proposed approximation. Smaller the bound, the better.
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Figure 7. Extension of ablations in the small-data regime via varying two hyperparameters, namely temperature scaling and weight decays.
The results empirically show conditions when the learned prior enables more data-efficient learning. Faster the increase in accuracy, the
better.
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Figure 8. Right: Extended cold posterior experiments across more weight decay variations. The learned prior produces more stable results
w.r.t variations in the weight decay. Left: Further validation with the prior learned from ImageNet. Learned prior from ImageNet and
tested on CIFAR-10. Maximum reachable accuracy is higher with the learned prior. Learned prior also generates more stable results w.r.t
variations in weight decays.
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Figure 9. Few-shot learning experiments. Results are presented for each data-set. Higher the better for accuracy and AUC measures,
while the lower the better for ECE measures. The results show the high performance of our method in both uncertainty calibration and
generalization.
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Figure 10. Few-shot learning experiments. Results are presented for each data-set. Higher the better for accuracy and AUC measures,
while the lower the better for ECE measures. The results show the high performance of our method in both uncertainty calibration and
generalization.
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F.3. Further Cold Posterior Experiments
F.3.1. SMALL-SCALE

In Section 4, we presented an empirical result on cold posterior effects. There, we showed that the cold posterior effect is not
completely vanished, but is largely mitigated with the proposed learned prior. In this section, we aim to examine the stability
of these results w.r.t different weight decay settings. To this end, within the setting of the ablations, we examine variations of
three weight decays. The results are shown in Figure 8. In the experiments, we observe similar qualitative behavior, i.e., our
learning-based prior largely mitigates the cold posterior effects when compared to the isotropic prior. We also ablate the
prior with learned mean, which helps over purely zero mean isotropic Gaussian. Yet, incorporating the curvature, as in our
method, improves the results further. Most importantly, our learned prior generates the least deviations due to the changes in
the weight decay. Thus, we interpret the results that the learned priors are more stable with respect to changing the weight
decay, while better mitigating the cold posterior effects.

F.3.2. LARGE-SCALE

Next, we further examine the cold posteriors within a large scale experiment. To do so, we obtain the posteriors from
ImageNet using ResNet-50 architecture and use it as a prior on CIFAR-10. Using CIFAR-10, we then obtain the posterior.
We use a learning rate of le-3 and a batch size of eight. All other settings are kept the same as in the ablations of Section 4.
We do not evaluate the zero mean & isotropic prior but only the isotropic prior with the learned mean. This enables direct
comparison of the methods, as we only vary the prior. The results are presented in Figure 8. We observe the followings. First,
we find that the cold poster effect is strong for the weight decay 1e-3, whereas with the weight decay 1e-5, the learned prior
helps. The weight decay of 1e-8 didn’t produce reasonable results for all evaluated temperature scales (up to le-15). These
results are omitted from the plot for presentation clarity. Finally, the reachable accuracy is higher for the learning-based
priors than for the isotropic priors with learned mean, while the influence of random seeds on deviations seems smaller.

F.4. Few-Shot Learning: Results per Data-set

In Section 4, we have presented few-shot learning results, which were averaged across eight data-sets. Now, we present the
results per individual data-set. Hence, the results herein is an elaboration to Section 4. Figures 9 and 10 depict the results,
four different data-sets each. We observe that in the majority of the data-sets, the learned prior outperforms the isotropic
priors as well as the presented baselines, in terms of precision and calibration measures. On the other hand, we also observe
that the learned prior cannot uniformly outperform all other baselines across different data-set and metrics. For example, the
colorectal histology data-set is one where the isotropic prior outperforms the learned prior, while in oxford pet data-set, the
standard BNNs and a deterministic neural network show stronger results in terms of precision and calibration AUC. We
think that this is expected, as the prior learning methods assume the existence of relevant data and tasks to learn the prior
from. Despite this limitation, as we find that the learned prior more often outperforms the methods based on the isotropic
priors, our work shows the relevance of the prior learning methods, i.e., when there exists relevant data and tasks to learn
from, there are potential performance advantages over relying on the isotropic priors.



