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Abstract

The Gromov-Wasserstein distance (GW) is an extension of the optimal transport
problem that allows one to match objects between incomparable spaces. At its
core, the GW-distance is specified as the solution of a non-convex quadractically
constrained quadratic program, which is not known to be tractable to solve. In
particular, existing solvers are only able to find local optimizers. In this work, we
propose a semi-definite programming (SDP) relaxation of the GW distance. Our
approach provides the ability to compute the optimality gap of any transport map
from the global optimal solution. Our initial numerical experiments suggest that
our proposed relaxation is strong in that it frequently computes the global optimal
solution, together with a proof of global optimality.

1 Introduction

From classical formulation of optimal transport... The optimal transport (OT) problem con-
cerns the task finding a transportation plan between two probability distributions so as to minimize
cost. The problem has applications in a wide range of scientific and engineering applications. For
instance, in the context of machine learning, the OT problem forms the backbone of recent break-
throughs in generative modeling [1, 3, 13, 12], natural language processing [10], domain adapta-
tion [4].

Let α ∈ Σm and β ∈ Σm be probability distributions over a metric space – here Σm := {α ∈
Rm

+ ,
∑m

i=1 αi = 1} denotes the probability simplex. Let C ∈ Rm×n be the matrix such that Ci,j

models the transportation cost between point xi ∈ α and yj ∈ β. The (Kantorovich) formulation of
the OT problem [16] is defined as the solution of the following convex optimization instance

πW
def.
= argmin

π∈Π(α,β)

⟨C, π⟩. (1)

Here, Π(α, β) = {π ∈ Rm×n
+ : π1n = α, π⊤

1m = β} denotes the set of couplings between
probability distributions α, β ∈ Σm, while 1m ∈ Rm denotes the vector of ones. The OT problem
(1) is an instance of a linear program (LP), and hence admits a global minimizer.

...to Optimal Transport between Incomparable Spaces. One limitation of the classical OT for-
mulation in (1) is that the definition of the cost matrix C requires the probability distributions α and
β to reside in the same metric space. This is problematic in application domains where we wish to
compare probability distributions in different spaces, which is typical in shape comparion or graph
matching, for example.

To address such scenarios, the work in [14] formulates an extension of the OT problem known as the
Gromov-Wasserstein (GW) distance whereby one can define an analogous OT problem given knowl-
edge of the cost matrices for the respective spaces where α and β reside in. More concretely, let
the tuple (C,α) ∈ Rm×m × Σm denote a discrete metric-measure space. The Gromov-Wasserstein
distance between two discrete metric-measure spaces (C,α) and (D,β) is defined by

GW(C,D, α, β)
def.
= min

π∈Π(α,β)
(|Ci,k −Dj,l)|)i,j,k,lπi,jπk,l = min

π∈Π(α,β)
⟨L(C,D)⊗ π, π⟩. (2)
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Here, the transportation cost is specified by the four-way tensor

L(C,D)
def.
= (|Ci,k −Dj,l)|)i,j,k,l, (3)

in which the tensor-matrix multiplication is defined by

[L⊗ π]i,j
def.
=

∑
k,l

Li,j,k,lπk,l.

The GW distance has been applied widely to machine learning tasks, most notably on graph learning
[20, 22, 23, 25]. The GW-problem is an instance of a quadratically constrained quadratic program
(QCQP): to see this, one can re-write the objective in (2) in terms of vectorized matrices

min
π

⟨vec(π), L vec(π)⟩ s.t. π ∈ Π(α, β). (4)

Here, (Lij,kl)ij,kl ∈ Rmn×mn denotes the flattened 2-dimension tensor of L, while the vectorization

of a matrix π ∈ Rm×n is given by vec(π)
def.
= [π11, π21, . . . , πm1, . . . , πmn]

⊤ ∈ Rmn.

The constraint π ∈ Π(α, β) is convex, and in fact linear. On the other hand, the matrix L is usually
not positive semidefinite – and this is typically the case for L’s arising from differences of cost
matrices (3). As such, the QCQP instance in (4) is typically non-convex.

Existing approaches for solving (2) include alternating minimization techniques, but these are not
known to produce globally optimal solutions. An alternative approach is to impose entropic reg-
ularization [17]. This leads to a formulation that permits Sinkhorn scaling-like updates, but does
not address the inherent non-convexity within the GW-distance. (Entropic regularization also intro-
duces bias in solutions.) Other approaches include low-rank approximation of the cost matrices [18],
adapting ideas from the Sliced-Wasserstein problem [21], an unbalanced-analog of the GW-problem
[19], and using mini-batch samples [8].

2 Main Results

The main contribution of this work is to propose a strong semidefinite programming (SDP)-based
relaxation for the Gromov-Wasserstein distance that leads to globally optimal solutions in many
instances. Let (πsdp, Psdp) denote an optimal solution to the following

min
π∈Rm×n,

P∈Rmn×mn

⟨L,P ⟩

s.t.
(

P vec(π)
vec(π)⊤ 1

)
is PSD

π ∈ Π(α, β)

Pvec(ei1
⊤
n ) = αivec(π), i ∈ [m]

Pvec(1me⊤j ) = βjvec(π), j ∈ [n]

P ≥ 0

(GW-SDP)

Here, ei denotes the standard basis vector whose i-th entry is 1.

Optimality gaps. The most valuable aspect of (GW-SDP) (as well as any other suitably defined
convex relaxation) is that it provides a principled way to certify global optimality of any computed
transporation map. We explain how this is done: Let π⋆ denote the optimal solution to the GW
problem. Given any transportation map π ∈ Π(α, β), a natural to quantify the quality of π is to
compare its objective value with the optimal choice:

Opt. Gap(π) :=
⟨π,L⊗ π⟩
⟨π⋆,L⊗ π⋆⟩

.

This ratio is at least one, and is equal to one if π is also globally optimal.

Note that the optimal value of (GW-SDP) will always be a lower bound to (2):

⟨π⋆,L⊗ π⋆⟩ = ⟨vec(π⋆), Lvec(π⋆)⟩ ≥ ⟨Psdp, L⟩.
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This is because the tuple (π⋆, vec(π⋆)vec(π⋆)⊤) is a feasible solution to (GW-SDP):

vec(π⋆)vec(π⋆)⊤vec(ei1
⊤
m) = vec(π⋆)⟨π⋆, ei1

⊤
m⟩ = vec(π⋆)⟨π⋆

1n, ei⟩ = αivec(π
⋆).

(The inequalities for β follow analogously.) Subsequently, one has

Opt. Gap(πsdp) ≤
⟨πsdp,L⊗ πsdp⟩

⟨Psdp,L⟩
.

This bound is useful because all the quantites on the RHS can be computed efficiently as the solution
of a SDP. If in fact we have an instance where the RHS evaluates to one, then we have a proof that
πsdp is the global optimal solution to the GW problem. In our numerical experiments in Section 3,
we observed that this is frequently the case for our experiments.

3 Experiments

We demonstrate the effectiveness of GW-SDP over two tasks: transporting Gaussian distributions
belonging to different spaces, and graph learning. Without further mention, we will use the 2-
Gromov-Wasserstein distance; i.e. the cost function is squared Euclidean norm.

3.1 Synthetic Dataset: Matching Gaussian Distributions

We aim to find estimated GW distance between two Gaussian point clouds, one in R2, and the other
in R3. A visualization of this dataset can be found in Figure 1a. Clearly, using classical optimal
transport formulation such as the likes of Wasserstein-2 distance is not viable. We compute our
GW-SDP plans and distance, and compare them with the local solvers in Python Optimal Transport
(PythonOT [5]). As seen in a qualitative demonstration of Figure 1a, our algorithm return optimal
transport plans that is as sparse as the Conditional Gradient descent solver of Python OT for GW
distance (CG-GW). Moreover, GW-SDP distance is smaller than the CG-GW value. We also vary
the number of sample points and calculate the value of the objective function ⟨π,L⊗ π⟩. As shown
in Figure 2a, GW-SDP algorithm consistently returns smaller objective value (orange line) than GW-
CG counterpart from PythonOT (blue line) and its entropic regularization (green line). This shows
that the two solvers from PythonOT is more prone to stuck in local minima than our GW-SDP solver.
In Figure 2b, we plot the value of the estimation gap with different number of sample points. We
notice in this scenario of Gaussian matching, the gap is almost 1.0 in most case, which shows that
GW-SDP is nearly optimal; i.e. ⟨πsdp,L⊗ πsdp⟩ ≈ ⟨Psdp, L⟩ ≈ ⟨π⋆,L⊗ π⋆⟩.

3.2 Synthetic Dataset: Graph Community Matching

The objective of this task is to find a matching between two graphs that follow stochastic block model
(SBM, [7, 24]) with fixed inter/intra-clusters probability (the chance that the node inside/outside a
clusters connect to each other, respectively). The source is a three-clusters SBM that has the intra-
cluster probability p = {1.0, 0.95, 0.9}, and the target is a two-clusters SBM with intra probability
p = {1.0, 0.9}. The inter-clusters probability are all set to 0.1. The distance matrices on each graph
is created by first simulate the node features following Gaussian distributions with uniform weights.
We then calculate the l2 norm between nodes, and shrink the value of disconnected nodes to zero to
form the distance matrices. Similar to the previous section, we observed GW-SDP algorithm return
a transport plan that give a smaller total transportation cost ⟨π,L ⊗ π⟩ compared to GW-CG and
eGW, which can be seen in Figure 3. Still, we notice some level of similarity between the GW-SDP
and GW-CG transport plans, most notably both are reasonable sparse, while the eGW is dense which
results in the highest transport cost.
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(b) Solution of the OT plans

Figure 1: Left: source distribution (2D, blue dots) and target distribution (3D, red dots). For ease
of visualization, we lift the source R2 mm-spaces into target R3 by padding the third coordinate
to zero. Right: OT solutions of GW-SDP (our algorithm), CG-GW (conditional gradient descent,
default solver of PythonOT) and entropic OT solver. The OT plans from GW-SDP is almost sparse
in the same manner to CG-GW, while the eGW is not.
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(b) Estimated optimality gap

Figure 2: Left: Value of the objective with Right: Value of the estimation gap. The numbers are
calculated on 10 runs of different number of sample points on the Gaussian matching experiment.

GW-SDP=0.028 GW-CG=0.055 eGW=0.104

Figure 3: Value of the objective on the synthetic graph matching task, from the three-block SBM
(left) to the two-block SBM (right).

4 Conclusion

In this paper, we propose a SDP-relaxation (GW-SDP) for the GW-problem. Our initial results
suggest that the relaxation (GW-SDP) is strong in the sense that πsdp frequently coincides with the
global optimal solution – moreover, we are able to provide a proof when this actually happens.
These results are exciting because it provides because it suggests a tractable approach for solving
the GW-problem – at least for examples of interest – that is otherwise assumed to be difficult to
compute in general.

It would be interesting to explain the strength of the relaxation in (GW-SDP) . Our initial experi-
ments suggest that the most critical ingredient is the inclusion of the constraint

Pvec(ei1
⊤
n ) = αivec(π), i ∈ [m], Pvec(1me⊤j ) = βjvec(π), j ∈ [n].

If these constraints are omitted, then the solutions tend to be substantially weaker. It would be
interesting to better how the inclusion of these constraints tend to encourage good transportation
maps as solutions.
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A SDP LIFTS

We motivate the ideas behind our SDP relaxation (GW-SDP). The starting point is to recognize that
the Gromov-Wasserstein is an instance of a QCQPs – these are optimization instances of the form

min
x∈Rn

x⊤A0x+ 2b⊤0 x+ c0

s.t. x⊤Aix+ 2b⊤i x+ ci ≤ 0, i ∈ [m]
. (5)

QCQPs are huge expressive powers, for instance, problems such as Sensors Network Localization
in communications [2], Maximum Cut and Quadratic Assignment Problems in combinatorics [6, 9],
and Optimal Power Flow in power system [11] can be expressed as instances of QCQPs. If the
matrices Ai are psd, then the optimization instance (5) is convex, and can be solved tractably using
standard software. The problem becomes difficult if the Ai’s contain negative eigenvalues. In fact,
the presence of a single negative eigenvalue is sufficient to make these problems NP-hard [15].

The first step of SDP relaxation is to observe that tr(x⊤Aix) = tr(Aixx
⊤) for all i. Hence, by

introducing a new variable X = xx⊤, (5) is equivalent to

min
x∈Rn

tr(A0X) + 2b⊤0 x+ c0

s.t. tr(AiX) + 2b⊤i x+ ci ≤ 0, i = 1, 2, . . . ,m

X = xx⊤
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Note that X = xx⊤ if and only if(
X x
x⊤ 1

)
⪰ 0 and rank

(
X x
x⊤ 1

)
= 1. (6)

The second step of standard SDP relaxation is to omit the rank constraint, resulting in the following
convex optimization problem:

min
x∈Rn

tr(A0X) + 2b⊤0 x+ c0

s.t. tr(AiX) + 2b⊤i x+ ci ≤ 0, i = 1, 2, . . . ,m(
X x
x⊤ 1

)
⪰ 0

(7)

A.1 Standard SDP Relaxation

min
π∈Rm×n,P∈Rmn×mn

⟨L,P ⟩

s.t.
(

P vec(π)
vec(π)⊤ 1

)
⪰ 0

π1 = α

π⊤
1 = β

π ≥ 0

(8)

Problem (8) is a tractable convex semi-definite programming, which can be can be efficiently solved
in polynomial time, in contrast with the original form (??).
Remark A.1. Before studying the performance of SDP relaxation in the GW problem, we highlight
several important observations:

1. Since the set {vec(π)vec(π)⊤ : π ∈ Π(α, β)} is contained within the feasible region of P
in optimization problem (8), the optimal value of (8) provides a lower bound on the optimal
value of the original GW problem.

2. The optimal solution π̂ to (8) inherently satisfies π̂ ∈ Π(α, β); i.e. , π̂ is a feasible trans-
portation map. Consequently, vec(π)⊤Lvec(π) yields an upper bound on the optimal value
of the GW problem. Moreover, while the idea of relaxing quadratic terms of x to a PSD
constraint is quite standard, additional rounding steps are often necessary to obtain a feasi-
ble solution [6, 9, 2]. Notably, for the GW problem, such a rounding step is unnecessary.

3. When the upper bound and the lower bound coincide, the relaxation succeeds, that is, the
GW problem has been successfully solved to global optimality.

A.2 Tightening the Relaxation

Nevertheless, due to the non-compact nature of the feasible region of P in (8), the optimal value to
it can be unbounded. We study this issue in Theorem A.2.
Theorem A.2. Optimization problem (8) is unbounded.

Proof. Assume Lst > 0 for some s, t ∈ [mn]. Let v ∈ Rmn be a vector with all zeros except
for the s-th and the t-th entries, which are 1 and −1, respectively. Let π̃ ∈ Π(α, β). Consider
Pc = vec(π̃)vec(π̃)⊤ + cvv⊤. It is easy to see that Pc ⪰ vec(π̃)vec(π̃)⊤ for all c ∈ R+, and

⟨L,Pc⟩ = ⟨L, vec(π̃)vec(π̃)⊤⟩+ c(Lss − 2Lst + Ltt)

since L is symmetric. Note that Lii = 0 for all i ∈ [mn]. Hence, we have ⟨L,Pc⟩ =
⟨L, vec(π̃)vec(π̃)⊤⟩ − 2cLst, which implies ⟨L,Pc⟩ → −∞ as c → +∞.

It follows from Theorem A.2 that solving the standard SDP relaxation of the GW problem (opti-
mization instance (8)) leads to meaningless solutions. In fact, we can enhance the performance of
the SDP relaxation by incorporating additional constraints that we may freely add to P . Essentially,
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any constraints that are valid for P = vec(π)vec(π)⊤ with π ∈ Π(α, β) can be added. In this
section, we impose extra linear equality constraints to the SDP relaxation presented in (8).

First, note that π ≥ 0 for all π ∈ Π(α, β), which enables us to impose the following nonnegative
constraint

P ≥ 0 (Nonneg)
Second, denote by ei ∈ Rmn the standard unit vector with all zero except its i-th entry, which
is one. Let ai = vec(ei1

⊤
n ), bj = vec(1me⊤j ). Since we can write π1 = α and π⊤

1 = β

as a⊤i vec(π) = αi, i ∈ [m] and b⊤j vec(π) = βj , j ∈ [n], respectively, the following marginal
constraints hold for P = vec(π)vec(π)⊤:

Pai = αivec(π), i ∈ [m],

P bj = βjvec(π), j ∈ [n].
(Margi)

By incorporating constraints (Nonneg) and (Margi), we introduce the following tighter convex SDP
relaxation of the GW problem, which we refer to as GW-SDP:

min
π∈Rm×n,P∈Rmn×mn

⟨L,P ⟩

s.t.
(

P vec(π)
vec(π)⊤ 1

)
⪰ 0

a⊤i vec(π) = αi, i ∈ [m]

b⊤j vec(π) = βj , j ∈ [n]

vec(π) ≥ 0

Pai = αivec(π), i ∈ [m]

Pbj = βjvec(π), j ∈ [n]

P ≥ 0

(GW-SDP)

Note that Remark A.1 also holds for GW-SDP. Intuitively, the nonnegtive constraint (Nonneg) makes
the feasible set of (8) compact, thereby guaranteeing a bounded optimal value when solving GW-
SDP. And the marginal constraints (Margi) ensure that the optimal solution to GW-SDP has certain
desired structure. Moreover, as illustrated in Proposition A.3, the added constraints (Nonneg) and
(Margi) do not overlap with the constraints specified in (8). Therefore, adding these constraints are
guaranteed to tighten the standard SDP relaxation introduced in Section A.1.
Proposition A.3. The feasible set of GW-SDP is strictly contained by the feasible set of (8).

Proof. We start by showing (Nonneg) can not be implied by the feasible set of (8). Let v ∈ Rmn

be a vector with all zeros except for the first two entries, which are 1 and −1, respectively. For any
π ∈ Π(α, β), consider P = vec(π)vec(π)⊤ + (π11π21 + 1)vv⊤. In this case, since π11, π21 ≥ 0,
we have P ⪰ vec(π)vec(π)⊤, and hence P is in the feasible set of (8). However, P12 = π11π21 −
(π11π21 + 1) = −1 < 0 implies P doesn’t satisfy (Nonneg).

Then we show the feasible set of (8) doesn’t imply (Margi). For any π ∈ Π(α, β), consider P =
vec(π)vec(π)⊤ + 11

⊤. It is easy to see that P ⪰ vec(π)vec(π)⊤. However, for any i ∈ [m] we
have

Pai = αivec(π) + n1 ̸= αivec(π)
which implies that P doesn’t satisfy (Margi).

While Proposition A.3 doesn’t comprehensively encapsulate this phenomenon, it is noteworthy that
in practical scenarios, the GW-SDP typically yields optimal or nearly optimal values, which can be
verified by computing the optimality gap.
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