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Abstract001

Reasoning-Oriented Reinforcement Learning002
(RORL) enhances the reasoning ability of003
Large Language Models (LLMs). However,004
due to the sparsity of rewards in RORL, effec-005
tive training is highly dependent on the selec-006
tion of problems of appropriate difficulty. Al-007
though curriculum learning attempts to address008
this by adjusting difficulty, it often relies on009
static schedules, and even recent online filter-010
ing methods lack theoretical grounding and a011
systematic understanding of their effectiveness.012
In this work, we theoretically and empirically013
show that curating the batch with the problems014
that the training model achieves intermediate015
accuracy on the fly can maximize the effec-016
tiveness of RORL training, namely balanced017
online difficulty filtering. We first derive that018
the lower bound of the KL divergence between019
the initial and the optimal policy can be ex-020
pressed with the variance of the sampled ac-021
curacy. Building on those insights, we show022
that balanced filtering can maximize the lower023
bound, leading to better performance. Experi-024
mental results across five challenging math rea-025
soning benchmarks with 3B and 7B scale mod-026
els show that balanced online filtering yields an027
additional 10% in AIME and 13% in AMC with028
scalability. Moreover, further analysis shows029
the gains in sample and training time efficiency,030
exceeding the plain GRPO within 60% training031
time and the training set volume.032

1 Introduction033

Reinforcement Learning (RL) has become a key034

training paradigm for training large language mod-035

els (LLMs) specialized in reasoning tasks, exem-036

plified by OpenAI o1 (OpenAI et al., 2024) and037

DeepSeek-R1 (Guo et al., 2025). These models uti-038

lize Reasoning-Oriented Reinforcement Learning039

(RORL), where verifiable rewards like correctness040

in mathematical or logical problems serve as the041

primary supervision signal (Lambert et al., 2024).042

As RORL increasingly targets high-complexity 043

reasoning tasks, designing effective learning dy- 044

namics becomes crucial to help models progres- 045

sively acquire the necessary capabilities. Effective 046

learning has long been studied in the education 047

domain, where theories such as the Zone of Prox- 048

imal Development (ZPD) (Cole, 1978; Tzannetos 049

et al., 2023) emphasize that learning is most effi- 050

cient when tasks are neither too easy nor too hard, 051

but instead fall within a learner’s optimal challenge 052

zone. This has motivated a variety of strategies in 053

language modeling, from curriculum learning that 054

introduces harder problems progressively (Team 055

et al., 2025), to difficulty-aware data curation that 056

selects or filters examples based on estimated pass 057

rates or diversity (Muennighoff et al., 2025; Ye 058

et al., 2025). Online filtering methods further ex- 059

plore this idea by dynamically adjusting the train- 060

ing data to match the current ability of the model 061

(Cui et al., 2025). However, while previous work 062

demonstrates the empirical effectiveness of such 063

techniques, they often lack a detailed analysis of 064

why or when certain difficulty distributions yield 065

better learning outcomes. 066

In this work, we conduct extensive experiments 067

and provide theoretical analysis to understand how 068

and why difficulty filtering improves learning in 069

RORL. We start by deriving that the lower bound 070

of the KL divergence between the learned policy 071

and the optimal policy is proportional to the sam- 072

ple accuracy, and this divergence is theoretically 073

maximized when the pass rate is around 0.5. Based 074

on this insight, we focus on balanced online diffi- 075

culty filtering (Figure 1), which maintains a range 076

of problem difficulties centered around the current 077

ability of the model. This approach improves learn- 078

ing efficiency by keeping training examples within 079

the predefined difficulty range, where each batch 080

maximizes its expected learning signal. In practical 081

implementation, we avoid the instability caused by 082

prior methods that naively discard overly easy or 083
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Figure 1: Balanced online difficulty filtering for maximizing the effectiveness of GRPO. With G rollouts for each
prompt x, we measure the pass rate p(x) as the average accuracy and filter them by predefined thresholds: e.g.,
0.25 ≤ p(x) ≤ 0.75 in this case. We recursively stack filtered prompts until the train batch size meets the fixed size
N . We elaborate on the asynchronous implementation in Appendix A.

hard examples (Cui et al., 2025; Meng et al., 2025).084

Instead, we replace filtered-out samples with others085

using parallel sampling, ensuring consistent batch086

sizes and time-efficient training.087

Experiments on five challenging mathematical088

reasoning benchmarks (Hendrycks et al., 2021; Li089

et al., 2024; Lewkowycz et al., 2022; He et al.,090

2024) show that this online difficulty filtering sig-091

nificantly outperforms both non-curriculum and092

offline curriculum baselines, highlighted by exceed-093

ing plain GRPO by 10% points in AIME and offline094

filtering by 4.2% points in average. We find that095

balanced filtering—removing both easy and hard096

problems—improves sample efficiency and final097

performance, while skewed filtering leads to sub-098

optimal learning. Moreover, the method adapts099

dynamically as the model improves, providing sim-100

ilar benefits to curriculum learning while avoiding101

the limitations of static schedules. Our findings102

highlight the importance of dynamic, balanced diffi-103

culty control in reinforcement learning, demonstrat-104

ing a principled and efficient method for RORL.105

2 Related Works106

Reasoning-oriented reinforcement learning.107

Recent advancements demonstrate significant108

reasoning improvements in LLMs through RL109

(Havrilla et al., 2024; OpenAI et al., 2024; Lambert110

et al., 2024; Guo et al., 2025; OLMo et al., 2025;111

Kumar et al., 2025). OpenAI o1 (OpenAI et al.,112

2024) initially reported that increasing the com-113

pute during RL training and inference improves114

reasoning performance. DeepSeek R1 (Guo et al.,115

2025) further found that, in RORL with verifiable 116

rewards, longer responses correlate with better rea- 117

soning. Concurrent studies (Team et al., 2025; Hou 118

et al., 2025; Luo et al., 2025) employed algorithms, 119

such as GRPO (Shao et al., 2024) or RLOO (Ahma- 120

dian et al., 2024), relying on advantage estimation 121

via sampling rather than PPO-like value networks. 122

Hou et al. (2025) further found that training effi- 123

ciency improved with increased sampling in RLOO, 124

invoking the need for more sample-efficient train- 125

ing strategies in reasoning-oriented RL. 126

Difficulty-based curriculum learning. Curricu- 127

lum learning has been widely adopted in fine- 128

tuning LLMs to improve training efficiency (Lee 129

et al., 2024; Naïr et al., 2024; Team et al., 2025; 130

Cui et al., 2025). Static curricula, i.e., offline data 131

curation with a predetermined task difficulty, have 132

been effective in multiple domains: instruction- 133

tuning (Lee et al., 2024) and coding (Naïr et al., 134

2024; Team et al., 2025; Li et al., 2025) to name 135

a few. In RORL, Team et al. (2025) employs a 136

static difficulty-based curriculum, assigning tasks 137

at fixed difficulty levels to ensure efficient progres- 138

sion. Similarly, Li et al. (2025) selects a high- 139

impact subset of training data based on a “learn- 140

ing impact measure”. Meantime, adaptive curric- 141

ula dynamically adjust task difficulty based on the 142

learners’ progress, addressing the limitations of 143

static curricula (Florensa et al., 2018; Cui et al., 144

2025). Specifically, Cui et al. (2025) applied adap- 145

tive filtering in reasoning and reported an empirical 146

advantage in reducing reward variance. However, 147

Meng et al. (2025) observed that such dynamic ex- 148
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clusion of examples may destabilize training, as it149

causes fluctuations in the effective batch size.150

3 Preliminaries151

Reinforcement learning in language models.152

Given the training policy πθ initialized from the153

reference policy πinit, reinforcement learning (RL)154

in language model environment optimizes πθ to155

maximize the reward assessed by the reward func-156

tion r (Christiano et al., 2017; Ziegler et al., 2020):157

max
θ

Ey∼πθ(·|x) [r(x,y)]−βDKL (πθ∥πinit) , (1)158

penalizing excessive divergence of πθ with hyper-159

parameter β for the input and output token se-160

quences y = {yi}Ki=1 and x = {xi}Mi=1. The pol-161

icy gradient methods like REINFORCE (Williams,162

1992) or PPO (Schulman et al., 2017) are often163

applied, defining token-level reward with the per-164

token divergence as a final reward (Ziegler et al.,165

2020; Huang et al., 2024):166

r(x,y)− β log
πθ(y|x)
πinit(y|x)

. (2)167

The corresponding optimal policy π∗ is well known168

to be defined with respect to πinit as (Korbak et al.,169

2022; Go et al., 2023; Rafailov et al., 2023),170

π∗(y|x) = Z(x)πinit(y|x)e
1
β
r(x,y)

, (3)171

where Z(x) is the partition function that normal-172

izes the action probability given x.173

Group relative policy optimization. Unlike174

PPO, recent works exclude parameterized value175

models (Ahmadian et al., 2024; Kazemnejad et al.,176

2024; Wu et al., 2024), including group relative177

policy optimization (Shao et al., 2024, GRPO).178

GRPO leverages the PPO-style clipped surro-179

gate objective but calculates the policy gradient by180

weighting the log-likelihood of each trajectory with181

its advantage, thus removing the need for a critic182

(Vojnovic and Yun, 2025; Mroueh, 2025). For each183

prompt, G sampled responses and their reward ri184

is used to calculate the advantage Âi:185

Âi =
ri −mean(r1, . . . , rG)

std(r1, . . . , rG)
, (4)186

where mean(·) and std(·) are the average and stan-187

dard deviation of the input values. The effective-188

ness of GRPO is especially highlighted in the tasks189

with verifiable reward stipulated through the binary190

reward functions (Lambert et al., 2024; Guo et al., 191

2025; Wei et al., 2025): 192

racc(x,y) =

{
1 if output is correct
0 otherwise.

(5) 193

4 Learnability in GRPO and Online 194

Difficulty Filtering 195

In this section, we analyze the learnability of the 196

prompt in RL with language model environments 197

under binary rewards. We show that prompts that 198

are either too easy or too hard yield no learning sig- 199

nal (§4.2), while intermediate ones—characterized 200

by high reward variance—maximize the gradient 201

information (§4.3). Building on these insights, 202

we propose a balanced online difficulty filtering 203

(§4.4 and §4.5) to optimize GRPO training. 204

4.1 Background: Prompt-level learnability 205

The optimal value function and the partition func- 206

tion in the soft RL setting (Schulman et al., 2018; 207

Richemond et al., 2024) are defined as: 208

V ∗(x) := β logEy∼πinit(·|x)

[
e

1
β
r(x,y)

]
(6) 209

Z(x) = exp

(
1

β
V ∗(x)

)
. (7) 210

Using V ∗(x) in Equation (3), the log ratio between 211

πinit and π∗ can be expressed as: 212

log
π∗(y|x)
πinit(y|x)

=
1

β

(
r(x,y)− V ∗(x)

)
. (8) 213

Taking the expectation with respect to πinit yields: 214

Ey∼πinit(·|x)

[
log

π∗(y|x)
πinit(y|x)

]
=

1

β
Ey∼πinit(·|x) [r(x,y)]−

1

β
V ∗(x),

(9) 215

where the right-hand side (RHS) represents a soft- 216

RL variant of the advantage function scaled by β−1 217

(Haarnoja et al., 2017; Schulman et al., 2018), as 218

Eπinit [r(x,y)] can be interpreted as Q-function. 219

And the left-hand side (LHS) corresponds to the 220

negative reverse KL divergence between πinit and 221

π∗ (Rafailov et al., 2024): 222

DKL (πinit(y|x)|π∗(y ∥x))

= −Ey∼πinit(·|x)

[
log

π∗(y|x)
πinit(y|x)

]
.

(10) 223
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Learnability in binary reward case. For the bi-224

nary reward racc in Equation (5), the reward distri-225

bution is Bernoulli with parameter p(x) for prompt226

x, policy π, and y ∼ π(·|x), which we refer to as227

“pass rate”:228

p(x) = Eπinit [racc(x,y)] , (11)229

and variance p(x)(1− p(x)). Here, we categorize230

the prompts into five categories:231

1. Absolute-hard (xHard, p(xHard) = 0)232

2. Soft-hard (xhard, p(xhard) = ϵ)233

3. Intermediate (xinter, ϵ ≤ p(xinter) ≤ 1− ϵ)234

4. Soft-easy (xeasy, p(xeasy) = 1− ϵ)235

5. Absolute-easy (xEasy, p(xEasy) = 1)236

where ϵ is a small positive constant satisfying 0 ≪237

ϵ < 0.5. The variance is zero if and only if p(x) =238

0 or p(x) = 1, corresponding to absolute hard and239

absolute easy prompts, respectively.240

4.2 Case 1: Learnability in absolute prompts241

For absolute prompts xHard and xEasy, both the242

expected reward and the state value are zero and243

one, respectively. With xHard, the expected reward244

accuracy xHard and the state value remains 0. In245

the meantime, xEasy leads them to be 1.246

By Equation (9), the expected log ratio between247

πinit and π∗ become zero, implying that πinit is248

already optimal given the initial model:249

DKL (πinit(y|x) ∥π∗(y|x)) = 0

when x ∈ {xHard,xEasy} .
(12)250

Therefore, absolute-hard and absolute-easy251

prompts (p(x) ∈ {0, 1}) do not contribute useful252

gradient information during RL training. For253

GRPO in specific, this is an intuitive result as the254

advantage Â in GRPO naturally becomes zero for255

every rollout by Equation (4).256

4.3 Case 2: Learnability in soft prompts257

Next, we show that the prompts with p(x) ≃ 0.5258

have the largest learnability, thereby preserving the259

prompts with ϵ ≤ p(x) ≤ 1− ϵ that maximize the260

effectiveness in the RL phase.261

Reward variance as a lower bound of opti-262

mal divergence. Regarding racc(x,y) with y ∼263

πinit(·|x) is Bernoulli, we can rewrite V ∗(x) as:264

V ∗(x) = β log

(
(1− p(x)) + p(x) exp

(
1

β

))
(13)265

by substituting Eπinit [exp (r(x,y)/β)] through a 266

simple exponential transformation of Bernoulli dis- 267

tribution. With the second order Taylor expansion 268

of exp (1/β) and applying it to Equation (9), 269

Ey∼πinit(·|x)

[
log

π∗(y|x)
πinit(y|x)

]
=

p(x)

β
− log

(
(1− p(x)) + p(x) exp

(
1

β

))
≤ − 1

2β2
p(x)(1− p(x)).

(14)

270

Here, RHS is proportional to the variance of 271

Bernoulli(p(x)). Thus, the reward variance deter- 272

mines the lower bound of the divergence between 273

πinit and π∗ given the prompt x: 274

DKL (πinit(y|x) ∥π∗(y|x)) ≥ p(x)(1− p(x))

2β2
,

(15) 275

supporting that the prompts with p(x) ≃ 0.5 have 276

the largest learnability. 277

Hence, soft-hard (p(xhard) = ϵ) and soft-easy 278

(p(xeasy) = 1− ϵ) prompts are expected to provide 279

marginal learnability, and intermediate prompts 280

(ϵ ≤ p(x) ≤ 1− ϵ) provides the strongest learning 281

signal. See Appendix B for the full derivation. 282

4.4 Method: online difficulty filtering with 283

fixed batch size 284

From this vein, it is reasonable to comprise the 285

input prompt set with intermediate difficulty. Fur- 286

thermore, balanced difficulty in the prompt set en- 287

courages balanced model updates for penalizing 288

bad trajectories and reinforcing good trajectories 289

in GRPO (Mroueh, 2025). 290

We analyze an online difficulty filtering ap- 291

proach that ensures a fixed batch size throughout 292

training for a reasoning-oriented agent. Unlike 293

static curricula with predefined difficulty orderings 294

in problems (Yang et al., 2024b; Team et al., 2025; 295

Li et al., 2025), our approach dynamically assesses 296

difficulty on the fly in each training step and applies 297

difficulty filtering logic following the theoretical 298

insights studied in §4. We describe the detailed pro- 299

cess in Algorithm 1 and the high-level illustration 300

of the algorithm in Figure 4 in Appendix A. 301

Online difficulty filtering with sample success 302

rate for learnability. First, we fill the batch B(t) 303

of the training step t with filtered examples by mea- 304

suring the success rate p(x) (11) of each prompt x 305
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Algorithm 1 Iterative GRPO with Online Difficulty Filtering
Require: Initial policy model πinit; Reward r; Prompts queueQ; Pass rate thresholds TLow, THigh; Batch size N ; Group size G;

racc (5); Visit count vc(x).
1: Pactive: The set of examples currently undergoing asynchronous rollout.
2: Cmax: The maximum number of examples that can be processed concurrently.
3: function fasync(x)
4: {yi}Gi=1 ∼ πθ(· | x)
5: if TLow ≤ 1

G

∑G
i=1 racc(x,yi) ≤ THigh then

6: B(t) ← B(t) ∪
{
(x, {yi}Gi=1, {r(x,yi)}Gi=1)

}
7: vc(x)← vc(x) + 1

8: Initialize policy model πθ ← πinit

9: Initialize visit count vc(x)← 0 for all x ∈ D
10: for iteration = 1, . . . , I do
11: Initialize reference model πref ← πθ

12: for step = 1, . . . ,M do
13: Initialize B(t) ← ∅, Pactive ← ∅
14: Sort examples by visit countQ ← sortvc(D)
15: while |B(t)| < N do
16: if |Pactive| < Cmax then
17: x← nextExample(Q)
18: Pactive ← Pactive ∪ fasync(x)

19: Cancel Pactive
20: Compute Âi for yi in B(t) through group relative advantage estimation (4).
21: Update the policy model πθ by maximizing the GRPO objective.
22: Output πθ

using sampled rollouts with size of G as in Equa-306

tion (16). With the predefined difficulty threshold307

TLow and THigh, we asynchronously filter and fill308

the batch to meet the fixed batch size.309

Ensuring fixed batch size with asynchronous310

sampling and efficient batching. While we311

showed that online difficulty filtering could max-312

imize learnability in GRPO, naive filtering could313

result in inconsistent training batch size, leading to314

training instability and degraded performance (Li315

et al., 2022). For this reason, we ensure the fixed316

batch size to |B| = N .317

Rollouts for each prompt are sampled asyn-318

chronously and in parallel, enabling continuous319

batching of prompts and rollouts (Daniel et al.,320

2023; Kwon et al., 2023; Noukhovitch et al., 2025).321

Each prompt’s visit count, vc(x), is incremented322

after generating G rollouts, ensuring it isn’t re-323

processed in the same iteration. Moreover, the ac-324

tive rollout process Pactive is halted once the batch325

capacity is reached, allowing prompt training with326

the collected data. This sampling-based frame-327

work is compatible with Monte Carlo methods such328

as RLOO (Ahmadian et al., 2024) and VinePPO329

(Kazemnejad et al., 2024).330

4.5 Difficulty filtering strategies331

We mainly experiment two different difficulty filter-332

ing strategies, namely balanced difficulty filtering333

and skewed difficulty filtering: 334

1. Balanced difficulty filtering: We set the 335

thresholds to be symmetric to the success rate 336

of 0.5: e.g., THigh = 0.8 and TLow = 0.2. 337

2. Skewed difficulty filtering: We set asymmet- 338

ric thresholds, only filtering either easy or hard 339

prompts: e.g., THigh = 0.6 and TLow = 0. 340

We test if incorporating either side of extreme suc- 341

cess rate cases can boost the performance of online 342

difficulty filtering in GRPO, even though the the- 343

oretical learnability for either side has the same 344

lower bound as analyzed in §4.3. 345

5 Experiments 346

5.1 Experimental Setup 347

Supervised fine-tuning. Before RORL experi- 348

ments, we fine-tune Qwen2.5-3B base (Yang et al., 349

2024a) as a cold start, following Guo et al. (2025). 350

Specifically, we curate 1.1K verified problem- 351

solution pairs, with math problems sampled from 352

NuminaMath (Li et al., 2024) and solutions dis- 353

tilled from DeepSeek-R1 (Guo et al., 2025). 354

Reinforcement learning. For RORL, we employ 355

GRPO on top of the SFT checkpoint. In each train- 356

ing step, the model generates 16 rollouts for 16 357

prompts (drawn from NuminaMath problems) and 358

receives a reward based on their correctness. We 359
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Method Difficulty Filter MATH500 AIME AMC Minerva. Olympiad. Avg.

SFT - 49.8 0.0 20.5 13.2 17.3 20.2

GRPO
w/ Offline
Filtering

Curation
External model 59.6 6.6 27.7 24.3 23.9 28.4
Initial model 55.6 10.0 28.9 18.8 18.2 26.3

Schedule
External model 57.8 10.0 28.9 20.6 21.5 27.8
Initial model 57.0 3.3 28.9 19.1 24.9 26.7

GRPO
w/ Online
Filtering

(Ours)

Plain
0 ≤ p(x) ≤ 1 57.2 3.3 30.1 18.7 22.2 26.3

Skewed
0 < p(x) ≤ 1 57.0 0.0 26.5 19.8 21.4 24.9
0.2 < p(x) ≤ 1 60.4 0.0 27.7 17.2 24.5 25.9
0.4 < p(x) ≤ 1 55.8 0.0 21.7 19.9 21.6 23.8
0 ≤ p(x) < 1.0 55.4 3.3 22.8 19.8 19.8 24.2
0 ≤ p(x) < 0.8 56.2 0.0 28.9 17.2 21.7 24.8
0 ≤ p(x) < 0.6 56.2 3.3 26.5 21.3 21.6 25.8

Balanced
0 < p(x) < 1 60.8 3.3 31.3 18.0 27.3 27.3
0.1 < p(x) < 0.9 58.8 13.3 25.3 22.4 22.2 28.4
0.2 < p(x) < 0.8 62.2 10.0 30.1 20.5 26.3 29.8
0.3 < p(x) < 0.7 64.6 6.6 28.9 25.4 24.7 30.1
0.4 < p(x) < 0.6 60.2 6.6 32.8 25.0 24.9 29.9

Table 1: Five math reasoning benchmark evaluation results with Qwen2.5-3B. “Minerva.” and “Olympiad.” refer to
MinervaMath and OlympiadBench. “External” and “Initial” in offline filtering indicate using Qwen2.5-7B-Instruct
and our SFT model as difficulty proxy for filtering. p(x) (11) is the pass rate, the average correctness of rollouts.
The highest and the second highest scores in each benchmark are highlighted with bold and underline, respectively.

leave out 1,024 problems as a validation set. We360

also add a format reward and a language reward as361

in Guo et al. (2025). Additional training details for362

SFT and RORL are reported in the Appendix C.363

5.2 Experimental design364

Different strategies in online difficulty filter-365

ing. Along with the plain GRPO without any366

prompt filtering, we test the online difficulty367

filtering with two different strategies introduced368

in §4.5: i.e., balanced and skewed filtering. For369

the balanced setting, we test (TLow, THigh) ∈370

{(0, 1), (0.1, 0.9), (0.2, 0.8), (0.3, 0.7), (0.4, 0.6)}.371

For a skewed setting, we sweep TLow in372

{0, 0.2, 0.4} when THigh = 1 and THigh in373

{0.6, 0.8, 1} when TLow = 0.374

Comparison against existing offline filtering375

methods. We mainly compare two offline dif-376

ficulty filtering methods with our approach: offline377

data curation (Yang et al., 2024b; Cui et al., 2025;378

Muennighoff et al., 2025; Ye et al., 2025) and of-379

fline scheduling (Team et al., 2025; Li et al., 2025).380

Offline data curation refers to the strategy that fil-381

ters the problems by their difficulty before training,382

and offline scheduling additionally orders the train-383

ing batches accordingly. For both offline strategies, 384

we used Qwen2.5-7B-Instruct (Yang et al., 2024a) 385

or our SFT model as the difficulty proxies. 386

Evaluation Benchmarks. We evaluate pass@1 387

across math reasoning benchmarks of varying diffi- 388

culty levels: MATH500 (Hendrycks et al., 2021), 389

AIME (Li et al., 2024), AMC (Li et al., 2024), Min- 390

ervaMath (Lewkowycz et al., 2022), and Olympiad- 391

Bench (He et al., 2024) (See Appendix D). 392

6 Results and Analysis 393

We first compare different online filtering strate- 394

gies, balanced and skewed online filtering, in §6.1. 395

Then, we compare with existing offline difficulty 396

filtering methods, analyzing the impact of different 397

difficulty assessment proxies in §6.2. 398

6.1 Online difficulty filtering strategies: 399

balanced vs skewed filtering 400

Balanced online difficulty filtering consistently 401

outperforms plain GRPO. In Table 1, balanced 402

filtering (“Balanced”) outperforms the plain GRPO 403

(“Plain”) on the average score of five challenging 404

math reasoning benchmarks in all five threshold 405

choices. While fine-tuning the SFT checkpoint 406
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Figure 2: Validation reward as a function of step (2a) and relative time (2b). The horizontal dashed line indicates the
maximum reward achieved by plain GRPO, and the vertical dashed lines indicate when GRPO with each threshold
surpasses the plain GRPO’s maximum reward.

with plain GRPO without filtering reaches an aver-407

age score of 26.3%, balanced filtering achieves over408

30%, with overall improvements across the bench-409

marks. For instance, balanced filtering achieved410

up to 10% point improvement in AIME, which411

is the most difficult benchmark as shown through412

the accuracy in Table 1. This supports our theo-413

retical analysis in §4, as online difficulty filtering414

enhances the effectiveness of GRPO training com-415

pared to the plain version without any filtering.416

Progressively stricter threshold in balanced417

filtering incrementally improves performance.418

By tightening the pass rate threshold (TLow, THigh)419

for balanced filtering in Table 1, the average score420

of five benchmarks starts from 27.3% in (0, 1),421

gradually increasing until over 30% in (0.3, 0.7).422

Furthermore, simply removing examples in (0, 1)423

that do not contribute to learning in GRPO re-424

sults in a slight improvement over the baseline,425

supporting the analysis in §4.2, i.e., Â is zero for426

(0, 1). This result suggests that excluding ineffec-427

tive examples improves both performance and train-428

ing efficiency by focusing updates on meaningful429

data. These observations are further supported by430

the difficulty-level analysis in Appendix E, which431

shows consistent gains across different levels.432

Skewed online difficulty filtering is less effec-433

tive than plain GRPO. While skewed filter-434

ing (“Skewed”) in Table 1 improves average per-435

formance up to 5.7% over the SFT checkpoint,436

plain GRPO with 26.3% outperforms skewed filter-437

ing consistently in every threshold choice, which438

achieves around 24.9% to 25.9%. Overall, max-439

imizing the expected learnability in GRPO en-440

hances learning in complex reasoning tasks. As 441

discussed in §4.4, balanced filtering emerges as the 442

best choice since it balances between penalizing 443

and reinforcing diverse explorations. 444

6.2 Difficulty assessment proxy: offline vs 445

online filtering 446

We apply the offline difficulty filtering with im- 447

plementations from previous works (Yang et al., 448

2024a), with balanced threshold (TLow, THigh) = 449

(0.2, 0.8) following the results in §6.1. 450

Online difficulty filtering yields better learnabil- 451

ity than offline methods. While both offline cu- 452

ration (“Curation”) and offline scheduling (“Sched- 453

ule”) in Table 1 show marginal improvements over 454

plain GRPO with a maximum 2.1% improvement, 455

balanced online difficulty filtering consistently out- 456

performs offline methods. Within offline methods, 457

using an external difficulty assessment proxy (“Ex- 458

ternal model” in Table 1) exceeded the case using 459

the SFT checkpoint (“initial model”) on average, 460

but with varying results by benchmark. 461

6.3 Analysis 462

Online filtering improves training efficiency. 463

Figure 2 illustrates the progression of the reward in 464

the validation set, plotted against both the training 465

steps (2a) and the training time on the wall clock 466

(2b). As shown in Figure 2a, models trained with 467

balanced online difficulty filtering consistently out- 468

perform the plain GRPO (0 ≤ p(x) ≤ 1) in fewer 469

training steps. This suggests that by filtering out 470

less informative examples, the average learnability 471

within each batch increases, allowing faster learn- 472

ing progress. Interestingly, Figure 2b shows that 473
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Method Difficulty Filter MATH500 AIME AMC Minerva Olympiad Avg.

SFT – 72.6 12.1 34.9 32.0 35.1 37.3

GRPO
w/ Online
Filtering
(Ours)

Plain
0 ≤ p(x) ≤ 1 75.0 12.3 42.2 32.7 35.7 39.6

Balanced
0 < p(x) < 1 75.0 13.1 41.0 33.5 36.9 39.9
0.3 < p(x) < 0.7 75.8 15.0 47.0 33.8 37.6 41.8

Table 2: Five math reasoning benchmark evaluation results with Qwen2.5-7B. The notations follow that of Table 1.

0 20 40 60 80 100 120 140 160
Training Step (16 Unique Prompts)

0.1

0.2

0.3

0.4
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0.7

0.8

Di
ffi

cu
lty

 (1
p(

x)
)

Balanced Online Difficulty Filtering + GRPO
Before GRPO During GRPO After GRPO External Proxy

Figure 3: Perceived difficulty per batch curated through
balanced online filtering. Defining “difficulty” as 1 −
p(x), a higher difficulty implies lower sample accuracy.

this benefit carries over even when measured by474

wall-clock time by exceeding plain GRPO’s max-475

imum reward in less training time. However, we476

also observe that overly aggressive filtering, such477

as in the case of the 0.4 < p(x) < 0.6 setting, can478

require significantly more rollouts to fill a batch,479

leading to longer training times overall. These re-480

sults suggest that online filtering can enable more481

efficient learning even in real-world settings, as482

long as overly aggressive filtering is avoided.483

Online difficulty filtering is scalable. We adopt484

7B scale model within the same Qwen2.5 family485

to confirm the scalability of the proposed method.486

In Table 2, stricter filtering thresholds (0.3 <487

p(x) < 0.7) yield the strongest performance with488

3% and 5% increase in AIME and AMC, respec-489

tively. Overall, the ascending trend in Table 2490

aligns with the 3B cases, demonstrating the scala-491

bility of online difficulty filtering.492

Online difficulty filtering adapts to model capa-493

bility by presenting progressively harder exam-494

ples. In Figure 3, we collect the exact batches495

curated through balanced online difficulty filter-496

ing with (TLow, THigh) = (0.2, 0.8) and measure 497

the “difficulty” that each model perceives through 498

1 − p(x) for four checkpoints: before, during, 499

and after GRPO, along with the external proxy 500

Qwen2.5-7B-Instruct. As anticipated, the check- 501

point evaluated during GRPO maintains an aver- 502

age difficulty of around 0.5, dynamically provid- 503

ing suitably challenging examples throughout the 504

training process. However, both before and af- 505

ter GRPO checkpoints perceive incremental diffi- 506

culty increases across the curated batches, indicat- 507

ing that the training examples become objectively 508

more challenging over time. Moreover, the external 509

proxy model consistently perceives lower difficulty 510

relative to the initial model but higher difficulty 511

than the final trained model (“After GRPO”). 512

This observation, with the results in Table 1, 513

shows that offline difficulty filtering with exter- 514

nal proxies can provide partially meaningful diffi- 515

culty assessments while not being perfectly aligned 516

to the training model’s capability, shown through 517

marginal improvements in Table 1 compared to 518

plain GRPO. However, the advantage of the bal- 519

anced online difficulty filtering is still evident in 520

better benchmark results and efficiency. 521

7 Conclusion 522

We propose an online curriculum learning frame- 523

work for reasoning-oriented reinforcement learn- 524

ing (RORL) in large language models (LLMs). 525

By dynamically filtering training examples based 526

on real-time pass rates, our approach ensures that 527

the model focuses on problems within its optimal 528

learning range. Experimental results demonstrate 529

that this method improves sample efficiency and 530

final model performance, outperforming both non- 531

curriculum and offline curriculum baselines. Our 532

findings underscore the importance of adaptive ad- 533

justment of training difficulty, paving the way for 534

more effective reinforcement learning strategies for 535

reasoning models. 536
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Limitations537

Our work provides both theoretical and empir-538

ical guidelines for online difficulty filtering in539

reasoning-oriented reinforcement learning for lan-540

guage models. While our theoretical analysis can541

be applied to any verifiable task, our empirical val-542

idation was conducted solely on math reasoning543

tasks. We leave the exploration of diverse verifiable544

tasks, such as coding and scientific reasoning, for545

future work. Furthermore, we plan to investigate546

the broader applicability of our method to larger547

scales and wider model families in future research.548
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A Asynchronous Implementation of Online Difficulty Filtering829

We provide a detailed diagram depicting the practical implementation of the online difficulty filtering,830

especially with the asynchronous setting (Noukhovitch et al., 2025). The formal expression of filling the831

batch B(t) for the balanced online difficulty filtering is:832

B(t) =

{(
x, {yi, racc(x,yi)}Gi=1

)
| TLow ≤ 1

G

G∑
i=1

racc(x,yi) ≤ THigh, yi ∼ πθt(·|x)

}
. (16)833

Here, the sample mean of racc(x,yi) is an unbiased estimate of Ey∼πθt
(·|x) [racc(x,y)].

Figure 4: Illustration of the rollout process in the proposed algorithm with online difficulty filtering. Each iteration
begins by sorting the dataset based on the visit count vc(x) of each example x. A batch of unvisited or least-visited
prompts is selected, respecting a predefined concurrency limit Cmax. The asynchronous function fasync samples
responses from the current policy and evaluates them using the accuracy reward racc. Prompts with a pass rate
within the accepted range [TLow, THigh] are added to the training batch. Once the batch B reaches the target size N ,
any remaining asynchronous jobs in Pactive are canceled. The policy is then updated using the GRPO loss computed
over the collected batch.

834

12



B Learnability in Soft Prompts 835

Assuming that r(x,y) ∈ {0, 1} given the prompt x follows a Bernoulli distribution, we have: 836

P (r(x,y) = 1) = p(x) and P (r(x,y = 0) = 1− p(x). (17) 837

Defining the inner term exp
(

1
β r(x,y)

)
as the random variable Y , 838

Y =

{
1 if r(x,y) = 0,

exp
(

1
β

)
if r(x,y) = 1.

(18) 839

Thus, the expectation of Y becomes: 840

Ey∼πinit(·|x) [Y ] = Ey∼πinit(·|x)

[
exp

(
1

β
r(x,y)

)]
(19) 841

= 1 · P (r(x,y) = 0) + exp

(
1

β

)
· P (r(x,y) = 1) (20) 842

= (1− p(x)) + p · exp
(
1

β

)
, (21) 843

which leads to Equation (13) when applied to V ∗(x): 844

V ∗(x) = β log

(
(1− p(x)) + p(x) exp

(
1

β

))
. (22) 845

Recall that: 846

Ey∼πinit(·|x)

[
log

π∗(y|x)
πinit(y|x)

]
=

1

β
Ey∼πinit(·|x) [r(x,y)]−

1

β
V ∗(x), (23) 847

we can substitute Ey∼πinit(·|x) [r(x,y)] with p (x) and V ∗(x) with Equation (22), 848

Ey∼πinit(·|x)

[
log

π∗(y|x)
πinit(y|x)

]
=

p(x)

β
− log

(
(1− p(x)) + p(x) exp

(
1

β

))
. (24) 849

For small 1
β , the Taylor series expansion for the logarithm leads to: 850

log

(
(1− p(x)) + p(x) exp

(
1

β

))
= log

(
(1− p(x)) + p(x)

(
1 +

1

β
+

1

2β2
+ . . .

))
(25) 851

= log

(
1 + p(x)

(
1

β
+

1

2β2
+ . . .

))
(26) 852

≥ log

(
1 + p(x)

(
1

β
+

1

2β2

))
. (27) 853

Since log (1 + ϵ) ≥ ϵ− ϵ2

2 , we can set ϵ = p(x)
(

1
β + 1

2β2

)
: 854

log

(
(1− p(x)) + p(x) exp

(
1

β

))
≥ p(x)

(
1

β
+

1

2β2

)
− 1

2

[
p(x)

(
1

β
+

1

2β2

)]2
(28) 855

=
p(x)

β
+

p(x)

2β2
− p(x)2

2β2
+O

(
1

β3

)
(29) 856

=
p(x)

β
+

p(x)(1− p(x))

2β2
+O

(
1

β3

)
. (30) 857
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Substituting this back into the earlier equation, we obtain:858

Ey∼πinit(·|x)

[
log

π∗(y|x)
πinit(y|x)

]
≤ p(x)

β
−
(
p(x)

β
+

p(x)(1− p(x))

2β2

)
(31)859

= −p(x)(1− p(x))

2β2
. (32)860

Finally, recalling the definition of KL divergence,861

DKL (πinit(y|x)∥π∗(y|x)) = −Ey∼πinit(·|x)

[
log

π∗(y|x)
πinit(y|x)

]
, (33)862

We conclude that:863

DKL (πinit(y|x)∥π∗(y|x)) ≥ p(x)(1− p(x))

2β2
, (34)864

explicitly establishing the Bernoulli variance scaled by 1
2β2 as a lower bound of the KL divergence between865

the initial policy and the optimal policy.866

C Training Configurations867

All experiments are built on the Qwen2.5-3B base model (Yang et al., 2024a). We integrate DeepSpeed868

ZeRO-3 (Rajbhandari et al., 2020) optimization in our training pipeline to handle memory and computation869

efficiently. Both the SFT and RORL stages are conducted on a distributed setup of 8×NVIDIA A100870

(80GB) GPUs.871

Training Data Curation For SFT, we sample problems from the NuminaMath dataset (Li et al., 2024)872

and generate solutions using DeepSeek-R1 (Guo et al., 2025). Only samples with verifiably correct873

solutions are retained, and we stop once approximately 1,000 such problem-solution pairs are collected.874

The final SFT dataset contains 1,107 filtered problems. For RORL, we adopt a subset of the public dataset875

used in Cui et al. (2025)1. We specifically use only the math domain problems. This dataset provides a876

diverse pool of challenging prompts.877

Supervised fine-tuning We use a learning rate of 5× 10−6 and fine-tune it for 5 epochs. The learning878

rate schedule is linear, with the first 25 steps used for warm-up. We use a batch size of 21.879

Reinforcement learning We utilize the SGLang (Zheng et al., 2025) framework to accelerate parallel880

rollout generation, enabling efficient sampling of multiple reasoning trajectories. Training is run for 256881

steps, with empirical performance gains saturating after roughly 128 steps. Each update uses 16 sampled882

rollouts with 16 distinct prompts per batch, followed by a one-step policy update per rollout.883

Reward design To guide the model toward producing responses aligned with the DeepSeek R1 format,884

we introduce a format reward based on five constraints: (1) the response must begin with a ‘<think>’885

tag, (2) the ‘<think>’ section must be properly closed with a ‘</think>’ tag, (3) the ‘<think>’ section886

must be non-empty, (4) the summary section following ‘</think>’ must also be non-empty, and (5)887

the response must terminate with an eot token. Each constraint contributes 0.2 points, resulting in a888

maximum format reward of 1.0. In addition, we implement a language reward to reduce language mixing,889

especially given that all prompts during training and evaluation are in English. This reward was computed890

as the ratio of characters in the response that are alphabetic, symbolic (e.g., mathematical symbols), or891

whitespace, and ranged from 0 to 1. Lastly, we define an accuracy reward, assigning a score of 1.0 for892

correct answers and 0.0 for incorrect ones. The total reward is the sum of these three components—format,893

language, and accuracy—yielding a final reward score between 0 and 3.894

1https://huggingface.co/datasets/PRIME-RL/Eurus-2-RL-Data
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D Evaluation Benchmarks 895

We employ five different challenging math reasoning benchmarks: 896

• MATH500 (Hendrycks et al., 2021) consists of 500 problems sampled from Lightman et al. (2023), 897

maintaining topic and difficulty balance. 898

• AIME (Li et al., 2024, American Invitational Mathematics Examination) uses 30 problems from the 899

2024 official competition, while AMC (Li et al., 2024, American Mathematics Competitions) includes 900

40 problems from the 2023 official competition. Both benchmarks consist of contest-level advanced 901

mathematical problems. 902

• MinervaMath (Lewkowycz et al., 2022) evaluates quantitative reasoning with complex mathematical 903

problems at an undergraduate or Olympiad level. 904

• OlympiadBench (He et al., 2024) includes 674 open-ended text-only competition problems 905

from a broader set of 8,476 Olympiad and entrance exam questions, specifically using the 906

OE_TO_maths_en_COMP subset. 907

Inference is conducted via SGLang (Zheng et al., 2025) with top-p set to 0.95, temperature set to 0.6, and 908

the maximum number of output tokens limited to 8,192. 909

E Difficulty-Aware Performance Analysis 910

To further understand the effect of our method, we analyze performance variations based on difficulty 911

levels. 912

Benchmark-Level Difficulty Spectrum As discussed in § 5, our benchmark suite spans a wide difficulty 913

range. This is reflected in the SFT checkpoint performance of Qwen2.5-3B, which ranges from 0.0% 914

to 49.8% as shown in Table 1. We order the benchmarks in ascending difficulty according to SFT 915

performance: AIME (0.0%), MinervaMath (13.2%), OlympiadBench (17.3%), AMC (20.5%), and 916

MATH500 (49.8%). From this perspective, we observe two trends: 917

• Narrowing the difficulty threshold (i.e., tighter filtering range) generally improves performance, 918

especially on challenging tasks like MinervaMath and AIME. 919

• Harder benchmarks benefit more from filtering. For instance, AIME shows more than a 300% relative 920

improvement over SFT, and MinervaMath improves by 35%. 921

Difficulty-Level Breakdown within MATH500 We also analyze performance by difficulty levels in 922

the MATH500 benchmark. Table 3 shows that balanced filtering GRPO outperforms plain GRPO across 923

most difficulty levels, especially on harder ones (Level 3–5).

Difficulty Plain (0 ≤ p(x) ≤ 1 ) w/ Online Filtering (0 < p(x) < 1) w/ Online Filtering (0.3 < p(x) < 0.7)

Level 1 88.37 88.37 83.72
Level 2 78.89 83.33 83.33
Level 3 71.43 70.48 79.05
Level 4 47.66 50.78 55.47
Level 5 30.60 32.84 32.09

Table 3: Accuracy (%) of GRPO-trained models on MATH500 by difficulty level. The highest score for each level
is in bold.

924
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