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ABSTRACT

Unsupervised fine-grained class clustering is a practical yet challenging task due
to the difficulty of feature representations learning of subtle object details. We
introduce C3-GAN, a method that leverages the categorical inference power of
InfoGAN with contrastive learning. We aim to learn feature representations that en-
courage a dataset to form distinct cluster boundaries in the embedding space, while
also maximizing the mutual information between the latent code and its image ob-
servation. Our approach is to train a discriminator, which is also used for inferring
clusters, to optimize the contrastive loss, where image-latent pairs that maximize
the mutual information are considered as positive pairs and the rest as negative pairs.
Specifically, we map the input of a generator, which was sampled from the categor-
ical distribution, to the embedding space of the discriminator and let them act as a
cluster centroid. In this way, C3-GAN succeeded in learning a clustering-friendly
embedding space where each cluster is distinctively separable. Experimental results
show that C3-GAN achieved the state-of-the-art clustering performance on four
fine-grained image datasets, while also alleviating the mode collapse phenomenon.
Code is available at https://github.com/naver-ai/c3-gan.

1 INTRODUCTION

Unsupervised fine-grained class clustering is a task that classifies images of very similar ob-
jects (Benny & Wolf, 2020). While a line of works based on multiview-based self-supervised
learning (SSL) methods (He et al., 2020; Chen et al., 2020; Grill et al., 2020) shows promising results
on a conventional coarse-grained class clustering task (Van Gansbeke et al., 2020), it is difficult for a
fine-grained class clustering task to benefit from these methods for two reasons. First, though it is
more challenging and ambiguous for finding distinctions between fine-grained classes, datasets for
this type of task are difficult to be large-scale. We visualized this idea in Figure 1 which shows that
finding distinctions between fine-grained classes is more difficult than doing so for coarse-grained
object classes. Second, the augmentation processes in these methods consider subtle changes in color
or shape, that actually play an important role in differentiating between classes, as noisy factors. Thus,
it is required to find an another approach for a fine-grained class clustering task.

Generative adversarial networks (GAN) (Goodfellow et al., 2014) can be a solution as it needs to
learn fine details to generate realistic images. A possible starting point could be InfoGAN (Chen et al.,
2016), that succeeded in unsupervised categorical inference on MNIST dataset (LeCun et al., 2010)
by maximizing the mutual information between the latent code and its observation. The only prior
knowledge employed was the number of classes and the fact that the data is uniformly distributed over
the classes. FineGAN (Singh et al., 2019) extends InfoGAN by integrating the scene decomposition
method into the framework, and learns three latent codes for the hierarchical scene generation. Each
code, that is sampled from the independent uniform categorical distribution, is sequentially injected
to multiple generators for a background, a super-class object, and a sub-class object image syntheses.
FineGAN demonstrated that two latent codes for object image generations could be also utilized for
clustering real images into their fine-grained classes, outperforming conventional coarse-grained class
clustering methods. This result implies that extracting only foreground features is very helpful for the
given task. However, FineGAN requires object bounding box annotations and additional training of
classifiers, which greatly hinder its applicability. Also, the method lacks the ability of learning the
distribution of real images, due to the mode collapse phenomenon (Higgins et al., 2017).
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(a) Fine-grained Class Clustering (b) Coarse-grained Class Clustering

Figure 1: Fine-grained vs. Coarse-grained. We compare two sets of 4 classes, each selected from
(a) CUB (Wah et al., 2011) and (b) STL (Coates et al., 2011) datasets. The diagrams visualize image
features extracted from ResNet-18 that was trained on each dataset via the method of SimCLR (Chen
et al., 2020). The color of each dot corresponds to its ground-truth class. Both in the image-level and
the feature-level, the clusters in (a) are way more indistinguishable than those in (b).

In this paper, we propose Constrastive fine-grained Class Clustering GAN (C3-GAN) that deals with
the aforementioned problems. We first remove the reliance on human-annotated labels by adopting
the method for unsupervised scene decomposition learning that is inspired by PerturbGAN (Bielski
& Favaro, 2019). We then adopt contrastive learning method (van den Oord et al., 2018) for training
a discriminator by defining pairs of image-latent features that maximize the mutual information of
the two as positive pairs and the rest as negative pairs. This is based on the intuition that optimal
results would be obtained if cluster centroids are distributed in a way that each cluster can be linearly
separable (Wang & Isola, 2020). In specific, we map the input of a generator that was sampled from
the categorical distribution onto the embedding space of the discriminator, and let it act as a cluster
centroid that pulls features of images that were generated with its specific value. Since the relations
with other latent values are set as negative pairs, each cluster would be placed farther away from each
other by the nature of the contrastive loss. We have conducted experiments on four fine-grained image
datasets including CUB, Stanford Cars, Stanford Dogs and Oxford Flower, and demonstrated the
effectiveness of C3-GAN by showing that it achieves the state-of-the-art clustering performance on
all datasets. Moreover, the induced embedding space of the discriminator turned out to be also helpful
for alleviating the mode collapse issue. We conjecture that this is because the generator is additionally
required to be able to synthesize a certain number of object classes with distinct characteristics.

Our main contributions are summarized as follows:

• We propose a novel form of the information-theoretic regularization to learn a clustering-
friendly embedding space that leads a dataset to form distinct cluster boundaries without
falling into a degenerated solution. With this method, our C3-GAN achieved the state-of-
the-art fine-grained class clustering performance on four fine-grained image datasets.

• By adopting scene decomposition learning method that does not require any human-
annotated labels, our method can be applied to more diverse datasets.

• Our method of training a discriminator is not only suitable for class clustering task, but also
good at alleviating the mode collapse issue of GANs.

2 RELATED WORK

Unsupervised Clustering. Unsupervised clustering methods can be mainly categorized into the
information theory-based and Expectation–Maximization(EM)-based approaches. The first approach
aims to maximize the mutual information between original images and their augmentations to train
a model in an end-to-end fashion (Ji et al., 2019; Zhong et al., 2020). To enhance the performance,
IIC (Ji et al., 2019) additionally trains the auxiliary branch using an unlabeled large dataset, and
DRC (Zhong et al., 2020) optimizes the contrastive loss on logit features for reducing the intra-class
feature variation. EM-based methods decouple the cluster assignment process (E-step) and the feature
representations learning process (M-step) to learn more robust representations. Specifically, the
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feature representations are learnt by not only fitting the proto-clustering results estimated in the
expectation step, but also optimizing particular pretext tasks. The clusters are either inferred by
k-means clustering (Xie et al., 2016; Caron et al., 2018; Liu et al., 2020; Li et al., 2021) or training of
an additional encoder (Dizaji et al., 2017). However, many of these methods suffer from an uneven
allocation issue of k-means clustering, which could result in a degenerate solution. For this reason,
SCAN (Van Gansbeke et al., 2020) proposes the novel objective function that does not require the
k-means clustering process. Based on the observation that K nearest neighbors of each feature point
belong to the same ground-truth cluster with a high probability, it trains a classifier that assigns
identical cluster id to all nearest neighbors, which significantly improved the clustering performance.
Unlike these prior methods where the cluster centroids are not learnt in an end-to-end manner or not
the subject of interest, C3-GAN investigate and try to improve their distribution for achieving better
clustering performance.

Unsupervised Scene Decomposition. Heavy cost of annotating segmentation masks have drawn
active research efforts on developing unsupervised segmentation methods. Some works address the
task in the information-theoretic perspective (Ji et al., 2019; Savarese et al., 2021), but a majority of
the works are based on GANs. ReDO (Chen et al. (2019)) learns to infer object masks by redrawing
an input scene, and PerturbGAN (Bielski & Favaro (2019)), that has a separate background and
foreground generator, triggers scene decomposition by randomly perturbing foreground images.
Meanwhile, another line of works utilizes pre-trained high quality generative models such as Style-
GAN (Karras et al., 2019; 2020) and BigGAN (Brock et al., 2019). Labels4Free (Abdal et al., 2021)
trains a segmentation network on top of the pre-trained StyleGAN, utilizing the fact that inputs of
each layer of StyleGAN have different degrees of contribution to foreground synthesis. Voynov &
Babenko (2020) and Melas-Kyriazi et al. (2021) explore the latent space of pre-trained GANs to find
the perturbing directions that can be used for inducing foreground masks. While all these methods
aim to infer foreground masks by training an additional mask predictor with synthesized data, or
projecting real images into the latent space of the pre-trained GAN, C3-GAN is rather focusing on
the semantic representations learning of foreground objects.

Fine-grained Feature Learning. For fine-grained feature representations learning, some works
(Singh et al., 2019; Li et al., 2020; Benny & Wolf, 2020) have extended InfoGAN by integrating the
scene decomposition learning method into the framework with multiple pairs of adversarial networks.
FineGAN (Singh et al., 2019) learns multiple latent codes to use them for sequential generation
of a background, a super-class object, and a sub-class object image, respectively. MixNMatch (Li
et al., 2020) and OneGAN (Benny & Wolf, 2020) extend FineGAN with multiple encoders to
directly infer these latent codes from real images and use them for manipulating images. Since
this autoencoder-based structure could evoke a degenerate solution where only one generator is
responsible for synthesizing the entire image, MixNMatch conducts adversarial learning on the joint
distribution of the latent code and image (Donahue et al., 2017), while OneGAN trains a model in
two stages by training generators first and encoders next. Even though these works have succeeded in
generating images in a hierarchical manner and learnt latent codes that can be used for clustering real
images corresponding to their fine-grained classes, they cannot be applied to datasets that have no
object bounding box annotations. Moreover, they require a training of additional classifiers using a set
of generated images annotated with their latent values. The proposed model in this paper, C3-GAN,
can learn the latent code of foreground region in a completely unsupervised way, and simply utilize
the discriminator for inferring the clusters of a given dataset.

3 METHOD

Given a dataset X = {xi}N−1i=0 consisting of single object images, we aim to distribute data into Y
semantically fine-grained classes. Our GAN-based model infers the clusters of data in the semantic
feature space H ∈ Rdh of the discriminator D. The feature space H is learnt by maximizing
the mutual information between the latent code, which is the input of a generator, and its image
observation x̂. For more robust feature representations learning, we decompose a scene into a
background and foreground region and associate the latent code mainly with the foreground region.
We especially reformulate the information-theoretic regularization to optimize the contrastive loss
defined for latent-image feature pairs to induce each cluster to be linearly separated in the feature
space.
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Figure 2: Overview of C3-GAN. It synthesizes a background image x̂bg and a foreground image
x̂fg from the background generator Gbg and the foreground generator Gfg respectively. To trigger
this decomposition, we perturb a foreground image with the random affine transformation matrix Tθ
right before the composition of two image components. The association between the latent code c
and its image observation x̂ is learnt by optimizing the information-theoretic regularization that is
based on the contrastive loss defined for their feature representations in the embedding space of the
discriminator. The inference of fine-grained class clustering is made based on the distances between
images’ semantic features {hi(•)}N−1i=0 , that are depicted with dotted lines, and the set of cluster
centroids {li(�)}Y−1i=0 which are the fixed number of embedded latent codes c.

3.1 PRELIMINARIES

Our proposed method is built on FineGAN (Singh et al., 2019), which is in turn based on InfoGAN
(Chen et al., 2016). InfoGAN learns to associate the latent code c with its observation x̂ by inducing
the model to maximize the mutual information of the two, I(c, x̂). The latent code c can take
various form depending on the prior knowledge of the factor that we want to infer, and is set to
follow the uniform categorical distribution when our purpose is to make the categorical inference on
given dataset. FineGAN learns three such latent codes for hierarchical image generation, and each
code is respectively used for background, super-class object, and sub-class object image synthesis.
To facilitate this decomposition, FineGAN employs multiple pairs of generator and discriminator
and trains an auxiliary background classifier using object bounding box annotations. It further
demonstrates that the latent codes for object image synthesis can be also utilized for clustering an
image dataset according to their fine-grained classes.

Our method differs from FineGAN in that, i) it employs the discriminator D to infer clusters
without requiring additional training of classifiers, and ii) it learns only one latent code c that
corresponds to the fine-grained class of a foreground object. The separate random noise z is kept,
that is another input of the generator, to model variations occurring in a background region. The
noise value z ∈ Rdz is sampled from the normal distribution N (0, I), and the latent code c ∈ RY
is an 1-hot vector where the index k that makes ck = 1 is sampled from the uniform categorical
distribution, U(0, Y −1). Specifically, the background generatorGbg synthesizes a background image
x̂bg ∈ R3×H×W solely from the random noise z, and the foreground generator Gfg synthesizes a
foreground mask m̂ ∈ R1×H×W and an object image t̂ ∈ R3×H×W using both z and c. To model
foreground variations, we convert an 1-hot latent code c to a variable c′ ∈ Rdc whose value is sampled
from the gaussian distribution N(µc, σc) where the mean µc and diagonal covariance matrix σc are
computed according to the original code c (Zhang et al., 2017). The final image x̂ ∈ R3×H×W is
the composition of generated image components summed by the hadamard product, as described in
Fig. 2.

To achieve a fully unsupervised method, we leverage the scene decomposition method proposed by
PerturbGAN (Bielski & Favaro, 2019). In specific, scene decomposition is triggered by perturbing
foreground components m̂ and t̂ with the random affine transformation matrix Tθ right before the
final image composition. The parameters θ of the random matrix Tθ include a rotation angle, scaling
factor and translation distance, and they are all randomly sampled from the uniform distributions with
predefined value ranges.

In summation, the image generation process is described as below:

c′ ∼ N(µc, σc), x̂bg, m̂, t̂ = G(z, c′),

m̂′, t̂′ = Tθ(m̂, t̂), x̂ = x̂bg � (1− m̂′) + t̂′ � m̂′.
(1)
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3.2 CONTRASTIVE FINE-GRAINED CLASS CLUSTERING

We assume that data would be well clustered when i) they form explicitly discernable cluster
boundaries in the embedding space H, and ii) each cluster centroid ly ∈ Rdh condenses distinct
semantic features. This is the exact space that the discriminator of InfoGAN aims to approach when
the latent code c is sampled from the uniform categorical distribution, U(0, Y − 1). However, since it
jointly optimizes the adversarial loss, the model has a possibility of falling into the mode collapse
phenomenon where the generator G covers only a few confident modes (classes) to easily deceive
the discriminator D. This is the reason why InfoGAN lacks the ability of inferring clusters on real
image datasets. To handle this problem, we propose a new form of an auxiliary probability Q(c|x)
that represents the mutual information between the latent code c and image observation x̂.

Let us now describe the objective functions with mathematical definitions. The discriminator D aims
to learn an adversarial feature r ∈ R for the image authenticity discrimination, and a semantic feature
h ∈ Rdh for optimizing the information-theoretic regularization. The features are encoded from
separate branches ψrx and ψhx , which were split at the end of the base encoder of the discriminator
Dbase. The adversarial feature r is learnt with the hinge loss as represented in the equations below:

LadvD = Ex∼X,x̂∼G(z,c)[ min(0, 1− r) + min(0, 1 + r̂) ], LadvG = Ex̂∼G(z,c)[−r̂ ]
s.t. r = ψrx(Dbase(x)).

(2)

Meanwhile, the semantic feature h can be considered as a logit in a classification model. In a
supervised setting where ground-truth class labels are given, data mapped into an embedding space
gradually form discernable cluster boundaries as the training proceeds, similar to the one in Fig. 1
(b). However, in an unsupervised setting, it is difficult to attain such space simply by maximizing the
mutual information between the latent code c and its observation x̂ for the aforementioned reasons.
Our solution is to formulate an auxiliary probability Q(c|x) in the form of contrastive loss. We map
the latent code c onto the embedding spaceH with a simple linear layer ψc, and let it act as a cluster
centroid (l) that pulls semantic features of images (h) that were generated from its specific value. By
setting the relations with other latent codes as negative pairs, cluster centroids are set to be pushing
each others and form distinguishable boundaries in the embedding space. Specifically, we expect the
semantic feature h to be mapped to the k-th cluster centroid, where k is the index of its corresponding
latent code c that makes ck = 1, while distances to other centroids ly are far enough to maximize
the mutual information of the two. To enhance the robustness of the model and assist the scene
decomposition learning, we additionally maximize the mutual information between the latent code c
and masked foreground images x̂fg. To sum up, the proposed information-theoretic objectives are
defined as follows:

Linfo = Ex̂∼G(z,c)[− log q̂k ], Linfo
fg

= Ex̂∼G(z,c)[− log q̂k
fg ]

s.t. qk = Q(ck = 1|x) = exp(sim(h, lk)/τ)∑Y−1
y=0 exp(sim(h, ly)/τ)

, h = ψhx(Dbase(x)), l = ψc(IY ).
(3)

where sim(a, b) is the cosine distance between vectors a and b, y is an index of a cluster, and τ is the
temperature of the softmax function. IY denotes the identity matrix with the size of Y × Y .

Additional Regularizations Following the prior works (Ji et al., 2019; Van Gansbeke et al., 2020),
we adopt the overclustering strategy to help the model learn more expressive feature set. We also
regularize the prediction on a real image q ∈ RY by minimizing its entropy H(q) to promote each
data to be mapped to only one cluster id with high confidence, along with the minimization of the
KL divergence between batch-wisely averaged prediction q̄ and the uniform distribution u, that is
for avoiding a degenerated solution where only a few clusters are overly allocated. Furthermore,
we optimize the contrastive loss (Chen et al., 2020) defined for real image features h to assist the
semantic feature learning. To summarize, the regularizations on real images are as follows:

Limg_cont = Ex∼X [−log exp(sim(h, h′)/τ)∑N−1
j=0 exp(sim(h, h′j)/τ)

],

Lentropy = Ex∼X [H(q)] +DKL(q̄‖u) s.t. q̄ = Ex∼X [q].

(4)
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We also enforce a foreground mask m̂ to be more like a hard mask and take up a reasonable portion
of a scene by employing below regularization function.

Lmask = Ex̂∼G(z,c)[ Ehw[−m̂ log(m̂)− (1− m̂) log(1− m̂)]

+max(0, 0.1− Ehw[m̂]) + max(0,Ehw[m̂]− 0.9) ].
(5)

In sum, C3-GAN is trained alternately optimizing the following objective functions for D and G:

min
D,G

LadvD + LadvG + λ0Linfo + λ1Linfo
fg

+ λ2Limg_cont + λ3Lentropy + λ4Lmask. (6)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets. We tested our method on 4 datasets that consist of single object images. i) CUB (Wah
et al., 2011): 5,994 training and 5,794 test images of 200 bird species. ii) Stanford Cars (Krause
et al., 2013): 8,144 training and 8,041 test images of 196 car models. iii) Stanford Dogs (Khosla
et al., 2011): 12,000 training and 8,580 test images of 120 dog species. iv) Oxford Flower (Nilsback
& Zisserman, 2008): 2,040 training and 6,149 test images of 102 flower categories. Due to the small
number of training images, all models for CUB and Oxford Flower datasets were trained with the
entire dataset as the prior works did (Singh et al., 2019; Li et al., 2020; Benny & Wolf, 2020).

Implementation Details. The weights of the loss terms (λ0, λ1, λ2, λ3, λ4) are set as (5, 1, 1, 0.1,
1), and the temperature τ is set as 0.1. We utilized Adam optimizer of which learning rate is 0.0002
and values of momentum coefficients are (0.5, 0.999). The architectural specification of C3-GAN
and the values of hyperparameters, such as the parameter ranges of the random affine transformation
and the number of clusters Y can be found in Appendix A.1 and Appendix A.2, respectively.

Baselines. We first compared C3-GAN with IIC (Ji et al., 2019) in order to emphasize the dif-
ference between the coarse-grained and fine-grained class clustering task, since it achieved decent
performance with sobel filtered images where color and texture informations are discarded. We also
experimented with simple baseline of SimCLR+K-Means (Chen et al., 2020) to claim that optimiz-
ing instance discrimination task is not enough for fine-grained feature learning. SCAN (Van Gansbeke
et al., 2020), the work that shows a remarkable coarse-grained class clustering performance, is also
compared to investigate whether the method of inducing consistent predictions for all nearest neigh-
bors would be helpful for the fine-grained class clustering task as well. Finally, we compared with
the methods that learn hierarchically fine-grained feature representations, such as FineGAN (Singh
et al., 2019), MixNMatch (Li et al., 2020) and OneGAN (Benny & Wolf, 2020), including their base
model InfoGAN (Chen et al., 2016), to claim the efficacy of the proposed formulation that is based
on the contrastive loss. We mainly compared with the unsupervised version of them that is trained
with pseudo-labeled bounding boxes which assign edges of real images as background region.

4.2 FINE-GRAINED CLASS CLUSTERING RESULTS

Quantitative results. We evaluated clustering performance with two metrics: Accuracy (Acc) and
Normalized Mutual Information (NMI). The score of accuracy is calculated following the optimal
mapping between cluster indices and real classes inferred by Hungarian algorithm (Kuhn & Yaw,
1955) for a given contingency table. We presented the results in Table 1. As it can be seen, C3-GAN
outperforms other methods by remarkable margins in terms of Acc on all datasets. Our method
presents better or comparable performance in terms of NMI scroes as well. The results of IIC
underline that understanding only structural characteristic is not enough for the fine-grained class
clustering task. From the results of SCAN (2nd rank) and MixNMatch (3rd rank), we can conjecture
that both requiring local disentanglement of the embedding space and extracting foreground features
via scene decomposition learning can be helpful for improving the fine-grained class clustering
performance. However, it is difficult to determine whether the GAN-based methods or the SSL-
based methods are better because both approaches have similar score ranges for all metrics and
display globally entangled feature spaces as shown in Fig. 3 (a) and (b). Since C3-GAN resembles
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Acc ↑ NMI ↑
Bird Car Dog Flower Bird Car Dog Flower

FineGAN† (Singh et al., 2019) 12.6 7.8 7.9 - 0.40 0.35 0.23 -
MixNMatch† (Li et al., 2020) 13.6 7.9 8.9 - 0.42 0.36 0.32 -

OneGAN† (Benny & Wolf, 2020) 10.1 6.0 7.3 - 0.39 0.27 0.21 -
Fully Unsupervised Setting

IIC (Ji et al., 2019) 7.4 4.9 5.0 8.7 0.36 0.27 0.18 0.24
SimCLR (Chen et al., 2020) +k-Means 8.4 6.7 6.8 12.5 0.40 0.33 0.19 0.29

InfoGAN (Chen et al., 2016) 8.6 6.5 6.4 23.2 0.39 0.31 0.21 0.44
FineGAN w/o labels 6.9 6.8 6.0 8.1 0.37 0.33 0.22 0.24

MixNMatch w/o labels 10.2 7.3 10.3 39.0 0.41 0.34 0.30 0.57
SCAN (Van Gansbeke et al., 2020) 11.9 8.8 12.3 56.5 0.45 0.38 0.35 0.77

C3-GAN (Ours) 27.6 14.1 17.9 67.8 0.53 0.41 0.36 0.67

Table 1: Quantitative evaluation of clustering performance. † denotes that the values are reported
ones in the original papers, and the rest scores are obtained by experimenting with the released codes
of baselines on our set of evaluation datasets. Please note that the original methods of FineGAN,
MixNMatch, and OneGAN utilize human-annotated labels.

(a) MixNMatch (Li et al., 2020) (b) SCAN (Van Gansbeke et al., 2020) (c) C3-GAN (Ours)

Figure 3: Visualization of embedding spaces of MixNMatch, SCAN and C3-GAN that were trained
on CUB dataset. To this end, we reduced the semantic features of images sampled from 10 classes
into a 2-dimensional space through t-SNE. This result implies that only C3-GAN has learnt the
embedding space where clusters are explicitly separable.

MixNMatch to some extent, its state-of-the-art scores can be partially explained by the fact that it
learns decomposed foreground features, but the embedding space of C3-GAN visualized in Fig. 3 (c)
implies that the performance of it has been further improved from our formulation of Q(c|x) that
enforces clusters to be distinctively distributed in the embedding space. We additionally presented the
results of qualitative analysis on clustered images inferred by the top three methods in Appendix A.3,
which better demonstrate the excellence of our method compared to prior works.

Ablation Study. We conducted an ablation study regarding three factors: i) Overclustering, ii)
Foreground perturbation, and iii) The information-theoretic regularization based on the contrastive
loss. We investigated clustering performance of C3-GAN on CUB dataset by removing each factor.
The results can be seen in Table 2. The largest performance degradation was caused by changing the
formulation of the information-theoretic regularization to a trivial softmax function. This result implies
that clustering performance has a high correlation with the degree of separability of clusters, which
was significantly improved by our method. Regarding the result of ii), we observed that C3-GAN
fails to decompose a scene when the foreground perturbation was not implemented. This degenerated
result suggests that the method of extracting only foreground features has a non-negligible amount of
influence in clustering performance. Lastly, the result of i) implies that the overclustering strategy
is also helpful for boosting performance since it allows a larger capacity for model to learn more
expressive feature set. The additional analysis on hyperparameters can be found in Appendix A.2.
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Acc ↑ NMI ↑

C3-GAN (Ours) 27.6 0.53
i) – Overclustering 22.7 0.50
ii) – Foreground perturbation 16.6 0.47
iii) – The information-theoretic regularization based on the contrastive loss 14.5 0.45

Table 2: Result of an ablation study. We observed that the largest performance degradation was caused
by changing the formulation of the information-theoretic regularization to a trivial softmax function.
The other two factors also have a non-negligible impact on performance.

Real Fake images Real Fake images Real Fake images

Background Background Background

+ Foreground + Foreground + Foreground

(a)

Fixed c and variable z Variable c and fixed z

(b)

Figure 4: Qualitative analysis of the image generation performance. We present (a) images synthesized
with the cluster indices of real images that were predicted by the discriminator, and (b) images
synthesized by controlling values of the latent code c and the random noise z.

4.3 IMAGE GENERATION RESULTS

Qualitative Results. For qualitative evaluation, we analyzed the results on CUB dataset. In Fig. 4
(a), we displayed synthesized images along with their decomposed scene elements. The images were
generated with the cluster indices of real images that were predicted by the discriminator. Considering
the consistency of foreground object features within the same class and the uniqueness of each
class feature, we can assume that C3-GAN succeeded in learning the set of clusters in which each
cluster represents its unique characteristic explicitly. Further, to investigate the roles of the two input
variables, c and z, we analyzed the change in the synthesized images when they were generated by
fixing one of the two and diversifying the other, as shown in Fig. 4 (b). As it can be seen, if c is fixed,
all images depict the same bird species, but the pose of a bird and background vary depending on
the value of z. Conversely, when generated under the condition of variable c and fixed z, images of
various bird species with the same pose and background were observed. The results on other datasets
show the same trend. Please refer to Appendix A.4.

It is also notable that C3-GAN can effectively alleviate the mode collapse issue with the proposed
method. Fig. 5 present that only C3-GAN reflects intra-class deviations of various factors such as
color, shape, and layout for the given class, while other baselines produce images only with the layout
variation. We conjecture that this performance was achieved because the learnt embedding space of
the discriminator better represents the real data distribution, allowing the generator to get quality
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Real FineGAN (Singh et al., 2019)

C3-GAN (Ours) MixNMatch (Li et al., 2020)

Figure 5: Images synthesized with the cluster index that corresponds to the class of real samples.
Only C3-GAN generates images reflecting the intra-class color, shape, and layout variations of the
real image set.

FID ↓ IS ↑ Reverse KL ↓
Bird Car Dog Flower Bird Car Dog Flower Bird Car Dog Flower

InfoGAN (Chen et al., 2016) 35.71 70.91 59.07 78.37 8.20 3.25 6.91 13.39 0.56 0.73 0.40 0.42
FineGAN w/o labels 33.87 87.66 49.12 35.72 10.07 4.20 10.67 10.42 0.67 0.58 0.24 0.52

MixNMatch w/o labels 31.59 78.36 48.11 32.03 9.76 4.11 10.70 16.48 0.52 0.57 0.22 0.34
C3-GAN (Ours) 19.37 67.36 45.40 64.19 14.52 3.62 9.33 13.75 0.29 0.57 0.18 0.25

Table 3: Quantitative evaluation of image synthesis performance.

signals for the adversarial learning. Additionally, we found that only C3-GAN succeeded in the scene
decomposition learning when annotations were not utilized. In fact, when FineGAN and MixNMatch
were trained without object bounding box annotations, they fell into degenerate solutions where the
entire image is synthesized from the background generators.

Quantitative Results. We also quantitatively evaluated the image synthesis performance based
on the scores of Frechet Inception Distance (FID) and Inception Score (IS). We also considered the
scores of reverse KL which measures the distance between the predicted class distribution of real
images and synthesized images. We compared C3-GAN with GAN-based models that were trained
without object bounding box annotations. The scores of IS and reverse KL were measured with
Inception networks that were fine-tuned on each dataset using the method of Cui et al. (2018)1. The
results are displayed in Table 3. C3-GAN presents the state-of-the-art or comparable performance in
terms of all metrics. This result means that, in addition to the class clustering performance, C3-GAN
has competitive performance in generating fine-grained object images.

5 CONCLUSION

In this study, we proposed a new GAN-based method, C3-GAN, for unsupervised fine-grained class
clustering which is more challenging and less explored than a coarse-grained clustering task. To
improve the fine-grained class clustering performance, we formulate the information-theoretic regu-
larization based on the contrastive loss. Also, a scene decomposition-based approach is incorporated
into the framework to enforce the model to learn features focusing on a foreground object. Extensive
experiments show that our C3-GAN not only outperforms previous fine-grained clustering methods
but also synthesizes fine-grained object images with comparable quality, while alleviating mode
collapse that previous state-of-the-art GAN methods have been suffering from.

1The accuracy of Inception Networks fine-tuned on CUB/Stanford Cars/Stanford Dogs/Oxford Flower
datasets are 0.87/0.47/0.86/0.94, respectively.
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ETHICS STATEMENT

Remarkable advancement of generative models has played a crucial role as AI tools for text (Brown
et al., 2020; Kim et al., 2021), image (Karras et al., 2020; Choi et al., 2020b), audio (Sisman et al.,
2020), and multimodal content generation (Tian et al., 2021; Yan et al., 2021). However, as its
side effect, many malicious applications have been reported as well, thus leading to severe societal
problems, such as deepfake (Dolhansky et al., 2020), fake news (Lazer et al., 2018), and generation
biased by training data (Gupta et al., 2021). Our work might be an extension of the harmful effects of
generative models. On the contrary, generative models can be a solution to alleviate these side effects
via data augmentation (Yang et al., 2019; Choi et al., 2020a). In particular, our method can contribute
to alleviating data bias and fine-grained class imbalance. Therefore, many endless efforts are required
to make these powerful generative models benefit humans.
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A APPENDIX

A.1 NETWORK ARCHITECTURE

We present detailed description of the architecture of C3-GAN in Table 4 and Table 5. The colored
dots (•, •, •) are for indicating that the outputs of earlier layers are used as the inputs of later layers.
The training was done with 2 NVIDIA-V100 GPUs, and we optimized a model until the convergence
of the FID score.

Module Layers Input size Output size

Gbg

Linear, BN, GLU, UnSqueeze 64 (z) 512×4×4

[Up, Conv(3,1), BN, GLU]×5 512×4×4 64×128×128

[Conv(3,1), BN, GLU, Conv(3,1), BN]×3 64×128×128 64×128×128

Conv(3,1), Tanh 64×128×128 3×128×128 (x̂bg)

N(µc, σc) Linear, BN, GLU Y (c) 8 •

Gbase
fg

Linear, BN, GLU, Reshape 64 (z) 512×4×4

[Up, Conv(3,1), BN, GLU]×5 (512+8 •)×4×4 16×128×128

[Conv(3,1), BN, GLU, Conv(3,1), BN]×3 16×128×128 16×128×128 •

Gm
fg

Conv(3,1), BN, GLU 16×128×128 • 64×128×128

Conv(3,1), Sigm 64×128×128 1×128×128 (m̂)

Gt
fg

Conv(3,1), BN, GLU (16• + Y (c))×128×128 16×128×128

[Conv(3,1), BN, GLU, Conv(3,1), BN]×2 16×128×128 16×128×128

Conv(3,1), BN, GLU 16×128×128 16×128×128

Conv(3,1), Tanh 16×128×128 3×128×128 (̂t)

Table 4: Architectural description of the generator of C3-GAN.

Module Layers Input size Output size

Dbase

Conv(4,2), LReLU 3×128×128 (x) 64×64×64

[Conv(4,2), BN, LReLU]×4 64×64×64 512×4×4

Conv(3,1), BN, LReLU 512×4×4 512×4×4 •

ψr
x Conv(4,4), Squeeze 512×4×4 • 1 (r)

ψh
x

Conv(3,1), BN, LReLU 512×4×4 • 512×4×4

Conv(4,4), Squeeze 512×4×4 512 (h)

ψc Linear Y (c) 512 (l)

Table 5: Architecture description of the discriminator of C3-GAN.

• Conv(a,b) : 2D Convolution layer with kernel size a and stride b

• GLU : Gated Linear Units
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A.2 ADDITIONAL ABLATION STUDY

Random affine transformation. We experimented with two types of purtubing policy, a weak
and strong random affine transformation. The detailed value ranges of their parameters are presented
in Table 6. The type of perturbation used for each dataset was determined by manually checking
randomly perturbed real images. The strong perturbation was only used for CUB dataset, and the rest
datasets used the weak perturbation.

Criteria Scale Rotation Translation Dataset

Weak perturbation (0.9, 1.1) (-2, 2) (-0.08, 0,08) Stanford Cars, Stanford Dogs,
Oxford Flower

Strong perturbation (0.8, 1.5) (-15, 15) (-0.15, 0,15) CUB

Table 6: Details of random affine transformation.

Overclustering. We use four datasets for the evaluation, including CUB, Standford Cars, Stanford
Dogs and Oxford Flower. As we described in 3.2, we employ the overclustering policy which is
to set the number of clusters to be multiple times of the actual number of classes. To find the
optimal setting, we compared the results of C3-GAN by setting the number of clusters as 1, 2, and
3 times the actual number of classes. The cluster numbers for each dataset were determined based
on the results in Table 7. We found that the performance generally tends to improve as the number
of clusters increases. This implies that overclustering is indeed helpful for the expressive feature
learning. To further investigate the results when we are not aware of the actual number of classes, we
additionally conducted all experiments by setting the number of clusters as 100 (underclustering)
or 500 (overclustering). The results are represented in Table 8. For the underclustering setting, we
only report the scores of NMI, since some classes have no matching cluster indices. Despite the less
promising performance of the underclustering case, this result implies that our method can be applied
to any datasets whose cluster size is not available, if we set a large enough number of clusters.

Acc ↑ NMI ↑ FID ↓

CUB × 1 22.7 0.50 18.75
× 2 27.6 0.53 19.37
× 3 26.3 0.51 17.13

Stanford Cars × 1 8.3 0.33 64.55
× 2 11.5 0.39 66.65
× 3 14.1 0.41 67.36

Stanford Dogs × 1 11.8 0.30 51.37
× 2 15.8 0.35 54.82
× 3 17.9 0.36 45.40

Oxford Flower × 1 55.6 0.72 75.12
× 2 61.7 0.67 74.59
× 3 67.8 0.67 64.19

Table 7: Results of hyperparameter search for overclustering.
Acc ↑ NMI ↑

# of clusters Bird Car Dog Flower Bird Car Dog Flower

Actual number of classes × 3 (Overclustering) 26.3 14.1 17.9 67.8 0.51 0.41 0.36 0.67
100 (Underclustering) - - - - 0.38 0.25 0.32 0.75
500 (Overclustering) 23.7 12.1 20.5 70.8 0.51 0.40 0.39 0.65

Table 8: Clustering performance when the number of clusters are arbitrarily set.
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A.3 QUALITATIVE ANALYSIS OF CLUSTERING RESULTS

We present the clustered images of CUB and Oxford Flowers datasets, along with the results of
MixNMatch and SCAN in Figs. 6 and 7. From these results, we can assume that our method is better
at clustering compared to the baseline methods. It is worth noting that even incorrectly assigned
images look very similar with the given bird species for C3-GAN, while the results of other methods
contain objects that are quite deviated from the condition. We could observe the similar trend for
Oxford Flowers dataset, as it is shown in Fig. 7.

(a) C3-GAN (Ours) (b) SCAN (Van Gansbeke et al., 2020) (c) MixNMatch (Li et al., 2020)

Figure 6: Examples of clustered images of CUB dataset. The cluster indices for the first and the
second sets are the ones mapped from the real classes Cerulean Warbler and le Conte Sparrow via
Hungarian Algorithm. Red boxes denote incorrectly assigned images.
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(a) C3-GAN (Ours) (b) SCAN (Van Gansbeke et al., 2020) (c) MixNMatch (Li et al., 2020)

Figure 7: Examples of clustered images of Flower dataset. The cluster indices for the first and the
second sets are the ones mapped from the real classes 35 and 66 via Hungarian Algorithm. Red boxes
denote incorrectly assigned images.

16



Published as a conference paper at ICLR 2022

A.4 ADDITIONAL IMAGE GENERATION RESULTS

A.4.1 CUB

Real Fake images Real Fake images Real Fake images

Background Background Background

+ Foreground + Foreground + Foreground

Fixed c and variable z Varible c and fixed z

A.4.2 STANFORD CARS

Real Fake images Real Fake images Real Fake images

Background Background Background

+ Foreground + Foreground + Foreground

Fixed c and variable z Varible c and fixed z
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A.4.3 STANFORD DOGS

Real Fake images Real Fake images Real Fake images

Background Background Background

+ Foreground + Foreground + Foreground

Fixed c and variable z Varible c and fixed z

A.4.4 OXFORD FLOWER

Real Fake images Real Fake images Real Fake images

Background Background Background

+ Foreground + Foreground + Foreground

Fixed c and variable z Varible c and fixed z
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