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1. ABSTRACT 

 
Variations in complex traits are influenced by 

multiple genetic variants, environmental risk factors, and 
their interactions. Though substantial progress has been 
made in identifying single genetic variants associated with 
complex traits, detecting the gene-gene and gene-
environment interactions remains a great challenge. When a 
large number of genetic variants and environmental risk 
factors are involved, searching for interactions is limited to 
pair-wise interactions due to the exponentially increased 
feature space and computational intensity. Alternatively, 
recursive partitioning approaches, such as random forests, 
have gained popularity in high-dimensional genetic 
association studies. In this article, we propose a U-Statistic-
based random forest approach, referred to as Forest U-Test, 
for genetic association studies with quantitative traits. 
Through simulation studies, we showed that the Forest U-
Test outperformed exiting methods. The proposed method 
was also applied to study Cannabis Dependence (CD), 
using three independent datasets from the Study of 
Addiction: Genetics and Environment. A significant joint 
association was detected with an empirical p-value less 
than 0.001. The finding was also replicated in two 
independent datasets with p-values of 5.93e-19 and 4.70e-
17, respectively.   

 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

The past decade has witnessed an evolutional 
change of genetic association studies from the research of a 
limited number of candidate genes to the investigation of 
entire human genomes. This is made possible by the 
knowledge of comprehensive high-density maps of single 
nucleotide polymorphisms (SNPs) and the advancement of 
genotyping technologies (1-4). These genome-wide 
association studies (GWASs) have advanced the field of 
human genetics, allowing us to explore unknown regions 
for potential risk variants associated with diseases. So far, a 
large number of GWASs have been conducted and hundreds 
of novel disease-susceptibility loci have been reported (5, 6). 
Despite these successes, the current identified loci only explain 
a small fraction of the diseases’ heritability (7). Moreover, the 
identified genetic variants have a low replication rate in follow-
up studies, and have shown a limited contribution to disease 
prediction (8, 9). Following the initial association scan of the 
GWASs, it is a natural step for future genetic association 
studies to explore the potential complex interactions among 
genetic variants and environmental risk factors (10). Such 
studies can increase the power to detect unknown genetic 
variants that are associated with diseases, and provide novel 
insights into biological pathways underlying the 
development of diseases (9).  
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Detecting the gene-gene and gene-environmental 
interactions has been a longstanding goal of genetic 
association studies. One strategy is to explore all possible 
combinations of genetic and environment risk factors and 
select the best combination predisposing to the risk of 
disease. Ritchie et al. proposed a Multifactor 
Dimensionality Reduction (MDR) method, which is based 
on such a strategy (11). For each combination of multiple 
SNPs, it partitions all possible multi-SNP genotypes into 
two risk groups, and calculates their classification error for 
the disease outcome. The combination of SNPs with the 
lowest classification error is then selected and assessed for 
joint association with the disease. The limitations of the 
MDR method are that it requires balanced data and does 
not allow for covariate adjustments. To address these 
limitations, Lou et al. extended it to a generalized MDR 
(GMDR) framework (12). Similar as the MDR, the GMDR 
searches all genetic variants for the ‘best’ multi-SNP 
combination. However, it uses score statistics instead of a 
case control ratio, when partitioning the genotypes into two 
risk groups. Both the MDR and GMDR methods are non-
parametric and model free, and have been successfully 
applied for detecting the gene-gene and gen-environment 
interactions associated with complex diseases, such as 
autism and nicotine dependence (13, 14). However, they 
both search exhaustively for combinations of SNPs, which 
are computationally impractical for high-dimensional data 
(15).  

 
Alternatively, recursive partitioning 

approaches— such as classification trees and random 
forests—have been widely adopted for the identification of 
the gene-gene and gene-environment interactions (16-18). 
A classification tree is constructed by sequentially adding 
into the tree model the best predictor among a large number 
of features. Based on this idea, Li et al. proposed a Forward 
U-Test that examines the combined effect of genetic 
variants for quantitative traits, with the consideration of 
gene-gene interactions (19). It first uses a U-Statistic-based 
forward algorithm to select potential disease-susceptibility 
loci and then assesses the joint association of the selected 
loci using U-Statistics. It has been reported that the 
classification accuracy of a single classification tree can be 
improved substantially by averaging an ensemble of trees, 
referred to as random forests (20). A random forest is 
comprised of multiple decision trees, each of which is 
grown by using bootstrap samples of the same size. For 
each decision tree, the approach sequentially selects the 
best predictor among a subset of randomly selected 
features, and adds it into the tree model. The random-
forest-based methods have been applied successfully to 
detect gene-gene interactions underlying various complex 
diseases, such as asthma and age-related macular 
degeneration (21, 22). In addition to its improved 
performance, random-forest-based methods have the 
advantage of detecting high-order interactions on high-
dimensional data (23, 24).  

 
So far, random forests have mostly been used in 

genetic association studies with binary outcomes. In 
addition, a few linkage analyses have used random forests 
for the analysis of quantitative traits (25, 26). However, the 

application of random forests for genetic association 
studies of quantitative traits is still lacking. Furthermore, 
the current methods commonly assess the significance level 
of each SNP using the permutation-based importance 
scores. Such a procedure is computationally intensive and 
time demanding. In this article, we propose a Forest U-Test 
approach for the identification of gene-gene and gene-
environmental interactions associated with quantitative 
traits. The Forest U-Test approach can be looked upon as 
an extension of the previously developed Forward U-Test 
with an implementation of random forests. We also derive 
an asymptotical U-Statistic test to assess the joint 
association of multiple genetic variants with quantitative 
traits. Through simulations and a real data application, we 
compare the proposed Forest U-Test with the existing 
methods, such as Forward U-Test and GMDR.  

 
3. METHODS 
 

Suppose we have a study population of 

N subjects, each genotyped with K  SNPs. Let iY and 

( , ...... )i1 i 2 iKX X X X= denote the quantitative trait 

and observed genotypes for the thi subject, 
, , ......,i 1 2 N= . Each SNP may have three possible 

values, i.e., { , , }ijX AA Aa aa∈ , , , ......,j 1 2 K= . 

In the following sub-sections, we first give the definition of 
U-Statistics and then incorporate it into the random forest 
process to evaluate the joint association of genetic variants 

with quantitative traits.  
 

3.1. U-Statistics 
We have previously introduced a U-Statistic to 

measure the joint association of multiple SNPs with 
quantitative traits with the consideration of possible 
gene-gene interactions (19). Following the same 
notation, we assume k  (k K≤ ) SNPs are associated 
with the traits. L multi -SNP genotypes can be formed 

by these k SNPs, denoted as ,1G 2G ,……, LG . Let 
{ , }l i lS i X G= =

be the group of subjects carrying 

multi-SNP genotype ,lG  and 
| |l lm S=

 be the number 

of subjects in lS . We define the between-group U-

statistic for group lS   and group lS ′   as: 
 

                   
,

,

( , )l l i j
i j

U φ Y Y′ = ∑
; 

,l li S j S ′∈ ∈
; 

where 
( , )i j i jφ Y Y Y Y= −

.                     Equation 
(1) 
 
To measure the overall trait difference among a total of 
L  multi-SNP genotype groups, we further define the 
global U-statistic as:  
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,

( )l l l l
1 l l L

l l
1 l l L

ω U
L L 1U

ω 2

′ ′
′≤ < ≤

′
′≤ < ≤

−
= ×
∑
∑

; 

where ,
l l

l l
l l

m m
ω

m m
′

′
′

+
= .                         Equation (2) 

 
Here, the weight parameter ω  is chosen to 

account for the number of subjects in each genotype group. 
When the number of genotype groups is greater than two, 
we assume that the expected quantitative trait value of the 
L multi-SNP genotypes decreases with l  (i.e., 

( ) ( ) ...... ( )
1 2 LS S SE Y E Y E Y≥ ≥ ≥ . Practically, we 

determine the sequence of genotypes groups by ordering 
their average trait values (i.e., ......

1 2 LS S SY Y Y≥ ≥ ≥ ). 

 
3.2. U-Statistic-based decision tree 

For common complex traits, the disease 
susceptibility loci are commonly unknown. In order to 
determine the k disease-susceptibility loci and the 
corresponding multi-SNP genotypes, a single decision tree 
is built using the proposed U-Statistics. We start with a root 
node comprised of all subjects in the study. In the first step, the 
root node is split into two offspring nodes comprised of 
subjects carrying two different single-SNP genotypes.  Each 

SNP j  can split the root node in three possible ways, noted as 

{
j
1g AA= , |j

2g Aa aa= }, 

{
j
1g Aa= , |j

2g AA aa= } and 

{
j
1g aa= , |j

2g AA Aa= }. For each splitting strategy, 
a U-Statistic can be calculated for two offspring nodes 
comprised of subjects with genotypes 

{
( )1 j
1 1G g= ,

( )1 j
2 2G g= }, where 

( )s
lG denotes the 

thl multi-SNP genotype at step s . The splitting strategy with 
the largest U-Statistic is selected. In the second step, a second 

SNP j′ , paired with SNP j , may form four two-SNP 

genotypes, denoted by {
( ) ( )2 1 j
1 1 1G G g ′= ∧ , 

( ) ( )2 1 j
2 1 2G G g ′= ∧ ,

( ) ( )2 1 j
3 2 1G G g ′= ∧

,
( ) ( )2 1 j
4 2 2G G g ′= ∧ }. A global U-Statistic is calculated for 

these four offspring nodes using Equation (2), and the 
one with the largest global U-Statistic is chosen. The 
offspring nodes are further split in a binary fashion, 
until a given number of depth d is reached or the 
offspring nodes cannot be further split. The tree depth d 
is defined as the total number of times to split offspring 
(root) nodes. While splitting each offspring node, the 
SNP and the splitting strategy are chosen to maximize 
the corresponding U-Statistics. By doing so, a decision 
tree can be grown.  

3.3. U-Statistic-based random forest 
The performance of the U-statistic-based 

decision tree can be further improved by constructing a 
random forest, built on an ensemble of T decision trees. 
Each decision tree is grown using a bootstrap sample of the 
study population with the same size, N . The selected and 
non-selected subjects are referred to as in-bag and out-of-
bag samples respectively. Each time an offspring (root) 
node is split, a subset of p  SNPs is randomly sampled 

from the totality of K  SNPs. From these p  random 
features, we select one SNP to split the node according to 
the same SNPs selection and splitting rule described above. 
The splitting process is continued until a tree depth d is 
reached, and a decision tree is built. Each decision tree t  
will result in a series of multi-SNP genotypes, 

, ,t 1G , ,t 2G ......., , tt LG
. Let ,t lS  be the set of subjects 

carrying ,t lG
 and , ,| |t l t lm S=

. For every subject i with 

multi-SNP genotype , ,t lG
a predicted trait value can be 

calculated by averaging the trait values across all subjects 

in ,t lS : 
 

                           ,

, ,/ ;
t l

t i r t l
r S

Y Y m
∈

= ∑
)

   
,t li S∀ ∈

;                                                   Equation (3). 
 
In addition, while considering an ensemble of 

T decision trees, an in-bag trait value for each subject i  
can be calculated by averaging the predicted trait values 
across all the decision trees where subject i  is an in-bag 
sample: 

 
                        

,

,

( { })

( { })

T

t i
t 1

i ib T

t 1

Y I i in bag of tree t
Y

I i in bag of tree t

=

=

× ∈
=

∈

∑

∑

)

;                                         
Equation (4). 

 

where ( )I ⋅  is an indicator function. Similarly, an out-
of-bag trait value can be calculated for each subject 
i as:   
 
                             

,

,

( { })

( { })

T

t i
t 1

i oob T

t 1

Y I i out of bag of tree t
Y

I i out of bag of tree t

=

=

× ∈
=

∈

∑

∑

)

;                                    
Equation (5). 
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3.4. Significance level 
Hypothesis testing can then be conducted to 

evaluate the joint association of K genetic variants with 
the quantitative traits, considering possible interactions. 
After constructing the random forest described above, we 
treat each subject as a separated genotype group. Assuming 
they are sorted by their in-bag trait values, we can calculate 
a global U-Statistic by using their out-of-bag trait values 
(Equation (2)). Specifically, the global U-Statistic has the 
following form: 
            

, , , , , ,

, , , ,

, ,

, ,

( ) ( ) ...... ( )

( ) ...... ( )

...... ( )

( )

1 oob 2 oob 1 oob 3 oob 1 oob N oob

2 oob 3 oob 2 oob N oob

N 1 oob N oob

i oob j oob
1 i j N

U Y Y Y Y Y Y

Y Y Y Y

Y Y

Y Y
−

≤ < ≤

= − + − + + −

+ − + + −

+ + −

= −∑
;         Equation (6); 
 
                  where , , , ,......1 ib 2 ib 3 ib N ibY Y Y Y≥ ≥ ≥  

 
 This U-Statistic can be used to test the joint 

association of the SNPs with the traits. A null distribution 
of U-Statistics can be obtained by permuting the trait and 
applying the same random forest procedure to calculate the 
U-Statistics. Based on the null distribution, an empirical p-
value can be obtained.  The empirical p-value accounts for 
the inflated type I error due to model selection and ordering 
of subjects.   

 
We also derive an asymptotic test for replicating 

the initial association in an independent study. We refer to 
the data from the original study as training data and the 
data from the follow-up study as testing data. We denote 
multi-SNP genotypes of each decision tree 

t by , ,t 1G , ,t 2G ......., , tt LG . Let ,
Train
t lS  and ,

Test
t lS  be 

the set of subjects with genotype ,t lG  in training and 

testing data respectively, and denote Train
rY as the 

thr subject in training data and Test
iY be the thi subject in 

the testing data; where Train1 r N≤ ≤ and Test1 i N≤ ≤ . 

For each subject i in ,
Test
t lS , we first obtain its 

corresponding training predicted trait value in the training 
data:  

 

                           
,

, ,/ ;
Train
t l

Train Train Train
t i r t l

r S

Y Y m
∈

= ∑
)

   

,
Test
t li S∀ ∈ ;                                       Equation (7). 

 
Meanwhile, a testing predicted trait value can be 

calculated by averaging the observed traits in testing data 

across all subjects in ,
Test
t lS : 

 

                                 ,

, ,/ ;
Test
t l

Test Test Test
t i r t l

r S

Y Y m
∈

= ∑
)

 

,
Test
t li S∀ ∈  

 
We further average trait values for each subject 

i  over T decision trees, 
 

                                          , /
T

Train Train
i t i

t 1
Y Y T

=

=∑
)

;                                  

Equation (8). 

                                                  

, /
T

Test Test
i t i

t 1
Y Y T

=

= ∑
)

 ;                                                                   

Equation (9). 
 

Again, we treat each subject in the testing set 
as a separated genotype group. Assuming they are sorted 
by their training average trait values, we can calculate a 
global U-Statistic by using the testing average trait 
value (Equation (6)). Since the sequence of subjects is 
pre-determined by the training set, we expect the global 
U-Statistic follows a normal distribution asymptotically 
with a zero mean under the null distribution. Assuming 
all subjects in the testing set are independent and have 

the same variance of 
2σ , the variance of the global U-

Statistic can be calculated as (See Appendix for detail):  
                                                

( ) ( )
N

2 2

i 1
Var U σ N 1 2i

=

= + −∑ ;                                      

               Equation (10). 
 

It should also be noted that, although the 
above method is illustrated with genotype data, it 
applies to environmental risk factors with categorical 
levels as well. For continuous environmental risk 
factors, we need to first categorize the continuous 
variables before applying the proposed method.  
 
4. RESULTS 
 
4.1. Simulation I 

In the first simulation, we compared the 
performance of the proposed method with that of two 
existing methods, the Forward U-Test and GMDR. 
The comparison was conducted under various 
underlying diseases models with different levels of 
disease complexity. We also incorporated two types 
of genetic interactions into the disease models, a 
multiplicative-effect model and a threshold-effect 
model (Table 1) (27). We started with a simple 
disease model comprised of a two-locus 
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Table 1. Average trait values for two-locus interaction models  
Multiplicative Effect Threshold Effect 
 bb Bb BB  bb Bb BB 
aa α α(1+ µ 21) α(1+ µ 21)(1+ µ 22) aa α α α 
Aa α(1+µ11) α(1+ µ 11)(1+ µ 21) α(1+ µ 11)(1+ µ 22) Aa α α (1+ µ) α (1+ µ) 
AA α(1+ µ 11)(1+µ 12) α(1+ µ 12)(1+ µ 21) α(1+ µ 12)(1+ µ 22) AA α α (1+ µ) α (1+ µ) 

 
multiplicative effect interaction. The second disease model 
included a two-locus multiplicative effect interaction and 
two independent SNPs with additive effects. The third 
disease model included a two-locus multiplicative effect 
interaction, a two-locus threshold effect interaction and two 
independent SNPs. The fourth disease model included a 
two-locus multiplicative effect interaction, a two-locus 
threshold effect interaction and four independent SNPs. 
The SNP genotypes were simulated under the assumption 
of Hardy-Weinberg Equilibrium (HWE). For all SNPs, the 
minor alleles corresponded to higher traits and the minor 
allele frequencies were set at 0.3.  For each disease model, 
a number of non-disease related SNPs were also introduced 
to bring the total number of SNPs to ten. The minor allele 
frequencies of these noise SNPs were sampled from a 
uniform distribution ranging from 0.1 to 0.9. For each 
underlying disease model, we first simulated a reference 
population with one million subjects. An expected trait iy

)
 

was calculated for each subject according to its multi-SNP 
genotypes at causal loci. The observed quantitative trait for 
each subject was simulated as: i i iy y ε= +) , where 

~ ( , )iε N 0 1 . For each simulation replicate, we 
randomly selected 1000 subjects from the reference 
population, and then analyzed the data by using the Forest 
U-Test, as well as the Forward U-Test and GMDR. While 
constructing a random forest for the Forest U-Test, we 
fixed the number of trees at T 500= , the number of 
random features at p 3=  and tree depth at d 5= . 
‘Testing Balance Accuracy’ was used as testing statistic for 
GMDR. For each underlying disease model, the simulation 
was repeated 1000 times. 1000 permutations were 
generated to form the empirical null distribution. The 
association was significant if the testing statistic exceeded 
the 95th percentile of its corresponding permutated 
distribution. The power was then calculated as the 
probability of detecting the overall association across 1000 
replicates. To evaluate type I error, we simulated another 
set of quantitative traits from a standard normal 
distribution, which assumes the traits are independent from 
individuals’ genotypes. The same procedure was applied to 
calculate corresponding type I errors.  

 
The simulation results were summarized in Table 

2. From the results, we observed power improvement for 
all methods as the number of causal loci increased. For the 
simplest disease model with only two causal SNPs, the 
power of Forward U-Test is close to that of Forest U-Test, 
and is higher than the power of the GMDR. With the 
increase of model complexity, the Forest U-Test had the 
most significant power increase, and outperformed the 
other two approaches.  In all scenarios, the type I errors 
were properly controlled for all methods.  In the simulation 
study, we fixed the minor alleles at 0.3 for all causal SNPs.  

 
We expect power increase for all methods if the minor 
allele frequencies were increased.   

 
4.2. Simulation II 

In the second simulation, we evaluated the 
performance of Forest U-Test with respect to two pre-
determined parameters, the number of random features and 
the tree depth d . The simulation was conducted by using 
the fourth disease model from simulation I. We also 
increased the number of irrelevant SNPs to make sure the 
total number of SNPs was 25. We varied the random 
feature p from 3 to 12, and the values of d  from 2 to 5. In 
all replicates, the number of trees was set at T 500= . 
For each combination of p and d , the simulation was 
repeated for 1000 times. Following the same procedure as 
Simulation I, we estimated the power and type I error. 

 
The simulation results were summarized in Table 

3. We reported on the power, type I error and average time 
cost to construct a random forest with 500 trees. The 
computational time was based on the time of running R 
programs on a high-performance computer with a dual-core 
1.6GHz processor and 4 GB memory. We found the 
computational time increased with the increase of 
either p or d . The results also showed that the power of 
Forest U-Test was improved as d increases. In our 
simulation, the highest power was attained when 
p 8= and d 5= . While p was fixed at 8, limited power 

improvement was gained when d increased from 4 to 5. 
With respect to the number of random features, the power 
of Forest U-Test was first improved as p  increased, but 
was reduced when p reached a larger value ( p 12= ). In 
all scenarios, the type I error was properly controlled.   
 
4.3. Simulation III 

In the simulation, we compared the proposed 
approach with the Random Forest (RF) approach developed 
by Breiman L. et al. (20). RF does not provide a testing 
statistic for association testing. Instead, it focuses on 
variable selection and ranks all SNPs by importance score. 
Therefore, we compared the performance of two 
approaches by their importance ranking of all SNPs. The 
performance of two approaches was evaluated based on the 
fourth disease model in simulation I. For both RF and 
Forest U-Test, 500 trees were constructed. The parameters 
were fixed at p 3= and d 5= . The RF analysis was 
conducted by using package ‘randomForest_4.6-2’ in R 
(28). While applying RF, the importance scores, 
measured by the mean decrease of MSE (i.e., the default 
measurement in RF), is used to rank the SNPs. While 
applying Forest U-Test, the SNPs were ranked by the 
selection times to construct decision trees. The result 
was summarized in Figure 1.  
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Table 2. Comparison between Forest U-Test and Forward U-Test/GMDR under various disease models 
Disease Models  Forest 

U-Test 
Forward 
U-Test 

GMDR 

Two-locus Multiplicative 1 Power 
Type I Err. 

0.338 
0.053 

0.294 
0.065 

0.049 
0.039 

Two-locus Multiplicative + 
Two Independent Loci 2 

Power 
Type I Err. 

0.696 
0.037 

0.472 
0.042 

0.147 
0.047 

Two-locus Multiplicative + 
Two-locus Threshold 3 + 
Two Independent Loci 

Power 
Type I Err. 

0.772 
0.058 

0.505 
0.055 

0.184 
0.051 

Two-locus Multiplicative + 
Two-locus Threshold + 
Four Independent Loci 

Power 
Type I Err. 

0.886 
0.043 

0.622 
0.043 

0.192 
0.058 

1For all SNP blocks with multiplicative effects, the parameters of average trait values were set as  µ11= µ21=1.1, µ12 = µ22=1.2, 2 
For all SNP blocks with threshold effects, the parameters of average trait values were set as  µ=1.2, 3 For all independent loci, the 
average trait values for genotype aa, Aa, AA were set as 1, 1.1 and 1.2 respectively 
 

Table 3.  Performance of the Forest U-Test with various parameters 
            d 
       p  2 3 4 5 

3 
Power 
Type I Err. 
 Time 

0.553 
0.033 
0.92 min 

0.592 
0.044 
1.81 min 

0.644 
0.049 
3.03 min 

0.693 
0.046 
4.75 min 

6 
Power 
Type I Err. 
 Time 

0.600 
0.033 
1.24 min 

0.647 
0.038 
2.36 min 

0.695 
0.037 
3.83 min 

0.742 
0.035 
5.84 min 

8 
Power 
Type I Err. 
 Time 

0.666 
0.037 
1.96 min 

0.703 
0.037 
3.75 min 

0.751 
0.037 
6.05 min 

0.759 
0.036 
9.19 min 

12 
Power 
Type I Err. 
 Time 

0.540 
0.026 
3.38 min 

0.590 
0.031 
6.36 min 

0.642 
0.033 
10.08 min 

0.685 
0.036 
14.8 min 

 
In Figure 1, we found that both methods selected 

causal SNPs (SNP 1 – SNP 8) with relatively higher 
importance. We also found that RF ranked the causal SNPs 
with threshold effect as less important than the causal SNPs 
with multiplicative effect or independent effect. On the 
other hand, the ranking of the causal SNPs by Forest U-
Test was consistent across different modes of inheritance. 
This may be partially due to the splitting strategy of RF. 
During the tree constructing, RF can choose different SNPs 
to split nodes at the same level, which might be a 
disadvantage for capturing interaction models, in particular 
the threshold effect model. Suppose the first SNP can split 
the root node into two offspring nodes as a ‘risk’ allele 
node and a ‘non-risk’ allele node. The second SNP is less 
likely to be selected by RF to further split the ‘non-risk’ 
allele node, which lead to the low chance of capturing 
threshold effect interactions.  On the other hand, Forest U-
Test uses the same SNP to split nodes at the same level, 
and hence, increase the power to capture interactions. 

 
4.4. Application to cannabis dependence 

We applied the proposed method to study 
Cannabis Dependence by using the Study of Addiction: 
Genetics and Environment (SAGE) GWAS dataset (29). As 
part of the Gene Environment Association (GENEVA) 
consortium (30), SAGE was designed by selecting 
unrelated participants from three independent studies: the 
Family Study of Cocaine Dependence (FSCD), the 
Collaborative Study on the Genetics of Alcoholism 
(COGA), and the Collaborative Genetic Study of Nicotine 
Dependence (COGEND). In our analysis, the trait of 
interest is Cannabis Dependence, measured by the number 
of marijuana symptoms endorsed (mj_sx_tot). The trait has 
eight numerical values, ranging from 0 to 7. The 

 
distribution of traits is given in Figure 2. We also collected 
25 SNPs that had been reported in the previous literatures 
as having potential association with Cannabis Dependence. 
The genotypes of 13 SNPs were available in SAGE GWAS 
dataset and the genotypes of the remaining 12 SNPs were 
imputed by software package IMPUTE2 (31, 32). The CEU 
and YRI populations from the HapMap phase III and 1000 
Genome project were used as the reference panels to 
impute the 12 SNPs for white and black subjects (33, 34). 
In addition to the 25 SNPs, gender was also included in the 
analysis as a covariate.  

 
We used FSCD as an initial association dataset, 

and COGA and COGEND as replicate datasets. While 
applying the Forest U-Test, we set the parameters as 
p 8= , d 10= , and T 500= . The results were listed 

in Table 4. In the initial dataset of FSCD, a strong joint 
association of 25 SNPs and gender with Cannabis 
Dependence has been detected. Permutation test was 
conducted to account for an inflated type I error due to 
model selection and subject ordering. The empirical p-
value of the association was <0.001. Evaluation of the 
joint association in COGA (p-value=5.93e-19) and 
COGEND (p-value=4.70e-17) showed the association 
remained highly significant. We also listed top SNPs 
which were essential for constructing the random forest. 
The trained random forest was comprised of 500 
decision trees, and gender was selected 476 times as 
the most important covariate. The three top SNPs 
were rs2501432 (C/T), rs324420 (A/C) and 
rs1431318 (C/T), which located in genes CNR2, 
FAAH and ANKFN1, respectively. They were selected 
382, 366 and 364 times, respectively. 
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Figure 1. Comparison between Forest U-Test and RF by the box plots of importance ranks. A. Forest U-Test ; B. RF In both plots, 
10 SNPs were considered: SNP 1 - SNP 4 : four causal SNP with independent effect;  SNP 5 - SNP 6:  two causal SNPs with 
multiplicative joint action; SNP 7 – SNP 8: two causal SNPs with threshold joint action; SNP 9 – SNP 10: two non-causal SNPs. 
 

 
 
Figure 2. Distribution of the trait in SAGE datasets. A. Trait distribution in FSCD. B. Trait distribution in COGA. C. Trait 
distribution in COGEND. 
 

We also applied the Forward U-Test and GMDR to the 
same datasets. Similar to the above analysis, FSCD was used as 
initial dataset for model selection, and COGA and COGEND were 
used for replication. The results were listed in Table 5 and Table 6. 
The analysis result of FSCD showed that both the Forward U-Test 
and GMDR selected the most parsimonious models with gender 
only. Therefore, the analyses of COGA and COGEND only 
examined the association between the trait and gender. Though the 
association remained significant in all studies, neither method 
detected any genetic effects.  

 
To compare the Forest U-Test with the conventional 

RF approach, we also applied RF to the same datasets. When RF 
was applied to FSCD, gender was also ranked as the most 
important covariate. The three top SNPs were rs2501432, 

rs1019238 and rs324420. These three SNPs were ranked as 1st, 
6th and 3rd important SNPs by Forest U-Test. While the findings 
of both methods were highly consistent, it was not straightforward 
for RF to replicate its initial finding in COGA and COGEND. 
When RF was applied to COGA and COGA, gender remained to 
be the most important covariates. However, the top SNPs changed 
across studies (Table 7). 

 
5. DISCUSSION 
 

Evidence has shown that multiple genes are interacting 
in biological pathways to influence the development of diseases (9, 
35). It is also common for genetic effects to be modified 
by environmental risk factors (36). Ignoring the 
complex interactions between genes and 
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Table 4.  Association result of Forest U-Test in FSCD and its replication in COGA and COGEND 
Study Top Covariates Allele Chro Gene p-values 
FSCD Gender rs2501432 rs324420 rs1431318 C/T 

A/C 
C/T 

1 
1 
17 

CNR2 
FAAH 
ANKFN1 

<0.001 

COGA Replicate Study for model trained by FSCD 5.93e-19 
COGEND Replicate Study for model trained by FSCD 4.70e-17 

 
Table 5.  Association result of Forward U-Test in FSCD and its replication in COGA and COGEND 

Study Covariates p-values 
FSCD Gender <0.001 
COGA Replicate Study with Gender 1.56e-14 
COGEND Replicate Study with Gender 3.08e-17 

 
Table 6. Association result of GMDR in FSCD and its replication in COGA and COGEND 

Study  Model Training   Bal. Acc Testing   Bal. Acc Sign Test (p) CV 
1 Gender 0.6138 0.6162 9 (0.0107) 10/10 
2 Gender  rs1049353 0.6156 0.5894 9 (0.0107) 3/10 

FSCD 

3 Gender   rs1045642  rs2501432 0.6302 0.5665 7 (0.1719) 4/10 
COGA  Gender (replicate study) 0.6392 0.6397 10 (0.001) 10/10 
COGEN
D 

 Gender    (replicate study) 0.6570 0.6553 10 (0.001) 10/10 

 
Table 7. Analysis result of RF in FSCD, COGA and COGEND 

Study Top Covariates 
FSCD Gender rs2501432 rs1019238 rs324420 
COGA Gender rs4680 rs1019238 rs324420 
COGEND Gender rs1431318 rs1049353 rs2070744 

 
environmental factors will likely reduce the power of 
detecting novel risk factors underlying complex traits (37). 
Though there is an increasing awareness that the gene-gene 
and gene-environment interactions are crucial for 
understanding the etiology of complex diseases, detecting 
the complex interactions remains a major challenge in 
genetic association studies (15, 38). Recently, random 
forest approaches have been adopted to detect the 
association of multiple risk factors while allowing for high 
order interactions. However, most of the current studies 
have applied random forests to binary disease outcomes, 
and few studies have considered their applications for 
quantitative traits. In this article, we propose a U-Statistic-
based random forest approach for genetic association 
studies with quantitative trait. The proposed method was 
found to have a greater power than two existing methods, 
the Forward U-Test and GMDR. The simulation results 
showed that the Forest U-Test had the largest advantage 
over the existing methods when the underlying disease 
model is highly complex. This improvement can be 
explained by the following reasons: 1) By constructing an 
ensemble of decision trees based on random features and 
bootstrap samples, the method not only considers the risk 
factors with large effects, but also incorporate those with 
only small or moderate effects. Though many risk factors 
may only play a limited role in the disease development, 
they can collectively contribute to a significant portion of 
the variation of traits. On the other hand, the Forward U-
Test and GMDR only search the risk factors for the best 
combination and may overlook those with small or 
moderate effects; 2) Compared to a single decision tree, the 
random forests provide a more robust performance, making 
the result replicable in the follow-up studies; 3) By 
averaging the predicted trait values of multiple decision 
trees, Forest U-Test allows for a large number of risk 
groups (i.e. every subject may form a risk group). On the 
contrary, the Forward U-Test only allows for a limited 

 
number of risk groups formed by a few selected risk 
factors, while GMDR always assumes two risk groups for 
each combination of risk factors. Such assumptions may be 
questionable in real disease scenarios.     

 
We also note that the Forest U-Test evaluates the 

joint association of multiple risk factors without directly 
selecting the most parsimonious combination of risk 
factors. Therefore, compared to the Forward U-Test and 
GMDR, the results of Forest U-Test are less easy for 
interpretation, which is a common limitation for most 
random-forest-based methods. Nevertheless, the asymptotic 
result of Forest U-Test can easily be used to evaluate the 
association in independent follow-up studies, which is an 
advantage over the conventional random-forest-based 
methods.   

 
Cannabis Dependence is a disorder that may 

involve complex interactions among multiple risk factors. 
In our analysis, the three top SNPs come from three genes 
CNR2, FAAH, and ANKFN1 respectively. CNR2, also 
known as Cannabinoid receptor type 2, belongs to the 
cannabinoid receptor family. The encoded protein functions 
as a receptor for cannabinoids, which are the principal 
psychoactive ingredients of marijuana (39). This gene has 
been verified to occur in the central nervous system, and is 
expressed in the brain (40, 41). SNP rs2501432 is a non-
synonymous mutation that locates in CNR2. Experimental 
evidence has demonstrated that this mutation can change 
the function of CNR2 protein (42). Previous studies have 
also reported the association of the SNP with substance use 
disorders (43, 44).  SNP rs324420, also known as 
Pro129Thr, is another non-synonymous mutation that 
locates in exon 3 of the fatty acid amide hydrolase gene 
(FAAH), which has shown associations with many 
substance use disorders (45-47). It was estimated that the 
minor allele homozygote leaded to a reduced risk of 0.25 
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for the development of Cannabis Dependence (48). The 
third SNP, rs1431318, lies in gene ANKFN1, which was 
previously identified as being involved in substance use 
disorders (49, 50). Interestingly, this SNP was reported as 
the most significant SNP (p-value <1e-7) by a recent 
GWAS for Cannabis Dependence (51). Whereas it is 
biologically plausible that all these genes may play an 
important role in developing Cannabis Dependence, our 
method does not provide any inference for the underlying 
biological mechanism. The identified association may 
result from either additive or interactive effects between the 
genes. Future study would be necessary to further replicate 
the association and investigate potential joint actions 
among these genes.                                                                                                                                                                                                             
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Appendix: Derivation of the variation of U-Statistics in 
Equation (7).  Note that when each subject is treated as a 
separated group, the global U-Statistic in Equation (2) is 
equivalent to  
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