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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities
across diverse tasks, yet their application to tabular data prediction remains rel-
atively underexplored. This is partly due to the fact that recent LLMs are autore-
gressive models, generating text outputs. Converting tabular data into text, and
vice versa, is not straightforward, making direct application of LLMs to complex
tabular prediction difficult. Although previous works have utilized pre-trained
embedding models like BERT and its variants for fine-tuning on tabular tasks, the
potential of autoregressive LLMs for tabular prediction has been explored only
on a limited scale and with simpler datasets. In this paper, we propose Zero-shot
Encoding for Tabular data with LLMs (ZET-LLM), a surprisingly simple yet ef-
fective approach that leverages pre-trained LLMs as zero-shot feature extractors
for tabular prediction tasks. To adapt autoregressive LLMs for this purpose, we
replace autoregressive masking with bidirectional attention to treat them as feature
embedding models. To address the challenge of encoding high-dimensional com-
plex tabular data with LLMs’ limited token lengths, we introduce a feature-wise
serialization, where each feature is represented as a single token, and the result-
ing tokens are combined into a unified sample representation. Additionally, we
apply missing value masking to handle missing data, a common issue in complex
tabular datasets. We demonstrate that LLMs can serve as powerful zero-shot fea-
ture extractors without the need for fine-tuning, extensive data pre-processing, or
task-specific instructions. Our method enables LLMs to process both structured
tabular data and unstructured text data simultaneously, offering a unique advan-
tage over traditional models. Extensive experiments on complex tabular datasets
show that our approach outperforms state-of-the-art methods across binary classi-
fication, multi-class classification, and regression tasks.

1 INTRODUCTION

Understanding complex tabular data accompanied by natural language text presents a significant
challenge but is crucial across a wide range of applications. One prominent example is medical
data, particularly electronic health records (EHRs), which are a rich and complex source of patient
information. EHRs capture longitudinal health data, encompassing both structured fields and un-
structured content, such as clinical notes. This combination introduces complexities beyond those
found in typical tabular datasets, including high interconnectivity between variables, the presence of
missing or incomplete data, and often noisy signals. Effectively analyzing such datasets is critical
not only in the medical domain but also in other fields such as financial systems and e-commerce,
where intricate data involving both tabular and textual information is commonly generated.

Prediction models for tabular data have been extensively studied, with gradient-boosted decision
trees (GBDT), such as XGBoost Chen & Guestrin (2016), LightGBM Ke et al. (2017), and Cat-
Boost Prokhorenkova et al. (2018), remaining highly competitive despite the emergence of newer
approaches. On the other hand, deep learning methods for tabular data prediction, which en-
compass various architectures, e.g., TabNet Arik & Pfister (2021), NODE Popov et al. (2022),
SAINT Somepalli et al. (2021), have also gained traction by modeling complex feature interactions
and leveraging self-supervised learning strategies. However, despite the significant advancements
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in deep learning, GBDT algorithms still perform favorably against these models on several scenar-
ios Shwartz-Ziv & Armon (2022); Gorishniy et al. (2021); Grinsztajn et al. (2022). As of now,
there are no clear winners between deep learning and tree-based methods, as each presents unique
strengths and limitations depending on the nature of the data and task.

Despite the widespread success of deep learning in fields such as computer vision and NLP, it has
not yet outperformed traditional methods in tabular data modeling. This is largely due to the in-
herent complexity of tabular data, which often combines diverse feature types—such as categorical,
numerical, and textual data—making it challenging for deep learning models to process effectively.
Additionally, real-world tabular datasets tend to be sparse, with imbalanced classes and missing val-
ues, particularly in domains like healthcare and fraud detection, further complicating model training.
Another key challenge is the heavy reliance on pre-processing Borisov et al. (2022b). Proper scal-
ing, encoding, and imputation are critical to prevent information loss or new problems such as mul-
ticollinearity. Furthermore, the interdependent nature of features in tabular data can be difficult for
deep learning models to capture, as correlations between variables can significantly impact predic-
tions. Unlike tasks involving images or audio, tabular data lacks clear spatial or temporal structures,
making it harder for deep learning models to infer meaningful relationships without extensive data
and computation.

Leveraging pre-trained language models for tabular prediction tasks is a promising direction due
to several advantages. First, tabular data can be easily converted into a text format using simple
serialization techniques, such as “[feature] is [value],” which simplifies the pre-processing of het-
erogeneous data types. Instead of applying complex, specialized pre-processing to each feature type,
this approach unifies all features into a consistent text format. Second, by converting heterogeneous
features into the same text domain, language models overcome the challenge of understanding di-
verse data types, making it easier to process categorical, numerical, and textual data uniformly.
Additionally, large, complex datasets like electronic health records (EHRs) often contain missing
data, which poses significant challenges for traditional models. Solutions such as data imputation
or filling in missing values are empirical and can introduce noise. In contrast, language models can
handle missing data by simply masking missing tokens. Finally, pre-trained language models have
the added advantage of incorporating context. While traditional models tend to overlook the context
of feature names and their relationships, language models can understand and use this context to
improve predictions.

Given the aforementioned advantages, several efforts have been made to leverage pre-trained lan-
guage models (PLMs) for tabular data prediction. Most of these approaches Liu et al. (2022); Yan
et al. (2024) involve fine-tuning embedding-based PLMs like BERT Devlin (2018) by attaching
task-specific heads to adapt them for tabular prediction tasks. More recently, there has been grow-
ing interest in using large language models (LLMs), such as GPT and its variants Brown (2020);
Gao et al. (2020), for tabular prediction. Given the success of LLMs on various applications, it is
natural to consider that LLMs might potentially outperform PLMs like BERT in tabular data tasks.
While some works have attempted to fine-tune LLMs on textualized tabular data Dinh et al. (2022);
Hegselmann et al. (2023), this approach is computationally expensive due to the size and complex-
ity of LLMs. Additionally, fine-tuning introduces various hyperparameters and requires complex
scheduling strategies.

In this paper, we introduce ZET-LLM (Zero-shot Encoding for Tabular data with LLMs). To adapt
LLMs as tabular feature extractors, we propose several key modifications. First, while LLMs typi-
cally predict next tokens, we convert them into embedding models by replacing autoregressive masks
with bidirectional attention, inspired by LLM2Vec BehnamGhader et al. (2024). This enables LLMs
to output embeddings rather than generating text. Second, we explore different serialization strate-
gies and find that feature-wise serialization outperforms the widely-used sample-wise serialization.
The feature tokens are then aggregated by a Feature Integrator, which is trained alongside the pre-
diction layer for task-specific adaptation.

ZET-LLM is computationally efficient as it fine-tunes only the task-specific modules, eliminating
the need for post-processing steps typically required by autoregressive LLMs. Moreover, unlike
traditional tabular models, ZET-LLM naturally integrates both tabular data and text descriptions,
significantly improving performance on complex tabular tasks. In summary, ZET-LLM achieves
state-of-the-art performance on challenging tabular prediction tasks while reducing preprocessing
and feature engineering requirements.
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Our contributions are as follows:

• We propose ZET-LLM, a simple method that leverages LLMs as feature extractors for
tabular data without the need for fine-tuning, preprocessing, or task-specific instructions.

• Our method encodes both structured tabular data and unstructured text simultaneously.

• Extensive experiments validate the effectiveness and robustness of our approach on com-
plex tabular prediction tasks.

• Ablation studies demonstrate the flexibility of our method across a range of pre-trained
LLMs, highlighting its versatility.

2 RELATED WORK

2.1 TABULAR PREDICTION BEFORE LANGUAGE MODELS

Tabular data prediction has long been dominated by tree-based models, with methods such as
Gradient-Boosted Decision Trees (GBDT) and its variants, including XGBoost Chen & Guestrin
(2016), LightGBM Ke et al. (2017), and CatBoost Prokhorenkova et al. (2018), achieving strong
performance across a variety of tasks. Later, deep learning approaches gained attention for tabu-
lar prediction tasks. Methods like SAINT Somepalli et al. (2021), TabNet Arik & Pfister (2021),
and NODE Popov et al. (2022) focus on learning feature representations end-to-end, using self-
supervised learning and attention mechanisms to model complex feature interactions. Further-
more, models such as TabTransformer Huang et al. (2020), SAINT Somepalli et al. (2021), and
TransTab Wang & Sun (2022) utilize transformer architectures to capture dependencies between
features. Some works combine deep learning and decision trees to combine the strengths of both ap-
proaches, as seen in methods like DeepGBM Ke et al. (2019) and BGNN Ivanov & Prokhorenkova
(2021). For a comprehensive overview of deep learning techniques applied to tabular data, refer
to Borisov et al. (2022a). Gorishniy et al. Gorishniy et al. (2021) conducted extensive experiments
comparing various architectures and methods for tabular prediction but found no clear winner among
the different categories of models. While deep learning approaches have demonstrated potential in
certain scenarios, they still often struggle to consistently outperform traditional tree-based models
on tabular datasets Shwartz-Ziv & Armon (2022); Grinsztajn et al. (2022).

2.2 TABULAR PREDICTION WITH LANGUAGE MODELS

In many cases, pre-trained language models (PLMs) are initially trained on large textual corpora
are later fine-tuned for tabular prediction tasks. Embedding-based PLMs, particularly BERT Devlin
(2018) and its variants, have been adapted for tabular prediction. For instance, TP-BERTa Yan et al.
(2024) uses RoBERTa Liu (2019) as a pre-trained language model and fine-tunes it with task-specific
loss on a wide variety of tabular datasets to capture the structure of tabular data. Similarly, PTab Liu
et al. (2022) fine-tunes BERT on tabular datasets using both task-specific loss and masked token
prediction on serialized tabular data. In domain-specific applications, models like CTRL Li et al.
(2023) fine-tune RoBERTa on financial tabular data, while MediTab Wang et al. (2024) fine-tunes
BioBERT Lee et al. (2020) for medical Electronic Health Record (EHR) datasets, making them
highly specialized for their respective fields.

Recently, large language models (LLMs) with more than 1B parameter sizes have been widely
used for tabular data. Unlike embedding-based PLMs, LLMs are autoregressive models such as
GPT-J Gao et al. (2020), GPT-3 Brown (2020), LLaMA2 Touvron et al. (2023b), and T0 Sanh
et al. (2022). One approach to leveraging LLMs for tabular prediction is to treat them as agents
that generate text-based responses. Several methods attempt to fine-tune autoregressive LLMs for
tabular prediction. LIFT Dinh et al. (2022), TabLLM Hegselmann et al. (2023), and GTL Zhang
et al. (2023a) are notable examples where autoregressive LLMs are fine-tuned on serialized tabular
data. These methods serialize the tabular data into sentence-like formats and mask certain parts of
the input to predict missing values or target labels. However, fine-tuning large language models is
computationally expensive and involves hyperparameters with complex scheduling strategies.

Another line of work explores zero-shot inference using LLMs, which leverage pre-trained mod-
els without any task-specific fine-tuning. These methods rely on techniques like in-context learn-
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ing Brown (2020), instruction prompting Sanh et al. (2022), and chain-of-thought (CoT) reason-
ing Wei et al. (2022). In zero-shot settings, models like Tablet Slack & Singh (2023) use task-specific
instructions to boost performance, while SummaryBoost Manikandan et al. (2023) generates natu-
ral text descriptions of tabular data and summarizes them for few-shot in-context learning. Despite
these attempts, zero-shot approaches remain limited by the pre-trained knowledge of the LLMs, as
they do not undergo fine-tuning for the specific domain or task. This makes them less effective
in complex, domain-specific contexts like medical or finance, where precise understanding of the
relationships between features is critical. Furthermore, instruction design for complex tabular data
can be challenging, and the few examples used in in-context learning may be insufficient to fully
capture intricate feature interactions, particularly when dealing with large-scale tabular datasets that
frequently exceed the token limits of the model.

In this paper, we address these limitations by proposing ZET-LLM, which combines the strengths
of both fine-tuning-based and zero-shot inference LLMs. ZET-LLM avoids the high computational
cost associated with fine-tuning the entire LLM by only fine-tuning the task-specific layers for down-
stream tasks. This makes it more lightweight while still effectively adapting to the target task, a
capability that zero-shot methods cannot achieve.

3 METHOD

In this section, we describe how pre-trained large language models (LLMs) can be employed as zero-
shot feature extractors for tabular prediction tasks. Our framework consists of four key stages: 1)
feature-wise tabular-to-text serialization, 2) Missing feature token masking, 3) Feature aggregation
and encoding using attention blocks, and 4) Prediction. The overview of our framework is illustrated
in Figure 1.

Tabular-to-Text Serialization Let us define tabular data as a set of feature-name and value pairs
(k, v). Each sample in the dataset is represented as a set of such pairs x = {(ki, vi)|i = 1 . . . , n}
where n denotes the number of features. The task is to predict a label for classification or a contin-
uous value for regression. To leverage LLMs for feature extraction, we first convert the tabular data
into a text format. We adopt a straightforward approach for tabular-to-text serialization, similar to
previous work Hegselmann et al. (2023); Dinh et al. (2022); Jaitly et al. (2023), where each feature
(ki, vi) in the tabular data is serialized into a simple sentence format as follows:

ti = “[ki] is [vi]”. (1)

By this process, each tabular data sample is transformed into a set of descriptive sentences. Prior
methods Hegselmann et al. (2023); Dinh et al. (2022); Jaitly et al. (2023) aggregate these sentences
into a paragraph that encodes the entire feature set into a single token using LLM. However, we find
this strategy suboptimal for tabular prediction tasks due to several reasons.

First, tabular data is inherently order invariant, meaning the sequence of features should not impact
the prediction. When sentences are concatenated into paragraphs, the ordering of features may result
in varying predictions, which conflicts with the nature of tabular data. Second, LLMs often attend
more strongly to tokens at the end of a sequence. This bias can cause certain features to be weighted
more heavily simply because they appear later in the serialized text, which may result in suboptimal
predictions. Third, when tabular data contains numerous features, encoding all of them into a single
token burdens the LLM with a large set of information. This issue is particularly problematic if the
features require domain-specific knowledge to interpret. Lastly, as the number of features grows,
so does the length of the serialized text. If the number of tokens exceeds the LLM’s token limit,
important features may be truncated, reducing the model’s ability to make accurate predictions.

To address these limitations, we propose encoding each feature as a separate token rather than repre-
senting the entire sample as a single token. By treating each feature individually, we ensure that the
model attends to all features more uniformly, preserving the order-invariance property and alleviat-
ing the aforementioned issues. Our experiments, detailed in the ablation study section, demonstrate
the effectiveness of this approach in comparison to the prior serialization method.

Encoding Using LLM Since LLMs are autoregressive, they are not directly suited for
text embedding as they generate tokens sequentially based on prior tokens. Inspired by
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𝑡3 = ‘Treatment is Type A’
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Figure 1: Overview of the proposed framework. 1) Tabular data is serialized into text sentences.
2) Each sentence is encoded into feature tokens using a pre-trained LLM. 3) The Feature Integrator
aggregates the feature tokens to generate a representation for the entire data sample. 4) The sample
representation is passed to the prediction layer. 5) The final prediction is compared with the ground
truth label, and the loss is computed.

LLM2Vec BehnamGhader et al. (2024), we modify the architecture by replacing the LLM’s au-
toregressive masking with bidirectional attention. This enables the model to consider the entire
context of a sentence at once, rather than generating tokens one by one. For each serialized feature
sentence ti, the LLM encodes it into a sequence of token embeddings. To represent each sentence as
a single token, mean pooling is applied across the tokens within the sentence Muennighoff (2022).
This process generates a feature token zi for each serialized sentence ti, and the resulting set of
feature tokens for a data sample is represented as:

z = {zi|i = 1. . . , n}, zi = P(fLLM (ti)) (2)

where fLLM denotes a pre-trained LLM and P denotes a pooling operation. This approach enables
us to generate fixed-length embeddings for each feature.

Missing Value Masking In complex tabular data, such as in the medical domain, it is common
to encounter missing values. These missing values introduce noise into the data, often deteriorating
the performance of models trained on such datasets. To mitigate the adverse effects of missing
values, we apply missing value masking before aggregating the feature tokens. Specifically, during
the encoding process, features with missing values are ignored, and only features with valid values
are retained for encoding. This ensures that the resulting feature tokens represent only the available
data, reducing the influence of missing information on the model’s performance.

Encoded Feature Token Aggregation Once the features have been serialized and missing values
masked, the LLM acts as a feature token extractor, generating a token for each feature that captures
its semantic representation. However, to make predictions, these feature tokens must be aggregated
into a single representation of the entire data sample. To achieve this, we employ transformer blocks
as the Feature Integrator to combine the individual feature tokens. A trainable class zcls token with
random initialization alongside the encoded feature tokens {zi} is also added. The Feature Integrator
learns to merge the information from each feature token into the class token, representing the full
data sample as follows:

h = fFI(z, zcls) (3)
Where fFI represents the Feature Integrator.

In our framework, we find that a shallow architecture, specifically a single transformer block, is
sufficient for this task. Decoupling feature encoding from feature aggregation offers several key ad-
vantages. First, by encoding each feature separately, the model captures the contextual information
of each feature independently. This removes concerns related to the order of feature-value pairs,
which can be problematic in LLM-based approaches where the sequence of features or the model’s
tendency to prioritize later tokens might skew the representation.

Additionally, this approach allows for the efficient utilization of features. The transformer-based
Feature Integrator is trained to combine the encoded feature tokens, ensuring that all features con-
tribute appropriately to the downstream task. This divide-and-conquer strategy allows the pre-
trained LLM to focus solely on embedding contextual information for each feature, while the Feature
Integrator handles the task of combining them effectively.
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Table 1: Summary of Datasets.

Datasets Task Domain Number of Samples Number of Features Missing Rates NotesTrain Validation Test Numerical Categorical Textual

SAD binary classification medicine 11696 1462 1462 35 2 0 0.007 —
Mortality binary classification medicine 16911 2114 2114 15 3 0 0.601 missing values

Decompensation binary classification medicine 16000 2000 2000 15 3 0 0.691 missing values
Respiration binary classification medicine 12208 1526 1527 15 3 0 0.691 missing values

Sepsis binary classification medicine 12208 1526 1527 15 3 0 0.691 missing values
Shock binary classification medicine 12208 1526 1527 15 3 0 0.691 missing values

IVF Pregnancy binary classification medicine 1347 175 175 4 3 1 0.013 domain knowledge
Fake Job binary classification advertisement 1370 174 188 2 8 5 0.330 missing values

Thumbs-Up 5 classification rating 154665 43710 39310 2 5 1 0.000 —
Healthcare 3 classification medicine 44400 5550 5550 3 9 0 0.000 —

Body Performance 4 classification medicine 10714 1339 1340 10 1 0 0.000 —
Sales regression marketing 7840 980 980 1 15 0 0.000 —
Stock regression marketing 3664 458 459 5 0 0 0.000 —

Air Quality regression rating 3832 479 479 5 12 0 0.000 —
Employee Tenure regression career 1176 147 147 24 8 0 0.000 —

Finally, the approach enhances interpretability through the use of attention scores. The attention
mechanism within the feature aggregation process assigns scores to the individually encoded fea-
tures, which contribute to the class token representing the entire data sample. These attention scores
directly indicate feature importance, providing valuable insights into which features are most rele-
vant for the downstream task. This interpretability facilitates further analysis of the dataset and the
task itself, offering a more transparent model behavior.

Prediction Layer The aggregated feature tokens are passed through a task-specific prediction
layer to produce the output for the target task. We use a Multi-Layer Perceptron (MLP) as the pre-
diction module. For classification tasks, the MLP is trained with cross-entropy loss to predict the
appropriate class label. For regression tasks, the MLP is trained with L2 loss to predict continu-
ous values. Our method directly produces task-specific outputs, such as class labels or numerical
values, without requiring post-processing. Unlike autoregressive LLMs that generate text needing
conversion into labels or values, our approach simplifies the workflow, improving both efficiency
and accuracy without potential post-processing errors.

4 EXPERIMENTS

4.1 DATASETS

We evaluate our method on a variety of datasets to demonstrate its capacity in different scenarios.
Detailed information on all datasets is shown in Table 1.

Binary classification is the most common task in tabular prediction. Our binary classification tasks
are mainly from MIMIC-III Johnson et al. (2016) and MIMIC-IV Johnson et al. (2023), which are
real-world databases containing EHRs of patients admitted to the Beth Israel Deaconess Medical
Center. They contain comprehensive information about hospitalizations and ICU stays, such as
medication administration and laboratory measurements. We refer to past works to build prediction
tasks from these data. Following Zhang et al. (2023b), we evaluate tabular prediction models on
Sepsis-Associated Delirium (SAD) prediction task, which is a complex syndrome associated with
poor prognosis and long-term cognitive dysfunction. Following Harutyunyan et al. (2019), we eval-
uate tabular prediction models on predicting the occurrence of Mortality, or in-hospital mortality;
Decompensation, or the rapid deterioration of patients’ systems; Respiration, or respiratory fail-
ure; Sepsis, or the body’s overreaction to infection and injury; and Shock amongst patients in an
adult ICU. Additionally, we also adopt In-Vitro Fertilization (IVF) Pregnancy, which is a clin-
ical dataset Kim et al. (2024) from the Tel Aviv Sourasky Medical Center to predict this outcome
from EHR data and doctors’ comments. As for the general task, we take Fake Job Cohen (2020),
predicting whether job postings are real or fake.

For the multi-class classification tasks, we select three datasets. The first is Thumbs Up created by
PPrior Fereidouni et al. (2022), predicting the rating of Google Play reviews. From Kaggle, we take
Healthcare and Body Performance, predicting the health level of human bodies.

For the regression tasks, we select relatively large size datasets from the regression tasks of TP-
BERTa Yan et al. (2024). Specifically, Sales predicts the sales of various products in a supermarket;
Stock predicts the stock prices of Netflix over the past 10 years; Air Quality forecasts the air quality
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Figure 2: Left: available value ratios across different features in Respiration, Sepsis, and Shock.
Right: available value ratios across different features in Fake Job.

Figure 3: Left: a synthetic example of two textual features in Fake Job. Right: a synthetic example
of a textual feature in IVF Pregnancy.

across different regions in Minneapolis; and Employee Tenure M S et al. (2023) predicts the tenure
of employees at IBM.

These datasets are primarily intended to test our model’s performance in three aspects:

Missing Values Missing values are a common issue in tabular data, particularly in medical datasets
like EHRs. Given their prevalence, evaluating models on data with missing values is critical for tab-
ular predictions. Many of the datasets we use contain a significant proportion of missing values, with
some having high missing rates. Table 1 presents the overall missing value rates for each dataset,
where the missing value rate is defined as the average rate of missing data across all features. For
further illustration, Figure 2 provides examples showing the available value ratios across different
features.

Textual Features To demonstrate our advantage in handling unstructured texts, we select datasets
containing entire paragraphs of textual features. Figure 3 shows synthetic examples of textual fea-
tures. These textual features are usually a whole paragraph and describe related information about
the samples. Since traditional tabular prediction models cannot process such information, we catego-
rize the features into numerical, categorical, and textual features, as summarized in Table 1. Initially,
we experiment using only the numerical and categorical features to ensure a fair comparison with
previous tabular models. We then incorporate the textual features to demonstrate the importance of
integrating unstructured text with other tabular features.

Domain Knowledge Typically, LLMs require fine-tuning to incorporate relevant domain knowl-
edge for specific downstream tasks. However, since our approach does not involve fine-tuning the
LLM, we aim to evaluate its effectiveness in scenarios where domain-specific understanding is es-
sential. For example, as illustrated in Figure 3, the IVF Pregnancy dataset includes doctors’ com-
ments on patients’ health conditions and test results. These comments often contain specialized
medical terminology that is uncommon in general language corpora. This makes IVF Pregnancy an
ideal dataset to evaluate our zero-shot method’s ability to handle domain-specific language without
prior fine-tuning, highlighting the model’s adaptability in tasks requiring expert knowledge.

7
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Table 2: Results across datasets for different tasks. ”Texts” refers to the results after incorporating
textual features. ↑ indicates that higher values are better, while ↓ indicates that lower values are
preferred. Among the results without textual features, the best performances are highlighted in bold,
and the second-best performances are underlined.

Methods Binary Classification (AUC) ↑ Mean ↑
SAD Mortality Decompensation Respiration Sepsis Shock IVF Pregnancy Fake Job

XGBoost 0.835 ± 0.000 0.655 ± 0.000 0.921 ± 0.000 0.763 ± 0.000 0.660 ± 0.000 0.735 ± 0.000 0.526 ± 0.000 0.476 ± 0.000 0.696
RF 0.846 ± 0.003 0.653 ± 0.010 0.776 ± 0.049 0.769 ± 0.004 0.668 ± 0.006 0.725 ± 0.007 0.522 ± 0.019 0.594 ± 0.005 0.694

SVM 0.805 ± 0.000 0.609 ± 0.000 0.793 ± 0.000 0.758 ± 0.000 0.622 ± 0.000 0.494 ± 0.042 0.500 ± 0.000 0.671 ± 0.001 0.657
Logistics 0.816 ± 0.000 0.627 ± 0.000 0.861 ± 0.000 0.733 ± 0.000 0.647 ± 0.000 0.701 ± 0.000 0.603 ± 0.000 0.726 ± 0.000 0.714

KNN 0.715 ± 0.000 0.579 ± 0.000 0.781 ± 0.000 0.695 ± 0.000 0.609 ± 0.000 0.673 ± 0.000 0.499 ± 0.000 0.547 ± 0.000 0.637
Bayes 0.763 ± 0.000 0.568 ± 0.000 0.845 ± 0.000 0.661 ± 0.000 0.598 ± 0.000 0.604 ± 0.000 0.615 ± 0.000 0.672 ± 0.000 0.666
MLP 0.807 ± 0.011 0.657 ± 0.014 0.846 ± 0.067 0.746 ± 0.030 0.641 ± 0.039 0.657 ± 0.110 0.577 ± 0.024 0.726 ± 0.049 0.707

TabNet 0.837 ± 0.004 0.672 ± 0.019 0.855 ± 0.110 0.754 ± 0.011 0.644 ± 0.038 0.715 ± 0.025 0.562 ± 0.045 0.562 ± 0.051 0.700
Ours 0.853 ± 0.003 0.702 ± 0.002 0.937 ± 0.011 0.761 ± 0.005 0.686 ± 0.007 0.745 ± 0.002 0.612 ± 0.008 0.912 ± 0.004 0.776

Ours + Texts — — — — — — 0.662 ± 0.006 0.967 ± 0.008 0.789

Methods Multi-Class Classification (F1 Micro Score) ↑ Mean ↑ Regression (MAE) ↓ Mean ↓
Thumbs-Up Healthcare Body Performance Sales Stock Air Quality Employee Tenure

XGBoost 0.414 ± 0.000 0.344 ± 0.000 0.745 ± 0.000 0.501 0.0108 ± 0.0000 0.0322 ± 0.0000 0.0451 ± 0.0000 0.0717 ± 0.0000 0.0400
RF 0.410 ± 0.002 0.354 ± 0.008 0.747 ± 0.005 0.504 0.0110 ± 0.0001 0.0299 ± 0.0004 0.0166 ± 0.0008 0.0772 ± 0.0014 0.0337

Logistics 0.295 ± 0.000 0.324 ± 0.000 0.597 ± 0.000 0.405 0.0116 ± 0.0000 0.0345 ± 0.0000 0.0932 ± 0.0000 0.0803 ± 0.0000 0.0549
KNN 0.242 ± 0.000 0.335 ± 0.000 0.559 ± 0.000 0.379 0.0104 ± 0.0000 0.0275 ± 0.0000 0.0522 ± 0.0000 0.1118 ± 0.0000 0.0505
MLP 0.200 ± 0.000 0.332 ± 0.009 0.596 ± 0.070 0.376 0.0315 ± 0.0021 0.0291 ± 0.0014 0.0596 ± 0.0043 0.1202 ± 0.0070 0.0601

TabNet 0.401 ± 0.008 0.338 ± 0.007 0.743 ± 0.012 0.494 0.0115 ± 0.0010 0.0271 ± 0.0004 0.0611 ± 0.0046 0.0890 ± 0.0124 0.0472
Ours 0.451 ± 0.001 0.345 ± 0.000 0.752 ± 0.014 0.516 0.0071 ± 0.0002 0.0261 ± 0.0006 0.0140 ± 0.0048 0.0776 ± 0.0023 0.0312

Ours + Texts 0.480 ± 0.002 — — 0.526 — — — — —

4.2 IMPLEMENTATION DETAILS

We use LLaMA variant models as the pretrained LLM. For medical related datasets (as shown in
Table 1), we use Bio-Medical-LLAMA-3-8B Con (2024). For the remaining dataset we use Meta-
LLAMA-3-8B Dubey et al. (2024). The default hidden size of the transformer layer is set to 1024
while the default hidden size of the MLP layer is set to 512. The default learning rate is set to 1e-5
and the default weight decay is set to 1e-5. The total number of training epochs is 100, and the
learning rate decreases by 10% every 10 epochs.

Among baseline methods, we refer to scikit-learn for the implementations of tabular prediction
methods, including XGBoost, Random Forest (RF), Logistic Regression and K-nearest neighbors
(KNN). We use the default hyperparameters and missing values are imputed using the mean value
of each feature. A two-layer MLP serves as a baseline to verify the capacity of encoding in our
method. Tabnet Arik & Pfister (2021) is based on pytorch-tabnet APIs, which is widely used in
various works.

To ensure the statistical significance and robustness of our experiments, we conducted all the exper-
iments five times and reported the results with 95% confidence intervals. We use the area under the
receiver operating characteristic curve (AUC) Huang & Ling (2005) to evaluate binary classification;
the F1-Micro Score Lipton et al. (2014) for multi-class classification; and the MAE Score Willmott
& Matsuura (2005) for regression tasks. All experiments were conducted on an Nvidia A-100 GPU.

4.3 EXPERIMENTAL RESULTS

In this section, we present the performance of ZET-LLM compared to other tabular prediction meth-
ods in Table 2, focusing on various tasks such as binary classification, multi-class classification,
and regression. Since binary classification is the most common task in tabular prediction, many
works primarily compare their methods on these tasks. To ensure a fair comparison, we evaluate all
models without text features, as competing methods cannot process textual data. On binary classifi-
cation tasks, ZET-LLM performs the best on 6 out of 8 datasets, outperforming both tree-based and
deep learning methods. When considering the average performance across all binary classification
datasets, ZET-LLM shows significant improvement over its competitors.In multi-class classification,
ZET-LLM achieves the best results on 2 out of 3 datasets, while in regression tasks, it performs best
on 3 out of 4 datasets. Overall, ZET-LLM consistently shows the best average performance across
all task types.
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Table 3: Ablation on different serialization methods (AUC).

Input Form SAD Mortality Decompensation Respiration Sepsis Shock IVF Pregnancy Mean

Sample-Wise 0.742 ± 0.004 0.645 ± 0.003 0.863 ± 0.007 0.755 ± 0.002 0.651 ± 0.003 0.710 ± 0.001 0.609 ± 0.013 0.711
Feature-Wise 0.853 ± 0.003 0.702 ± 0.002 0.937 ± 0.011 0.761 ± 0.005 0.686 ± 0.007 0.745 ± 0.002 0.662 ± 0.006 0.764

Table 4: Ablation on missing value mask (AUC).

SAD Mortality Decompensation Respiration Sepsis Shock IVF Pregnancy Mean

w/o mask 0.848 ± 0.006 0.691 ± 0.003 0.923 ± 0.008 0.752 ± 0.007 0.662 ± 0.003 0.723 ± 0.007 0.661 ± 0.005 0.751
w/ mask 0.853 ± 0.003 0.702 ± 0.002 0.937 ± 0.011 0.761 ± 0.005 0.686 ± 0.007 0.745 ± 0.002 0.662 ± 0.006 0.764

Table 5: Ablation on different pre-trained LLMs (AUC).

Models Embedding SAD Mortality Decompensation Respiration Sepsis Shock IVF Pregnancy Mean

Sheared-Llama-1.3B 2048 0.835 ± 0.008 0.693 ± 0.007 0.942 ± 0.008 0.755 ± 0.003 0.691 ± 0.006 0.746 ± 0.007 0.627 ± 0.011 0.756
Mistral-7B 4096 0.851 ± 0.002 0.695 ± 0.002 0.942 ± 0.004 0.751 ± 0.004 0.690 ± 0.004 0.745 ± 0.005 0.628 ± 0.007 0.757
Llama-2-7B 4096 0.838 ± 0.007 0.692 ± 0.002 0.944 ± 0.002 0.750 ± 0.013 0.672 ± 0.002 0.742 ± 0.004 0.635 ± 0.007 0.753
Llama-3-8B 4096 0.850 ± 0.004 0.698 ± 0.001 0.947 ± 0.005 0.772 ± 0.003 0.690 ± 0.006 0.740 ± 0.008 0.627 ± 0.008 0.761

Bio-Medical-Llama-3-8B 4096 0.853 ± 0.003 0.702 ± 0.002 0.937 ± 0.011 0.761 ± 0.005 0.686 ± 0.007 0.745 ± 0.002 0.662 ± 0.006 0.764

One of the key advantages of ZET-LLM is its ability to understand and incorporate text features, a
capability that competing methods lack. When text features are added to the datasets, ZET-LLM sig-
nificantly outperforms all competing methods, demonstrating a substantial margin of improvement.
This highlights the unique strength of ZET-LLM in handling complex, mixed-modal tabular data.
These results validate that zero-shot encoding with LLMs is a powerful and effective approach for
tabular prediction across various tasks. Furthermore, the ability to integrate textual features further
enhances performance, which is especially crucial in scenarios involving complex tabular data.

4.4 ABLATION STUDY

Ablation on serialization We conducted an ablation study to compare two serialization methods:
feature-wise and sample-wise serialization (Table 3). As discussed in the introduction, feature-
wise serialization consistently outperforms sample-wise serialization across datasets, with the largest
performance gap observed on the SAD dataset, which contains the highest number of features. This
result demonstrates that feature-wise serialization is more effective, particularly when dealing with
datasets with many features.

Ablation on missing value mask We evaluate our method with and without the missing value
mask as shown in Table 4. The approach with the missing value mask performs better by mitigating
the noise introduced by missing data. The performance gain on the IVF pregnancy and SAD datasets
is low compared to others, which is expected given their low missing value ratios. This indicates that
the missing value mask is particularly effective when the missing value ratio is higher. Furthermore,
by simply masking missing values, we avoid the need for imputation.

Ablation on different pre-trained LLMs To evaluate the performance of ZET-LLM across dif-
ferent pre-trained LLMs, we test it with various models, including Sheared-Llama-1.3B Xia et al.
(2023), Mistral-7B Jiang et al. (2023), and Llama-2-7B Touvron et al. (2023a), on several datasets.
The results, shown in Table 5, lead to two key conclusions.

First, the overall performance does not vary significantly with the size of the pre-trained LLM. The
mean values across the different models are quite similar, with Sheared-Llama, despite having only
1.3B parameters and an embedding size of 2048, performing comparably to much larger models.

Second, pre-training on domain-specific data improves performance when domain knowledge is
required. Although most medical datasets show minimal performance differences between Bio-
Medical-Llama-3 and the other models, this is primarily because these datasets lack textual fea-
tures. However, Bio-Medical-Llama-3 significantly outperforms other LLMs on the IVF Pregnancy
dataset. This is because IVF contains doctors’ comments as an important feature requiring medical
domain knowledge to understand them better.
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Figure 4: Left: mean attention scores for IVF Pregnancy on the test set. Right: mean attention scores
for Fake job on the test set.

4.5 INTERPRETABILITY ANANYSIS

We visualize the attention scores on the IVF Pregnancy and Fake Job test sets in Figure 4. For
IVF Pregnancy, the attention score of “Last Visit Comments” is much higher than that of other
features, which demonstrates the significance of textual information in this task. This observation is
supported by the results in Table 2, where adding the textual feature increases the AUC from 0.612 to
0.662. Beyond the textual feature, “Age” has the second-highest attention score, indicating that our
method considers Age a critical feature in predicting IVF outcomes. This finding is consistent with
previous studies Sneed et al. (2008); Ubaldi et al. (2019), which emphasize the relevance of age in
IVF success rates. For the Fake Job dataset, the textual features ”company profile” and ”description”
achieve the highest attention scores, both of which are textual features. This confirms the importance
of textual features. In addition to textual features, the categorical feature ”location” is also crucial
in prediction.

5 DISCUSSION

Conclusion In this paper, we introduced ZET-LLM, a novel approach that utilizes large language
models (LLMs) as zero-shot feature extractors for tabular prediction tasks. Instead of fine-tuning
pre-trained LLMs, we fine-tune only the task-specific modules, ensuring computational efficiency.
We proposed a feature-wise serialization method, where individual features are encoded with equal
emphasis on their semantic information. Additionally, a simple missing value masking mecha-
nism effectively handles datasets with high missing value ratios. Altogether, ZET-LLM consistently
outperforms traditional tabular models across binary classification, multi-class classification, and
regression tasks. The method shows particularly significant gains when integrating textual features,
offering a key advantage over models that are unable to process unstructured text.

Future work In this work, our aim is to showcase the inherent potential of LLMs in tabular pre-
diction without relying on complex, task-specific optimizations. While ZET-LLM demonstrates
robustness in its current form, there are several promising directions for further improvement and
extension of this method.

Prior research Slack & Singh (2023) has shown that task-specific instruction design can significantly
enhance the performance of LLMs. Incorporating well-crafted, context-aware instructions could
further optimize ZET-LLM. A potential future direction would be to explore how different types of
instructions can be serialized and integrated with feature tokens for tabular data.

While we have shown that pre-trained LLMs can be effectively utilized for tabular prediction without
fine-tuning, there is room to explore the benefits of adapting LLMs using parameter-efficient fine-
tuning (PEFT) methods. Techniques such as LoRA Hu et al. (2022) or adapters Houlsby et al. (2019)
could provide a lightweight way to fine-tune specific layers or modules of the model, allowing ZET-
LLM to further adapt to domain-specific tasks with minimal computational overhead.
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A DETAILS OF SOME DATASETS

• Sepsis-Associated Delirium (SAD) is a complex clinical syndrome, which is strongly as-
sociated with poor prognosis and long-term cognitive dysfunction. This task is based on
Zhang et al. (2023b) and predicts whether or not patients have SAD based on tabular infor-
mation from MIMIC-IV, such as initial vital signs and the use of mechanical ventilation.

• Mortality: This binary-classification task predicts in-hospital mortality based on observa-
tions recorded during an ICU admission. The original task from Harutyunyan et al. (2019)
is formulated as a time-series classification task; we only use the most recent measurements
of each stay for our paper.

• Decompensation refers to the rapid deterioration of patients’ systems during their stay.
The original task from is from Harutyunyan et al. (2019) contains millions of samples and
is formulated as a time-series classification task. We sample 20, 000 stays from the task
datasets and only use the most recent measurements for our model.

• Respiration, Sepsis, and Shock are common criticial conditions among adult ICU patients.
We sample these binary classification tasks from phenotype classification in Harutyunyan
et al. (2019).

• In-Vitro Fertilization (IVF) Pregnancy is based on a private, clinical dataset from the Tel
Aviv Sourasky Medical Center. The pregnancy outcome is predicted using EHR data and
doctors’ comments.

• Fake Job is a dataset on Hugging Face that contains job postings labeled as either real or
fake, aimed at detecting fraudulent job advertisements. It includes various features such as
job titles, company names, and job descriptions, allowing for fraud detection.

• Thumbs-Up was used for training the PPrior Fereidouni et al. (2022). It is provided by
RecmeApp and consists of user feedback data in the form of ”thumbs up” or ”thumbs
down” ratings for items such as movies or products.
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B AVAILABLE VALUE RATIOS ACROSS DIFFERENT FEATURES

Figure 5: Available value ratios across different features in different datasets.
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C MISSING VALUE DISTRIBUTION

Figure 6: Distributions of missing features for different datasets.
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D ATTENTION SCORES FOR BINARY CLASSIFICATION DATASETS

Figure 7: Mean attention scores for binary classification datasets on the test set.
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E ATTENTION SCORES FOR MULTI-CLASS CLASSIFICATION AND
REGRESSION DATASETS

Figure 8: Mean attention scores for multi-class classification and regression datasets on the test set.
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