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Abstract

Transfer learning is a powerful technique that enables model training with limited amounts
of data, making it crucial in many data-scarce real-world applications. Typically, transfer
learning protocols require first to transfer all the feature-extractor layers of a network pre-
trained on a data-rich source task, and then to adapt only the task-specific readout layers
to a data-poor target task. This workflow is based on two main assumptions: first, the
feature maps of the pre-trained model are qualitatively similar to the ones that would have
been learned with enough data on the target task; second, the source representations of
the last hidden layers are always the most expressive. In this work, we demonstrate that
this is not always the case and that the largest performance gain may be achieved when
smaller portions of the pre-trained network are transferred. In particular, we perform a set
of numerical experiments in a controlled setting, showing how the optimal transfer depth
depends non-trivially on the amount of available training data and on the degree of source-
target task similarity, and it is often convenient to transfer only the first layers. We then
propose a strategy to detect the most promising source task among the available candidates.
This approach compares the internal representations of a network trained entirely from
scratch on the target task with those of the networks pre-trained on the potential source
tasks.

1 Introduction

Machine learning models show a remarkable capacity to extrapolate rules and predict the behavior of complex
systems. Still, this ability often comes at the cost of training with large amounts of data. In various domains
– such as in medical applications – data collection is a slow and costly process. This goes at odds with the
typical vast variability across data, which inevitably requires the usage of huge datasets to achieve satisfying
generalization performance on a desired task Beam & Kohane (2018); Rajkomar et al. (2019). Data efficiency
is thus a necessary condition.

Transfer learning emerged as an efficacious mitigation strategy to this problem Thrun & Pratt (2012); Shin
et al. (2016); Raghu et al. (2019). Transferring the already meaningful representations learned on the source
task to a network that has to solve a given target task allows it to work with dramatically smaller dataset
sizes while keeping a comparable level of accuracy. With little data at disposal, one of the major risks is to
incur overfitting Geirhos et al. (2020). However, transferring the layers directly from another network allows,
in principle, to filter out irrelevant information present in the input of both the source and the target data
sets and work with a representation of the data of reduced efficacious dimension. This allows a significant
increase in data efficiency.

Unfortunately, deep neural networks tend to be sensitive even to tiny distribution shifts Gama et al. (2014).
Therefore, it is essential to perform transfer learning starting from the most suitable pre-trained network
or, in other words, from the most convenient parameter initialization. This becomes even more relevant
when the transfer learning pipeline is followed by a further stage of fine-tuning, during which the transferred
feature map is unfrozen, and the whole network is trained on the target set Bengio (2012). This step is
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Figure 1: Diverse effectiveness of freezing protocols The figure shows two instances of transfer learning
tasks: from Imagenet Deng et al. (2009) to a dataset composed of Breast Cancer images Janowczyk &
Madabhushi (2016); Cruz-Roa et al. (2014) (panel (a)) and from ImageNet Deng et al. (2009) to the Retinal
Fundus Multi-Disease Image Dataset Pachade et al. (2021) (panel (b)) (see SM for further details concerning
the two datasets). In the first transfer experiment, we used a ResNet-50, while in the second one, we used
a ResNet-18. More details can be found in the paragraph Architecture and training protocol. We can see
samples of each dataset in the lower part of the panels, while the curves above – the defrosting profiles –
represent the test performance of the network. Each point of the curve is the accuracy reached when the
first k layers have been transferred. The simulations are averaged over 5 (leftmost panel) and 20 (rigthmost
panel) different realizations.

performed under the assumption that the features are already appropriate, and one can use smaller learning
rates to avoid overfitting.

Fig. 1 embodies the main motivation of this work: it shows that in a realistic data scenario transferring all
the layers up to the last hidden representation does not always lead to the best performance. In particular,
the two panels show the optimal test accuracy as a function of the transfer depth, namely the total number
of frozen layers, when the source task is Imagenet and the target task is either a dataset of Breast Cancer
images (panel (a)) or the Retinal Fundus Multi-Disease Image dataset (panel (b)). As we can see, while in
the first case the optimal accuracy can be achieved by keeping almost all the layers frozen, in the second
case it is instead necessary to retrain larger portions of the network. In the following, we will refer to these
curves as defrosting profiles.

Since transfer learning can be so sensitive to parameter initialization, it is then natural to ask: How could
we detect which is the source pre-trained network whose features are the most promising to transfer?, how
should one choose the layers that should be kept frozen? In other words, is it more convenient to transfer all
the layers or just a portion of them? Ideally, one should be able to identify, in the source network, a layer
in which the representation is general enough to be meaningful also for the target task but not too general,
as otherwise training it to a specialized task might be hindered by the scarcity of data in the target set.

In this work, we start addressing these questions with the following main contributions:

• We design a controlled experimental framework through which we show that the optimal transfer
depth strongly depends on the source-target distribution shift and on the size of the target set;

• We propose a simple protocol for the identification of the optimal transfer depth (see sec. 3.1.1);
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• We propose a strategy to detect the most promising source task by measuring the topological simi-
larity between the internal representations of a network pre-trained on a candidate source task with
a second one trained fully from scratch on the target set.

In particular, in sec. 3.1, we describe the experimental framework leading to the defrosting profiles as the
ones displayed in Fig. 1. In sec. 3.1.1, we will see how this framework can also be considered a protocol for
identifying the optimal transfer depth, which we call incremental defrosting. As we will see, one of the key
advantages of this protocol is its simplicity. Indeed, no learning heuristics need to be employed to ensure
the retention of useful information obtained in the pre-training phase. In sec. 3.2 and sec. 3.3, we will also
show how the shape of the resulting defrosting profiles is strongly affected by the amount of data in the
target training set but also on the specific choice of the source task respectively. Given that the degree of
source-target similarity can consistently impact transfer learning performances, up to the point of inducing
negative transfer effects, in sec. 3.4, we will also propose a strategy to select the most promising source task
among all the possible candidate ones.

1.1 Related Works

Deep neural networks (DNNs) can build surprisingly general representations in various ways Deng et al.
(2009); Solorio-Fernández et al. (2020); Jaiswal et al. (2020). A possible explanation for their effectiveness
comes from their "implicit bias" towards regularized solutions Neyshabur et al. (2014). Numerous works
provided evidence of a preference for simple solutions Rahaman et al. (2018); Pérez et al. (2019); Shah
et al. (2020); Abbe et al. (2021), and it was shown that learning complex functions may require training the
networks for longer times Goldt & Ingrosso (2022); Refinetti et al. (2022).

The layered nature of DNN architectures seems to play a crucial role, as it appears that increasingly complex
features are progressively encoded in deeper layers of the network Kornblith et al. (2019); Abbe et al.
(2021). Interestingly, the interaction between input data and labels has been shown to lead to non-trivial
and often abrupt changes in the nature of the extracted features throughout the layers Tishby & Zaslavsky
(2015); Doimo et al. (2020). Recent investigations highlighted the importance of intermediate representations
Yosinski et al. (2014), but the question on how to select transferable DNN representations Raina et al.
(2007); Long et al. (2015) remains largely open, given the complex dependence on the specific source-target
distribution shifts and on the data scarcity Lee et al. (2022). The theoretical insight on transfer learning
phenomenology in DNNs remains limited. Except for some results on training convergence rates Du et al.
(2020), the simplifying assumption of linear activation function was necessary to obtain exact results on the
generalization properties after a transfer, both in the asymptotic Dhifallah & Lu (2021); Dar & Baraniuk
(2022) and in the dynamical Lampinen & Ganguli (2019) regimes. Currently, a systematic exploration of
the generalization gain as a function of the source-target distribution shift in non-linear neural networks is
only possible in the case of fully connected 2-layer networks Gerace et al. (2022).

The present work explores the uncharted area between theory and real-world transfer learning applications
through a carefully designed framework that allows some degree of control over the data distributions. The
main goal is to investigate the connection between data and architecture, pinpointing the connection between
distribution shift and sample size on one side and the quality of intermediate representations for a transfer
task on the other.

2 The Experimental setup

Architecture and training protocol We consider three different types of architectures. The first and
mostly employed in our experiments is a Wide-ResNet-28-4 architecture Zagoruyko & Komodakis (2016),
organized in 3 identical groups, each containing 4 blocks of alternating convolutional, batch-norm, and
downsampling layers, plus a final batch norm and a fully connected one. This architecture is pretty simple
but still reaches accuracies in image classifications that are close to the state-of-the-art Cubuk et al. (2020);
Han et al. (2017). Therefore, it can be considered a good starting point for a generic image classification task.
Moreover, wide versions of ResNet have been shown to foster a good degree of compatibility between model
representations, whose corresponding similarity was demonstrated to increase with the width of the layers
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Kornblith et al. (2019). For the other tests, we also use the simpler ResNet-18 and ResNet-50 architectures
from the PyTorch model zoo pre-trained on the ImageNet dataset He et al. (2016).

We train the Wide-ResNet-28-4 and the ResNet-18 for 200 epochs with stochastic gradient descent with
momentum at 0.9, batch size of 128, weight decay at 5 · 10−4, a cosine annealing scheduler for the learning
rate, starting from a value of 0.1 Zagoruyko & Komodakis (2016); Loshchilov & Hutter (2016) and no data
augmentation. Concerning the experiments involving the ResNet-50 architecture, we instead use the same
learning protocol as in Dominik Müller & Kramer (2021). We provide the code to reproduce our experiments
and analysis at https://anonymous.4open.science/r/TL_gradient-DD27/. See supplementary material
(SM) B.1 for additional details.

Synthetic datasets To perform an in-depth investigation of the factors at play in determining the different
transfer learning behaviors, we consider three different types of CIFAR-10 clones. These clones are meant
to form a hierarchical family of datasets, approximating the true underlying distribution of CIFAR-10 with
increasing fidelity.

Following Refinetti et al. (2022), the first level of the hierarchy (IsoGM) is obtained by fitting CIFAR-10
with a mixture of isotropic Gaussians and matching the first moments with the CIFAR-10 distribution. At
the second level of the hierarchy (GM), also the covariances are learned from CIFAR-10. To go beyond the
second moment, we propose to obtain finer approximations of CIFAR-10 images by using a deep autoencoder
architecture consisting of a convolutional encoder network and a deconvolutional decoder, both connected
to a bottleneck layer of variable size (we refer to SM for additional details). Note that, by construction,
this setup is devoid of the confounding effect of misalignments between labeling rules Gerace et al. (2022);
Lee et al. (2022) in the source and target tasks since the synthetic datasets share the same label structure,
independently of the alterations induced in the input distributions.

Information imbalance One of the main factors affecting whether a layer can be effectively transferred
to a target network is the similarity between the source and target feature maps. To measure this quantity,
we use the Information Imbalance (II), a topological measure recently proposed in Glielmo et al. (2022), and
estimate if a given feature map can be used to predict another feature map. To compute the II, we first
take both a pre-trained network on a given source task and a network trained entirely from scratch on the
target task. We then make the two networks process the target test set by extracting the corresponding
internal representations at each layer of both networks and for each test example. Since feature maps are
typically very high-dimensional, estimating the conditional entropy between the two representations would
be impractical. The II can be seen as a computationally viable proxy for entropy and other information-
theoretical quantities.

The II is estimated as follows. Given a layer l and a test data point µ, we first find the closest data point
µ′ according to their Euclidean distance in the source representation. Then, in the target representation of
the same data set, we count the number of data points that are closer to µ than µ′. The II is proportional
to the average of this number. Formally

∆l (S → T ) = 2
M

⟨rT |rS = 1⟩

with M being the total number of samples in the test set, rT and rS being the rank matrices associated with
the representations in target and source networks respectively (therefore rS

µ,µ′ is equal to 1 if µ and µ′ are
first neighbors). The average ⟨·⟩ is taken over all the data points in the target test set. The II is, therefore,
a measure of the local similarity between the internal representations space of the source and target task. In
particular, if two local neighborhoods are approximately equivalent, one finds ∆l ∼ 0. In general, the more
the first representation is predictive with respect to the second, the smaller the II is. In the limit where
the source local neighborhood does not provide any information on the target one, one will find ∆l = 1
Glielmo et al. (2022). Note that, crucially, the II circumvents all the known ambiguities caused by re-scaling,
permutations, and symmetries in neural network functions since this measure relies solely on the distance
ranks, which by definition are invariant to the transformations implemented by neural networks.

4

https://anonymous.4open.science/r/TL_gradient-DD27/


Under review as submission to TMLR

3 Results

… … … … … …

Figure 2: Incremental defrosting procedure. The cartoon illustrates the transfer procedure employed
in the experiments, where the first layers are transferred from the architecture trained on the source, and
only the last layers are fine-tuned to the target set. On the right, with a star, we show the accuracy reached
on the target set by a network trained up to the kth layer.

3.1 Experimental framework to identify the optimal transfer depth detection

To identify the optimal transfer depth for a given source-target pair, we perform a series of transfer learning
cycles, as exemplified in the cartoon of Fig. 2. In particular, we start from a completely frozen setting, except
the output layer. We then gradually increase the number of layers to be defrosted and re-trained, starting
from the very last layer up to the early layers in the network. At each iteration of this procedure, to avoid
vanishing gradient scenarios, we re-initialize the defrost layers to random values (following typical heuristics
He et al. (2015)), and we then train them from scratch on the target training data, with the hyper-parameter
setting described in the architecture and training protocol paragraph. The defrosting profiles in Fig. 2, show
the accuracy recorded at each iteration of this procedure, starting from the transfer scenario where all layers
are kept frozen except the final read-out (leftmost panel), up to the transfer setting where the whole network
is let to adapt to the target task (rightmost panel).

While it is common practice to transfer all feature-extractor layers except for the fully-connected segment (or
even just the readout layer), in many scenarios transferring a smaller number of layers may largely improve
the downstream accuracy. This is, for instance, the case of the example shown in Fig. 2, where we highlight
the optimal transfer depth with a red star. As we can see, in this transfer setting where the source task is
GM while the target task is CIFAR-10, it is neither convenient to transfer all the feature-extractor layers
nor to train the entire network entirely from scratch.

There are at least two distinct reasons for the performance deterioration when a sub-optimal number of
layers is kept frozen. On the one hand, one can see a defrosting profile that decreases when too many layers
are kept frozen. This is natural when the input/output mappings associated with the two tasks are too
dissimilar: a trained network will not retain all the information contained in the data points as it learns to
select the meaningful features for classification. Some information that is relevant to the target task might
be dropped completely by the pre-trained model, given the presence of non-linearities and down-sampling
operations throughout the layers. On the other hand, when the target dataset is small, one can see a
performance deterioration if too many layers are defrosted and re-trained on the new data. If the ratio of
training samples and tunable parameters becomes too small, one can trace over-fitting behaviors, as the
model can not choose a good generalizing solution among the vast number of zero training error models.

3.1.1 Incremental Defrosting Algorithm.

The vanilla transfer learning protocol, where only the read-out layers are retrained on the target data, may
represent a very cost-effective and easily implementable strategy. However, as we can see from the example
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in Fig. 1 for different architectures and source-target pairs, transferring all the feature-extractor layers does
not always represent the optimal strategy. Indeed, there exist transfer learning scenarios where considering
different depths in the defrosting process may allow large performance gains in the downstream task.

The multiple defrosting and re-training process exemplified in the previous paragraph can be equivalently
thought of as a preliminary and simple protocol for identifying the optimal transfer depth. We call this
algorithm incremental defrosting. Since transfer learning is mostly relevant when the target dataset is
effectively small, this procedure should not require high computational costs compared with typical large-
scale deep network training.

The salient trait of the defrosting profiles is that they show a shape that is generally quite regular and
predictable from a few points in the profile. Indeed, the main drops in the representation similarities happen
after the lossy down-sampling layers (see sec. 3.4). At the same time, the performance is generally more
stable by considering an additional layer of a different type. Therefore, in cases of limited computational
budgets, the position of the maximum could also be inferred by sampling just a few transfer depths, ranging
from next to last to after the first down-sampling operation.

The identification of the optimal transfer depth by means of the incremental defrosting algorithm will then
provide the best initialization for all the possible subsequent fine-tuning strategies, whose first step is the
choice of a source pre-trained network.

3.2 Dependency of the optimal transfer depth on the training set size

At a qualitative level, the interplay between data scarcity and transfer learning seems clear: With enough
samples in the target dataset, all the relevant data features can be extracted directly from the task at hand.
Instead, with a reduced sample size, learning good representations from scratch becomes impossible and
transfer learning becomes thus a convenient option.

We conduct a quantitative investigation of the transition between these two scenarios by considering two
distinct datasets as test cases. The first dataset is the GM CIFAR-10 clone (described in sec. 2). The
second one is a balanced sub-sample of a publicly available medical dataset for the classification of breast
cancer Janowczyk & Madabhushi (2016); Cruz-Roa et al. (2014) (more on the Breast Cancer dataset in SM
sec. B.1). Given these two datasets, we then consider two different transfer learning experiments. In the first
one, we train a Wide-ResNet-28-4 by selecting GM as the source task and CIFAR-10 as the target task. In
the second experiment, we take instead a ResNet-18 pre-trained on ImageNet from the PyTorch model zoo,
and we select as the target task the Breast Cancer dataset (this is a common choice in medical applications
Khan et al. (2019); Chouhan et al. (2020)). For both transfer learning experiments, we sub-sample the target
data, thus spanning over a wide range of data-scarce scenarios.

Fig. 3 shows the outcome of the experiments involving CIFAR-10 (left) and Breast Cancer (right), respec-
tively. The defrosting profiles in the two cases show some common features. As expected, the generalization
accuracy on the target task generally increases with larger amounts of training data. However, a nontrivial
observation is that the optimum of the defrosting profile shifts backward in the layers as the size of the target
training set is increased (darker colors). Instead of just transitioning from a regime of convenient transfers
(with some fixed optimal transfer depth) to one of sub-optimal transfer, we find that the number of trans-
ferred layers needs to be adjusted according to the sample size, as early layers maintain a higher degree of
compatibility when more data is made available. Note also that optimally defrosting the pre-trained network
can be more effective than employing the vanilla freezing protocol after acquiring more data. For example,
in the right panel of Fig. 3, the optimal transfer with 5 × 103 samples achieves a comparable performance
with vanilla freezing with 10 times more data. The fact that this accuracy boost can be obtained almost
for free, just by estimating a defrosting profile for a given transfer task, is one of the main messages of this
work.

3.3 Dependency of the optimal transfer depth on source-target similarity

We now investigate the role played by the statistical similarity between the input distributions of the source
and target tasks in determining the optimal transfer depth. Comparing experiments with no control over the
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Figure 3: Effect of dataset size. The figures show the defrosting curves obtained in two transfer learning
tasks for different target set sizes: from GM to CIFAR-10 and from ImageNet to Breast Cancer. In the
left panel, we use a Wide-ResNet-28-4, while in the right panel, a ResNet-18. More details can be found
in the paragraph Architecture and training protocol. The darkness of the curve represents the set size, the
darker the larger. In particular, in the GM to CIFAR10 transfer, the different shades of red correspond to
the training set sizes {24, 26, 28, 210, 5 × 103} per class, while, in the ImageNet to Breast Cancer transfer,
the different shades of green correspond to the training sizes {5 × 102, 5 × 103, 104, 5 × 104} per class. The
simulations are averaged over 20 and 5 different realizations in the top and bottom panels, respectively.
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Figure 4: Defrosting profile for CIFAR-10 clones. The four panels show three different CIFAR-10
clones to CIFAR-10 transfer directions in increasing levels of CIFAR-10 approximation: IsoGM, GM, and
L256. The figure shows the corresponding defrosting profiles at 384 training samples per class. It provides
evidence of how better approximating clones convey richer features, and therefore, it is best to transfer
a larger portion of the architecture. Each of the three insets displays a prototypical example of how the
images look in the corresponding clone. The network architecture is a Wide-ResNet-28-4. More details can
be found in the paragraph Architecture and training protocols. The simulations are averaged over 5 different
realizations.
input statistics and with different labeling rules may be insufficient to answer this question, as these factors
cannot be easily disentangled. With the hierarchy of generative models described in Section 2, instead, one
can isolate this crucial aspect of transfer learning. In this controlled synthetic framework, we can gradually
move from a scenario where only the first moment of the source and target task distribution are matched
(IsoGM), to the case in which the first two moments are matched (GM), up to the scenario where the source
and target distributions almost perfectly match (L256).

Our results are summarised by the incremental defrosting profiles in Fig. 4 at the same training set size. As
expected, if the similarity of the two data sources is insufficient (left panel), fully retraining the network and
giving up the transfer learning approach is preferable, even in the data-scarce regime. At pre-training, the

7



Under review as submission to TMLR

0 10 20 30
convolutional layer #

0.0

0.2

0.4

0.6

0.8

in
fo

rm
at

io
n 

im
ba

la
nc

e

0 10 20
transfer depth

0.4

0.5

0.6

0.7

0.8

0.9

be
st

 a
cc

ur
ac

y

S: IsoGM, T: CIFAR10
S: GM, T: CIFAR10
S: L256, T: CIFAR10

Figure 5: Role of the topological similarity of representations In the (top) panel, we display the
Information Imbalance (II) between CIFAR10 and three CIFAR10 clones to be employed as source dataset:
IsoGM, GM, and the largest autoencoder with bottleneck 256. On the (bottom), we display the incremental
defrosting profile obtained in these three transfer learning scenarios, assuming the source and target datasets
are full (50K images each). The simulations are averaged over 5 different realizations. In the bottom panel,
the error bars are smaller than the point size.

early layers of the network have adapted to significantly different input distributions and are thus unsuitable
to extract the information needed to solve the target task. As the similarity between the two tasks increases
(middle and right panel), the optimal cut for the defrosting protocol shifts towards the later layers of the
network. In the SM, Fig. 6 complements this picture by showing how the defrosting profiles at different
sizes of the training set can significantly change depending on the relatedness between the source and the
target task. Indeed, when the source and the target task are poorly statistically correlated, we can observe
negative transfer effects even in an extreme data scarcity regime. On the other hand, when the two tasks
are extremely correlated, it is almost always convenient to transfer up to the very last layer, except when
one can count on a huge number of training examples.

From this analysis, two relevant and related aspects emerge. First of all, depending on the complexity of
the source task and its relatedness to the target one, we can observe different scenarios, ranging from always
negative to almost always positive transfer. It is then natural to ask whether it is possible to design a strategy
to identify the most promising source task among several other candidates. The second aspect is that the
experiments in Fig. 4 strongly hint at the fact that there is a precise order in which the layers learn the
different moments of the input data distribution. Indeed, if we consider the way CIFAR10-clones have been
designed, it seems that the first layers are just focusing on capturing the first and second-order statistics of
the data distribution, thus playing a more generic image pre-processing role Yosinski et al. (2014), compatible
with multiple downstream classification tasks on similar input distributions. On the contrary, deeper layers
are more sensitive to high-order moments. We discuss these two points in the next section.

3.4 Source Task Detection

The experiments in Fig. 4 highlight how crucial is the choice of the source task in transfer learning protocols.
Indeed, the generalization performances of the target network can consistently improve or downgrade, simply
depending on the initial conditions or, in other words, on how closely related to the target the source pre-
trained network is. It is then natural to ask: How can we choose the most promising source task among
several candidates? In principle, we would expect that similar tasks induce similar internal representations in
the neural networks trying to solve them. To select the most promising source task, we propose quantifying
the similarity level between the internal representations of the network pre-trained on the source task and
the one trained from scratch on the few examples in the target set with the Information Imbalance (II)
described in Sec. 2.

8



Under review as submission to TMLR

Fig. 5 shows how the II can be used as a good proxy to identify the most promising source task when the
target task is CIFAR-10 and the available source candidates are the three clones IsoGM, GM, and L256. In
particular, the left panel of Fig. 5 shows the II computed at each layer l in the context where the target
task is CIFAR10 and the source task is one of its clones, e.g. IsoGM (magenta curve), GM (blue curve) and
L256 (green curve). As can be seen, the CIFAR-10 clone closer to CIFAR-10 in data distribution (e.g. L256
green curve) is also the one closer in terms of internal network representation and, at the same time, the
one leading to the best defrosting profile, as shown in the right panel of Fig. 5. By simply looking at the II
profile, we can then predict which source candidate leads to the more informative feature map for solving
the target task.

A further thing to notice is that II generally increases as a function of the depth, but its rate of increase
depends on the similarity between the datasets on which the networks to be compared have been trained
on. The main II jumps happen in correspondence with the down-sampling layers in the network, where
some information that might be relevant for one of the tasks is filtered out in the other task, inevitably
inducing different local neighborhoods in the representations. As already pointed out in sec. 3.1.1, this
allows us to infer the optimal transfer depth by sampling just a few transfer depths rather than identifying
the whole defrosting profile. Finally, the II seems to suggest the existence of a hierarchical order according to
which deep neural network layers learn the increasingly higher-order moments of the input data distribution.
Indeed, the topological similarity in the case of L256 is almost perfect until the very last layers, indicating
the presence of small differences in the high-order features of the two data distributions. Instead, in the case
of GM, we see that the representations are almost equivalent up to the 10-th layer and become increasingly
different thereafter. Finally, the IsoGM case shows that the difference in the statistical distribution of
training data affects the learning process dramatically, inducing visibly dissimilar representations that are
incompatible with a good generalization performance. This finding complements the picture presented in
Goldt & Ingrosso (2022), where the learning dynamics is shown to learn the different moments of the input
distribution in a precise temporal order.

There are many alternative similarity indices that can be measured in place of the II, each one clearly
unveiling the connection between the topological similarity of the representations and the transfer learning
behavior observed in the incremental defrosting profile. In SM C, we also show the results for the CKA
Kornblith et al. (2019), the neighborhood overlap Doimo et al. (2020) and the Spearman correlation of local
neighborhoods, which provide qualitatively similar information.

4 Discussion

In the present work, we propose an experimental framework able to identify the key factors determining
the number of layers to keep frozen in transfer learning settings. This framework can also be considered a
simple algorithm to improve the accuracy of networks trained via transfer learning. We call this algorithm
incremental defrosting. For data-poor target tasks, incremental defrosting can be run at a negligible compu-
tational cost. However, we further propose a strategy that can be employed to reduce its cost also for larger
target data sets. Thanks to the controlled experimental framework, we have shown that the optimal transfer
depth depends non-trivially on the amount of training data and on the similarity between source and target
tasks and that its identification can be more impactful on downstream performance than acquiring 10 times
more training data. Finally, we have proposed a strategy to identify the most promising source task based
on topological similarity measures of network representations.

We show that the incremental defrosting algorithm and the source task detection strategy can make a
difference in real-world transfer learning applications, as it allows squeezing the best accuracy for a given
architecture in an elementary and intuitive manner. Moreover, when used in conjunction with subsequent
fine-tuning stages, both protocols can overall improve fine-tuning performance, especially if we consider that
the small learning rates employed in fine-tuning stages prevent the learning dynamics from deviating too
much from the initial condition dictated by the source network. Therefore starting from the most convenient
initialization is definitely crucial for transfer learning effectiveness.

Recent developments in the theory of neural networks Jacot et al. (2018); Canatar et al. (2021) achieved
exact descriptions of learning neural networks in different regimes. However, there is still a lack of math-
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ematical tools for analyzing the role played by representations in the feature-learning regime relevant to
transfer learning. Our work provides calibrated experiments that showed the topological similarity between
representations – obtained via independent training on source and target tasks – is a qualitative indication
of the suitability of a representation transfer between tasks.

In perspective, we believe that understanding – both on the theoretical and the practical sides – how to
disentangle input similarity from the labeling rule might be an interesting direction for future investigations
in this research field.
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A Appendix

B Supplementary Material

B.1 Numerical Details

In this section, we provide details concerning the autoencoder clones and the Breast Cancer medical dataset.
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Autoencoder Clones We follow Lippe (2022) to build an encoder with 5 3 × 3-convolutional layers and
GeLU activations, alternating stride 2 and stride 1 filters to reduce the dimensionality and ending with
a single dense layer, whose size determines the bottleneck. The decoder has the same structure with the
stride-2 convolutional layers replaced by deconvolutional ones. Training is performed over the CIFAR-10
training set in batches of size 256 over 500 epochs using Adam Kingma & Ba (2014). We used a warmup
schedule, peaking the learning rate up to 10−3 after 100 epochs and then annealing to 10−5. At the end of the
training, we collect the produced images for each bottleneck size in a new dataset. In the experiments, the
so-produced CIFAR-10 autoencoder clones are standardized in such a way to have zero mean and standard
deviation equal to one for each channel.

Medical Dataset Concerning the transfer experiments in the leftmost panel of Fig. 1, we consider the
Retinal Fundus Multi-Disease Image Dataset Pachade et al. (2021) which is composed of 3200 fundus images,
each one associated to a given retinal condition, including various examples of rare and challenging to detect
diseases for a total of 46 different classes. This dataset has been associated with the Retinal Image Analysis
for Multi-Disease Classification (RIADD) challenge from the ISBI 2021, where the main goal was to classify
the 46 different types of retina conditions through sized retinal microscope images. In our experiments, to
make the task more similar to the one of breast cancer detection (rightmost panel of Fig. 1), we simply
train the ResNet50 to recognize whether the retina is affected by some disease or not, thus switching from a
multi-class to a binary classification task. Concerning the transfer experiments in the bottom panel of Fig. 3,
we instead consider as a test case a publicly available medical dataset for the classification of breast cancer,
consisting of 277.524 50x50 patches extracted from 162 scans Janowczyk & Madabhushi (2016); Cruz-Roa
et al. (2014). The images are labeled as positive or negative according to the presence or absence of invasive
ductal carcinoma (IDC) tissue in the patch. Among all the examples, we use the 80% of them for the
training set and the 20% for the test set. With the purpose of speeding up the simulations and describing
more realistic transfer learning scenarios, we further randomly sub-sampled the test set up to 104 images at
each simulation run, preserving class balance. In the transfer experiment, the images have been rescaled to
224×224 pixels and then standardized as required in the PyTorch documentation for pre-trained ResNet-18.

B.2 More on CIFAR10 Clones: Defrosting Profile and Information Imbalance

As already pointed out in the main text, the optimal transfer depth strongly depends on the size of the
target training set and on the statistical similarity between the source and the target task.

Fig. 6 complements the picture described in sec.3.2 and sec.3.3, by showing the defrosting profile for different
CIFAR-10 training set sizes (lighter colors identify smaller training set size), when the source task is IsoGM
or one of the autoencoder clones at increasingly higher bottleneck size, e.g. L4, L32, L256. As we can
see, in the transfer direction IsoGM to CIFAR-10, transferring up to the very layer is never beneficial, no
matter the size of the target task. IsoGM and CIFAR-10 share only the first moment of the underlying
CIFAR-10 distribution; therefore, negative transfer effects can occur due to the scarce statistical similarity
between the two datasets. By including higher-order moments of the CIFAR-10 distribution and refining
their approximations through the bottleneck size of the CIFAR-10 autoencoder clones, transfer learning
becomes increasingly more effective. Indeed, in the transfer direction L256 to CIFAR-10, we can see it is
always convenient to transfer up to the very last layer, except at very huge training set sizes. Almost the
same picture occurs when transferring the pre-trained feature map on L32 to CIFAR10. However, similarly
to the picture that emerged in the transfer experiment concerning the Breast Cancer dataset, in this case, a
peak starts appearing in correspondence with the second-to-last defrosted layer. The optimal transfer depth
then shifts to the left in the L4 to CIFAR-10 transfer experiment with 64 images per class. This phenomenon
is probably due to the smaller degree of similarity between the two datasets, even if it is less exacerbated
than what is observable in the GM to CIFAR-10 transfer direction.

Fig. 7 shows the II across layers, quantifying the representation similarity of two networks trained from
scratch on CIFAR-10 and on one of the clones among IsoGM, L4, L32 and L256. The representations are
extracted on the CIFAR-10 test set. As we can see, the profile of the II reflects the hierarchical nature of
the CIFAR-10 clone family. Indeed, the larger the size of the bottleneck, the more and the deeper similar
the representations are across the layers.
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Figure 6: Effect of dataset size and source-target relatedness. The plot shows the defrosting profiles
at varying training set sizes of CIFAR-10 for four different transfer couples, similar to what was shown
in Fig. 3 (top panel) of the main text. The transfers reported are IsoGM to CIFAR-10 (top left panel),
L4 to CIFAR-10 (top right panel), L32 to CIFAR-10 (bottom left panel), and L256 to CIFAR-10 (bottom
right panel). In particular, in the Iso-GM to CIFAR-10 transfer direction, the curves are relative from the
lighter to the darker colors to the following CIFAR-10 training set sizes {8, 64, 256, 1024, full dataset size};
in the L4 to CIFAR-10 transfer direction, the curves are relative from the lighter to the darker colors to
the following CIFAR-10 training set sizes {4, 16, 64, 256, 512}; in the L32 to CIFAR-10 transfer direction,
the curves are relative from the lighter to the darker colors to the following CIFAR-10 training set sizes
{64, 128, 256, 384, 512}; in the L256 to CIFAR-10 transfer direction, the curves are relative from the lighter
to the darker colors to the following CIFAR-10 training set sizes {128, 256, 512, 2048, full dataset size}. The
simulations are averaged over 5 different realizations and the error bars are smaller than the point size.

C Similarity measures

In the main manuscript, we have analyzed the similarity among representations while relying on the II
metrics. However, as already pointed out in Sec.3.4, there are other similarity measures that can be taken
into account and that are equivalently blind to some of the re-scaling, permutation, and symmetries of the
parametric function implemented by a neural network model.

Fig. 8 shows, from left to right, the CKA Kornblith et al. (2019), the Spearman correlation of the first
100 neighborhoods and the neighborhood overlap among the first 30 Doimo et al. (2020) neighbors as a
function of the network depth. The representations are extracted once again on the CIFAR-10 test set and
correspond to the feature map of two different networks, one trained from scratch on the CIFAR-10 dataset
and the other one on one of the CIFAR-10 clones, e.g., IsoGM (magenta curve), GM (blue curve) and L256
(green curve). As can be seen, the behavior of the three metrics is qualitatively similar to the one already
observed for the II in Fig. 5 (top panel). Indeed, even in this case, the representation similarity is stronger
at early layers, providing a further hint at the generality of the feature maps extracted at the bottom of
the networks. Moreover, the hierarchical structure of the CIFAR10-clones is reflected in the profiles of the
similarity measured, signaling which task is the most promising one as the source task for the CIFAR-10
classification target task.
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Figure 7: Representation Similarity. The plot displays the information imbalance across the layers to
increase the fidelity of the CIFAR-10 clones. In particular, lighter colors refer to more similar clones (in
sequence IsoGM, L4, L32, L256). The source and target network are trained at full dataset size (50K
images). The simulations are averaged over 5 different realizations.
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Figure 8: Other Similarity Measures. From left to right, CKA, Spearman Correlation, and Neighborhood
Overlap across layers. The different colors refer to different source tasks, e.g., IsoGM (magenta curve), GM
(blue curve), and L256 (green curve). The setting is the same as reported in the main text Fig. 5, i.e. source
and target networks are trained on the full training set size (50K images). The simulations are averaged
over 5 different realizations.
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