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Abstract
Selecting or designing an appropriate domain
adaptation algorithm for a given problem remains
challenging. This paper presents a Transformer
model that can provably approximate and opt
for unsupervised domain adaptation (UDA) meth-
ods for a given dataset in the in-context learning
framework, where a foundation model performs
new tasks without updating its parameters at test
time. Specifically, we prove that i) Transformers
can approximate instance-based and feature-based
unsupervised domain adaptation algorithms, and
ii) automatically select the approximated algo-
rithms suited for a given dataset. Numerical
results indicate that in-context learning demon-
strates an adaptive domain adaptation surpassing
existing methods.

1. Introduction
Domain adaptation provides a methodology for transfer-
ring “knowledge” obtained in one domain to another related
domain (Ben-David et al., 2010). One of the challenges
associated with domain adaptation is selecting and differ-
entiating effective methods. There are many existing ap-
proaches in domain adaptation, such as the instance-based
methods (Dai et al., 2007; Sugiyama et al., 2007; Kanamori
et al., 2009) and the feature-based methods(Daumé III, 2009;
Ganin et al., 2016). However, when each method is effec-
tive differs based on data. Specifically, the instance-based
methods (Sugiyama et al., 2007; Kanamori et al., 2009) are
effective when there exists a valid density ratio between
covariates of the source and target domains, whilst the
feature-based methods are effective if we can find a domain-
invariant representation on a common feature space between
the domains. To properly select an appropriate approach to
the given data, it is essential to assess whether they meet the
specific conditions of each method.
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As a method for developing versatile algorithms, the in-
context learning ability of foundation models has garnered
significant attention. In-context learning, a form of meta-
learning in foundational models, allows models to adapt
to new tasks without updating their parameters. In particu-
lar, the capabilities of Transformers in in-context learning
have been intensively surveyed: for example, (Bai et al.,
2023) showed that Transformers can learn algorithms such
as gradient descent, as well as their optimal selection meth-
ods. Such in-context learning abilities of Transformers have
been validated from both experimental and theoretical as-
pects (Garg et al., 2022; Li et al., 2023; Von Oswald et al.,
2023; Akyürek et al., 2022; Xie et al., 2021; Zhang et al.,
2023; Bai et al., 2023; Lin et al., 2023; Ahn et al., 2024;
Raventós et al., 2024).

In this study, we demonstrate that Transformer models
effectively address the challenge in in-context learning.
Specifically, our analysis reveals that Transformers in the
framework i) solve domain adaptation problems by ap-
proximating the main UDA algorithms, and ii) automat-
ically select suitable methods adaptively to the dataset’s
characteristics. The results indicate that Transformers can,
in context, not only implement various transfer learning
methods but also possess the capability to appropriately
select among them. These findings suggest that by accu-
rately choosing a combination of these methods based on
the dataset, performance can be enhanced beyond what
is achievable by applying the methods individually. The
full version of this manuscript can be found at https:
//arxiv.org/abs/2405.16819.

2. Preliminary
2.1. Unsupervised Domain Adaptation

Setup We consider the Unsupervised domain adaptation
problem with two domains. Let X ⊂ Rd be a compact input
space and Y be an output space. Then, the source and the tar-
get domains, PS and PT , are distributions onX×Y , let their
density functions be pS and pT , and their marginal distribu-
tions on X be PX

S and PX
T . Denote DS = {(xS

i , y
S
i )}ni=1

and DT = {xT
i }n

′

i=1 for the source labeled data and target
unlabeled data, respectively and let N := n+ n′. Given a
loss function ℓ : Y × Y → R≥0 and a hypothesis space F ,
UDA aims to minimize the target risk argminf∈F RT (f),
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where RT (f) := E(x,y)∼PT
[ℓ(f(x), y)] is the target risk,

without observing labels of the data from the target domain.
To this end, UDA methods aim to match the source and
target distributions in the feature space, categorized into
instance-based and feature-based approaches.

Instance-based Methods Instance-based approaches
reweight instances from the source domain to minimize
the target risk, based on the following transferability
assumption called covariate shift.

Assumption 1 (Covariate Shift, (Shimodaira, 2000)). Sup-
pose that the distribution of y conditioned on the input x is
the same in the source and target domains, i.e., pS(y|x) =
pT (y|x).

Under this assumption, RT (f) =
E(x,y)∼PS

(q(x)ℓ(f(x), y)) holds, where q(x) =
pT (x)/pS(x) is the density ratio between the marginal
distributions of source and target. Then, Importance-
weighted learning (IWL) (Sugiyama et al., 2012; Kimura
& Hino, 2024) obtains argminf∈F RT (f) in two steps:
1. Empirically learn an estimator of the density ratio q̂
using {xS

i }ni=1 and DT , and then, 2. minimize the weighted
empirical risk R̂T (f) = 1

n

∑n
i=1 q̂(x

S
i )ℓ(f(x

S
i ), y

S
i )

consists of data from the source domain.

Here, we introduce unconstrained Least-Squares Impor-
tance Fitting (uLSIF) (Kanamori et al., 2009), a method
for density-ratio estimation. Firstly, the density ratio is
estimated by the linear basis function model q̂α(x) =

α⊤ϕ(x) =
∑J

j=1 αjϕj(x), where α = [α1, . . . , αJ ] and
ϕ = [ϕ1, . . . , ϕJ ] are parameter and feature vectors re-
spectively, where ϕj : X 7→ R are feature maps for an
input x. uLSIF estimates the weight α to directly mini-
mize the following squared error: L(α) = 1

2

∫
X (q̂α(x)−

q(x))2pS(x)dx. By some calculation, a minimizer of (2.1)
is estimated α̂ = argminα≥0 L̂(α) with

L̂(α) =
1

2n

n∑
i=1

(q̂α(x))
2 − 1

n′

n′∑
i=1

q̂α(x) +
λ

2
∥α∥22 (1)

where λ > 0 is a regularization parameter, Ψjj′ :=
1
n

∑n
i=1 ϕj(x

S
i )ϕj′(x

S
i ) and ψj := 1

n′

∑n′

i=1 ϕj(x
T
i ).

Then, if F is a space of linear model, we can ob-
tain a classifier with an empirical importance-weighted
problem w∗ = argminw∈RJ R̂T (w) with R̂T (w) :=∑

(x,y)∈DS
q̂α̂(x)ℓ(w

⊤ϕ(x), y). Then, we obtain a clas-

sifier defined as f̂ IWL(x) := (w∗)⊤ϕ(x).

Feature-based Methods A feature-based method learns a
domain-invariant feature map ϕ : X → X ′, where X ′ is a
feature space, so that RT (f

′) ≈ E(x,y)∼PS
ℓ(f ′(ϕ(x)), y),

where f ′ : X ′ → Y . The domain adversarial neural net-
work (DANN) (Ganin et al., 2016) is a typical method to

achieve this by using adversarial learning. DANN consists
of three modules, a feature extractor fF : X → X ′, a label
classifier fL : X ′ → [0, 1], and a domain discriminator
fD : X ′ → [0, 1], parameterized by θF ,θL,θD, respec-
tively. Then, a classifier fL with an invariant feature extrac-
tor fF can be obtained by solving the following minimax
problem:

min
θF ,θL

max
θD

L(θF ,θL)− λΩ(θF ,θD). (2)

where λ > 0 is a regularization parameter, L(θF ,θL) :=∑
(x,y)∈DS

γ(fL ◦ fF (x), y) is label classification loss
and Ω(θF ,θD) := 1

n

∑
(x,y)∈DS

γ(fD ◦ fF (x), 0) +
1
n′

∑
(x,y)∈DT

γ(fD ◦ fF (x), 1) is domain classification
loss. Here, γ(p, q) := −q log p − (1 − q) log(1 − p) for
p, q ∈ [0, 1] is a sigmoid cross entropy function. The model
parameters are updated by gradient descent with a learning
rate of η as follows:

θF ← θF − η∇θF
(L(θF ,θL)− λΩ(θF ,θD)) , (3)

θL ← θL − η∇θL
L(θF ,θL), (4)

θD ← θD − ηλ∇θD
Ω(θF ,θD). (5)

2.2. In-context Learning

Setup. In in-context learning, a fixed Transformer observes
a dataset D = {(xi, yi)}Ni=1 ∼ (P )N with pairs of an
input xi and its label yi from a joint distribution P and
a new query input x∗ then predicts y∗ corresponding to
x∗. Different from the standard supervised learning, in
in-context learning, the Transformer is pre-trained on other
datasetsD′ from different distributions to learn an algorithm
to predict y∗. Unlike the standard meta learning, at the
inference time of in-context learning, the parameters of a
Transformer are fixed. Our interest is to study the expressive
power of a Transformer model for algorithms on a given
dataset D.

Transformer. Define an L-layer Transformer consisting
of L Transformer layers as follows. The lth Trans-
former layer maps an input matrix H(l) ∈ RD×N to
H̃(l) ∈ RD×N and is composed of a self-attention
block and a feed-forward block. The self-attention block
Attn(l) : RD×N → RD×N is parameterized by D ×
D matrices {(K(l)

m ,Q
(l)
m ,V

(l)
m )}Mm=1, where M is the

number of heads, and defined as Attn(l)(X) = X +
1
N

∑M
m=1 V

(l)
m Xσ((Q

(l)
m X)⊤K

(l)
m X). σ denotes an acti-

vation function applied elementwisely.

The feed-forward block MLP(l) : RD×N → RD×N is
a multi-layer perceptron with a skip connection, parame-
terized by (W

(l)
1 ,W

(l)
2 ) ∈ RD′×D × RD×D′

, such that
MLP(l)(X) = X +W

(l)
2 ς(W

(l)
1 X), where ς is an activa-

tion function applied elementwisely. In this paper, we let

2



both σ and ς be the ReLU function in this paper, following
(Bai et al., 2023).

An L-layer Transformer TFθ, parameterized by θ =

{(K(l)
1 ,Q

(l)
1 ,V

(l)
1 , . . . ,K

(l)
M ,Q

(l)
M ,V

(l)
M ,W

(l)
1 ,W

(l)
2 )}Ll=1,

is a composition of the abovementioned layers as
TFθ(X) = MLP(L)◦Attn(L)◦· · ·◦MLP(1)◦Attn(1)(X).

In the remaining text, the superscript to indicate the layer
numer (l) is sometimes omitted for brevity, and the nth
columns of H(l), H̃(l) are denoted as h

(l)
n , h̃

(l)
n . We use

∥θ∥TF as a norm of the parameter matrices; see Section A
in the appendix.

3. Approximating UDA Algorithms by
Transformers

This section demonstrates that transformers in in-context
learning can approximate existing UDA algorithms. Specif-
ically, we show that transformers can approximate uLSIF-
based IWL, an instance-based method, and DANN, a
feature-based method.

3.1. Setup and Notion

We consider in-context domain adaptation, where a fixed
Transformer model is given a tuple (DS ,DT ,x∗), where
x∗ ∼ pXT (x), and predicts y∗ without updating model pa-
rameters.

We construct the input matrix using both source and tar-
get data. Specifically, we suppose the input data, namely
(xS

i , y
S
i ) ∈ DS and xT

i ∈ DT , are encoded into H(1) ∈
RD×(N+1) as follows:

H(1) =


x1 . . . xn xn+1 . . . xN xN+1

y1 . . . yn 0 . . . 0 0
t1 . . . tn tn+1 . . . tN tN+1

s1 . . . sn sn+1 . . . sN sN+1

1 . . . 1 1 . . . 1 1
0D−(d+4) . . . 0D−(d+4) 0D−(d+4) . . . 0D−(d+4) 0D−(d+4)

,

(6)
where xi = xS

i and yi = ySi for 1 ≤ i ≤ n, xi = xT
i−n

for n + 1 ≤ i ≤ N , xN+1 = x∗. ti = 1 for 1 ≤ i ≤ n
otherwise 0 is used to indicate which data point is from
the source domain, and si = 1 for 1 ≤ i ≤ N otherwise
0 is used to mark training data. We further define an out-
put of a transformer for the prediction corresponding to
xN+1 = x∗. For an input H(1) and its corresponding out-
put matrix TFθ(H

(1)), we write its (2, N + 1)-th element
of TFθ(H

(1)) as TF∗
θ(H

(1)).

Let Bx, By > 0. To use (ϵ, R,M,C)-approximability in
Appendix A, we suppose ∥xi∥ ≤ Bx and ∥yi∥ ≤ By for
any i ∈ {1, . . . , N+1}, and ∥w∥ ≤ Bw for a model weight
w in in-context learning. Additionally, for the feature map
of IWL, we suppose ∥ϕ∥ ≤ 1 so that ∥ϕ(x)∥ ≤ Bx.

3.2. In-context IWL with uLSIF

We show a transformer in the ICL scheme can approximate
the uLSIF estimator-based IWL algorithm, which we refer
to as IWL in the following.

In this section, we consider the following setup: Fix any
Bw > 0, Bα > 0, L1, L2 > 0, η1, and η2. Given a loss
function ℓ that is convex in the first argument, and ∇1ℓ
is (ϵ, R,M,C)-approximable by the sum of ReLUs with
R = max(BwBx, By, 1). We first state the main result of
this section. This theorem shows that the transformer has the
performance to function as an algorithm almost equivalent
to IWL for any input x∗. Note that the query x∗ is encoded
in the input matrix H(1) defined in (6).
Theorem 1. Consider f̂ IWL with ϕ which is approx-
imable by a sum of ReLUs. Fix ε > 0 arbitrar-
ily and set L2 as satisfying 0 < ϵ ≤ Bw/2L2.
Suppose that an input (DS ,DT ,x∗) satisfies that
supw:∥w∥2≤Bw

λmax(∇2R̂T (w;DS)) ≤ η2/2 and the min-

imizer w∗ ∈ argmin R̂T (w;DS) satisfies ∥w∗∥ ≤ Bw/2.
Then, there exists a transformer TFθ withL1+L2+1 layers
and M heads which satisfies the following: ∥TF∗

θ(H
(1))−

f̂ IWL(x∗)∥ ≤ ε.

This result has several implications. First, while transform-
ers with ICL have been shown to approximate algorithms for
i.i.d. data (Bai et al., 2023), this theorem extends it to show
the capability of handling domain shifts. This extension
is nontrivial since it requires showing that the Transformer
can express the algorithm’s ability to correct the domain
shifts. Second, this theorem shows that Transformers do not
need to specify the feature map ϕ(·). Specifically, whatever
feature map ϕ(·) is used for uLSIF, the transformer can
approximate the uLSIF based on it. In other words, pre-
training a transformer induces a situation-specific feature
map ϕ(·).

3.3. In-context DANN

We show the existence of a Transformer that can approxi-
mate DANN, presented in Section 2.1.

At the beginning, we identify the structure of the DANN
to be approximated. First, we assume that a label clas-
sifier fL ◦ fF (x) is represented by a two-layer neural
network model Λ(x;U ,w) :=

∑K
k=1 wkr(u

⊤
k x), and

the domain classifier fD ◦ fF (x) also follows a similar
model ∆(x;U ,v) :=

∑K
k=1 vkr(u

⊤
k x), with parameters

w,v ∈ RK and U = [u1, . . .uK ] ∈ RK×d and an activa-
tion function r(·). Let u = vec(U) and w,v,u correspond
to θL,θD,θF , respectively. This simplification using a two-
layer neural network was included to simplify the discussion
and is easy to generalize.

We further define a sequence of parameters
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{(u(l),v(l),w(l))}Ll=1 that can be obtained by L up-
dates by the DANN. In preparation, we define a
closed set W = {(w,v,u) : ∥w∥ ≤ Bw, ∥v∥ ≤
Bv,maxk ∥uk∥ ≤ Bu} ⊂ RK×K×Kd with some
Bu, Bw, Bv > 0 and also define a projection ΠW(·) onto
W . Let (w(1),v(1),u(1)) ∈ W be a tuple of initial values.
Then, the subsequent parameters are recursively defined by
the following updates:

u(l) = ΠW

(
u(l−1) − η∇u{L(u(l−1),w(l−1))

−λΩ(u(l−1),v(l−1))}
)
, (7)

w(l) = ΠW

(
w(l−1) − η∇wL(u

(l−1),w(l−1))
)
, (8)

v(l) = ΠW

(
v(l−1) − ηλ∇vΩ(u

(l−1),v(l−1))
)
. (9)

These updates are an analogy of the original DANN up-
dates Equations (3) to (5) to optimize the minimax loss
function Equation (2) of DANN depending on DS and DT .
Here, we introduce the projection to explain a more real-
istic setup, for example, (Shen et al., 2018). Finally, the
classifier obtained by L updates of DANN is defined as
f̂DANN(x) := Λ(x;u(L),w(L)).

We show the existence of a Transformer that successively
approximates the parameter sequence by DANN defined
above. The results are given in the following statement.

Theorem 2. Fix any Bu, Bw, Bv > 0, L > 0, η > 0,
and ϵ > 0. Suppose activation function r is C4-smooth.
Then, there exists a 2L-layer Transformer TFθ with
maxl∈{1,...,2L}M

(l) ≤ Õ(ϵ−2),maxl∈{1,...,2L}D
(l) ≤

Õ(ϵ−2)+DMLP, ∥θ∥TF ≤ O(1+η)+CMLP, with some
existing constants DMLP, CMLP > 0, which satisfies the
following: for any input (DS ,DT ,x∗), an 2l-th layer of the
transformer maps h̃

(2l−1)
i := [zi, ũ

(l−1), w̃(l−1), ṽ(l−1)]
with any (w̃(l−1), ṽ(l−1), ũ(l−1)) ∈ W to
h̃
(2l)
i := [zi, ũ

(l), w̃(l), ṽ(l)] for each i ∈
{1, . . . , N + 1} to satisfy Equations (7) to (9) where
ϵ
(l−1)
u , ϵ

(l−1)
w , ϵ

(l−1)
v ∈ Rk are some vectors satisfying

max{∥ϵ(l−1)
u ∥, ∥ϵ(l−1)

w ∥, ∥ϵ(l−1)
v ∥} ≤ ϵ.

The results show that the existing Transformer approximates
the original DANN updates Equations (7) to (9), at each step.
The terms ϵ(l−1)

u , ϵ
(l−1)
w , ϵ

(l−1)
v expresses approximation er-

rors, whose norm are no more than the fixed ϵ. Consequently,
the final output of the transformer approximates the output
of the original DANN after L-iterations. The results are
given as follows:

Corollary 1. Consider the setup as in Theorem 2. Then, for
any input (DS ,DT ,x∗), the transformer TFθ in Theorem 2
outputs a corresponding tuple (w̃(L), ṽ(L), ũ(L)) ∈ W
which satisfies ∥TF∗

θ(H
1)− f̂DANN(x∗)∥ ≤ Lε.

4. Automatic Algorithm Selection by
In-Context UDA

We demonstrate that Transformers can automatically select
UDA algorithms based on data in context. Specifically, we
consider the selection of methods determined by whether
the supports of the source distribution pS and the target
distribution pT sufficiently overlap. In cases where the
support of the target distribution pT overlaps with that of the
source distribution pS , the IWL algorithm, which operates
using the density ratio q(x) = pT (x)/pS(x), is employed.
In other words, IWL should be employed when we have

pS(x) > 0 holds for all x such that pT (x) > 0. (10)

Conversely, when there is no such overlap, i.e., pS(x) = 0
for some x with pT (x) > 0, one should select DANN,
which does not rely on the density ratio.

We show that Transformers are capable of realizing the
above design automatically.

f̂ ICUDA(x) :=

{
f̂ IWL(x∗) if minx:pT (x)>0 pS(x) > 0,

f̂DANN(x∗) otherwise,
(11)

The statement is as follows:

Theorem 3. Fix any ϵ > 0. Suppose that n′ ≥ (1/ϵ)3 log n′

holds and pT (·) is Lipschitz continuous. Then, there exists
a Transformer TFθ with three layers and M heads satisfies
the following with probability at least 1− 1/n′ −O(ϵ): for
any input (DS ,DT ,x∗), a transformer TFθ satisfies

∥TF∗
θ(H

1)− f̂ ICUDA(x∗)∥ ≤ ϵ. (12)

The results show that the Transformer can automatically
check the condition (10) and use the appropriate algorithm
without the user having to make a choice. Note that the
density ratio condition (10) is one of the options that are
automatically learned, and in practice, Transformers can
learn more complicated conditions. Importantly, in this case,
cross-validation cannot be used to make a selection since
true labels of the target domain data cannot be observed.

5. Conclusion and Discussion
This paper proved that Transformers can approximate
instance-based and feature-based domain adaptation algo-
rithms and select an appropriate one for the given dataset
in the in-context learning framework. Technically, our re-
sults revealed that Transformers can approximately solve
some types of linear equations and minimax problems. Nu-
merical experiments in Figure 1 demonstrated that domain
adaptation in in-context learning outperforms UDA methods
tailored for specific assumptions.
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A. Additional Setup
We define a norm of a parameter ∥θ∥TF of Transformers as

∥θ∥TF = max
l∈{1,...,L}

{
max

m∈{1,...,M}

{∥∥∥Q(l)
m

∥∥∥ ,∥∥∥K(l)
m

∥∥∥}+

M∑
m=1

∥∥∥V (l)
m

∥∥∥+
∥∥∥W (l)

1

∥∥∥+
∥∥∥W (l)

2

∥∥∥} , (13)

where ∥·∥ for matrices indicates the operator norm in this equation.

We also define the concepts necessary for our theoretical results. To approximate smooth functions, such as loss functions ℓ
and γ, we use the following notion.
Definition 1 ((ε,R,M,C)-approximability by sum of ReLUs, (Bai et al., 2023)). For ε > 0 and R ≥ 1, a function
g : Rk → R is (ϵ, R,M,C)-approximabile by sum of ReLUs if there exist a function f(z) =

∑M
m=1 cmσ(a

⊤
mz + bm)

with
∑M

m=1 |cm| ≤ C with maxm∈{1,...,M} ∥a∥1 + bm ≤ 1, where am ∈ Rk, bm ∈ R, cm ∈ R,, and
supz∈[−R,R]k |g(z)− f(z)| ≤ ε.

All functions approximated in this paper are included in this class.

B. Proof Outline of In-context IWL
In our proof, we construct three types of sub-transformers and approximate IWL-uLSIF by combining them. Specifically,
the first sub-transformer with one layer to construct a feature map ϕ(·), the second one calculates α with L1 layers, and this
one optimizes the model weight w ∈ RJ with L2 layers. For simplicity, we define a notation zi = [xi, yi, ti, si, 1]. In the
following, we describe each approximation step by step.

Step 1: Feature map approximation. First, we construct a transformer that approximates the feature map ϕ(·). This
construction is trivial under the assumption that the feature map ϕ(·) is approximable by the sum of ReLUs. For example,
a self-attention block can construct a feature map with the RBF kernel.

Lemma 1. There exists a transformer with one layer which maps h
(1)
i = [zi,0J ,0D−(d+4)] to h̃

(1)
i =

[zi, ϕ̂(xi),0D−J−(d+4)] for i = 1, ..., N + 1, such that ∥ϕ− ϕ̂∥L∞ ≤ ε holds.

Step 2: Density ratio parameter approximation. Second, we construct a transformer that approximates α̂ that minimizes
the loss L̂(α) in Equation (1), in which a technical difficulty lies. For the approximation, we define a sequence of
parameters {α(l)

GD}l=1,2,... that converge to α̂, using an update equation by the gradient descent algorithm:

α
(l+1)
GD = α

(l)
GD − η1∇L̂(α

(l)
GD), l = 1, 2, ..., and α

(1)
GD = 0J . (14)

Then, we develop a Transformer layer that exactly implements a single update step of this equation. We give the following
statement.

Lemma 2. There exists a Transformer with L1 layer which maps h̃(1)
i = [zi,ϕ(xi),0J ,0D−2J−(d+4)] to h̃

(L1+1)
i =

[zi,ϕ(xi), α̃
(L1), 0D−2J−(d+4)] for i = 1, ..., N + 1, such that α(L1)

GD = α̃(L1).

We note that this approach with the gradient descent is more efficient in the sense of layer size than the direct minimization
of L̂(α) using an inverse matrix.

Step 3: Model parameter approximation. In this step, we employ a similar approach to develop a Transformer that
approximates w∗, which is the minimizer of R̂T (w) in Section 2.1. To the aim, we define a sequence of parameters
{w(l)

GD}l=1,2,... that converge to w∗ by the gradient descent algorithm:

w
(l+1)
GD = w

(l)
GD − η2∇R̂T (w

(l)
GD), l = 1, 2, ..., and w

(1)
GD = 0J . (15)

Then, we develop a Transformer layer that approximates this algorithm as follows:

Lemma 3. There exists a Transformer with L2 layer which maps h̃
(L1+1)
i = [zi,ϕ(xi), α̃

(L1),0D−2J−(d+4)] to

h̃
(L1+L2+1)
i = [zi,ϕ(xi), α̃

(L1), w̃(L2), 0] for i = 1, ..., N + 1, such that ∥w(L2)
GD − w̃(L2)∥L∞ ≤ εL2η2Bx holds.

Combining these layers constitutes the transformer that achieves the approximation capability of Theorem 1. Importantly,
this method requires as many layers as there are iterations, but this can be shortened by using regression coupling.
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C. Proof Outline of In-context DANN
Here, we focus on the sub-problem that a pair of Transformer layers approximates a single step of update of DANN
consisting of two-layer neural networks. Specifically, the attention block at the first layer approximates the forward passes
of networks, the succeeding MLP block computes the partial derivatives of the loss function, then the next attention block
implements the minimax optimization step, and the last MLP block projects the weights.

The specific procedure is presented in the following steps. For brebity, we write γ := (u,w,v).

Step 1: Forward pass approximation. The first attention block performs the forward passes, that is, xi 7→ (Λ(xi),∆(xi)),
by approximating the activation function r by sum-of-ReLUs.

Lemma 4. For each ε > 0, there exists an attention block which maps hi = [zi,γ,04] to h′
i = [zi,γ, Λ̃(xi), ∆̃(xi),02]

for i = 1, . . . , N such that ∥Λ̃− Λ∥L∞ ≤ ε and ∥∆̃−∆∥L∞ ≤ ε hold.

Step 2: Loss derivative approximation. The next MLP block obtains loss derivatives, i.e., (Λ̃(xi), ∆̃(xi), yi, ti, si) 7→
(1(i ≤ n)∂1γ(Λ̃(xi), yi),1(i ≤ N)∂1γ(∆̃(xi), yi)). We also use sum-of-ReLUs to approximate ∂1γ.

Lemma 5. For any ε > 0, there exists an MLP block which maps h′
i = [zi,γ, Λ̃(xi), ∆̃(xi),02] to h′′

i =

[zi,γ, Λ̃(xi), ∆̃(xi), gΛ,i, g∆,i], where gΛ,i and g∆,i are scalars satisfying |gΛ,i − 1(i ≤ n)∂1γ(Λ̃(xi), yi)| ≤ ε and
|g∆,i − 1(i ≤ N)∂1γ(∆̃(xi), yi)| ≤ ε.

Step 3: Gradient descent approximation The attention block at the second layer approximates the optimization step:
(u,w,v) 7→ (u − η∇u(L(u,w) − λΩ(u,v)),w − η∇wL(u,w),v − ηλ∇vΩ(u,v)), which can be obtained by
approximating (s, t) 7→ s · r′(t).

Lemma 6. For each ε > 0, there exists an attention block that maps h′′
i =

[zi,γ, Λ̃(xi), ∆̃(xi), gΛ,i, g∆,i] to h′′′
i = [zi,u − ηgu,w − ηgw,v − ηgv, Λ̃(xi), ∆̃(xi), gΛ,i, g∆,i], where

∥gu −∇u(L̃(u,w)− λΩ̃(u,v))∥2, ∥gw −∇wL̃(u,w)∥2, ∥gv − λ∇vΩ̃(u,v)∥2 ≤ ε.

Step 4: Projection approximation. The last MLP block projects u,w,v ontoW appropriately by the assumption.

By stacking such pairs of layers, a 2L-layer Transformer can implement L steps of DANN in context.

D. Proof Outline of In-context Algorithm Selection
The key idea is to first implement kernel density estimation of pS(x) for x ∈ DT and then select an algorithm
with minx∈DT

p̂S(x) > δ, where δ > 0 is a given threshold. Here, we assume that each token is hi =

[zi,γ, f̃
IWL(xi), f̃

DANN(xi),0], where γ consists of weights of in-context IWL and DANN and is unused in this se-
lection process.

Step 1: Approximation of density estimation. The first step is to approximate the density function pS with kernel density
estimation p̂S(·) = 1

n

∑n
i=1K(·,xi), where K is a kernel, such as the RBF kernel, and evaluate it on each data point.

Lemma 7. For any ϵ > 0, there exists an attention block that maps hi to h′
i = [zi,γ, f̃

IWL(xi), f̃
DANN(xi), pi,0],

where |pi − p̄S(xi)| ≤ ϵ.

Step 2: Algorithm selection approximation. Then, the Transformer decides which algorithm is appropriate based on
softminβ,i pi > δ, where softminβ,i pi = − 1

β log
∑

(−βpi) is a relaxation of min with an inverse temperature parameter
β > 0.

Lemma 8. For any ϵ > 0, there is an MLP block succeeded by a Transformer layer that maps h′
N+1 to h′′

N+1 =

[zi,γ, f̃
IWL(x∗), f̃

DANN(x∗), pi,− 1
β log

∑
i exp(−βpi), f̃(x∗)], where |f̃ − f̂ ICUDA| ≤ ϵ.
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Figure 1. (Left) Test accuracy averaged over five runs of Transformer (ICL) and baseline models on the two-moon 2D problem. Decision
boundaries of the models are presented when N = 200. (Right) Test accuracy averaged over five runs on the colorized MNIST.

E. Experiments
We verify our theory by using the in-context domain adaptation abilities of Transformers using two synthetic problems. The
ICL domain adapter is compared with 1. IWL with uLSIF using the RBF kernel; 2. DANN of a two-layer neural network
with the ELU activation function; and 3. the same neural network trained on the source domain only. For the in-context
learning, we used an eight-layer Transformer with eight heads and pre-trained it to minimize γ(TFθ(x

′
∗;D′

S ,D′
T ), y

′
∗),

where (x′
∗, y

′
∗) ∼ D′

T , for randomly synthesized datasets (D′
S ,D′

T )( ̸= (DT ,DS)) for 104 iterations. Each dataset consists
of n = n′ = N/2 data points. Note that test data used to report test accuracy are unseen during pre-training.

Figure 1 (Left) presents test accuracy on the two-moon 2D problem, where the target distribution is a rotation of the source
one. The decision boundaries are also presented, and we can observe that the Transformer learns a smoother boundary than
others. Additionally, Figure 1 (Right) demonstrates the results of the colorized MNIST problem, where each dataset consists
of images of two digits resized to 8× 8 pixels, and their background colors alter based on the domains, as presented at the
rightmost. On both problems, ICL consistently achieves much better performance than the baselines. These results indicate
that Transformer implements adaptive domain adaptation algorithms to given datasets.
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