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ABSTRACT

Predictor-based Neural Architecture Search is an important topic since it can effi-
ciently reduce the computational cost of evaluating candidate architectures. Most
existing predictor-based NAS algorithms aim to design different predictors to im-
prove the prediction performance. Unfortunately, even a promising performance
predictor may suffer from the accuracy decline due to long-term and continuous
usage, thus leading to the degraded performance of the search strategy. That natu-
rally gives rise to the following problems: how predictors affect search strategies
and how to appropriately use the predictor? In this paper, we take reinforcement
learning (RL) based search strategy to study theoretically and empirically the im-
pact of predictors on search strategies. We first formulate a predictor-RL-based
NAS algorithm as model-based RL and analyze it with a guarantee of monotonic
improvement at each trail. Then, based on this analysis, we propose a simple pro-
cedure of predictor usage, named mixed batch, which contains ground-truth data
and prediction data. The proposed procedure can efficiently reduce the impact of
predictor errors on search strategies with maintaining performance growth. Our al-
gorithm, Predictor-based Neural Architecture Search with Mixed batch (PNASM),
outperforms traditional NAS algorithms and prior state-of-the-art predictor-based
NAS algorithms on three NAS-Bench-201 tasks and one NAS-Bench-ASR task .

1 INTRODUCTION

Figure 1: Cumulative error between true val
and predicted val over sampled architectures.
REINFORCE+Predictor means long and con-
tinuous usage of predictor without updating it.

Neural Architecture Search (NAS) aims to automati-
cally find out effective architectures in a pre-defined
search space for a given dataset (Baker et al., 2016;
Zoph & Le, 2016), which has shown to generate ar-
chitectures that achieve promising results in many do-
mains (Zoph et al., 2018; Tan & Le, 2019; Howard
et al., 2019; Chen et al., 2020). However, due to the
high computational cost for evaluating the generated
architecture performance, traditional NAS methods are
prohibitively costly in real-world deployment.

Recently, many approaches have been proposed to re-
duce the evaluation cost, which can be categorized
into training-free predictors (Pham et al., 2018; Mellor
et al., 2021) and training-based predictors (Wei et al.,
2022; Springenberg et al., 2016; Shi et al., 2020; White
et al., 2021a; Lu et al., 2021; Wen et al., 2020; Tang
et al., 2020; Luo et al., 2018). Training-based meth-
ods, which require training a performance predictor to
predict the final validation accuracy based on the fea-
ture of architecture, have received much more atten-
tion due to their better generalization ability. Recent efforts on training-based methods focus on
improving the prediction performance by designing models to precisely capture features of network
architectures, e.g., GCN and Transformer. Several works demonstrate their robust predictions and
combine them with the traditional search strategy such as Bayesian Optimization (BO) (Springen-
berg et al., 2016; Shi et al., 2020; White et al., 2021a) and Evolutionary Algorithms (EA) (Wei et al.,

1



Under review as a conference paper at ICLR 2023

2022; Lu et al., 2021; Wei et al., 2022). Unfortunately, even a promising performance predictor
may suffer from the accuracy decline due to long-term and continuous usage (Fig. 1), thus lead-
ing to performance collapse. Most existing works barely consider the impact of predictor usage on
the search strategy. The inappropriate usage of predictor may perform worse asymptotically than
their predictor-free counterparts. That leads to two natural questions: how predictors affect search
strategies and how to appropriately use the predictor to improve search efficiency?

Figure 2: Parameters of policy updated by different ways. Left. Parameters of policy deviate far
from the optimal one due to compounding error of long-term usage of predictor. Right. Limited
mix usage of predictor can balance performance and computational cost.

In this paper, we take RL-based search strategy to study the impact of predictors on search strate-
gies both theoretically and empirically. We first formulate a predictor-RL-based NAS algorithm as
model-based RL and analyze a class of predictor-based NAS algorithms with improvement guar-
antees. Formula derivation results indicate that if the predictor is used for a long time, enlarged
predictor error compounding policy error will lead to performance collapse. Then, based on the
analysis, we propose a simple procedure of predictor usage, named mixed batch, to update the
search strategy, which contains ground-truth data and prediction data. The prediction data, on the
one side, can greatly improve sample efficiency, and on the other side encourages policy explo-
ration. The ground-truth data allows the updated parameters close in parameter space and prevents
a bad-update accidentally cause performance collapse (Fig. 2). We empirically demonstrate that
the proposed procedure can achieve pronounced improvements in performance compared to other
predictor-based NAS approaches.

To summarize, our contribution in this work are following:

• We conduct the first study of the impact of predictors on NAS search strategies both theo-
retically and empirically.

• We formulate and analyze a category of predictor-RL-based NAS algorithms with improve-
ment guarantees based on predictor error and policy error. Theoretical analysis indicates
that the long-term use of predictor declines the performance of search strategy.

• We propose a novel predictor-based NAS framework, namely PNASM (Predictor-based
Neural Architecture Search with Mixed batch), to make limited usage of the performance
predictor and improve the search performance.

• Our proposed method outperforms both traditional and predictor-based NAS methods and
achieves state-of-the-art results on CIFAR-10, CIFAR-100, and ImageNet-16-120 of NAS-
Bench-201, and TIMIT of NAS-Bench-ASR.

2 RELATED WORK

2.1 NEURAL ARCHITECTURE SEARCH

Traditional NAS methods, such as reinforcement learning (Zoph & Le, 2016; Baker et al., 2016),
evolutionary search (Real et al., 2019), and gradient-based search (Liu et al., 2019), have shown
to generate networks that outperform manually-designed networks. However, these algorithms re-
quire enormous search costs due to the high evaluation cost for generated architectures. To reduce
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the search costs, researchers have proposed predictor-based methods to quickly estimate the perfor-
mance of architectures instead of training from scratch (Wei et al., 2022; Springenberg et al., 2016;
Shi et al., 2020; White et al., 2021a; Lu et al., 2021; Wen et al., 2020; Tang et al., 2020; Luo et al.,
2018). There are two classes of predictor-based NAS methods:

Training-based predictors. Training-based predictors follow a supervised learning paradigm to
learn the correlation between network architectures and their corresponding performance. These
predictors are usually used within BO frameworks (Springenberg et al., 2016; Shi et al., 2020; White
et al., 2021a), evolutionary frameworks (Wei et al., 2022; Lu et al., 2021; Wei et al., 2022), or with-
out any search strategy (Wen et al., 2020), to conduct NAS. BONAS (Shi et al., 2020) adopts a
GCN-based accuracy predictor as a surrogate function of BO to search for architectures. Similarly,
BANANAS (White et al., 2021a) also uses BO to perform NAS and provides a thorough analysis of
the relation between BO and the neural predictor. NPENAS (Wei et al., 2022) develops two kinds
of neural predictors to guide evolutionary strategy to boost the exploration ability. NPNAS (Wen
et al., 2020) directly uses a regression model to predict the validation accuracy of a large number
of random architectures and chooses the top-k architectures to obtain the best one. SemiNAS (Tang
et al., 2020) proposes a semi-supervised predictor to capture the intrinsic similarities of labeled and
unlabeled architectures. TNASP (Lu et al., 2021) uses a Transformer-based predictor and evolu-
tionary algorithms to perform NAS. Similar to these algorithms, our model PNASM also adopts
the training-based predictor. Differently, we propose a novel update scheme by combining ground-
truth data and prediction data to optimize the reinforcement learning strategy, which can reduce the
impact of predictor error on the optimization strategy and improve search efficiency.

Training-free predictors. Recently, several works have proposed to compute statistics from a single
minibatch data by a single forward and backward propagation. NASWOT (Mellor et al., 2021)
evaluates randomly-initialized architectures based on binary activation codes of ReLU units. TE-
NAS (Chen et al., 2021a) analyzes the spectrum of the neural tangent kernel and the number of linear
regions in the input space to rank architectures. Zero-Cost NAS (Abdelfattah et al., 2021) compares
six conventional reduced-training proxies to compute a model’s score. Although these training-free
predictors achieve satisfying results on some datasets, their performance cannot be guaranteed in
practice due to the limited generalization ability (Lu et al., 2021; White et al., 2021b).

2.2 MODEL-BASED REINFORCEMENT LEARNING

Model-based Reinforcement Learning (MBRL) methods have shown great success on real-world
sequential decision problems due to their sample efficiency ability (Kaelbling et al., 1996). MBRL
learns a model of the environment, which predicts state transitions and rewards. Thus, they are
widely used to solve problems where the data are hardly collected in real-world physical sys-
tems. The dynamics of environment are usually modeled by Gaussian processes (Deisenroth &
Rasmussen, 2011), local linear models (Levine & Koltun, 2013; Kumar et al., 2016), and neural net-
work function approximators (Draeger et al., 1995; Gal et al., 2016; Nagabandi et al., 2018; Janner
et al., 2019; Yu et al., 2020; Shen et al., 2020). If we consider the evaluating of candidate architec-
tures as an RL-environment, we can formulate predictor-RL-based NAS as MBRL.The difference
between our formulation and the traditional MBRL is that our predictor is trained to predict rewards
not the state transitions.

3 METHOD

3.1 PRELIMINARY

NAS problem. Given a dataset D and a search space O of neural architectures, the RL-based
optimization strategy is to search the best architecture A∗ ∈ O that maximizes the expected accuracy
on the validation set Dvalid, which is defined by:

A∗ = argmax
A∈O

E(Dtrain ,Dvalid )∼D [R (Aw∗ ,Dvalid )]

s.t. w∗ = argmin
w

L (Aw,Dtrain )
(1)

where R(Aw∗ ,Dvalid) measures the accuracy of an architecture A with parameters w∗ on the val-
idation data Dvalid. w is the parameters of architectures. L represents the loss of architectures on
the training data Dtrain.
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Predictor-based NAS. Since evaluating an architecture in Eq. 1 typically takes hours, many NAS
methods use performance predictors to speed up this process. A performance predictor fϕ generally
consists of an encoder fE and a regressor fR, which encodes the information of discrete architectures
into continuous feature representations and learns the correlation from the network features and the
network performance, respectively. Most training-based predictors are trained by the supervised
learning from a database containing neural architectures A and their corresponding performances
R(Aw∗ ,Dvalid) (Luo et al., 2018; Wen et al., 2020; Chen et al., 2021b; Lu et al., 2021). That
is, predictor fϕ is trained to minimize the MSE loss between the predicted accuracy and the true
accuracy of the architecture sampled from the database:

ϕ∗ = argmin
ϕ

∑
A

(R(Aw∗ ,Dvalid)− fϕ(A))
2 (2)

where fϕ(A) denotes the predicted performance of A. After the above process, the performance
predictor can quickly predict the final accuracy or ranking of unseen architectures.

3.2 MBRL-BASED OPTIMIZATION STRATEGY

Predictor-RL-based NAS can be formulated as a MBRL problem with a tuple ⟨S,A, T,R, γ⟩, where
S,A, T , R and γ denote the state space, the action space, the state transition dynamics, the reward
function and the discount factor (Please see Section A of the Suppl. for more details). Normally,
MBRL corresponds to recovering the state transition dynamics T and the reward function R. Fol-
lowing the RL-based NAS framework (Zoph & Le, 2016; Baker et al., 2016; Zoph et al., 2018), we
only need to recover the reward function R, which corresponds to the predictor fϕ.

In this framework, an agent, also called the controller, samples T -step trajectory τ =
(s1, a1, . . . , sT , aT ) at each episode, which corresponds to the description of a neural architecture
A = a1:T . Then, evaluate the performance of the generated architecture A either by training from
scratch or by the predictor. The evaluation result R(τ) is used as a reward signal to update the
parameters θ of the policy π. After several iterations, the agent will learn to generate, with high
probability, an architecture with high reward (accuracy). The goal of the agent is to maximize the
expected reward:

J(πθ) = Eτ∼πθ
[R(τ)] =

∑
τ

R(τ)p(τ |θ) (3)

where R(τ) denotes the evaluated performance of the generated architecture τ . p(τ |θ) denotes the
probability of a trajectory τ .

As the reward signal R is non-differentiable, one common approach is to use REINFORCE
(Williams, 1992) to update the parameters θ of the policy:

θk+1 = θk + α∇θJ(πθ)|θk (4)

where ∇θJ(πθ) is given by:

∇θJ(πθ) = Eτ∼πθ
[R(τ)∇θ log p(τ |θ)] ≈

1

N

N∑
n=1

R (τn)∇θ log p (τ
n|θ)

=
1

N

N∑
n=1

T∑
t=1

∇θ log πθ (a
n
t |snt )R (τn)

(5)

where N is the number of neural architectures that the agent generates at each iteration (equivalent
to the batch size) . T is the number of candidate operations (actions) of a neural architecture.

3.3 MONOTONIC PREDICTOR-BASED IMPROVEMENT

In this section, we will give a monotonic improvement based on a general predictor-RL-based NAS
as described in Algorithm 1, where the policy is optimized based on the data provided by the predic-
tor. The performance of policy is affected by the predictor usage since errors in the predictor may
be exploited by the policy optimization, thus leading to a large gap between the true performance of
the policy and that under the predictor.
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Algorithm 1 Monotonic Predictor-Based Policy Optimization.
Input: # of initial samples S; Batch-size N

1: Collect S architectures by running policy πθ

2: Evaluate S architectures by training from scratch and store the samples into Dt

3: Initialize predictor fϕ and policy πθ by the collected samples
4: while time limit not exceeded do
5: Collect N architectures by running policy πθ

6: Evaluate N architectures by the predictor fϕ and store the samples into B
7: Update the policy πθ via Eq. 4 with B;
8: end while

Our goal is to build a performance guarantee for the predictor-RL-based NAS. Motivated by MBPO
(Janner et al., 2019), we wish to construct a lower bound of the following form:

η(π) ≥ η(π̂)− C (6)

where η(π) represents the expected true performance of policy π which are updated by the reward
signal of training architectures from scratch, i.e., in the true dynamics; whereas η(π̂) denotes the
expected performance of policy π that are updated based on the reward signal provided by the pre-
dictor. Such a statement guarantees that, as long as we improve by at least C under the performance
predictor, we can guarantee improvement over the true performance η.

The difference C between the true performance and that under the predictor comes from two er-
ror quantities of the performance predictor: generalization error due to the prediction ability, and
policy error (distribution shift) due to the updated policy receiving the reward signal provided by
the predictor. Since the performance predictor is trained using supervised learning, we define this
generalization error ϵm by:

max
τ∼πD

|R1(τ)−R2(τ)| ≤ ϵm (7)

where R1(τ) denotes the true performance of an architecture described by τ and R2(τ) denotes
the prediction performance under the performance predictor, i.e., R2 := fϕ; πD denotes the data-
collecting policy. This error ϵm can be estimated in practice by measuring the difference between
the true reward and the prediction reward on the same trajectory τ , which is obtained under the
data-collecting policy πD. We define policy error by the maximum total-variation distance of the
policy between iterations:

max
s

DTV (π(a|s)||πD(a|s)) ≤ ϵπ (8)

In practice, we can measure the KL divergence between policies. Based on these two sources of
errors (generalization error ϵm and policy error ϵπ), we now give our bound:
Theorem 1 Let the generation error between the true reward and the prediction reward be bounded
at each trajectory by ϵm and the policy divergence be bounded by ϵπ . Then the expected true reward
and expected prediction reward of the policy are bounded as:

η(π) ≥ η(π̂)− (

N∑
τ=1

2Rmaxϵπ +

N∑
τ=1

ϵmp(τ |θ̃))︸ ︷︷ ︸
C(ϵm,ϵπ)

(9)

Proof. See Appendix Theorem B.1.

This bound implies that as long as we improve the expected reward η(π̂) under the predictor by
more than C(ϵm, ϵπ), we can guarantee improvement under the expected true reward.

3.4 MIXING REAL-BASED AND PREDICTOR-BASED UPDATES

Theorem 1 provides a useful relationship between true rewards and prediction rewards. However, it
is noted that if the predictor error ϵm is too high, there may not exist a policy that can guarantee the
improvement. Besides, the analysis of Theorem 1 relies on using the prediction reward to update the
policy continuously, i.e., equivalent to increasing N , which allows model error to compound with
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policy error and results in a large gap value C. Thus, we can improve the algorithm by relying less
on the performance predictor when the performance predictor is inaccurate and instead by training
neural architectures to rely more on real data.

For the above issues, we introduce a simple procedure mixed batch to reduce the influence of two
errors on the policy. A policy with mixed batch, denoted as πmix, means a batch of N samples are
collected by the following two steps: first, run policy π to generate first k architectures which are
evaluated by training from scratch (under the true environment); then, generate N − k architectures
under the learned performance predictor fϕ (Algorithm 2). Under this scheme, the expected reward
can be bounded as follows:
Theorem 2 Given the expected reward η(πmix) from the k-steps mixed batch method, we have

η(π) ≥ η(πmix)−

[
N∑

τ=1

Rmaxϵπ +

N∑
τ=k+1

Rmaxϵπ +

N∑
τ=k+1

ϵmp(τ |θ̃)

]
(10)

Proof. See Appendix Theorem B.2.

This bound implies that as long as we mix the true data and prediction data into one batch, we can
reduce the error caused by long-term use of the performance predictor.

Algorithm 2 Predictor-based Neural Architecture Search with Mixed batch.
Input: # of initial samples S; batch size N ; # of true samples k;

1: Collect S architectures by running policy πθ

2: Evaluate S architectures by training from scratch and store the samples into Dt

3: Initialize predictor fϕ and policy πθ by the collected S samples
4: while time limit not exceeded do
5: Collect k architectures by running policy πθ

6: Evaluate k architectures by training from scratch and store the samples into Dt

7: Collect N − k architectures by running policy πθ

8: Evaluate N − k architectures by the predictor fϕ and store the samples into Dp;
9: Select k and N − k pairs from Dt and Dp respectively to form a mini-batch B;

10: Update the policy πθ via Eq. 4 with B;
11: Retrain the predictor fϕ via Eq. 2 with Dt;
12: end while

4 EXPERIMENTS

We employ our model on four datasets, specifically NAS-Bench-201: CIFAR-10, CIFAR-100, and
ImageNet-120, NAS-Bench-ASR: TIMIT. We split up our experiments into three categories: select-
ing the best predictor for search spaces, evaluating the performance of our model and other popular
algorithms on two NAS benchmarks, and performing ablation experiments. Moreover, we put sev-
eral experimental results; the implementation details; information of baselines in Appendix D .

4.1 CHOOSE PREDICTOR FOR NAS

To obtain high-performance predictor-RL-based NAS algorithm, we first choose a high-performance
predictor among the currently most popular performance predictors, including MLP, GCN, BA-
NANAS, BONAS, NAO, SemiNAS, and Transformer. We randomly run 20 times for each predictor
on CIFAR-10 and report the mean and variance of the Kendall’s Tau correlation coefficient on test
samples. Kendall’s Tau is a common indicator measuring the correlation between the ranking of
prediction values and the true labels, and higher value indicates more accurate prediction. The
training and testing samples are sampled randomly from the collected architecture-accuracy pairs.
Table 1 presents the comparison results, from which we can make the following observations: 1)
As the number of training samples increases, the performance of predictor improves. Therefore, it’s
important for all predictors to have enough initial training samples. 2) SemiNAS and Transformer
perform well even with a small number of training samples. For example, their Kendall’s Tau can
achieve around 0.550 when the number of training samples is 100 or 200. According to the ex-
perimental results, we choose SemiNAS as our performance predictor on NAS-Bench-201 since it
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adopts semi-supervised learning (Tang et al., 2020) to train the predictor, which could make full use
of the unlabeled architecture information as the size of training samples increases, thus allowing it
to outperform Transformer.

Table 1: Performance Comparisons of Predictors on CIFAR-10.
Training Samples 100 200 400 600 800 1000

Test Samples 200 200 200 200 200 200
MLP 0.350 ± 0.06 0.417 ± 0.05 0.500 ± 0.05 0.573 ± 0.03 0.636 ± 0.04 0.671 ± 0.03
GCN 0.509 ± 0.09 0.570 ± 0.04 0.609 ± 0.07 0.604 ± 0.06 0.624 ± 0.07 0.613 ± 0.09

BANANAS 0.318 ± 0.06 0.404 ± 0.06 0.506 ± 0.03 0.577 ± 0.03 0.614 ± 0.02 0.664 ± 0.02
BOHAMIANN 0.435 ± 0.08 0.486 ± 0.06 0.525 ± 0.04 0.529 ± 0.04 0.529 ± 0.04 0.535 ± 0.04

BONAS 0.329 ± 0.10 0.422 ± 0.08 0.480 ± 0.08 0.466 ± 0.06 0.491 ± 0.07 0.519 ± 0.04
NAO 0.486 ± 0.05 0.512 ± 0.06 0.536 ± 0.05 0.556 ± 0.02 0.575 ± 0.03 0.587 ± 0.03

SemiNAS 0.546 ± 0.05 0.588 ± 0.02 0.635 ± 0.02 0.669 ± 0.02 0.687 ± 0.02 0.704 ± 0.02
Transformer 0.574 ± 0.05 0.620 ± 0.03 0.646 ± 0.02 0.664 ± 0.02 0.680 ± 0.02 0.686 ± 0.03

4.2 EMPIRICAL RESULTS

Performance on NAS-Bench-201. Table 2 shows the comparison between the proposed method
and strong baselines. According to the time budget, we randomly run 100 and 20 times for tradi-
tional and predictor-based methods, respectively. “search” means the total search time (time bud-
get) including the time for initializing the predictor. “+B” and “+E” denote that we combine the
predictors with optimization strategies of Bayesian Optimization and Evolutionary algorithm, re-
spectively. The best result on each dataset is in boldface. We can easily see from the experimental
results that: 1) Our method (PNASM) outperforms both traditional and predictor-based methods
and achieves the performance of 94.33%, 72.89%, and 46.44% on the three datasets, respectively,
close to the optimal performance. 2) Compared with REINFORCE, our method improves the test
accuracy on CIFAR-10, CIFAR-100, and ImageNet-16-120 by 0.31%, 0.54%, and 0.7%, respec-
tively, which demonstrates that the appropriate usage of predictor can help the optimization strategy
to explore the more promising space. 3) Compared with the advanced SemiNAS+E, our PNASM
(SemiNAS+RL) improves the validation accuracy on CIFAR-10, CIFAR-100, and ImageNet-16-120
by 0.06%, 0.24%, and 0.39%, respectively. The experiment results suggest that compared with EA,
the advantage achieved by RL-based optimization strategy lies in the proper usage of predictor, i.e.,
mixed batch which contains true architecture-accuracy pairs and predicted ones, thus leading to the
improvement in performance. 4) The performance of all predictors combined with BO is worse than
those combined with EA and BOHB, which is consistent with the experiment result in White et al.
(2021b).

Table 2: Performance Comparisons of NAS methods on CIFAR-10, CIFAR-100, and ImageNet-16-
120.“Optimal value” indicates the highest accuracy achieved on NAS-Bench-201.

Method CIFAR-10 CIFAR-100 ImageNet-16-120
search(s) validation test search(s) validation test search(s) validation test

Traditional Method
REA 40000 91.39 ± 0.22 94.17 ± 0.24 75000 72.73 ± 0.73 72.50 ± 0.63 200000 46.03 ± 0.57 46.01 ± 0.65
RS 40000 91.17 ± 0.25 93.96 ± 0.25 75000 71.81 ± 0.87 71.89 ± 0.85 200000 45.18 ± 0.81 45.41 ± 0.91

REINFORCE 40000 91.27 ± 0.21 94.02 ± 0.22 75000 72.38 ± 0.63 72.35 ± 0.55 200000 45.65 ± 0.58 45.74 ± 0.77
BOHB 51000 91.34 ± 0.21 94.10 ± 0.23 98000 72.62 ± 0.81 72.42 ± 0.65 290000 45.98 ± 0.50 46.11 ± 0.63

Predictor-based Method
MLP+B 36000 91.22 ± 0.23 94.04 ± 0.22 71000 72.16 ± 0.88 72.32 ± 0.91 210000 45.47 ± 0.61 45.63 ± 0.79
MLP+E 39000 91.37 ± 0.23 94.19 ± 0.20 75000 72.67 ± 0.34 72.58 ± 0.35 230000 46.08 ± 0.36 45.87 ± 0.60
GCN+B 39000 91.15 ± 0.20 93.92 ± 0.17 74000 72.22 ± 0.79 72.21 ± 0.84 210000 45.19 ± 0.56 45.76 ± 0.77
GCN+E 40000 91.45 ± 0.12 94.20 ± 0.23 79000 72.94 ± 0.50 72.75 ± 0.48 230000 46.12 ± 0.29 45.93 ± 0.55

BANANAS+B 36000 91.15 ± 0.20 93.91 ± 0.23 70000 71.93 ± 0.89 71.96 ± 0.94 200000 45.47 ± 0.60 45.73 ± 0.61
BONAS+B 36000 91.16 ± 0.23 93.96 ± 0.23 70000 71.69 ± 0.81 71.67 ± 0.81 210000 45.42 ± 0.62 46.02 ± 0.68

NAO+B 37000 91.27 ± 0.15 94.08 ± 0.17 72000 72.14 ± 0.62 72.07 ± 0.63 210000 45.46 ± 0.65 45.88 ± 0.71
NAO+E 40000 91.40 ± 0.26 94.23 ± 0.27 78000 72.90 ± 0.38 72.62 ± 0.40 230000 45.78 ± 0.60 45.73 ± 0.73

SemiNAS+B 37000 91.17 ± 0.22 93.88 ± 0.24 72000 72.17 ± 0.43 72.10 ± 0.66 210000 45.13 ± 0.74 45.24 ± 0.71
SemiNAS+E 40000 91.45 ± 0.19 94.26 ± 0.23 76000 72.84 ± 0.55 72.77 ± 0.53 230000 45.95 ± 0.38 45.67 ± 0.54

PNASM(Ours) 40000 91.51 ± 0.05 94.33 ± 0.06 75000 73.08 ± 0.22 72.89 ± 0.36 200000 46.34 ± 0.08 46.44 ± 0.07
PNASM-A(Ours) 40000 91.48 ± 0.10 94.26 ± 0.12 65000 72.85 ± 0.42 72.68 ± 0.49 200000 46.09 ± 0.30 45.94 ± 0.69

Optimal value - 91.61 94.37 - 73.49 73.51 - 46.73 47.31

Performance on NAS-Bench-ASR. Table 3 shows the comparison between the proposed method
and traditional NAS algorithms. Since there is no information about the time cost of each architec-
ture on NAS-Bench-ASR, we terminate the search process as the number of sampled true architec-
tures reaches 300. We randomly run 20 times for each method. The best result is in boldface. We
can easily see from the experimental results that: 1) Our model (PNASM) achieves the best results.
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2) Compared with REINFORCE, our method improves the validation PER by 0.12%. 3) REA per-
forms well compared to other traditional NAS algorithms. As we can see from the above results, our
model still performs well on other NAS benchmarks, which indicates that mixed batch does help the
RL-based search strategy make full use of the predictor.

Table 3: Performance Comparisons of NAS methods on NAS-Bench-ASR.
Method Sampled True Archs Val. PER(%) Test PER(%)
REA 300 19.13 ± 0.12 21.76 ± 0.36
RS 300 19.17 ± 0.08 21.91 ± 0.29
REINFORCE 300 19.21 ± 0.13 21.82 ± 0.29
PNASM(Ours) 300 19.09 ± 0.10 21.73 ± 0.21
PNASM-A(Ours) 300 19.10 ± 0.09 21.74 ± 0.17

4.3 ABLATION STUDY

Impact of Number of True Samples k. The value of k determines the ratio of true samples to
prediction ones in a batch, which balances the performance and the computational costs. To study
the impact of value k on the final performance, we conduct a series of experiments on the three
datasets with different values of k. Each experiment samples 1000 architectures. “search” means
the total time costs including the time of predictor initialization .

Table 4 shows the results of PNASM with different k values over 20 runs with different seeds,
from which we can see that: 1) The model without using the predicted data (k=all) performs well
on the three datasets, but incurs a large computational cost. Conversely, if we use the predictor
all the time (k=0), the model performs poorly on the three datasets but with least computational
cost, which demonstrate that a long term usage of predictor will amplify both the predictor error
ϵm and the policy error ϵπ , thus leading to policy collapse. 2) A specific value of k can achieve
comparable performance to that k=all. For example, with the setting of k=5, the model achieves
the performance 91.50% on the validation dataset on CIFAR-10. Similarly, k=2 on CIFAR-100 and
k=2 on ImageNet-16-120, which demonstrates that mixed batch is effective way of using predictor,
which allows the search strategy to maintain excellent performance with less computational cost.
Compared to the model with k=all, the model with k=5 achieves around 2× speedups on CIFAR-
10, and the model with k=2 brings around 4× speedups on CIFAR-100 and ImageNet-16-120. 3)
Models with k=5, 8, and 15, outperform that with k=15 on CIFAR-100. We speculate the reason of
this phenomenon is that the usage of predictor injects noise into the parameter space of policy. The
parameter noise limited in a reasonable range allows the policy to better explore the search space, as
indicated by (Fortunato et al., 2018; Plappert et al., 2018).

To further study how k affect the search strategy during the search process, Fig. 3 presents the current
best architecture’s validation accuracy, from which we can make the following observations: 1) The
performance of k = 0 (long-term and continuous predictor usage) is inferior to others in most cases,
which demonstrates that the long-term usage of unreliable predictor further exacerbates policy error.
2) As the number of ground-truth data increases (k from 2 to 15), the performance curve gets close
to that of k=all (blue line). In particular, there is a specific value k can achieve comparable validation
accuracy to that of k=all, e.g., k=5, with low computational cost. Therefore, k=5 is a good value
that balances the performance and the computational costs. We recommend the true samples in the
mixed batch is 5 for other datasets.

Adaptive Method. Although k can achieve a good trade-off between the performance and the time
cost, but the proper setting of k requires precisely fine-tuning. To simplify the setting, we propose
an adaptive method (PNASM-A), which can dynamically adjust k by measuring the differences
between policies in two consecutive iterations:

k = α×N (11)

where α is given by:

α =

{
DKL(πi−1, πi), 0 ≤ DKL(πi−1, πi) < 1

1, 1 ≤ DKL(πi−1, πi)
(12)
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Table 4: Comparison of PNASM with different k values on NAS-Bench-201.
True samples(k) k=0 k=2 k=5 k=8 k=15 k=all

CIFAR-10
validation 91.23 ± 0.20 91.37 ± 0.22 91.50 ± 0.06 91.50 ± 0.05 91.40 ± 0.14 91.50 ± 0.04
test 93.98 ± 0.22 94.06 ± 0.26 94.28 ± 0.16 94.26 ± 0.16 94.19 ± 0.19 94.31 ± 0.05
search(s) 17000 31000 49000 69000 110000 130000

CIFAR-100
validation 72.18 ± 0.68 72.99 ± 0.36 73.09 ± 0.12 73.14 ± 0.16 73.02 ± 0.13 72.99 ± 0.10
test 72.14 ± 0.52 72.84 ± 0.41 72.79 ± 0.42 72.77 ± 0.40 72.44 ± 0.32 72.36 ± 0.24
search(s) 34000 59000 96000 130000 220000 260000

ImageNet-16-120
validation 45.85 ± 0.82 46.30 ± 0.23 46.21 ± 0.29 46.21 ± 0.16 46.32 ± 0.00 46.31 ± 0.02
test 45.84 ± 0.92 46.31 ± 0.35 46.41 ± 0.36 45.93 ± 0.66 46.47 ± 0.00 46.47 ± 1.35
search(s) 100000 170000 280000 390000 640000 780000

(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet16-120

Figure 3: Validation accuracy vs. number of architectures on different settings of k.

where πi−1 represents the policy after i − 1th iteration; πi denotes the policy after ith iteration.
For the i + 1th iteration, k = αN . As Table 2 shown, the adaptive method (PNASM-A) still
outperforms other baselines on all three datasets. Besides, the performance of PNASM-A is close to
that of PNASM, which demonstrate the effective of our adaptive variant.

5 CONCLUSION AND FUTURE WORK

In this paper, we investigate the role of predictor usage in neural architecture search procedures
both theoretically and empirically. We first formulate predictor-RL-based NAS as model-based RL
problem, and provide it with monotonic improvement guarantees, which suggests that the long-term
and continuous usage of predictor will degrade the performance due to the model error exploited
by the search policy. Motivated by this analysis, we then propose a novel framework PNASM that
uses a special procedure, mixed batch, to justify predictor usage, which can mitigate the impact of
predictor errors on search strategies and reduce the computational cost. Extensive experiments on
NAS-Bench-201 have shown the effectiveness of the proposed method. In the future, we plan to
investigate how to appropriately use the predictor with other search strategies.
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A WORKFLOW OF GENERATING ARCHITECTURE BY RL-AGENT

Figure 4: Left. Internal structure of the controller. Right. Workflow of the controller. It unrolls T
steps to output a trajectory τ = {s1, a1, . . . , sT , aT }, which describes an architecture.

Figure 4 presents the main structure of the controller. The controller consists of two multilayer
perceptron (MLP) layers which serve as the input-embedding layer and the output-embedding layer,
and an LSTM network which is the core of the controller for remembering previous decisions. At
each episode, the controller unrolls T time-steps to sample a trajectory τ = {s1, a1, . . . , sT , aT }. τ
describes the representation of an architecture. At each step t, it works as follows:

The input st is fed into the input-embedding layer, which converts st into a high-dimensional em-
bedding et, thus making the agent better observe the state:

et = Win · st + bin (13)

where Win and bin are embedding parameters of the input layer.

Then, et is fed to the core network consisting of LSTM layer, which helps the agent explore the
correlation between decisions:

ot, ht = LSTM(et, ht−1) (14)

Next, the output of LSTM ot is fed to the output layer to convert the output of the LSTM into a low-
dimensional representation yt, which denotes the distribution of the candidate operations, where
yt = [µt, σt].

yt = Wout · ot + bout (15)

where Wout and bout are embedding parameters of the output layer.

At last, given the distribution for candidate operations, the agent samples one by the same sampling
technique:

at = Sample(N (µt, σt)) (16)

yt is fed to the state at the the next time step t+ 1:

st+1 = yt (17)

The initial state s1 is a zero embedding vector.

Under the special workflow of the controller, the probability of trajectory is equal to:
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p(τ |θ) = p (s1)πθ (a1|s1) p (s2|s1, a1)πθ (a2|s2) p (s3|s2, a2) · · ·πθ (aT |sT )

= p (s1)

T∏
t=1

πθ (at|st) p (st+1|st, at)
(18)

Since the next state st+1 is equal to yt, which is converted by the previous action at, both p(s1) and
p(st+1|st, at) are equal to one. Thus, p(τ |θ) is simplified as:

p(τ |θ) =
T∏

t=1

πθ (at|st) (19)

Therefore, the RL-based NAS can be formulated as MDP with fixed transition probability but un-
known reward function.

B THEOREMS

Theorem B.1 Monotonic predictor-based improvement:

η(π) ≥ η(π̂)−

[
N∑

τ=1

2Rmaxϵπ +

N∑
τ=1

ϵmp(τ |θ̃)

]
(20)

Proof. Let πD denote the data collecting policy (old policy under the true environment). Since the
performance predictor relies on the training data collected by the policy πD, we need to introduce
πD by adding and subtracting η(πD), to get:

η(π)− η(π̂) = η(π)− η(πD)︸ ︷︷ ︸
L1

+ η(πD)− η(π̂)︸ ︷︷ ︸
L2

We can bound L1 and L2 both using Lemma C.2.
For L1, there is no predictor error (generation error) since π and πD run under the true environ-
ment:

L1 ≥ −
N∑

τ=1

Rmaxϵπ

For L2, policy π̂ runs under the predictor model which incurs predictor error and policy error. Thus,
we have:

L2 ≥ −
N∑

τ=1

Rmaxϵπ −
N∑

τ=1

ϵmp(τ |θ̃)

The desired result is obtained by adding the two bounds together.

Theorem B.2 Mixed batch bound:

η(π) ≥ η(πmix)−

[
N∑

τ=1

Rmaxϵπ +

N∑
τ=k+1

Rmaxϵπ +

N∑
τ=k+1

ϵmp(τ |θ̃)

]
(21)

Proof. Let πmix := πD, π̂ denote the policy with the mixed batch which runs the old policy πD

under the true dynamics until k samples, then executes the new policy π under the predictor in the
last N−k samples. As the proof for Theorem B.1, we add and subtract the correct reference quantity
πD, which can be also denoted as πD := πD, πD.
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η(π)− η(πmix) = η(π, π)− η(πD, π̂)

= η(π, π)− η(πD, πD) + η(πD, πD)− η(πD, π̂)

= η(π, π)− η(πD, πD)︸ ︷︷ ︸
L1

+ η(πD, πD)− η(πD, π̂)︸ ︷︷ ︸
L3

After k samples, L3 differ in both model and policy, which incorporates both predictor error ϵN−k
m

and policy error ϵN−k
π in the last N − k samples. This can be bound by Lemma C.2 with setting

ϵN−k
m = ϵm and ϵN−k

π = ϵπ , which results in:

L3 ≥ −
N∑

τ=k+1

Rmaxϵπ −
N∑

τ=k+1

ϵmp(τ |θ̃)

Adding two bounds L1 and L3 together yields the result.

C LEMMAS

Lemma C.1 Policy error:

max
τ

∣∣∣∣∣
T∏

t=1

π1(at|st)−
T∏

t=1

π2(at|st)

∣∣∣∣∣ ≤ ϵπ (22)

Proof. Considering that p(s1) and p(st+1|st, at) in Eq. (18) are equal to one, we make the following
approximation:

DTV (π1(a|s)||π2(a|s)) =
1

2

∑
s,a

|π1(a|s)− π2(a|s)|

≈ 1

2

∑
τ

∣∣∣∣∣
T∏

t=1

π1(at|st)−
T∏

t=1

π2(at|st)

∣∣∣∣∣
= DTV (p(τ |θ1)||p(τ |θ2))

Thus,

max
s

DTV (π1(a|s)||π2(a|s)) ≈ max
τ

DTV (p(τ |θ1)||p(τ |θ2))

= max
τ

∣∣∣∣∣
T∏

t=1

π1(at|st)−
T∏

t=1

π2(at|st)

∣∣∣∣∣ ≤ ϵπ

Lemma C.2 Expected reward bound:

|η(π1)− η(π2)| ≤
∑
τ

Rmaxϵπ +
∑
τ

ϵmp(τ |θ̃) (23)

Proof. Here, η(π1) denotes the expected true reward of π1 with the reward function R1, and η(π2)
denotes the expected reward of π2 with the reward function R2. maxτ∼π1

|R1(τ)−R2(τ)| ≤ δm
and maxs DTV (π1(a|s)||π2(a|s)) ≤ δπ . According to Eq. 3, we have:

|η(π1)− η(π2)| = |
∑
τ

(R1(τ)p(τ |θ1)−R2(τ)p(τ |θ2))|

According to Lemma C.1, we have:
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a) η(π1) ≥ η(π2). Since maxτ∼π1
|R1(τ)−R2(τ)| ≤ δm, we can get: −δm +R1(τ) ≤ R2(τ) ≤

δm +R1(τ). Then,

|η(π1)− η(π2)| = |
∑
τ

(R1(τ)p(τ |θ1)−R2(τ)p(τ |θ2))|

≤ |
∑
τ

(R1(τ)p(τ |θ1)−R2(τ)minp(τ |θ2))|

= |
∑
τ

(R1(τ)p(τ |θ1)− (R1(τ)− δm)p(τ |θ2))|

= |
∑
τ

R1(τ)p(τ |θ1)−
∑
τ

R1(τ)p(τ |θ2) +
∑
τ

δmp(τ |θ2)|

≤
∑
τ

R1(τ)|p(τ |θ1)− p(τ |θ2)|+
∑
τ

δmp(τ |θ2)

=
∑
τ

R1(τ)|
T∏

t=1

π1(at|st)−
T∏

t=1

π2(at|st)|+
∑
τ

δmp(τ |θ2)

≤
∑
τ

Rmax|
T∏

t=1

π1(at|st)−
T∏

t=1

π2(at|st)|+
∑
τ

δmp(τ |θ2)

≤
∑
τ

Rmaxδπ +
∑
τ

δmp(τ |θ2)

b) η(π1) < η(π2). Since maxτ∼π1 |R1(τ)−R2(τ)| ≤ δm, we obtain: −δm + R2(τ) ≤ R1(τ) ≤
δm +R2(τ). Then,

|η(π1)− η(π2)| = |η(π2)− η(π1)|

= |
∑
τ

(R2(τ)p(τ |θ2)−R1(τ)p(τ |θ1))|

≤ |
∑
τ

(R2(τ)p(τ |θ2)−R1(τ)minp(τ |θ1))|

= |
∑
τ

(R2(τ)p(τ |θ2)− (R2(τ)− δm)p(τ |θ1))|

= |
∑
τ

R2(τ)p(τ |θ2)−
∑
τ

R2(τ)p(τ |θ1) +
∑
τ

δmp(τ |θ1)|

≤
∑
τ

R2(τ)|p(τ |θ2)− p(τ |θ1)|+
∑
τ

δmp(τ |θ1)

=
∑
τ

R2(τ)|p(τ |θ1)− p(τ |θ2)|+
∑
τ

δmp(τ |θ1)

=
∑
τ

R2(τ)|
T∏

t=1

π1(at|st)−
T∏

t=1

π2(at|st)|+
∑
τ

δmp(τ |θ1)

≤
∑
τ

Rmax|
T∏

t=1

π1(at|st)−
T∏

t=1

π2(at|st)|+
∑
τ

δmp(τ |θ1)

≤
∑
τ

Rmaxδπ +
∑
τ

δmp(τ |θ1)

In summary, we have |η(π1)− η(π2)| ≤
∑

τ Rmaxδπ +
∑

τ δmp(τ |θ̃), where θ̃ = θ2 if η(π1) ≥
η(π2); otherwise, θ̃ = θ1.
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D EXPERIMENTAL DETAILS AND RESULTS

D.1 EXPERIMENTAL DETAILS

NAS Benchmarks. NAS-Bench-201 (Dong & Yang, 2020) is a benchmark dataset for NAS algo-
rithms built on image classification tasks, including CIFAR-10, CIFAR-100, and ImageNet-16-120
(Chrabaszcz et al., 2017). CIFAR-10 consists of 60,000 (50,000 training images and 10,000 test
images) 32 × 32 color images in 10 classes and each class contains 6,000 images. CIFAR-100
has 100 classes, and each class contains 600 images (500 training images and 100 testing images).
NAS-Bench-201 provides a cell-based search space, where a cell is represented by a directed acyclic
graph (DAG). A DAG contains 4 nodes and 6 edges, and each edge has 5 representative operation
candidates, which results in 15,625 neural cell architectures in total. Each architecture contains full
training logs, validation accuracy, and test accuracy on CIFAR-10, CIFAR-100, and ImageNet-16-
120. In summary, NAS-Bench-201 allows researchers to easily compare different approaches by
providing all architecture evaluation results.

NAS-Bench-ASR (Mehrotra et al., 2020) is a tabular NAS benchmark for automatic speech recog-
nition. The search space consists of 8242 unique models trained on TIMIT dataset. Each model
includes all kinds of runtime measurements, such as the per epoch validation and final test metrics,
Phoneme Error Rate (PER), and CTC loss. The search space consists of four nodes, with three main
edges that can take on one of six operations, and six skip connection edges, which can be set to on
or off.

Baselines. We compare our method with two types of state-of-the-art methods: traditional NAS
algorithms and predictor-based NAS algorithms:

1. Traditional NAS algorithms include: random search (RS) (Bergstra & Bengio, 2012), REA
(Real et al., 2019), REINFORCE (Williams, 1992), and BOHB (Falkner et al., 2018). We
use the code provided by Dong et al. (2021) to implement these algorithms. To ensure a fair
comparison, we also require the search strategy of the baselines sample unique architectures
as our method does.

2. Predictor-based NAS algorithms include: MLP (White et al., 2021a), GCN (Wen et al.,
2020), BANANAS (White et al., 2021a), BONAS (Shi et al., 2020), NAO (Luo et al.,
2018), SemiNAS (Tang et al., 2020), Transformer (Lu et al., 2021) and XGBoost (Chen &
Guestrin, 2016). We compare the most representative performance predictors to select the
best performance predictor as our predictor. In addition, we combine these performance
predictors except Transformer with two widely used search strategies, BO and EA, as the
predictor-based NAS algorithms. We use the code from (White et al., 2021b) and NAS-
BENCH-SUITE (Mehta et al., 2022) to implement these algorithms .

Implementation details. Our method consists of two modules, an RL agent as the search strategy
and a performance predictor. The agent consists of input and output layers and a LSTM model. The
input-layer is an embedding layer, and the size of each embedding vector is 32. The LSTM model
is a two-layer LSTM with 35 hidden units on each layer. The output-layer is a linear layer with 32
hidden units. The agent is trained with the Adam optimizer with the learning rate 0.001. Weights
of the agent are initialized uniformly between -0.1 and 0.1. We use a tanh of 2.5 and a temperature
of 5.0 for the sampling logits (Bello et al., 2017) to prevent premature convergence and add the
controller’s sample entropy to the reward, weighted by 0.0001. Especially, the batch size N is 20,
which is different from the setting of Zoph & Le (2016). We set k to 2, 5, 2, and 2 for CIFAR-10,
CIFAR-100, ImageNet-16-120, and TIMIT, respectively. The initial architecture-accuracy pairs for
PNASM and PNASM-A is 100 across all experiments. (Note that following Dong et al. (2021), we
train candidate architectures in 12 epochs and retrieve the best architecture by training in full epochs
on NAS-Bench-201.)

D.2 EFFECTIVENESS STUDY ON COMPONENTS OF PNASM.

To figure out which part of PNASM boost the improvement, we conduct a series of ablation exper-
iment on PNASM, which mainly consists of LSTM-based agent, a predictor and the batch strategy.
Table 5 shows comparison results of different PNASM variants on NAS-Bench-201 (We also con-
duct the same experiment on NAS-Bench-ASR, see Table 7). The four variants are:
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Figure 5: Performance of different variants of PNASM on CIFAR-10. Left figure presents the com-
parison results among “LSTM”,“LSTM+Batch” and PNASM. Right figure shows the comparison
results between “LSTM+P” and “LSTM+Batch+P”, because the search time of the two variants is
inconsistent with others.

1. “LSTM” denotes that we run the search just using LSTM-based agent, without a predictor.
The agent (policy) is updated after every candidate.

2. “LSTM+Batch” denotes that we update LTSM-based agent (without the predictor) after a
batch of candidates is found.

3. “LSTM+P” denotes that we run the search with LSTM-based agent combined with a pre-
dictor. The agent is updated after every architecture is found.

4. “LSTM+Batch+P” denotes that we use LSTM-based agent and a predictor to search, but
perform batch-wise update of the agent, without evaluating any additional architectures
from scratch.

5. PNASM denotes that we use LSTM-based agent and a predictor but perform mixed batch
update of the agent.

Predictors in all variants are initialized by 100 sampled architectures. We randomly run 20 times for
each variant and use the search time as the time budget. Since “LSTM+P” and “LSTM+Batch+P”
use the predictor for each candidate, the time cost of evaluating architecture is low. To ensure
fair experiments, we allow “LSTM+P” and “LSTM+Batch+P” to sample 2000 architectures, which
is greater than that by other variants. From Table 5, we can make the following observation: 1)
Batch strategy does not improve LSTM-based agent’s performance on CIFAR-10, which is oppo-
site on TIMIT. 2) Although the predictor can reduce the search time, but the long and continu-
ous usage brings large error to the search strategy, as indicated by the results of “LSTM+P” and
“LSTM+Batch+P”. 3) Mixed batch helps LSTM-based agent to make better use of the predictor,
since ground-truth data corrects the error caused by long-term usage. Additionally, to better demon-
strate the search process of all variants, Figure 5 plots the current best validation accuracy of all
variants over the search time on CIFAR-10.

Table 5: Comparisons of different Variants of PNASM on CIFAR-10.
Method Search(s) Validation Test
LSTM 40000 91.29 ± 0.19 94.03 ± 0.24
LSTM+Batch 40000 91.21 ± 0.23 94.01 ± 0.24
LSTM+P 15000 91.16 ± 0.24 93.96 ± 0.24
LSTM+Batch+P 15000 91.14 ± 0.30 93.94 ± 0.27
PNASM 40000 91.51 ± 0.05 94.33 ± 0.06
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D.3 ADDITIONAL EXPERIMENTAL ON NAS-BENCH-ASR

D.3.1 CHOOSE PREDICTOR FOR NAS-BENCH-ASR

Since the predictor usually has poor generalization ability across the search space, we choose a
high-performance predictor for TIMIT on NAS-Bench-ASR again. Table 6 compares the spearman
correlation of PER of four predictors: MLP, NAO, SemiNAS, and XGBoost. We randomly run 20
times for each predictor. We can easily make the following observation from Table 6: 1) Predictors
show poor generalization ability across the search spaces. For example, SemiNAS performs well
on NAS-Bench-201 in Table 1, but fails on NAS-Bench-ASR. 2) MLP performs well if it has suffi-
cient initial training data. 3) XGBoost performs good across the different settings of initialization.
According to the experimental results, we choose XGBoost as the predictor on NAS-Bench-ASR.

Table 6: Spearman Correlation of Predictors on TIMIT.
Training Samples 100 200 400 600 800

Test Samples 200 200 200 200 200
MLP 0.464 ± 0.08 0.512 ± 0.05 0.614 ± 0.06 0.635 ± 0.07 0.646 ± 0.04
NAO 0.417 ± 0.05 0.446 ± 0.03 0.475 ± 0.08 0.482 ± 0.06 0.477 ± 0.05

SemiNAS 0.418 ± 0.04 0.435 ± 0.08 0.466 ± 0.05 0.502 ± 0.06 0.495 ± 0.07
XGBoost 0.572 ± 0.05 0.590 ± 0.07 0.628 ± 0.07 0.611 ± 0.04 0.640 ± 0.04

D.3.2 VARIANTS OF PNASM ON NAS-BENCH-ASR.

Table 7 shows the comparisons of different variants of PNASM on NAS-Bench-ASR. Predictors
take 100 true architecture-val pairs to initialize. We can make the similar observation as Table 5
except for the batch strategy. On NAS-Bench-ASR, Batch strategy can help LSTM-based agent
to achieve lower validation PER. We speculate that batch strategy is highly related to statistics of
dataset on NASBench.

Table 7: Comparisons of different components of PNASM on NAS-Bench-ASR.
Method Sampled True Archs Total Sampled Archs Val. PER(%) Test PER(%)
LSTM 300 300 19.21 ± 0.13 21.82 ± 0.29
LSTM+Batch 300 300 19.18 ± 0.10 21.85 ± 0.29
LSTM+P 100 2000 19.25 ± 0.07 21.87 ± 0.23
LSTM+Batch+P 100 2000 19.21 ± 0.14 21.91 ± 0.21
PNASM 300 1500 19.09 ± 0.10 21.73 ± 0.21
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