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Abstract

Single-cell representation learning aims to con-
struct low-dimensional embeddings that preserve
biologically salient manifold structures. Yet cur-
rent evaluation protocols remain inadequate for as-
sessing trajectory fidelity—essential for studying
cell differentiation, immune responses, disease
progression and perturbation—relying on heuris-
tic visualizations or scalar surrogates that over-
look multiscale trajectory geometry. To address
this gap, we present scTRAM—single-cell trajec-
tory representation metrics—a principled bench-
marking framework that quantitatively evaluates
how well single-cell embeddings retain ground-
truth trajectories across complementary failure
modes, from local neighborhood scrambling to
global branch mis-ordering. Through our exper-
iments, we show that scTRAM reveals model-
specific trade-offs in preserving distinct aspects of
trajectory structure, with edge-specific decompo-
sition exposing localized representational biases
at high resolution. Systematic validation across
diverse biological contexts confirms that the met-
ric suite is sensitive to genuine structural prop-
erties rather than statistical artifacts. By shifting
from qualitative, ad-hoc judgments to quantitative,
principled approach, scTRAM enables rigorous
comparison of embedding methods and informs
downstream analyses where trajectory integrity is
essential for biological interpretation.
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1. Introduction
Single-cell omics technologies now profile millions of cells
across diverse tissues, perturbations, and timepoints, re-
vealing high-dimensional manifolds of gene-expression
states—yet the underlying structure is obscured by technical
noise and sampling sparsity (Inecik et al., 2024; Cui et al.,
2025). Modern representation learning pipelines—from
flow matching to deep variational and single cell transformer
generative models—thus aim to embed these data into low-
dimensional latent representations that enable scalable infer-
ence, visualization, and hypothesis generation while retain-
ing the geometry of biologically salient processes such as
cell differentiation, tissue development, and disease progres-
sion (Inecik & Theis, 2023; Schaar et al., 2024; Klein et al.,
2025). For developmental, immunological, and pathological
systems alike, an important aspect of the manifold’s most
biologically critical features is cell-state trajectories: contin-
uous paths and branch points that trace lineage commitment,
dose–response dynamics, or disease progression over pseu-
dotime (Saelens et al., 2019). However, current evaluation
protocols remain ad-hoc, emphasizing cluster purity or re-
construction error rather than trajectory fidelity; they fail
to assess whether embeddings preserve geodesic continuity,
respect branch topology, and maintain pseudotemporal or-
dering consistent with lineage tracing or perturbation times-
tamps (Luecken et al., 2022; Hu et al., 2024; Song et al.,
2023). While qualitative visual inspection of trajectories—
such as plotting marker genes along pseudotime or over-
laying branch points on UMAPs—is routinely employed in
single-cell atlassing studies, these approaches lack repro-
ducibility, scalability, and quantitative rigor, as they depend
heavily on subjective annotations, heuristic parameter tun-
ing, and small-scale validation that cannot generalize across
datasets or models (Chari & Pachter, 2023; Heumos et al.,
2023). The absence of standardized, principled, and quan-
titative benchmarks impedes rigorous model selection and
hampers biological interpretation, motivating the need for
a framework grounded in differential-geometric distortion
measures and temporal alignment theory to systematically
score embeddings based on their conservation of the intrin-
sic manifold structure underlying cellular transitions.

Quantitatively evaluating whether an embedding respects
a ground-truth cellular trajectory entails comparing two
metric–topological objects: the intrinsic trajectory graph
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Figure 1. Overview of scTRAM benchmarking workflow. From an
input embedding Y and reference trajectory graph Gref, scTRAM
(i) restricts to cells present in Gref producing Ysub, (ii) computes
reference and inferred pseudotimes (pref, pinf) and inter-type con-
nectivities (Aref, Zinf), and (iii) assembles embedding-, adjacency-,
and pseudotime-based metrics whose values form the score vector
s ∈ RM .

(G, dG), derived from lineage labels or time-course exper-
iments, and its image under an embedding f inside a la-
tent space (Y, dY ). The embedding f must approximate a
branch-preserving, arc-length-monotone homeomorphism—
retaining not only topological connectivity but also the rela-
tive progression rates along paths—up to bounded distortion.
Fidelity assessment must address two interrelated scales: lo-
cally, where violations of Lipschitz continuity scramble
neighborhood context and obscure short-range lineage bi-
furcations, and globally, where seemingly minor edgewise
distortions reorder branch points, alter Betti numbers, or
flatten long-range pseudotemporal gradients (Haghverdi
et al., 2015; Munkres, 2000). Formalizing this compar-
ison as an optimization problem—whether via optimal
transport on branched manifolds or minimum-cost graph-
edit operations—faces inherent NP-hardness barriers (Chen
et al., 2018; Qu et al., 2025), while existing surrogate
measures—e.g., geodesic stress, trustworthiness, or local
continuity—illuminate only one failure mode at a time (Na-
jim, 2015; Vathy-Fogarassy & Abonyi, 2009). Topological
persistence diagrams detect structural rearrangements yet
remain indifferent to arc-length monotonicity or pseudo-
time alignment, while manifold-learning surrogates such as
Isomap or diffusion-based kernels prioritize distance preser-
vation over topological consistency (Qu & Cai, 2017). These
intertwined limitations make it impossible to declare victory
with a lone scalar: rigorous evaluation demands a battery
of complementary, computationally tractable metrics that
decompose trajectory fidelity into topology preservation,
geodesic continuity, and pseudotime monotonicity, thereby
exposing trade-offs that any representation unavoidably in-
curs.

To address this critical gap, we present scTRAM (single-cell
TRAjectory representation Metrics): a systematically de-
signed benchmarking framework that offers a cohesive suite
of complementary metrics—spanning topological consis-

tency, manifold continuity, and pseudotime alignment—to
evaluate how effectively a representation preserves user-
specified ground-truth trajectories. By decomposing tra-
jectory integrity into distinct axes of performance rather
than relying on a single scalar, scTRAM pinpoints where
an embedding may fail to maintain local continuity, respect
branched structures, or preserve correct temporal progres-
sion, while remaining user-friendly through an end-to-end
pipeline. This decomposed, multi-axis approach enables
fine-grained evaluation of trajectory fidelity across a range
of biologically and computationally relevant scenarios: for
instance, comparing trajectories across conditions (e.g.,
wild-type versus CRISPR knockout differentiation paths),
benchmarking trajectory representations from competing
generative or dimensionality reduction approaches, evalu-
ating data integration processes with respect to trajectory
conservation (e.g., assessing whether a single-cell atlas re-
tains information present in its component datasets). In
this study, we (i) perform comprehensive benchmarking
of multiple trajectory representations across diverse mod-
els using a large-scale single-cell dataset, (ii) demonstrate
how failure mode analysis of trajectory representations in-
forms downstream data analysis decisions, and (iii) provide
rigorous benchmarking experiments validating the robust-
ness and discriminative power of the scTRAM metric suite.
Consequently, scTRAM helps shift trajectory-representation
evaluation from largely qualitative, ad-hoc judgments to-
ward a more principled approach grounded in multiscale,
structure-aware benchmarks. 1

2. Methods
scTRAM evaluates trajectory fidelity by comparing a low-
dimensional representation against a ground-truth reference
trajectory, formalized as a directed graph Gref = (V, E)
with vertices V (cell types) and edges E (state transitions).
Given a user-provided representation Y ∈ RN×e (N cells,
e dimensions) and Gref, scTRAM preprocesses both into
intermediate representations that enable trajectory-aware
metric computation (Figure 1). First, cells are subset to
Ysub ∈ Rn×e (n ≤ N ), retaining only those annotated with
cell types in Gref. For Ysub, a k-nearest-neighbor (kNN)
graph is constructed and its edge weights are converted into
a row-stochastic diffusion operator that represents transition
probabilities between cells. By diagonalizing this opera-
tor, diffusion components are extracted and the pseudotime
vector pinf ∈ Rn is defined as the diffusion distance from
a chosen root cell, in a manner analogous to scanpy’s DPT
method (Wolf et al., 2018). Concurrently, connectivity at
the cell-type level is summarised by pooling kNN edges
between every pair of annotated types and normalizing the

1‘Not all those who wander are lost.’ — J. R. R. Tolkien
Even embeddings that appear visually disordered may still honor
the intrinsic trajectory manifold, highlighting the need for quanti-
tative metrics to tell the difference.
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resulting counts by the size of the smaller cluster, yielding
a weighted inter-type matrix Winf ∈ Rt×t (t cell types) in
a procedure analogous to scanpy’s PAGA method (Wolf
et al., 2019). A custom significance threshold is then ap-
plied to Winf to obtain a complementary binary adjacency
matrix Ainf ∈ {0, 1}t×t; both are kept and used by different
benchmarking metrics as needed.

Meanwhile, Gref is mapped to a symmetric adjacency ma-
trix Aref ∈ {0, 1}t×t together with a type-level pseudotime
vector p(type)ref ∈ Rt. Rather than relying on shortest-path
distances, p(type)ref is derived by a damped diffusion with
restart procedure. Let D = diag(Aref1t) denote the degree
matrix and define the row-stochastic random-walk opera-
tor P = D−1Aref. Starting from the one-hot vector er
that marks the user-specified root cell (inferred by Gref),
we iterate F (k+1) = αP⊤F (k) + (1 − α)er with damp-
ing factor α ∈ (0, 1) until ∥F (k+1) − F (k)∥1 < ε, where
ε > 0 is a prescribed convergence tolerance, finally setting
p
(type)
ref = 1−F (∞). The steady-state F (∞) gives the visita-

tion probability of each type under an α-resummed random
walk that constantly restarts at the root, so values smoothly
increase with topological distance from the origin. Finally,
p
(type)
ref is broadcast to the cell level by assigning every cell

the pseudotime of its annotated type, yielding pref ∈ Rn that
is compatible with all downstream cell-resolved metrics. To
minimize redundant computation, scTRAM performs graph
construction, diffusion smoothing, and binarization with
sparse-matrix routines while caching salient intermediates—
such as KNN indices, diffusion maps, and centroids—along
with the objects (e.g. Winf, Aref, Ainf), so that subsequent
metric evaluations incur negligible overhead.

During evaluation, scTRAM assembles a set of M deter-
ministic functionals mi

M
i=1, each instantiated as a map-

ping mi(Oref,Oinf) → si ∈ R where the ordered pair of
operands (Oref,Oinf) is drawn from exactly one of three
dimensionality-compatible domains: (i) the pseudotime do-
main (pref, pinf) ∈ Rn × Rn, yielding Group 1 scores that
probe temporal monotonicity via, e.g., Spearman’s ρ, dy-
namic time warping distance, and the concordance index;
(ii) the connectivity domain (Aref, Zinf) ∈ {0, 1}t×t×Rt×t,
where Zinf ∈ Ainf,Winf allows metrics to operate on ei-
ther the binarized or weighted inferred graph and furnishes
Group 2 scores that evaluate topological overlap through
metrics such as persistence diagram distance, GNN-based
cosine similarity with GIN architecture, and Wasserstein dis-
tance between the normalized Laplacian eigenvalue spectra;
and (iii) the embedding–trajectory domain (Aref, Ysub) ∈
{0, 1}t×t × Rn×e, producing Group 3 scores that compare
manifold geometry using, for instance, Sammon’s stress,
graph-based trustworthiness, and directionality preservation
(refer to Supplementary D.3 for comprehensive descriptions
of the scTRAM metrics). The resulting scalars si are con-
catenated into the score vector s = (s1, . . . , sM ), which is
returned for downstream aggregation and reporting.

Table 1. Joint benchmarking with scIB data integration scores and
the scTRAM’s trajectory representation aggregate (inverse average
rank) across six model representations. Columns report bio con-
servation (Bio cons.), batch-effect removal (Batch corr.), and their
composite (Total scIB) from scIB, followed by the mean trajectory-
representation score (Traj. repr.). Refer to Supplementary D.2 for
descriptions of the scIB suite and C.2 for model details.

Bio cons. Batch corr. Total scIB Traj. repr.

PCA 0.606 0.402 0.524 0.297
Harmony 0.569 0.492 0.538 0.226
inVAE 0.629 0.382 0.530 0.277
TarDis 0.643 0.627 0.637 0.303
scANVI 0.701 0.523 0.629 0.332
scVI 0.598 0.603 0.600 0.248

3. Results
3.1. scTRAM enables comprehensive quantitative

evaluation of trajectory representation fidelity in
single-cell embeddings

To demonstrate scTRAM’s utility in quantitatively assess-
ing trajectory representation fidelity across data integration
methods, we conducted a comprehensive benchmarking ex-
periment using Suo dataset (Suo et al., 2022)—a highly
heterogeneous large-scale single-cell dataset spanning mul-
tiple organs and developmental time points—with particular
focus on the trajectories of hematopoietic lineage devel-
opment. While data integration benchmarking tools like
scIB (Luecken et al., 2022) effectively quantify batch cor-
rection and cluster alignment, they fail to capture whether
embeddings preserve the differential-geometric properties
of continuous cellular transitions that underpin lineage com-
mitment and differentiation dynamics. Such preservation
is crucial for developmental biology, where accurate rep-
resentation of transition paths directly determines the va-
lidity of downstream analyses such as lineage bifurcation
timing, transcription factor activation sequencing, and gene-
regulatory network inference—analyses that collapse when
trajectory topology is distorted.

To ensure comprehensive evaluation across diverse devel-
opmental contexts and to counteract the risk that a single
dominant path biases overall metrics, we partitioned the
hematopoietic lineage into 27 biologically meaningful tra-
jectory segments spanning four functional groups: myeloid,
lymphoid, MEM (megakaryocyte-erythroid-mast lineage),
and stem. These segments encompassed both global struc-
tures (e.g., the entire hematopoietic lineage or the com-
plete myeloid trajectory) as well as fine-grained branches
(e.g. T-cell maturation), ensuring balanced coverage of dis-
tinct developmental pathways. As illustrated in Figure 2
(left), our rank-based performance analysis—where each
metric for each trajectory was ranked across trained mod-
els to normalize scale differences—revealed that scANVI
demonstrated superior overall trajectory representation per-
formance (median rank r̃≈2.9), followed closely by TarDis
(r̃≈ 3.2). This performance hierarchy contrasts with con-
ventional scIB rankings (Table 1), where TarDis performed
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Figure 2. Comparative trajectory fidelity of six data integration models on the prenatal Suo dataset. Left, box and scatter plots show
the rank distributions (lower is better) of 27 biologically curated trajectory segments that tile the hematopoietic manifold; each dot is a
segment, red bars denote median rank per model, and the outer box conveys dispersion. Top-right, mean (± s.e.m.) ranks within the three
scTRAM metric groups, revealing model-specific strengths in preserving different aspects of trajectory structure. Bottom-right, mean (±
s.e.m.) rank after grouping trajectory segments by major lineage class. The decomposition highlights failure modes that are invisible to a
single aggregate score but critical for downstream inference.

marginally better on data integration metrics. This dis-
crepancy underscores how scTRAM complements scIB’s
bio-conservation scores by specifically evaluating trajec-
tory preservation, offering a more complete framework for
data integration quality assessment in developmental con-
texts. To align with scIB conventions, we also reported
inverse average ranks (higher is better) in Table 1, reveal-
ing that optimal representation selection depends critically
on whether trajectory fidelity or batch correction is the pri-
mary analytical concern—a nuance previously unavailable
to practitioners relying solely on conventional integration
benchmarks. Although we have not yet established a rig-
orous weighting strategy to combine these aggregates, we
contend that careful attention to trajectory fidelity is crucial
for a balanced assessment of data integration performance.

3.2. Trajectory-aware benchmarking reveals
model-specific trade-offs in hematopoietic lineage
representations

This finding of model-specific strengths motivated us to
further dissect performance patterns across our metric tax-
onomy and biological lineage groups, revealing fundamental
trade-offs inherent in representation learning approaches.
The hierarchical decomposition of the 27 trajectory seg-
ments described earlier enabled evaluation across multi-
ple biological scales, providing a multi-resolution view of
model performance across the hematopoietic landscape. Dis-
aggregating performance by metric group revealed model-
specific strengths in preserving different aspects of trajec-
tory structure. inVAE exhibited superior performance in
adjacency-based metrics (mean rank r̄≈2.9), followed by
TarDis (r̄≈3.0), suggesting particular strength in preserv-
ing topological relationships between cell types. Conversely,

scANVI excelled in embedding and pseudotime-based met-
rics (r̄≈ 3.1 and r̄≈ 3.0, respectively), again with TarDis
showing strong secondary performance (r̄≈3.3 and r̄≈3.3,
respectively), indicating better preservation of manifold ge-
ometry. This pattern reveals a critical trade-off in represen-
tation learning: models optimized for preserving topolog-
ical connectivity may sacrifice fidelity in pseudotemporal
ordering and vice versa—an insight crucial for selecting
appropriate models based on downstream analytical prior-
ities. Similarly, trajectory-specific analysis demonstrated
that no single model universally outperformed across all lin-
eage segments; while scANVI generally dominated in MEM
(r̄≈2.8), myeloid (r̄≈2.7), and stem/other groups (r̄≈2.8),
TarDis achieved superior representation of lymphoid trajec-
tories (r̄≈2.1 TarDis; r̄≈3.0 scANVI). This heterogeneity
in performance across trajectory types indicates that model
architectures exhibit subtle biases in handling branching
complexity and local continuity, reflecting how different
objective functions and regularization strategies balance
different aspects of trajectory fidelity.

Our hierarchical segmentation of trajectory slices en-
abled multi-scale interrogation of performance across the
hematopoietic landscape, yet such a manual approach in-
troduces constraints on scalability and generalizability, and
ease of use when examining complex, branching develop-
mental systems. To address these limitations while main-
taining analytical precision, we implemented an automated
trajectory decomposition algorithm specifically optimized
for single-cell trajectories that partitions arbitrary manifolds
into constituent segments without requiring manual cura-
tion. 2 Application of this algorithm to the hematopoietic

2Refer to Supplementary D.1 for comprehensive description of
the employed decomposition approach.
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Figure 3. Trajectory edge-specific performance analysis revealing localized strengths and weaknesses across integration methods. Panels
(a) and (b) depict the mean edge-level performance of TarDis and scANVI, respectively, across the full hematopoietic manifold, where
each directed edge in the reference lineage graph is colored by its average performance rank. Panels (c) and (d) provide schematics of
reference early stem-cell and B-cell differentiation trajectories, respectively, for visual correspondence with the embedding projections
in panel (e). Panel (e) juxtaposes UMAP projections of the embeddings produced by PCA, Harmony, scANVI, and TarDis; points
are coloured by annotated cell types, and black arrows denote the local expected displacement vectors computed with CellRank’s
pseudotime-kernel (Weiler et al., 2024). TarDis preserves the B-cell manifold in the lower-right sector with minimal geometric distortion,
whereas the edge-wise analysis of early progenitors reveals a mosaic fidelity pattern split across TarDis, scANVI, PCA, and Harmony.

lineage graph yielded hundreds of trajectory segments, span-
ning diverse developmental transitions from stem cell ac-
tivation to terminal differentiation. To evaluate model per-
formance within this refined framework, we computed the
mean rank performance for each edge in the full hematopoi-
etic trajectory network, averaging across all applicable met-
rics and trajectory segments containing that edge, thereby de-
riving edge-specific fidelity scores for each model represen-
tation. This granular decomposition revealed localized per-
formance disparities between representations that remained
obscured in aggregate scoring schemes. As illustrated in
Figure 3a and 3b, 3 scANVI and TarDis exhibited distinct
edge-level performance signatures across the hematopoi-
etic manifold, despite relatively comparable overall metrics
discussed earlier. Specifically, scANVI more faithfully pre-
served early bifurcation events, stem cell transitions, and the

3Refer to Figure S7 for complete graph annotations and Fig-
ure S8 for UMAP projections of the full hematopoietic manifold.

myeloid lineage (r̄≈3.3 TarDis; r̄≈2.7 scANVI), whereas
TarDis demonstrated superior performance in maintaining
the lymphoid differentiation branch—particularly within
B-cell differentiation trajectories (r̄≈ 2.8 TarDis; r̄≈ 3.2
scANVI)—which is consistent with earlier findings.

The edge-specific performance decomposition revealed rep-
resentational biases undetectable by neither conventional
integration benchmarks nor aggregate trajectory metrics, es-
tablishing a principled basis for context-dependent model
selection that prioritizes trajectory fidelity in regions of high-
est biological relevance. For instance, researchers focusing
on B-cell development would benefit substantially from se-
lecting TarDis despite its marginally lower overall trajectory
representation score, as it outperforms scANVI in modeling
B-cell lineage progression (Figure 3e, bottom). Conversely,
investigators primarily concerned with myeloid differentia-
tion would achieve superior results using scANVI despite
its marginally lower integration scores. More strikingly, our
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decomposition demonstrated that even within specific de-
velopmental programs—such as stem cell differentiation as
illustrated in Figure 3e, top—certain transition edges were
better preserved by TarDis while others by scANVI, sug-
gesting that optimal representation selection depends not
merely on broad lineage categories but on specific develop-
mental transitions under investigation. This heterogeneity in
trajectory-level and edge-level performance fundamentally
challenges the prevailing paradigm of representation selec-
tion based on aggregate benchmarks, demonstrating instead
that model selection criteria should be trajectory-specific—
or even edge-specific—when downstream analytical priori-
ties are well-defined.

Beyond comparative model evaluation, we propose that
scTRAM can serve as an optimization criterion during
hyperparameter tuning, where edge-specific or trajectory-
specific scores guide model selection during training to yield
representations optimized precisely for the developmental
transitions most relevant to biological inquiry, rather than
for general-purpose integration metrics that may inadver-
tently sacrifice critical trajectory features. This approach
transforms representation learning for developmental sys-
tems from generalized fitting to targeted preservation of
biologically critical structures, enabling more biologically
grounded embeddings for trajectory-focused downstream
analyses such as pseudotemporal gene expression modeling,
branching point characterization, and fate-decision mapping.
We contend that this trajectory-aware optimization paradigm
is not confined to developmental systems, but generalizes to
disease-progression modeling—such as selecting represen-
tations that best preserve transcriptional transitions from pre-
malignant to metastatic states—or perturbation-response set-
tings, where treated cells span a continuous manifold across
dosage gradients or temporal windows. Likewise, in stud-
ies of immune repertoire dynamics, where antigen-driven
clonal expansion unfolds along bifurcating trajectories, ac-
curate localization of branch points is essential. We regard
scTRAM as a promising, general-purpose tool for such set-
tings, offering a trajectory-aware lens that complements
existing evaluation frameworks while remaining adaptable
to diverse biological contexts.

3.3. Systematic validation of scTRAM framework
confirms sensitivity to trajectory distortion in
controlled experiments

To validate that our trajectory-representation metrics behave
as theoretically expected across disparate biological settings,
we first refined the scTRAM suite on fully synthetic single-
cell datasets generated with a custom simulator—bundled
with the package for reproducibility and extension—and
qualitatively validated metric behavior on the experimental
Suo dataset through manual inspection of trajectory seg-
ments and score patterns; results omitted as both analyses
were conducted solely for internal validation. We there-
fore proceeded to rigorously evaluate whether the scTRAM

metric suite satisfies fundamental expectations across three
distinct experimental paradigms, beginning with the hypoth-
esis that during the training of variational autoencoder archi-
tectures such as scVI and TarDis, the latent representation
should progressively improve with respect to bio conserva-
tion and trajectory preservation metrics, while batch correc-
tion performance should remain relatively stable due to the
maximal latent space mixing achieved at initialization. To
test this hypothesis, we evaluated trajectory representation
fidelity and data integration performance across interme-
diate training states by tracking both scTRAM and scIB
scores on three representative settings—the neurogenesis
dataset La-Manno (La Manno et al., 2018), the germline
development dataset Garcia-Alonso (Garcia-Alonso et al.,
2022), and the dose-response perturbation dataset Srivat-
san (Srivatsan et al., 2020)—using scVI or TarDis architec-
tures. Metric values were harmonized by z-scoring each
metric across checkpoints and inverting the sign for those
whose optimum lies at lower numerical values, thereby pro-
ducing a directionally consistent aligned score that can be
averaged across heterogeneous metrics without bias. As
anticipated, biological and trajectory conservation metrics
exhibited overall improvement throughout training, with par-
ticularly pronounced gains during early epochs followed by
asymptotic convergence (Figure 4). Simultaneously, batch
correction metrics remained consistently high from initial-
ization through convergence, confirming that the stochas-
tic initialization procedure effectively induces latent space
mixing that is subsequently preserved during optimization.
These findings not only validate the sensitivity of scTRAM
to genuine improvements in representation quality but also
suggest that, at least within the scVI and TarDis training
regimes, bio conservation and batch correction objectives
are not inherently antagonistic—challenging the prevailing
view that these goals necessarily represent conflicting con-
straints in representation learning.

Our second validation focused on the differential impact of
cell-type ablation on trajectory representation fidelity. We
postulated that selective removal of cells belonging to a
trajectory-constituting cell type should progressively dete-
riorate trajectory representation quality, whereas removing
cells from trajectory-extraneous populations should mini-
mally affect trajectory metrics. To systematically investigate
this relationship, we conducted ablation experiments on the
La-Manno dataset, wherein we incrementally removed in-
creasing percentages of cells from either trajectory-integral
or trajectory-peripheral cell types (Figure 5a). Consis-
tent with our hypothesis, scTRAM metrics exhibited mono-
tonic degradation when trajectory-constituting cells were
removed, with representation quality declining in direct pro-
portion to ablation severity (Figure 5c). Conversely, when
equivalent proportions of cells were ablated from trajectory-
irrelevant populations, trajectory-representation scores re-
mained remarkably stable, demonstrating robust invariance
to perturbations that spare the reference lineage graph and
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Figure 4. Training dynamics of trajectory representation metrics across distinct biological systems. z-score normalized performance
of scTRAM metrics across training epochs for (a) the Garcia-Alonso germline development dataset using scVI, (b) the La-Manno
neurogenesis dataset using scVI, and (c) the Srivatsan dose-response perturbation dataset using TarDis. Metrics are grouped into three
categories: batch correction (light gray), bio conservation (medium gray), and trajectory representation (black). Shaded regions represent
75% confidence intervals across multiple metrics within each category.
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Figure 5. Systematic ablation experiments for validation of the scTRAM sensitivity to trajectory-specific perturbations. (a) UMAP
visualization of the La-Manno neurogenesis dataset showing cell-type clusters and the reference trajectory graph with edges connecting
developmentally related cell types. (b) Impact of feature ablation on trajectory representation fidelity, showing monotonic degradation of
scTRAM performance (z-scored with 90% CI) as the proportion of informative genes retained decreases. (c) Differential sensitivity of
scTRAM metrics to cell-type ablation, demonstrating robust preservation of scores when trajectory-irrelevant granule cells are removed
(light gray) versus significant degradation when trajectory-integral Nbl1 and Nbl2 neuroblast populations are ablated (dark gray).

leave the principal manifold intact. We further extended this
analysis to evaluate the impact of feature (gene) selection
through a systematic feature ablation experiment, showing
that trajectory representation fidelity similarly scales with
the proportion of informative genes retained (Figure 5b),
a finding also with significant implications for feature se-
lection strategies for trajectory representation fidelity. The
differential response of scTRAM metrics to these precisely
controlled perturbations provides important evidence that
our framework captures genuine structural properties of
trajectory representations rather than statistical artifacts or
embedding-specific biases.

Finally, we investigated the relationship between disentan-
glement strength and trajectory representation in the TarDis
architecture. TarDis, a variational autoencoder designed for
disentanglement tasks, employs specialized loss functions
that, when properly configured, guide the model toward
local minima where desired trajectory representations are
optimally preserved. We specifically applied TarDis disen-
tanglement to drug and dose covariates, conditioning dose
as a continuous axis, consistent with the original imple-
mentation. Our hypothesis posited that increasing the rela-
tive weight of disentanglement losses would progressively
enhance covariate-specific representations and continuous

dose-axis formation, thereby yielding more faithful trajec-
tory preservation within the specialized latent subspaces. To
evaluate this relationship, we conducted a comprehensive pa-
rameter sweep, training multiple TarDis models with incre-
mentally increasing disentanglement weights while keeping
all other hyperparameters constant. For each trained model,
we extracted the dose-specific latent dimensions and applied
scTRAM to quantify the fidelity of dose-response trajecto-
ries within this specialized subspace. The results confirmed
our expectations: trajectory fidelity within the dose-specific
latent subspace improved monotonically with increasing dis-
entanglement weight, demonstrating that stronger covariate-
specific regularization yields more coherent representations
of continuous biological processes (Figure 6a, b; e, top row).
Notably, we extended this analysis to the complete latent
space of TarDis—comprising the union of dose-specific,
drug-specific, and unreserved latent dimensions—revealing
that scTRAM effectively quantifies trajectory preservation
even in complex, compositional latent spaces where multiple
biological processes are simultaneously encoded (Figure 6c,
d; e, bottom row). Collectively, these systematic validation
experiments confirm that scTRAM metrics respond to per-
turbations in ways that align with theoretical expectations
across diverse contexts, reinforcing their utility as principled
quantitative measures of trajectory representation quality.
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Figure 6. Improved trajectory representation fidelity with increasing disentanglement strength in the TarDis architecture, as quantified by
the scTRAM suite. (a) In dose-specific latent dimensions, trajectory fidelity scores (z-normalized with 75% confidence intervals) exhibit
improvement with increasing disentanglement weight. (b) Schematic of the dose-response trajectory showing the continuous progression
across increasing drug concentrations, the trajectory used in experiment in Panel-a. (c) Analysis of the complete latent space confirms that
scTRAM effectively quantifies trajectory preservation in complex, compositional embeddings containing multiple biological signals, with
similar performance transitions. (d) Schematic of the multi-drug trajectory with four distinct branches progressing through increasing
dose levels, the trajectory used in experiment in Panel-c. (e) Representative visualizations of trajectory embeddings with increasing TarDis
disentanglement weights, showing the progressive formation of coherent trajectories as regularization strength increases. Cells are colored
by dose level, and black arrows denote the local expected displacement vectors.

4. Conclusion
In this study, we introduced scTRAM, a principled bench-
marking framework that systematically quantifies trajec-
tory representation fidelity in single-cell embeddings across
multiple complementary dimensions. Our framework ad-
dresses a critical gap in current evaluation protocols by
providing quantitative measures of how effectively an em-
bedding maintains the structure of ground-truth trajectories,
thereby shifting from qualitative visual assessment toward
principled, reproducible benchmarking. While scTRAM sub-
stantially advances quantitative trajectory evaluation, several
important directions remain for future development. First,
the current metric suite, though comprehensive, contains
partially redundant measures whose relative informativeness
may vary across biological contexts (refer to Figure S9);
systematic meta-analysis across diverse single-cell atlases
is needed to establish optimal metric selection criteria that
maximize discriminative power while minimizing noise and
redundancy. Second, the metrics should be categorized bet-
ter to give more in-depth insights about the trajectory under
evaluation, potentially integrating with language models to
generate more accessible summaries for bench researchers.
Third, as single-cell technologies increasingly capture mul-
timodal measurements—spanning transcriptomics, epige-
nomics, proteomics, and spatial information—extending

scTRAM to evaluate joint embeddings across these modal-
ities represents a crucial next step for comprehensive tra-
jectory benchmarking. Fourth, integrating scTRAM met-
rics directly into representation learning objectives offers
a promising avenue for developing embeddings explicitly
optimized for trajectory preservation, rather than relying
on post-hoc evaluation of models trained with generic re-
construction or clustering objectives. As single-cell atlas
construction increasingly emphasizes dynamic processes
rather than static snapshots—from embryogenesis to im-
mune repertoire dynamics to disease progression—we antic-
ipate that trajectory-aware benchmarking and optimization
will become essential components of representation learning
pipelines, enabling more faithful recapitulation of the con-
tinuity underlying cellular state transitions and ultimately
yielding deeper insights into the molecular mechanisms
governing development, homeostasis, and pathology. 4 5

4For a detailed discussion of the theoretical assumptions
and known limitations, refer to Supplementary B. Experimental
insights—including dataset descriptions, model trajectory details,
and a link to the scTRAM codebase—are provided in Supplemen-
tary C.

5A post-hoc audit revealed that the early-myeloid lineage in
the Suo dataset was misannotated; as none of the analyses or
inferences reported here depend on that segment, we have left the
original labels intact to preserve exact reproducibility and will
issue corrected annotations in a subsequent revision.
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J., Marečková, M., Gruhn, W. H., Botting, R. A., et al.
Single-cell roadmap of human gonadal development. Na-
ture, 607(7919):540–547, 2022.

Gayoso, A. scib-metrics: Accelerated, Python-
only, single-cell integration benchmarking metrics,
2025. URL https://github.com/YosefLab/
scib-metrics. Accessed 2025-05-19.

Ge, Y., Ma, J., Zhang, L., Li, X., and Lu, H. Trustworthiness-
aware knowledge graph representation for recommenda-
tion. Knowledge-Based Systems, 278:110865, 2023.

Genest, C., Quessy, J.-F., and Rémillard, B. Local efficiency
of a cramér–von mises test of independence. Journal of
Multivariate Analysis, 97(1):274–294, 2006.

Genest, C., Quessy, J.-F., and Rémillard, B. Asymptotic
local efficiency of cramér–von mises tests for multivariate
independence. arXiv preprint arXiv:2503.04393, 2007.

Ghojogh, B., Ghodsi, A., Karray, F., and Crowley, M. Mul-
tidimensional scaling, sammon mapping, and isomap:
Tutorial and survey. arXiv preprint arXiv:2009.08136,
2020.

Goldberg, A. V. and Harrelson, C. Computing the shortest
path: A search meets graph theory. In SODA, volume 5,
pp. 156–165, 2005.

Gonzalez-Escribano, A., Llanos, D. R., and Ortega-Arranz,
H. The shortest-path problem: Analysis and comparison
of methods. Springer Nature, 2022.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Haghverdi, L., Buettner, F., and Theis, F. J. Diffusion maps
for high-dimensional single-cell analysis of differentia-
tion data. Bioinformatics, 31(18):2989–2998, 2015.

10

https://github.com/YosefLab/scib-metrics
https://github.com/YosefLab/scib-metrics


Beyond Visual Inspection: Principled Benchmarking of Single-Cell Trajectory Representations with scTRAM

Haghverdi, L., Lun, A. T. L., Morgan, M. D., and Marioni,
J. C. Batch effects in single-cell rna-sequencing data are
corrected by matching mutual nearest neighbors. Nature
Biotechnology, 36(5):421–427, April 2018. ISSN 1546-
1696. doi: 10.1038/nbt.4091.

Hastie, T. J. Generalized additive models. Statistical models
in S, pp. 249–307, 2017.

Heiser, C. N. and Lau, K. S. A quantitative framework
for evaluating single-cell data structure preservation by
dimensionality reduction techniques. Cell reports, 31(5),
2020.

Heumos, L., Schaar, A. C., Lance, C., Litinetskaya, A.,
Drost, F., Zappia, L., Lücken, M. D., Strobl, D. C., Henao,
J., Curion, F., et al. Best practices for single-cell analysis
across modalities. Nature Reviews Genetics, 24(8):550–
572, 2023.

Hodson, T. O. Root mean square error (rmse) or mean abso-
lute error (mae): When to use them or not. Geoscientific
Model Development Discussions, 2022:1–10, 2022.

Hougardy, S. The floyd–warshall algorithm on graphs with
negative cycles. Information Processing Letters, 110
(8-9):279–281, 2010.

Hu, Y., Wan, S., Luo, Y., Li, Y., Wu, T., Deng, W., Jiang,
C., Jiang, S., Zhang, Y., Liu, N., et al. Benchmarking
algorithms for single-cell multi-omics prediction and in-
tegration. Nature Methods, 21(11):2182–2194, 2024.

Hubert, L. and Arabie, P. Comparing partitions. Journal
of Classification, 2(1):193–218, December 1985. ISSN
1432-1343.

Huffaker, B., Dhamdhere, A., Fomenkov, M., and Claffy, K.
Toward topology dualism: improving the accuracy of as
annotations for routers. In International Conference on
Passive and Active Network Measurement, pp. 101–110.
Springer, 2010.
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Figure 7. Detailed visualization of edge-level performance analysis for TarDis (top) and scANVI (bottom) representations on the complete
hematopoietic manifold from the Suo dataset. Each node represents a distinct cell type within the hematopoietic lineage hierarchy,
positioned according to developmental relationships and branching topology. Directed edges correspond to validated developmental
transitions between cell types, with edge weights indicating the mean performance rank of that specific transition across all applicable
scTRAM metrics and trajectory segments containing the edge (lower values indicate superior preservation). The graph encompasses
the full spectrum of hematopoietic development, from multipotent HSC MPP to terminally differentiated lineages including myeloid
(macrophages, neutrophils, eosinophils), lymphoid (T cells, B cells, NK cells), and MEM (megakaryocyte-erythroid-mast) branches.
Edge performance values reveal model-specific biases in preserving distinct developmental transitions; TarDis demonstrates superior
fidelity in lymphoid differentiation pathways (particularly B-cell maturation sequences with edge weights ≈ 2.8–3.0), whereas scANVI
excels in early stem cell bifurcations and myeloid lineage transitions (edge weights ≈ 2.7–3.2). Notably, both models exhibit comparable
performance in preserving MEM lineage transitions, suggesting that megakaryocyte-erythroid-mast differentiation pathways may be
inherently more robust to representation distortions. The heterogeneous landscape of edge-specific performance underscores the
necessity of trajectory-aware benchmarking for context-specific model selection, particularly when downstream analyses focus on
discrete developmental subpaths or individual transition edges where aggregate metrics obscure critical localized differences in trajectory
preservation fidelity.
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Figure 8. UMAP projections of the complete hematopoietic manifold from the Suo dataset, comparing trajectory preservation across
TarDis (top) and scANVI (bottom) representations. Points represent individual cells colored by annotated cell type, revealing the
complex landscape of developmental states spanning hematopoietic stem cells through terminally differentiated lineages. While these two-
dimensional projections facilitate visual inspection of cluster separation and gross topological relationships, UMAP’s stochastic neighbor
embedding algorithm prioritizes local neighborhood preservation over global trajectory continuity, leading to artificial compression,
stretching, and reordering of developmental paths that can fundamentally misrepresent the temporal sequence and branching topology
of cellular differentiation processes. Researchers should exercise caution when interpreting developmental relationships from UMAP
visualizations alone, particularly in complex systems where multiple lineages exhibit overlapping gene expression signatures or when
trajectory branches span similar regions of the high-dimensional expression space, as the resulting two-dimensional layout may suggest
spurious connections while obscuring genuine developmental pathways.
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Figure 9. Pairwise correlation structure of scTRAM metrics reveals functional redundancy and orthogonality patterns across trajectory
representation measures. This analysis was calculated exclusively on decomposed edge data from the Suo dataset and therefore represents
a dataset-specific correlation structure that may not generalize across different biological contexts, trajectory topologies, or cellular
systems. The heatmap displays pairwise Spearman correlation coefficients (ρ) between the 48 individual metrics comprising the scTRAM
benchmarking suite, computed across all trajectory segments and model representations. Hierarchical clustering was applied using average
linkage on correlation magnitude distances (1− |ρ|) to group functionally similar measures and reveal the underlying correlation structure.
The diverging color scale spans from ρ = −0.8 (blue, indicating strong negative correlation) to ρ = +0.8 (red, indicating strong positive
correlation), with white representing zero correlation (ρ ≈ 0). The correlation matrix reveals several distinct blocks of highly correlated
metrics, particularly evident in the upper-left quadrant where embedding-based measures such as neighborhood preservation, manifold
correlation, and various distance metrics exhibit strong positive correlations (ρ > 0.6), indicating substantial redundancy among trajectory
representation measures that capture similar aspects of embedding fidelity. Conversely, several metric pairs demonstrate near-orthogonal
behavior (ρ ≈ 0.1), such as between spectral distance measures and pseudotime correlation metrics, confirming that different metric
groups capture complementary aspects of trajectory fidelity as theoretically expected from the scTRAM framework design. The observed
correlation structure deviates substantially from the theoretical identity matrix that would characterize completely orthogonal metrics,
highlighting both the inherent interconnectedness of trajectory fidelity measures and the need for systematic redundancy reduction to
optimize the discriminative power and computational efficiency of the scTRAM framework. These correlation patterns suggest that
a subset of highly informative, minimally redundant metrics could potentially achieve comparable benchmarking performance while
reducing computational overhead. Future work should focus on developing principled metric selection pipelines that identify the most
informative combinations within correlated metric groups, potentially through techniques such as principal component analysis of the
correlation structure or information-theoretic approaches that maximize mutual information while minimizing redundancy across the
metric suite.
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B. Limitations and Assumptions
Despite scTRAM’s demonstrated utility in quantifying trajec-
tory preservation across diverse biological contexts, several
methodological and conceptual limitations warrant consider-
ation. First, the framework’s reliance on k-nearest-neighbor
graph construction introduces potential instability when em-
beddings produce disconnected components or highly segre-
gated clusters. In particular, when an embedding partitions
trajectory-integral cell types into disjoint submanifolds, the
diffusion-based pseudotime inference procedure may fail
and reflect spurious discontinuities rather than biological
progression. In such scenarios, scTRAM potentially mis-
evaluate representations that maintain trajectory-relevant
gene expression covariance but sacrifice spatial contiguity.
Consequently, scTRAM’s metrics should be interpreted cau-
tiously in scenarios exhibiting pronounced clustering arti-
facts or when evaluating embeddings derived from methods
optimized for discrete classification rather than continuous
manifold learning.

Another significant limitation stems from the discreteness of
certain metrics, particularly evident in adjacency-based eval-
uations such as binary graph accuracy. For trajectories with
limited branching complexity or few constitutive cell types,
these metrics exhibit quantization effects that reduce their
discriminative power and amplify the influence of stochastic
fluctuations. Specifically, on small trajectory graphs with
t ≪ 10 nodes, the adjacency matrix Ainf ∈ {0, 1}t×t con-
tains relatively few entries, causing even minor topological
perturbations to induce substantial changes in metric values.
This discretization effect introduces evaluation variance that
may obscure subtle yet biologically significant differences
between competing representations. While our multi-metric
approach partially mitigates this concern through ensemble
evaluation, the sensitivity–specificity trade-off remains sub-
optimal for developmental systems characterized by linear
or minimally branched trajectories.

The binarization threshold applied to the weighted inter-type
connectivity matrix Winf represents another methodologi-
cal constraint with substantive implications for scTRAM’s
evaluation outcomes. Currently, this threshold is calibrated
based on empirical performance on the Suo dataset, which
introduces potential dataset-specific bias and limits general-
izability across diverse experimental contexts. The absence
of a principled, data-adaptive thresholding procedure means
that connectivity assessments may be inconsistently strin-
gent across different biological systems or embedding di-
mensionalities. Indeed, optimal threshold selection depends
on complex factors including dataset size, trajectory com-
plexity, and embedding properties, creating an implicit hy-
perparameter that requires careful tuning. Future iterations
of scTRAM would benefit from a systematic approach to
threshold determination that balances sensitivity to genuine
trajectory connections against robustness to noise-induced
spurious edges.

The framework also exhibits differential sensitivity to disrup-
tions in distinct regions of the trajectory graph. Our ablation
experiments demonstrated that scTRAM metrics respond
more strongly to perturbations in densely connected regions
or near branch points compared to terminal differentiation
edges, potentially biasing overall evaluations toward preser-
vation of stem and progenitor transitions at the expense of
terminal lineage segments. This spatial heterogeneity in
metric sensitivity complicates interpretation of aggregate
scores and may inadvertently guide model selection toward
representations that excel in preserving early developmental
transitions while tolerating substantial distortion in terminal
differentiation dynamics. Although our edge-specific de-
composition approach and metrics specifically focused on
terminal cell-states enables more granular performance as-
sessment, it does not fully resolve the underlying imbalance
in metric responsiveness across trajectory regions.

Our framework’s current implementation tends to weight
each metric equally within its respective group, which may
not optimally reflect their relative importance or informa-
tiveness across diverse biological contexts. This uniform
weighting scheme might inadvertently amplify the influ-
ence of metrics that capture redundant aspects of trajectory
fidelity while diluting the signal from those that measure
unique structural properties (refer to Figure 9). The chal-
lenge of establishing context-appropriate weighting schemes
is exacerbated by the absence of a systematic meta-analysis
correlating metric performance with downstream analyti-
cal utility; consequently, practitioners must rely on domain
knowledge or heuristic approaches to prioritize specific met-
rics for their particular biological questions while we are
actively developing methods to address this limitation. A
more principled approach would entail learning optimal met-
ric weights from a diverse corpus of annotated single-cell
datasets, but the current scarcity of ground-truth trajectory
annotations limits the feasibility of such data-driven opti-
mization. A more principled approach would entail learning
optimal metric weights from a diverse corpus of annotated
single-cell datasets—a direction we are actively pursuing
through the ongoing curation of datasets with high-quality
ground-truth trajectory annotations.

Another limitation concerns scTRAM’s treatment of cellular
heterogeneity within annotated cell types. The framework
implicitly assumes that cells assigned to the same type ex-
hibit comparable positional identity within the trajectory
manifold, effectively collapsing intra-type variability when
computing type-level adjacencies and pseudotimes. How-
ever, cellular states often exist along continua rather than
in discrete clusters, with substantial heterogeneity in dif-
ferentiation status even within expert-annotated types. By
aggregating over this internal variance, scTRAM may ob-
scure significant heterogeneity in trajectory representation
quality within cell types, particularly for coarse-grained
annotations that span substantial developmental windows.
The pooling operations we employ when constructing Winf
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effectively marginalize over this heterogeneity, potentially
masking genuine embedding distortions that occur strictly
within type boundaries. This limitation becomes especially
pronounced in studies of transitional cell populations—such
as those undergoing epithelial-mesenchymal transition or
lineage reprogramming—where intra-type pseudotemporal
variation constitutes a primary analytical target rather than
a source of noise to be averaged away.

scTRAM’s current design primarily addresses trajectory fi-
delity in static snapshots rather than explicitly modeling lon-
gitudinal dynamics or temporal sampling effects. When ap-
plied to time-series experiments—where cells are sampled
at discrete timepoints—the framework does not explicitly
account for batch effects specific to temporal sampling, nor
does it incorporate the additional constraints that true tem-
porality imposes on trajectory structure. For instance, gen-
uine time-course data inherently prohibits certain trajectory
topologies, such as backward loops or temporally inconsis-
tent branches, yet scTRAM lacks specialized metrics to pe-
nalize such violations. Similarly, the framework does not ad-
equately capture velocity-field consistency or RNA velocity
alignment, which provide orthogonal evidence for trajectory
directionality. Integration of RNA velocity information—
whether through explicit calculation of velocity-pseudotime
concordance or through penalty terms for divergent flow
fields—would substantially enhance scTRAM’s utility for
dynamic biological processes.

Moreover, scTRAM presupposes the existence of a ground-
truth reference trajectory, typically derived from expert an-
notation, lineage tracing, or temporal sampling. In many
experimental contexts, however, such reference information
remains incomplete, uncertain, or entirely absent, limiting
the framework’s applicability to well-characterized systems.
When reference trajectories are approximated from cluster-
level relationships rather than derived from gold-standard
lineage tracing, scTRAM evaluations inherit any errors or
ambiguities in the reference construction. This circularity
becomes particularly problematic when evaluating embed-
dings used to infer the very trajectories against which they
are subsequently benchmarked. Additionally, the frame-
work offers limited guidance for reconciling discrepancies
between competing reference trajectories when multiple
plausible models exist for a given biological system.

The framework’s emphasis on global trajectory preservation
may inadvertently mask local distortions that, while small
in aggregate, significantly impact biological interpretation
of specific trajectory transitions. For instance, a represen-
tation might preserve overall pseudotemporal ordering and
topological structure while severely distorting the geometry
around critical bifurcation points or fate-decision bound-
aries. Although our edge-specific decomposition partially
addresses this concern, the current metric suite lacks special-
ized sensitivity to these biologically crucial regions. Conse-
quently, practitioners may select representations that excel

on global measures while failing to maintain the fine-grained
structure necessary for accurate inference of gene-regulatory
networks, signaling dynamics, or transcription factor activ-
ities. Development of region-weighted or attention-based
metrics that prioritize preservation of biologically signifi-
cant submanifolds—such as critical transition states or reg-
ulatory checkpoints—would enhance scTRAM’s alignment
with downstream analytical priorities.

From a computational perspective, scTRAM’s diffusion-
based pseudotime inference procedure incurs substantial
memory requirements for large-scale datasets, scaling as
O(n2) with respect to cell count when employing dense
matrix operations. Although sparse implementations signifi-
cantly improve efficiency, the computational complexity still
presents challenges for atlas-scale analyses with millions of
cells, potentially necessitating subsampling strategies that
may introduce sampling bias. Furthermore, the framework’s
hyperparameter landscape—including k in kNN graph con-
struction, α in damped diffusion, and the convergence tol-
erance ε—remains insufficiently characterized across di-
verse biological contexts, leaving practitioners with limited
guidance for configuration decisions that may significantly
impact evaluation outcomes.

Our focus on evaluating latent representations limits
scTRAM’s applicability to directly assessing reconstruc-
tion quality in generative models. While latent fidelity
constitutes a necessary condition for accurate modeling of
trajectory structure, it provides only indirect evidence re-
garding the model’s capacity to generate realistic cells that
respect developmental constraints. A comprehensive eval-
uation framework would ideally assess both the encoding
and decoding components of generative models, examining
whether generated cells maintain appropriate pseudotem-
poral positioning, preserve lineage-specific gene modules,
and exhibit biologically plausible expression patterns. Ex-
tension of scTRAM to evaluate trajectory fidelity in gener-
ated or reconstructed expression space—rather than solely
in latent representations—would provide a more complete
assessment of model performance for trajectory-focused
generative modeling tasks.

Finally, while scTRAM provides a comprehensive battery of
complementary metrics spanning topological consistency,
manifold continuity, and pseudotime alignment, the current
suite lacks systematic quantification of uncertainty or sta-
tistical significance. Particularly for datasets with limited
cell counts per trajectory segment, the framework does not
adequately account for sampling variability or provide con-
fidence intervals for metric values. This limitation becomes
especially problematic when comparing embeddings whose
performance differences fall within the expected range of
stochastic variation. Furthermore, the absence of formal
hypothesis testing procedures complicates determination of
whether observed performance differentials reflect genuine
representational advantages or merely arise from chance
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fluctuations in the evaluation process. Addressing this lim-
itation would require development of principled bootstrap
or permutation-based approaches for establishing statistical
significance thresholds that account for trajectory complex-
ity, cell count, and dataset heterogeneity.

Despite these limitations, scTRAM represents a substantial
advancement over previous qualitative trajectory evaluation
approaches by providing a systematic, quantitative frame-
work that decompose trajectory fidelity into complementary
axes of performance. By acknowledging these constraints
and interpreting results with appropriate caution, practi-
tioners can leverage scTRAM to make more informed deci-
sions about representation selection while recognizing the
inherent trade-offs between different aspects of trajectory
preservation. Future refinements to the framework will fo-
cus on addressing these limitations through development
of more robust graph construction methods, data-adaptive
thresholding procedures, computational optimizations, and
statistical significance testing, thereby enhancing scTRAM’s
utility across diverse experimental contexts and biological
systems.

C. Experiment Insights
C.1. Datasets

C.1.1. SUO DATASET

Named in after the first author from the original publica-
tion, the Suo dataset offers a comprehensive single-cell tran-
scriptomic landscape across nine prenatal human organs. It
captures immune system development over embryonic time,
highlighting organ-specific interactions and immune cell
differentiation (Suo et al., 2022).

Number of Samples: Out of an initial total of 908,178 cells,
841,922 passed quality control filtering based on established
single-cell processing standards (Heumos et al., 2023).

Number of Features: The dataset originally profiled 33,538
genes. After preprocessing, 8,192 highly variable genes
(HVGs) were retained, following best practices in the
field (Heumos et al., 2023).

Source: The raw dataset is publicly accessible via ArrayEx-
press under accession ID E-MTAB-11343. Processed data
in AnnData format can be retrieved from Developmental
Cell Atlas portal. Additional annotated metadata is hosted
on the CellxGene platform, as described in (Biology et al.,
2023).

C.1.2. GARCIA-ALONSO DATASET

The Garcia-Alonso dataset offers a comprehensive single-
cell and spatial transcriptomic map of human gonadal de-
velopment during the first and second trimesters. By inte-
grating single-cell RNA sequencing, spatial transcriptomics,
chromatin accessibility assays, and fluorescent microscopy,
this dataset delineates the cellular and molecular events un-
derpinning sex determination and differentiation in human
gonads. It identifies key somatic cell states, including a bipo-
tent early supporting population that, in males, upregulates
the testis-determining factor SRY, and in females, gives rise
to granulosa cells. Additionally, the dataset characterizes
unique macrophage populations in the developing testis,
providing insights into the signaling interactions between
germline and somatic cells during gonadogenesis (Garcia-
Alonso et al., 2022).

Number of Samples: Out of an initial total of 222,779 cells,
219,731 passed quality control filtering based on established
single-cell processing standards (Heumos et al., 2023). For
this study, we subsampled the dataset to 26,185 cells to
enable faster scTRAM experimentation and reduce training
and benchmarking time for incremental training experiment
discussed in Figure 4. The subsampling was performed
using a stratified approach based on the cell type annotation.
Specifically, the method retains all cells from underrepre-
sented cell types while capping the number of cells from
any overrepresented group to a maximum of 1000. This is
done to preserve diversity while preventing dominant cell
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types from skewing the dataset. A fixed random seed was
used to ensure reproducibility during the selection of cells
from overrepresented categories.

Number of Features: The original gene expression matrix
included 29,052 genes. Following standard preprocessing
protocols, we identified 8,192 highly variable genes (HVGs)
using the full dataset prior to subsampling (219,731 cells), in
accordance with best practices for single-cell transcriptomic
analysis. (Heumos et al., 2023).

Source: Raw single-cell RNA-seq data are publicly avail-
able from ArrayExpress under accession number E-MTAB-
10551. Additional annotations and visualizations are acces-
sible via the CellxGene platform, as described in (Biology
et al., 2023).

C.1.3. LA-MANNO DATASET

The La Manno dataset, named after the first author of the
original study, offers a comprehensive single-cell transcrip-
tomic analysis of neurogenesis within the developing mouse
hippocampus. Focusing on the dentate gyrus region, the
study captures cellular dynamics at two critical postnatal
stages—day 0 (P0) and day 5 (P5). This dataset delineates
the complex developmental trajectories of neural progenitor
cells as they differentiate into various cell types, including
astrocytes, oligodendrocyte precursor cells (OPCs), gran-
ule neurons, and pyramidal neurons. The high-resolution
data facilitate the exploration of lineage branching and
maturation processes during early postnatal brain devel-
opment (La Manno et al., 2018).

Number of Samples: A total of 18,213 single cells were
included in the version of the dataset used for this study.

Number of Features: The dataset originally profiled 27,998
genes. After preprocessing, 5,000 highly variable genes
(HVGs) were retained, following best practices in the
field (Heumos et al., 2023).

Source: The dataset is accessible through the scVelo
Python package and can be loaded using the function
dentategyrus lamanno under scvelo.datasets.
Additional information and documentation are available at
scVelo Dentate Gyrus La Manno Dataset Documentation
(Bergen et al., 2020).

C.1.4. SRIVATSAN DATASET

The Srivatsan dataset, named after the first author of the
original study, generated using the sci-Plex platform which
leverages nuclear hashing for multiplexing, captures single-
cell transcriptional responses to a wide array of chemical
treatments. This dataset spans three human cancer cell
lines subjected to 188 different small molecules, allowing
for detailed investigation of dosage-dependent effects and
differential drug sensitivities. In a single large-scale screen-
ing experiment, nearly 650,000 single-cell transcriptomes

were collected from around 5000 unique conditions. The
dataset reveals diverse cellular responses to drug treatments,
patterns shared among chemically related compounds, and
subtle distinctions within specific drug categories, notably
among histone deacetylase (HDAC) inhibitors (Srivatsan
et al., 2020).

Number of Samples: A total of 14,811 single cells were
included in the version of the dataset used for this study.

Number of Features: Gene expression was measured across
4,999 genes.

Source: The raw and processed data can be accessed through
the NCBI Gene Expression Omnibus (GEO) under acces-
sion number GSE139944. The version used here is a pre-
processed and subsetted form, consistent with the approach
taken in the CPA framework (Lotfollahi et al., 2023), and
was made available by the CPA authors. Our team did not
apply additional filtering or modification to the dataset.

C.2. Models

All experiments that use the Suo dataset were run with ex-
actly the same configurations as the original TarDis paper;
the full settings are available in the TarDis public repos-
itory. In addition, we relied on a pre-trained model ob-
ject kindly provided by the TarDis authors, which stream-
lined our downstream analyses and the benchmarking of
the scTRAM suite. For all other experiments based on the
Garcia-Alonso, La-Manno, and Srivatsan datasets, we prin-
cipally employed each method’s default parameters; the full
configuration files are archived in our public repository to
ensure complete reproducibility.

C.2.1. SCVI

scVI employs a deep variational autoencoder architecture
that models single-cell gene expression through a zero-
inflated negative binomial (ZINB) likelihood with learned
dispersion parameters and dropout probabilities (Lopez
et al., 2018). The generative model assumes that observed
UMI counts xn,g for cell n and gene g arise from a ZINB
distribution parameterized by rate λn,g, dispersion θg, and
dropout probability πn,g; these parameters are computed
via neural networks that decode a low-dimensional latent
representation zn ∼ N (0, I) drawn from a standard Gaus-
sian prior. The inference network approximates the pos-
terior q(zn|xn) through a recognition model that encodes
observed expression profiles into distributional parameters
(µn, σn) of a diagonal Gaussian, enabling efficient amor-
tized variational inference via the reparameterization trick.
During training, the evidence lower bound (ELBO) bal-
ances reconstruction accuracy—measured by the ZINB log-
likelihood—against KL divergence between the approxi-
mate posterior and prior, regularizing the latent space toward
a unit Gaussian while maintaining sufficient expressivity to
capture biological variation. The model’s capacity to handle
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zero-inflation and technical noise through explicit dropout
modeling makes it particularly suitable for sparse single-
cell count data, while the continuous latent space naturally
accommodates smooth biological transitions and manifold
structures underlying cellular differentiation processes.

C.2.2. SCANVI

scANVI extends the scVI framework by incorporating semi-
supervised learning to leverage partially available cell-type
annotations during representation learning (Xu et al., 2021).
The generative model augments the scVI likelihood with a
categorical distribution over cell types, where the type prob-
ability p(cn = k|zn) is computed through a classification
head that maps latent representations to type probabilities
via a softmax-activated neural network. For annotated cells,
the model enforces consistency between predicted and ob-
served cell types through a cross-entropy loss term, while
unlabeled cells contribute only to the standard scVI recon-
struction objective. The joint training procedure optimizes
a composite ELBO that includes the original scVI terms
plus the supervised classification loss, weighted by the an-
notation frequency to balance supervised and unsupervised
components. This semi-supervised architecture enables the
model to learn latent representations that simultaneously
preserve transcriptional similarity and respect known cell-
type boundaries, often yielding embeddings with enhanced
biological interpretability compared to purely unsupervised
approaches. The incorporation of type information dur-
ing training tends to produce more structured latent spaces
where cells of the same type cluster together while maintain-
ing smooth transitions between related types, based on our
preliminary results, making scANVI particularly effective
for scenarios where trajectory fidelity and cell-type preser-
vation are both priorities.

C.2.3. INVAE

inVAE is a deep generative model that decomposes latent
space into two principal components: an invariant subspace,
zinv, capturing condition-independent biological signals,
and a spurious subspace, zspur, which encodes nuisance
variation that differs across user-defined conditions (Aliee
et al., 2024). A single decoder reconstructs observations
(e.g., gene counts) from the concatenation (zinv, zspur, ℓ),
where ℓ commonly denotes a library-size or scaling factor.
The training objective augments the standard VAE ELBO
with three key regularizers: (i) A Hilbert–Schmidt Inde-
pendence Criterion (HSIC) term that penalizes residual mu-
tual information between zinv and the conditioning covari-
ates, ensuring zinv remains invariant, (ii) a total-correlation
penalty designed to factorize the joint posterior, thereby
discouraging undesired dependencies among latent dimen-
sions and improving latent disentanglement, (iii) a cosine
alignment term that brings together zinv embeddings from
matched conditions, reinforcing the notion of a shared man-
ifold across experimental batches or perturbations. Through

this structured regularization, inVAE establishes a ‘bijection’
from the invariant latent space to cross-condition manifolds,
rendering zinv stable against perturbations in zspur. Em-
pirically, the approach demonstrates strong transferability
across diverse experimental settings by preserving only bi-
ologically conserved information in zinv while isolating
condition-specific or nuisance variations in zspur.

C.2.4. TARDIS

TarDis is a novel deep generative model built upon a vari-
ational autoencoder (VAE) framework, specifically engi-
neered for the targeted disentanglement of multiple covari-
ates in complex single-cell genomics datasets (Inecik et al.,
2024). The model constructs a sophisticated latent rep-
resentation zn = (zn0, [znk]k ∈ Jk) where each targeted
covariate k receives its own dedicated latent subspace znk,
while zn0 captures residual biological variation independent
of the targeted covariates. The model employs a composite
loss function that combines standard VAE objectives (re-
construction loss using negative binomial distribution for
count data, and KL divergence regularization) with targeted
auxiliary losses LC that enforce disentanglement through
self-supervised contrastive learning. The core innovation
lies in its covariate-specific loss components that employ a
self-supervised contrastive learning strategy: for each co-
variate, the model generates positive and negative data point
pairs based on covariate similarity, then applies four dis-
tinct loss terms that simultaneously pull together representa-
tions sharing the same covariate value in the reserved latent
space znk while pushing apart different covariate values,
and conversely ensures the unreserved space zn0 remains
distant from all covariate conditions. This architectural de-
sign enables TarDis to handle both categorical covariates
(such as disease status, tissue type) and continuous covari-
ates (such as age, drug dosage) within a unified framework,
with continuous variables receiving distance-weighted neg-
ative pair losses that preserve their natural ordering and
create interpretable gradient representations in the latent
space. TarDis addresses fundamental challenges in single-
cell genomics where gene expression patterns emerge from
overlapping biological processes and technical artifacts, re-
quiring precise separation of invariant biological signals
from spurious correlations. Its unique capability to generate
ordered latent representations for continuous covariates en-
ables previously unfeasible hypothesis-driven analyses, such
as isolating organ-specific developmental gene expression
patterns while maintaining batch correction, or examining
dose-dependent drug responses independent of patient char-
acteristics.

C.2.5. HARMONY

Harmony employs an iterative correction algorithm that
removes batch effects from existing embeddings through
geometric transformations rather than learning representa-
tions de novo (Korsunsky et al., 2019b). The method be-
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gins with a pre-computed embedding (typically from princi-
pal component analysis) and applies successive corrections
that align corresponding cell populations across different
batches or datasets. The algorithm models batch effects as
smooth deformations of the embedding space and estimates
these transformations through kernel-based smoothing op-
erations that preserve local neighborhood structure while
correcting global alignment. Harmony iteratively updates
cell coordinates by computing weighted averages within
local neighborhoods, where weights are determined by sim-
ilarity measures that account for both geometric proximity
and batch identity. The correction procedure continues until
convergence, yielding embeddings where batch-specific ef-
fects are minimized while biological variation is preserved.
The method’s reliance on geometric correction rather than
generative modeling makes it computationally efficient and
broadly applicable to diverse types of pre-computed em-
beddings, though its performance depends critically on the
quality of the initial representation and the assumption that
batch effects manifest as smooth, correctable distortions.

C.2.6. PCA

PCA (Principal Component Analysis) computes low-
dimensional embeddings through eigendecomposition of
the covariance matrix, identifying orthogonal directions
of maximum variance in the high-dimensional expression
space (Abdi & Williams, 2010). The method begins by
centering the data matrix and computing its sample covari-
ance, then extracts the top eigenvectors corresponding to the
largest eigenvalues to form the embedding basis. Each prin-
cipal component represents a linear combination of genes
that captures a distinct mode of variation across cells, with
components ordered by their explained variance contribu-
tion. The embedding coordinates are obtained by projecting
the original high-dimensional data onto the principal com-
ponent subspace, yielding a low-dimensional representation
that optimally preserves the global variance structure of the
dataset. While PCA provides a computationally efficient and
theoretically grounded dimensionality reduction approach,
its linear nature limits its capacity to capture complex nonlin-
ear relationships that characterize many biological processes.
The method’s assumption of Gaussian-distributed data and
its sensitivity to outliers can further impact performance on
single-cell datasets, which typically exhibit high sparsity,
technical noise, and complex distributional properties that
violate standard PCA assumptions.

C.3. Code Availability

All code supporting this work is publicly available at
GitHub: https://github.com/theislab/sctram.

C.4. Compute Resources and System Configuration

We developed and evaluated scTRAM using two distinct
computational configurations. The primary system con-

sisted of high-performance hardware specifically configured
for efficient parallel processing of large-scale single-cell
datasets, with detailed specifications provided below. No-
tably, while our MacBook Pro systems with M1 processors
proved sufficient for development, testing, and smaller-scale
analyses—demonstrating that scTRAM’s core functional-
ity can be executed on standard consumer hardware—we
utilized the high-performance system primarily to paral-
lelize experiments and accelerate large-scale benchmarking.
The scTRAM package was developed within mamba envi-
ronments (Gu & Dao, 2023) as specified in our GitHub
repository, with environment specification files that ensure
computational reproducibility across platforms and prevent
package inconsistencies that could affect analytical out-
comes. The mamba environment is provided for clearer
reproducibility, allowing users to create identical software
configurations regardless of their underlying operating sys-
tem. The package is currently under active development and
will be released through both pip and conda-forge distribu-
tion channels to facilitate broader accessibility and integra-
tion into existing single-cell analysis workflows.

Our primary computational infrastructure employed for
scTRAM’s development and evaluation consisted of high-
performance hardware specifically configured for efficient
parallel processing of large-scale single-cell data matrices.
Our computational nodes were equipped with dual Intel
Xeon Gold 6230 processors operating at a base frequency of
2.1 GHz with boost capabilities up to 3.9 GHz, providing 20
cores per processor for robust parallel execution of compu-
tational tasks. System memory consisted of 256 GB DDR4
RAM per computational node, enabling efficient handling
of large sparse matrices without excessive memory swap-
ping or I/O bottlenecks that would otherwise compromise
computational efficiency. For processing extensive datasets,
we allocated 64 GB of memory, while smaller datasets with
reduced dimensionality or sparsity were processed with a
16 GB memory allocation, which optimized resource uti-
lization while maintaining computational throughput. All
computational tasks were orchestrated through an internal
SLURM-based compute cluster configured for dynamic re-
source allocation based on job priority and current system
load (Yoo et al., 2003). This orchestration allowed paral-
lel execution of scTRAM’s component algorithms—such as
graph construction, diffusion map computation, and metric
evaluation—across multiple CPU cores. The specialized in-
frastructure facilitated efficient parallel execution of bench-
marking experiments across multiple dataset configurations,
metric combinations, and representation models without in-
troducing computational constraints that might have biased
our comparative analyses. The computational resources
described herein proved sufficient for all experimental eval-
uations reported in this work; no additional computational
infrastructure was necessary for reproducing the presented
results or extending the analysis to datasets of comparable
scale and complexity.
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D. Supplementary Methods
D.1. Trajectory Decomposition Algorithms

D.1.1. ALTERNATIVE 1

The trajectory decomposition algorithm partitioned the ref-
erence lineage graph Gref into interpretable subgraphs cap-
turing critical developmental transitions through a multi-
stage procedure. First, all branch points—nodes with out-
degree ≥ 2—were identified; for each such node v, the
maximal subtree rooted at v was extracted by computing
its descendant set D(v) and forming the induced subgraph
Gref[D(v) ∪ {v}]. To qualify for inclusion, subtrees were
required to contain at least τ nodes (default τ = 3) and
exhibit a single root node, ensuring structural coherence as
a connected trajectory segment. Concurrently, linear paths
emanating from each branch point successor were traced
iteratively: starting at each immediate child u of v, nodes
were appended sequentially until encountering a node with
out-degree ̸= 1 or a leaf, forming a path P = (v, u, . . . , w).
Paths shorter than τ nodes were discarded; others were
retained as candidate segments. To capture the dominant
developmental axis, the longest path in Gref was computed
via dynamic programming on the directed acyclic graph,
with ties broken arbitrarily. This path, representing the max-
imal linear progression through the lineage hierarchy, was
included provided its length met the τ threshold. Finally, to
handle root nodes not associated with branch points, the al-
gorithm extracted subtrees originating from each root r with
in-degree 0, again requiring size ≥ τ and single-rootedness.
All surviving subgraphs were assigned unique identifiers
through appending incremental indices to their trajectory
metadata. The union of these procedures yielded a com-
prehensive set of trajectory segments spanning bifurcating
subtrees, linear differentiation paths, and the principal lin-
eage backbone, enabling multi-scale fidelity assessment
across Gref’s topological hierarchy.

D.1.2. ALTERNATIVE 2 (ADOPTED IN THIS STUDY)

The trajectory decomposition algorithm was designed to par-
tition a directed acyclic graph (DAG) G = (V, E) with ex-
actly one root node into a collection of connected subgraphs
that collectively preserved hierarchical, linear, and branch-
ing trajectory structures while satisfying a minimum size
constraint kmin. The algorithm proceeded through four com-
plementary decomposition strategies applied sequentially to
G, each generating candidate subgraphs that were validated
against structural criteria before inclusion. First, hierarchi-
cal functional modules were identified by iterating over all
branch points (nodes with out-degree ≥ 2) and the root;
for each such node v, the induced subgraph over v and its
descendants was extracted, ensuring coverage of all down-
stream trajectories originating from key bifurcation events.
Second, the longest path Pmax in G was computed via dy-
namic programming, then decomposed into all contiguous

subsequences of length ≥ kmin, including overlapping win-
dows to capture local linear progression patterns. Third,
branch-to-leaf trajectories were enumerated by identifying
all leaf nodes (out-degree 0) and extracting the shortest path
from the root to each leaf, followed by analogous windowed
decomposition to handle polytomous branching. Fourth,
stage-wise decomposition was performed by tracing linear
chains from each branch point’s immediate successors un-
til subsequent bifurcations, prepending the branch point to
each chain to anchor substructures at biologically meaning-
ful decision points. Candidate subgraphs were retained only
if they satisfied three validity conditions: (i) the subgraph
contained at least kmin nodes; (ii) it was weakly connected;
(iii) it possessed exactly one root node (in-degree 0 within
the subgraph). Overlapping regions between adjacent sub-
graphs were intentionally preserved to ensure redundant
coverage of transition zones between trajectory segments.
The union of valid subgraphs from all four strategies formed
the final decomposition, with each subgraph annotated to
record its constituent nodes and edges. This multi-resolution
approach guaranteed that both global hierarchy (via descen-
dant modules and longest paths) and local transitions (via
branch-anchored chains and leaf-oriented paths) were rep-
resented, enabling granular performance analysis across all
scales of G’s topology.
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D.2. Descriptions for scIB Metrics

– Bio-conservation
– Cell Type Average Silhouette Width
– Local Inverse Simpson’s Index (cLISI)
– Normalized Mutual Information
– Adjusted Rand Index
– Isolated Label F1 Score

– Batch Correction
– Graph Connectivity
– Batch Average Silhouette Width
– k-nearest-neighbor Batch Effect Test
– Principal Component Regression
– Local Inverse Simpson’s Index (iLISI)

– Other
– Aggregate Scores
– Average Silhouette Width
– Mutual Information
– Rand Index

D.2.1. AVERAGE SILHOUETTE WIDTH

The average silhouette width (ASW) (Rousseeuw, 1987b)
quantified how cohesively cells clustered by transcriptional
profile while remaining separable from neighboring clusters,
addressing whether biological identity was preserved after
integration. For each cell xn, the silhouette coefficient
s(xn) was computed as s(xn) = dinter(xn)−dintra(xn)

max (dintra(xn),dinter(xn))

where dintra(xn) represented the mean Euclidean distance
to other cells in the same cluster, and dinter(xn) denoted the
minimum mean distance to cells in any other cluster. The
global ASW was obtained by averaging s(xn) over all NC

cells: ASW = 1
NC

∑NC

n=1 s(xn). Scores spanned [−1, 1],
with 1 indicating perfect cluster separation, 0 ambiguous
boundaries, and -1 severe misclassification; computational
complexity scaled as O(N2

C) due to pairwise distance cal-
culations. The metric provided an intuitive geometric as-
sessment of cluster fidelity and batch mixing (Rousseeuw,
1987a), but its sensitivity to outlier cells and quadratic run-
time limited utility in ultra-large datasets.

D.2.2. CELL TYPE AVERAGE SILHOUETTE WIDTH

The cell type average silhouette width (cellty-
peASW) (Luecken et al., 2022) quantifies how well
a low-dimensional embedding preserves discrete cell type
annotations by measuring clustering fidelity. For each cell
i, the silhouette coefficient s(i) ∈ [−1, 1] is computed
as (b(i) − a(i))/max{a(i), b(i)}, where a(i) denotes the
mean intra-cluster distance to other cells in i’s type, and
b(i) the mean distance to cells in the nearest neighboring
cluster. The metric aggregates these values across all cells
and applies an affine transformation to rescale the mean
silhouette width into [0, 1]: celltypeASW = (ASWc+1)/2,

where ASWc is the mean silhouette coefficient over cell
type labels. Values near 1 indicate compact, well-separated
cell type clusters; values near 0 suggest overlapping or
poorly resolved types. The computation scales quadratically
with cell count n due to pairwise distance calculations. A
principal strength lies in its interpretability as a normalized
measure of cluster cohesion and separation; however, the
metric assumes cell types form convex, isolated groups and
may underestimate biological continuity or hierarchical
differentiation.

D.2.3. BATCH AVERAGE SILHOUETTE WIDTH

The batch average silhouette width (Batch ASW) quan-
tifies the degree to which batch effects persist in an in-
tegrated dataset, answering whether technical variations
across batches have been sufficiently mitigated to prevent
obscuring biological signal. The metric leverages the silhou-
ette coefficient, which measures the compactness of each
batch’s embedding relative to other batches; specifically, for
each cell xn with batch label j, the silhouette coefficient
sbatch(xn) compares the average distance to cells in the same
batch against those in the nearest other batch. To compute
Batch ASW, a normalized score is derived per batch label
j as batchASWj = 1

|Cj |
∑

xn∈Cj
(1 − sbatch(xn)), where

Cj denotes cells in batch j, followed by averaging across
all batches: batchASW = 1

|B|
∑

j∈B batchASWj (Luecken
et al., 2022). The score ranges between 0 and 1, with lower
values indicating better batch mixing; a score near 0 implies
minimal batch effect, while higher values reflect persistent
technical variation (Haghverdi et al., 2018). The compu-
tational complexity is dominated by the pairwise distance
calculations for silhouette coefficients, requiring O(n2) op-
erations for n cells. A principal strength lies in its inter-
pretability, combining intra-batch cohesion and inter-batch
separation into a single metric; however, its reliance on pre-
defined batch labels and sensitivity to cluster granularity
can conflate biological heterogeneity with technical arti-
facts. Additionally, the quadratic scaling limits applicability
to very large datasets.

D.2.4. ISOLATED LABEL F1 SCORE

The Isolated Label F1 Score evaluates how effectively an
integration method preserves the identity of rare cell types
across batches, addressing whether biologically distinct but
infrequent cell populations remain separable after integra-
tion. Precision quantifies the fraction of correctly iden-
tified cells within a predicted cluster relative to all cells
assigned to it, defined as Precision = TP/(TP + FP),
while recall measures the proportion of true positives cap-
tured among all actual members of a cell type, given by
Recall = TP/(TP+FN). The F1 score harmonizes these as
2 × (Precision × Recall)/(Precision + Recall), providing
a balanced measure of clustering accuracy. For isolated
labels—cell identities present in few batches—the score
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computes class-wise F1 by optimizing cluster assignments
to maximize per-label accuracy, thereby assessing preser-
vation of rare cell types in imbalanced single-cell datasets
(Sokolova & Lapalme, 2009; Luecken et al., 2022). While
the canonical scIB implementation derives F1 via cluster
labels, our analysis instead computed the isolated label av-
erage silhouette width (ASW) from the scib-metrics
package (Gayoso, 2025), which evaluates separation qual-
ity analogously but with lower computational complexity.
Scores range from 0 to 1, where higher values indicate better
retention of rare cell identities; the complexity for ASW-
based computation scales linearly with the number of cells
and labels, O(nt). A principal strength lies in handling
class imbalance inherent to single-cell genomics, directly
targeting integration efficacy for rare populations. However,
performance depends critically on the accuracy of prior an-
notations, and the substitution of ASW for cluster-based
F1, though faster, conflates separation quality with cluster
purity.

D.2.5. MUTUAL INFORMATION

Mutual information (MI) quantified the reduction in uncer-
tainty about the inferred trajectory given knowledge of the
reference trajectory, thereby measuring their shared infor-
mation (Duncan, 1970; Kraskov et al., 2004). Formally, for
random variables z+n (inferred trajectory components) and
z−n (reference trajectory components), MI was computed as:

I(z+n , z
−
n ) =

∑
i,j

p(z+n = i, z−n = j)

× log

(
p(z+n = i, z−n = j)

p(z+n = i) p(z−n = j)

)
.

(1)

where p(z+n , z
−
n ) denotes their joint probability distribution,

and p(z+n ), p(z
−
n ) their marginals. MI is non-negative and

symmetric; a value of 0 indicates statistical independence be-
tween trajectories, while higher values reflect increasing de-
pendency. Estimation employed k-nearest-neighbor entropy
approximation (Kraskov et al., 2004), with computational
complexity dominated by pairwise distance calculations
(O(n2) for n cells). A key advantage lies in MI’s sensi-
tivity to non-linear associations beyond linear correlation
metrics; however, accurate estimation requires careful hy-
perparameter selection for neighborhood size and becomes
unreliable in high-dimensional spaces due to the curse of
dimensionality.

D.2.6. NORMALIZED MUTUAL INFORMATION

Normalized mutual information (NMI) quantified the preser-
vation of cell-type label information after data integration,
addressing whether inferred cell clusters correspond to
known biological types. The metric was computed as the
mutual information (MI) between the cluster assignments
before (z+n ) and after (z−n ) integration, normalized by the

geometric mean of their entropies to mitigate biases from
dataset size and cluster entropy variability:

NMI(z+n , z
−
n ) =

I(z+n , z
−
n )√

H(z+n )H(z−n )
(2)

where H(z+n ) and H(z−n ) denote the Shannon entropies of
each clustering. NMI ranges from 0 (independent clus-
terings) to 1 (perfect correspondence), with higher values
indicating greater biological consistency; this bounded scale
enabled direct comparisons across integration methods and
datasets. The metric provided an intuitive assessment of
label preservation but exhibited diminishing sensitivity as
clusterings approached perfection, struggling to distinguish
nearly optimal from ideal solutions (Vinh et al., 2010).
While NMI’s normalization addressed critical scaling con-
cerns inherent to raw MI, its reliance on predefined cell-
type labels limited applicability to fully annotated datasets
(Luecken et al., 2022).

D.2.7. RAND INDEX

The Rand index (RI) quantified the agreement between the
inferred cell-type clustering and a ground-truth reference
partitioning, answering whether pairs of cells preserved
their co-clustering relationships across both partitions. Its
computation formalized clustering similarity through pair-
wise comparisons: true positives (TP) counted cell pairs
co-clustered in both partitions; true negatives (TN) counted
pairs separated in both; false positives (FP) and false nega-
tives (FN) accounted for discrepancies. RI was computed as
the ratio of concordant pairs to all possible pairs, expressed
as RI = (TP+TN)/

(
N
2

)
, where N denoted the total number

of cells. RI spanned [0, 1], with higher values indicating
stronger clustering concordance; however, its naı̈ve calcula-
tion incurred O(N2) complexity due to exhaustive pairwise
comparisons. While RI provided an intuitive assessment
of global clustering fidelity, its interpretation required cau-
tion in unbalanced cluster distributions, as it exhibited bias
toward larger clusters and lacked adjustment for chance
agreement. Its principal strength lay in invariance to label
permutations and cluster numbering; conversely, its sensitiv-
ity to granularity mismatches and quadratic scaling limited
utility in large-scale single-cell atlases.

D.2.8. ADJUSTED RAND INDEX

The Adjusted Rand Index (ARI) quantified the statistical sig-
nificance of cluster label agreement between two partitions,
adjusting for chance overlap; it addressed the biological
question of whether cell type clusters inferred from inte-
grated data matched ground-truth annotations better than
random expectation. The ARI was computed by first enu-
merating all pairs of cells and categorizing them into four
groups: pairs clustered together in both partitions (a), only
the first (b), only the second (c), or neither (d). Letting nij

denote the count of cells shared between cluster i in the
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inferred partition and cluster j in the reference, the index
was expressed as:

ARI =

∑
ij

(
nij

2

)
−

[∑
i (

ai
2 )

∑
j (

bj
2 )

]
(n2)

1
2

[∑
i

(
ai

2

)
+
∑

j

(
bj
2

)]
−

[∑
i (

ai
2 )

∑
j (

bj
2 )

]
(n2)

(3)

where ai and bj represented cluster sizes in each partition,
and

(
n
2

)
computed the total cell pairs. This formulation

normalized the Rand Index (RI) by its expected value under
hypergeometric distribution assumptions (Hubert & Arabie,
1985; Luecken et al., 2022). The ARI ranged from −1 to 1,
where 1 indicated perfect concordance, 0 matched random
expectation, and negative values implied anti-correlation;
computational complexity scaled as O(n2) due to pairwise
comparisons. A principal strength lay in its correction for
chance agreement, making it robust for comparing parti-
tions with imbalanced cluster sizes; however, interpretation
required caution when ground-truth labels were incomplete
or ambiguous, as the metric assumed label noise to be neg-
ligible and penalized all deviations equally regardless of
biological plausibility.

D.2.9. K-NEAREST NEIGHBOR BATCH EFFECT TEST

The k-nearest neighbor batch effect test (kBET) evaluates
whether batch labels are homogenously distributed across
local neighborhoods in a high-dimensional embedding,
thereby quantifying the presence of residual batch effects
after integration. To compute kBET (Büttner et al., 2018;
Luecken et al., 2022), a k-nearest-neighbor (kNN) graph
is constructed in a principal component analysis (PCA)-
reduced space using Euclidean distances. For each cell n,
the algorithm identifies its k nearest neighbors and computes
the observed batch proportion vector pn ∈ R|B|, where |B|
is the number of batches. Under the null hypothesis of batch
homogeneity, the expected proportion qj for batch j equals
its global prevalence. A chi-square test compares pn to q
via the statistic

χ2
n =

|B|∑
j=1

(pjn − qj)
2

qj
,

yielding a p-value pn per cell. The final kBET score aggre-
gates the fraction of cells where pn exceeds a significance
threshold α (typically 0.05):

kBET =
1

N

N∑
n=1

I(pn < α).

Scores range from 0 to 1, where 0 indicates perfect batch
mixing (all p-values ≥ α) and 1 signifies severe batch ef-
fects (all p-values < α). Computational complexity is dom-
inated by kNN graph construction, which is O(N2) in the

worst case but O(N logN) with approximate methods. A
key strength is kBET’s statistical rigor, as it formally tests
the null hypothesis of batch independence while account-
ing for dataset-wide batch proportions. However, perfor-
mance depends on the choice of k, which must balance
locality preservation and statistical power; small k increases
variance, while large k dilutes local signal. Additionally,
sparse batches may violate chi-square assumptions, necessi-
tating permutation tests. The implementation is available at
github.com/theislab/kBET.

D.2.10. GRAPH CONNECTIVITY

The graph connectivity metric evaluates whether cells shar-
ing a biological identity form a coherently connected neigh-
borhood in the k-nearest neighbor (kNN) graph constructed
from the integrated data. For each cell identity class c ∈ C,
a subset kNN graph G(Nc, Ec) was constructed using only
cells annotated with c. The score was computed as the
mean ratio of the largest connected component (LCC) size
to the total number of nodes in each class-specific sub-
graph (Luecken et al., 2022), formally expressed as:

Graph Connectivity =
1

|C|
∑
c∈C

|LCC(G(Nc, Ec))|
|Nc|

, (4)

where |LCC(G(Nc, Ec))| denotes the node count of the
largest connected component for class c and |Nc| is the total
number of cells with identity c. The metric ranges from 0 to
1, where 1 indicates perfect intra-class connectivity (all cells
of the same type form a single connected component) and
0 signifies complete fragmentation; values closer to 1 are
desirable. Computational complexity is dominated by kNN
graph construction, which scales as O(N2) in the number
of cells N , rendering the metric costly for large datasets. A
principal strength of this metric is its direct assessment of
topological integrity for cell-type neighborhoods, critical
for graph-based downstream analyses such as clustering
or trajectory inference. However, its reliance on pairwise
distances for kNN graph construction introduces scalability
limitations, particularly when applied to datasets with N >
105 cells.

D.2.11. PRINCIPAL COMPONENT REGRESSION

The principal component regression (PCR) score assessed
the extent to which batch effects explain variance in the
integrated data, addressing whether technical variability
persists across principal components. The metric decom-
poses the total variance attributable to batch effects by com-
puting, for each principal component (PC), the product of
its explained variance and the coefficient of determination
(R2) from a linear regression of the batch variable onto
that PC (Luecken et al., 2022). Formally, given a data ma-
trix C and batch variable B, the batch-associated variance
Var(C|B) is defined as

∑G
g=1 Var(C|PCg)×R2(PCg | B),

where Var(C|PCg) is the variance explained by the g-th PC

27

https://github.com/theislab/kBET


Beyond Visual Inspection: Principled Benchmarking of Single-Cell Trajectory Representations with scTRAM

and R2(PCg | B) quantifies the linear dependence between
the PC and B. PCR values range between 0 and 1, with
higher scores indicating greater residual batch effects; opti-
mal integration minimizes this score. Computational com-
plexity is dominated by eigendecomposition during PCA,
scaling as O(min(N, e)3) for N cells and e features, fol-
lowed by O(GN) operations for G linear regressions. A
key strength lies in its interpretability as a weighted variance
decomposition, enabling direct comparison of batch effects
across integration methods. However, PCR assumes linear
relationships between batch variables and latent spaces, lim-
iting its sensitivity to non-linear batch effects that manifest
in higher-order interactions or manifold structures.

D.2.12. LOCAL INVERSE SIMPSON’S INDEX
(CLISI/ILISI)

The cell-type Local Inverse Simpson’s Index (cLISI) eval-
uates whether distinct biological identities are preserved
as separable neighborhoods in integrated data, answering
if local cell-type homogeneity is maintained; the integra-
tion Local Inverse Simpson’s Index (iLISI) quantifies the
mixing of batches within local neighborhoods, assessing
if technical confounders are mitigated. For each cell, a
k-nearest-neighbor (kNN) graph was constructed, and the
inverse Simpson’s index was computed over the categorical
distribution (cell types for cLISI, batches for iLISI) within
each neighborhood. Let NC and NB denote the number of
cell types and batches, respectively. For cLISI, the diversity

score DcLISI =
(∑NC

n=1 p
2
n

)−1

was computed, where pn

is the proportion of the n-th cell type; analogously, iLISI

used DiLISI =
(∑NB

b=1 q
2
b

)−1

, where qb is the proportion
of the b-th batch. Scores were rescaled from the raw range
[1, N ] (where N is NC for cLISI and NB for iLISI) to [0, 1]
via affine transformation, with 0 indicating minimal sep-
aration (cLISI) or mixing (iLISI) and 1 denoting optimal
preservation or integration. Computationally, both metrics
incur O(Nk) complexity for neighborhood retrieval and
diversity calculation across N cells, assuming k neighbors
per cell. High cLISI scores (near 1) reflect neighborhoods
dominated by a single cell type, confirming bio conserva-
tion; high iLISI scores (near 1) indicate neighborhoods with
balanced batch representation, signifying technical integra-
tion. The inverse scaling between cLISI and iLISI neces-
sitates joint optimization to balance biological fidelity and
batch correction. A principal strength lies in their unified
graph-based framework, enabling direct comparison across
integration methods (Korsunsky et al., 2019a; Luecken et al.,
2022); however, performance is sensitive to the choice of k,
assumes local neighborhoods are representative of global
structure, and may conflate biological and technical varia-
tion when batches are confounded with cell types.

D.2.13. AGGREGATE SCORES

The scIB framework synthesizes the individual quality met-
rics described above into two domain-specific subscores—
one for bio conservation and one for batch correction—and
finally into a single overall integration score. This compos-
ite view enables rapid, quantitative ranking of integration
methods without manually weighing every metric (Luecken
et al., 2022).

Step 1: Normalizing each metric to [0, 1]: Because the raw
metrics differ in scale, range, and directionality (i.e., some
metrics improve as their values increase, while others im-
prove as values decrease), each metric mk is first rescaled
to a common unit interval [0, 1] so that higher values con-
sistently indicate better performance. This rescaled version
is denoted m̃k = scale(mk), where the scaling function is
typically a min–max or quantile transformation chosen to
preserve monotonicity in performance. For example, met-
rics that naturally increase with better integration—such as
ARI, NMI, celltypeASW, or cLISI—are directly mapped
linearly to [0, 1]. Conversely, metrics that decrease with
better integration—such as batchASW, kBET, or PCR—are
first inverted (e.g., 1−mk) before applying the same nor-
malization. This ensures that all normalized metrics m̃k can
be meaningfully aggregated without introducing bias from
inconsistent scaling or directionality.

Step 2: Computing domain-specific subscores: Each nor-
malized metric is assigned to one of two categories: bio
conservation or batch correction. The set of biological met-
rics includes celltypeASW, cLISI, ARI, NMI, and isolated-
label-F1, while the batch metrics include batchASW, iL-
ISI, kBET, PCR, and graph-connectivity. Letting m̃k de-
note the normalized value of metric k, the bio-conservation
score is computed as the average of all m̃k in the bi-
ological set, and the batch correction score as the av-
erage over the batch set. Formally, this yields a bio
score of Scorebio = 1

|Kbio|
∑

k∈Kbio
m̃k and a batch score

of Scorebatch = 1
|Kbatch|

∑
k∈Kbatch

m̃k, where Kbio and
Kbatch index the relevant metric sets. Both scores range
from 0 to 1, with higher values reflecting better bio conser-
vation or more effective batch mixing, respectively.

Step 3: Deriving the overall integration score: By default,
scIB computes the overall integration score as the arith-
metic mean of the bio conservation and batch correction
subscores, i.e., Scoreoverall = (Scorebio + Scorebatch)/2,
which yields a value between 0 and 1. A value near 1
indicates that the integration method has successfully pre-
served biological structure while removing technical batch
effects. Conversely, a value near 0 suggests that the method
failed in at least one of these dimensions. Although equal
weighting is used by default, this balance can be adjusted in
domain-specific contexts—for example, giving more weight
to Scorebio in lineage-tracing studies, or to Scorebatch in
highly heterogeneous multi-batch datasets.
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Implementation and practical caveats: The normalization
of individual metrics within scIB requires careful consid-
eration to ensure comparability and interpretability across
diverse scales and behaviors. A common approach is min–
max scaling, which maps metric values to the unit interval
[0, 1] based on global extrema; however, this method can
be unstable if outlier methods produce extreme values that
distort the scale. To address this, quantile-based or robust
scaling transformations are often preferred, as they are less
sensitive to outliers and heavy-tailed distributions. Beyond
normalization, the method of aggregating scores also af-
fects interpretability. While direct averaging preserves the
magnitude of each normalized metric m̃k, it can be skewed
by high-variance metrics or irregular distributions. An al-
ternative is to convert each m̃k to a percentile rank before
averaging, yielding a rank-based aggregate score that is less
susceptible to extreme values and enhances robustness. A
further consideration arises from the reliance of certain bio-
logical metrics—such as ARI, NMI, and celltypeASW—on
ground-truth cell-type annotations. Incomplete, noisy, or
inconsistent labels can artificially inflate or deflate Scorebio,
thereby undermining the validity of comparisons across
integration methods. Finally, a core challenge in evaluat-
ing data integration lies in the inherent trade-off between
preserving biological structure and removing technical arti-
facts. Methods that prioritize batch removal may inadver-
tently obscure meaningful biological variation, resulting in
a high Scorebatch but a low Scorebio; conversely, conserva-
tive approaches that preserve subtle cell-state differences
may under-correct for batch effects. The overall integration
score in scIB exposes this tension explicitly, encourag-
ing users to interpret composite performance in light of
domain-specific goals and dataset characteristics. In sum-
mary, the composite scoring scheme in scIB provides an
interpretable, single-number summary while retaining the
granularity of domain-specific subscores. Users can there-
fore (i) rank competing integration pipelines quickly, (ii)
inspect whether deficiencies stem from biological distortion
or residual batch effects, and (iii) tune parameters or weights
according to study-specific priorities.

D.3. Metric Descriptions for Trajectory Evaluation

Group 1: 1. Concordance Index
2. Wasserstein Distance for Pseudotime
3. Dynamic Time Warping Distance
4. R-Squared with Spline
5. R-Squared
6. Mean Absolute Error
7. Mean Squared Error
8. Pearson Correlation
9. Spearman Correlation

10. Kendall’s τ Correlation
11. Normalized Mutual Information
12. Mutual Information (KDE)
13. CDF Cramér–von Mises
14. Kolmogorov–Smirnov Statistic
15. Geary’s C for Pseudotime
16. Moran’s I for Pseudotime

Group 2: 1. Graph Edit Distance
2. Frobenius
3. Accuracy
4. L1 Norm
5. Spectral Distance
6. Hamming Distance
7. Jaccard Similarity
8. Precision
9. Recall

10. F1 Score
11. Mantel Correlation
12. Average Shortest Path Difference
13. Laplacian Spectral EMD
14. Permutation-Marginalized SSIM
15. Clustering Coefficient Difference
16. GDV Similarity
17. Weisfeiler–Lehman Distance
18. GIN GNN Similarity
19. Maximum Common Subgraph Distance
20. Random Walk Kernel Distance
21. Persistence Diagram Distance

Group 3: 1 Branch Silhouette Score
2 Normalized Mean Curvature Score
3 Moran’s I for Embedding
4 Geary’s C for Embedding
5 Embedding Distance Correlation
6 Sammon’s Stress
7 Graph-Based Trustworthiness
8 Neighborhood Preservation Score
9 Directionality Preservation

10 Wasserstein Distance for Embedding
11 Directed Trajectory Validation Score
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D.3.1. CONCORDANCE INDEX

The Concordance Index (CI) evaluates the probability that
the inferred pseudotime ordering of cell states matches the
reference trajectory’s temporal progression (Longato et al.,
2020; Steck et al., 2007). It operates on pseudotime vectors
(pref, pinf), quantifying pairwise order agreement through
normalized counts of concordant and tied pairs. For each
admissible pair of cells with distinct reference pseudotimes,
the product of pseudotime differences in both vectors was
computed; concordant pairs (positive product) contributed
fully to the score, while ties in the inferred pseudotime
contributed partially. The CI equals the ratio of such contri-
butions to all admissible pairs, equivalent to the area under
the ROC curve for pairwise comparisons. Scores range from
0 (perfect discordance) to 1 (perfect concordance), with 0.5
indicating random agreement; higher values denote better
preservation of the reference ordering. The computation re-
quires O(n2) time due to pairwise comparisons, which may
be prohibitive for large n. A principal strength is its non-
parametric nature and global assessment of ordering fidelity;
however, exclusion of tied reference pairs and sensitivity to
inferred ties may limit interpretability when pseudotimes
are insufficiently resolved.

D.3.2. WASSERSTEIN DISTANCE FOR PSEUDOTIME

The Wasserstein distance quantifies the minimal transport
cost required to align the inferred pseudotime distribution
with the reference distribution, addressing whether the in-
ferred temporal progression preserves the global statistical
properties—such as central tendency and dispersion—of
cellular developmental timing (Panaretos & Zemel, 2019;
Piccoli & Rossi, 2016). The metric operates on pseu-
dotime vectors (pref, pinf), computed as the first Wasser-
stein distance between their empirical distributions: W1 =∫∞
−∞ |Fref(t) − Finf(t)| dt, where Fref and Finf are cumula-

tive distribution functions. This measures the minimal work
needed to morph one distribution into the other, integrat-
ing over all quantile mismatches. Scores are non-negative,
with 0 indicating identical distributions and higher values
reflecting increasing distributional divergence; magnitude
scales with the pseudotime axis. Computational complexity
is O(n log n) due to sorting for quantile alignment. The met-
ric’s principal strength lies in its sensitivity to both location
shifts (e.g., systematic temporal delays) and dispersion dif-
ferences (e.g., compressed or expanded pseudotime scales);
however, it assumes comparable distribution supports and
may obscure local temporal inversions, as it aggregates dis-
crepancies across the entire pseudotime domain.

D.3.3. DYNAMIC TIME WARPING DISTANCE

The Dynamic Time Warping (DTW) distance quantifies
the minimum cumulative alignment cost between reference
and inferred pseudotime sequences under temporal warp-
ing, addressing whether the inferred trajectory preserves

temporal progression patterns despite local distortions in
timing or velocity (Berndt & Clifford, 1994; Zhao & Itti,
2018). The metric operates on min-max normalized pseu-
dotime vectors (pref, pinf), computed by finding the opti-
mal warping path that minimizes the sum of Euclidean
distances between aligned elements, normalized by the
path length to ensure scale invariance. Let P denote the
set of all admissible warping paths; the DTW distance is
minP∈P

1
|P |
∑

(i,j)∈P |pref,i − pinf,j |, where |P | is the path
length. Scores are non-negative, with lower values indicat-
ing better alignment; a value of 0 corresponds to identical
sequences, while higher values reflect increasing temporal
distortion. The FastDTW algorithm (Wu & Keogh, 2020)
reduces computational complexity to O(n) via a multilevel
approach with a search radius heuristic, contrasting with
the O(n2) complexity of exact DTW. The metric’s princi-
pal strength is its invariance to nonlinear temporal warping,
making it suitable for evaluating trajectories with variable
progression rates; however, sensitivity to pseudotime noise
and dependence on the radius parameter may obscure bio-
logically meaningful local variations or over-smooth subtle
temporal shifts.

D.3.4. R-SQUARED WITH SPLINE

The R-squared with Spline metric evaluates the proportion
of variance in the reference pseudotime vector explainable
by a flexible nonlinear function of the inferred pseudo-
time, addressing whether the inferred trajectory captures
systematic—potentially nonlinear—temporal relationships
between cell states. The metric operates on pseudotime
vectors (pref, pinf), first sorting both vectors by the inferred
pseudotime to enforce monotonicity, then fitting a univariate
spline of degree k to model pref as a smoothed function of
pinf (Ratner, 2017; Hastie, 2017). The coefficient of determi-
nation was computed as R2 = 1−

∑n
i=1(pref,i−p̂ref,i)

2∑n
i=1(pref,i−p̄ref)2

, where
p̂ref,i denotes spline-predicted values and p̄ref the mean refer-
ence pseudotime. Scores range (−∞, 1], with 1 indicating
perfect explainability via the spline, 0 implying no improve-
ment over the mean reference, and negative values indi-
cating worse fit; higher values reflect stronger nonlinear
correspondence. Computational complexity is O(n log n)
for sorting and O(n) for spline fitting, assuming efficient
implementations. The metric’s principal strength is its ca-
pacity to detect nonlinear monotonic associations beyond
linear correlation, leveraging spline flexibility; however,
results depend critically on the spline’s degree and smooth-
ing hyperparameters, while sorting by inferred pseudotime
assumes temporal coherence, potentially misrepresenting
trajectories with local ordering inversions or non-monotonic
relationships.

D.3.5. R-SQUARED

The R-squared coefficient quantifies the proportion of vari-
ance in the reference pseudotime vector explained by the
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inferred pseudotime progression, addressing whether tem-
poral distances between cell states in the inferred trajectory
systematically account for variations observed in the ground
truth (Ratner, 2017). The metric operates on pseudotime
vectors (pref, pinf), computed as R2 = 1−

∑n
i=1(pref,i−pinf,i)

2∑n
i=1(pref,i−p̄ref)2

,
where p̄ref is the mean reference pseudotime, representing
the ratio of unexplained variance to total variance. Scores
range from −∞ to 1, where 1 indicates perfect linear ex-
plainability, 0 implies no linear predictive power beyond
the mean reference value, and negative values denote worse
performance than a constant model; higher values reflect
stronger linear correspondence. Computational complexity
is O(n) from mean and variance calculations. The metric’s
strength lies in its interpretability as a normalized measure
of linear association strength, directly aligned with regres-
sion analysis conventions; however, it assumes linearity and
homoscedasticity, rendering it insensitive to nonlinear rela-
tionships, while negative scores complicate interpretation
in contexts where inferred trajectories are expected to be
structurally congruent with the reference.

D.3.6. MEAN ABSOLUTE ERROR

The Mean Absolute Error (MAE) measures the average
magnitude discrepancy between reference and inferred pseu-
dotime vectors, addressing whether the inferred tempo-
ral progression preserves the absolute distances of cell
states from the root relative to the ground truth (Hodson,
2022; Qi et al., 2020). The metric operates on pseudo-
time vectors (pref, pinf), first normalized to [0, 1] via min-
max scaling to ensure scale invariance, then computed as
MAE = 1

n

∑n
i=1 |pref,i − pinf,i|, representing the expected

absolute deviation across cells. Scores range in [0, 1], with
0 indicating perfect alignment of scaled pseudotimes and
higher values reflecting linearly increasing average error
magnitude; unlike squared error metrics, MAE weights
all deviations proportionally. Computational complexity is
O(n) from element-wise differences and summation. Its
principal strength lies in robustness to outliers and inter-
pretability as a scale-invariant measure of global temporal
distortion, suitable for quantifying systematic biases; how-
ever, linear error weighting may underestimate the impact of
localized severe inaccuracies, while normalization precludes
assessment of absolute pseudotime scaling fidelity.

D.3.7. MEAN SQUARED ERROR

The Mean Squared Error (MSE) quantifies the average
squared deviation between reference and inferred pseudo-
time vectors, evaluating how accurately the inferred tem-
poral progression preserves the absolute magnitude dif-
ferences of cell states relative to the reference trajectory
(Hodson, 2022). The metric operates on pseudotime vec-
tors (pref, pinf), first normalized to [0, 1] via min-max scal-
ing to ensure scale invariance, then computed as MSE =
1
n

∑n
i=1(pref,i − pinf,i)

2, representing the expected squared

error over all cells. Scores are non-negative, with 0 indi-
cating perfect alignment in scaled pseudotimes and higher
values reflecting increasing average error magnitude; the
squaring penalizes large deviations disproportionately. Com-
putational complexity is O(n) from element-wise opera-
tions and summation. Its principal strength lies in providing
an interpretable, scale-invariant measure of global temporal
distortion magnitude, sensitive to both systematic biases
and localized inaccuracies; however, sensitivity to outliers
and quadratic error weighting may overemphasize rare but
severe discrepancies, while normalization precludes direct
interpretation of absolute pseudotime differences.

D.3.8. PEARSON CORRELATION

The Pearson correlation coefficient quantifies the degree of
linear correspondence between reference and inferred pseu-
dotime orderings, addressing whether progression along the
inferred trajectory preserves relative temporal distances be-
tween cell states proportionally (Essam et al., 2022; van den
Heuvel & Zhan, 2022). It operates on pseudotime vectors
(pref, pinf), computed as the covariance of the paired vec-
tors normalized by the product of their standard deviations:
ρ = Cov(pref,pinf)

σprefσpinf
. This measures linear association through

the ratio of their joint variability to individual variabilities,
with perfect linearity yielding |ρ| = 1 and complete inde-
pendence yielding ρ = 0. Scores range in [−1, 1], where
1 indicates identical linear ordering, -1 denotes perfect in-
verse correlation, and magnitudes reflect effect sizes; values
near 0 suggest negligible linear relationship, though nonlin-
ear associations may persist. Computational complexity is
O(n) from means, variances, and covariance calculations.
Its principal strength lies in interpretability as a normalized
measure of proportional temporal agreement, sensitive to
both ranking and scale alignment; however, sensitivity to
outliers and restriction to linear relationships limit utility
when pseudotime distortions involve nonlinear monotonic
transformations or localized perturbations.

D.3.9. SPEARMAN CORRELATION

The Spearman rank correlation coefficient assesses whether
the inferred pseudotime progression preserves the mono-
tonic ordering of cell states relative to the reference tra-
jectory, answering whether temporal relationships between
cells are consistently ranked irrespective of absolute tem-
poral distances (Essam et al., 2022; van den Heuvel &
Zhan, 2022). The metric operates on pseudotime vectors
(pref, pinf), computed by replacing each pseudotime value
with its rank within the respective vector and then calculat-
ing the Pearson correlation between the rank-transformed
vectors: ρs = Cov(R(pref),R(pinf))

σR(pref)
σR(pinf)

, where R(·) denotes rank
assignment. This non-parametric approach measures the
strength and direction of monotonic associations, invariant
to nonlinear scaling. Scores range in [−1, 1], with 1 indicat-
ing perfect rank agreement, -1 denoting perfect inversion,
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and 0 implying no monotonic relationship; values near ex-
tremes suggest robust preservation or reversal of temporal
hierarchy. Computational complexity is O(n log n) due to
ranking, dominated by sorting operations. The metric’s
principal strength lies in robustness to non-Gaussian noise
and outliers, capturing nonlinear but order-preserving pseu-
dotime distortions; however, it discards information about
relative pseudotime magnitudes between cells and may mis-
represent trajectories with frequent tied ranks, as tied values
are averaged during ranking, potentially diluting sensitivity
to local order perturbations.

D.3.10. KENDALL’S TAU CORRELATION

Kendall’s tau correlation coefficient evaluates the agreement
in pairwise ordering between reference and inferred pseu-
dotime vectors, addressing whether the inferred trajectory
preserves the relative temporal hierarchy of cell states as
defined by their concordant or discordant progression orders
(Essam et al., 2022; van den Heuvel & Zhan, 2022). The
metric operates on pseudotime vectors (pref, pinf), computed
as the normalized difference between the number of concor-
dant and discordant cell pairs: τ = C−D√

(C+D+Tref)(C+D+Tinf)
,

where C and D denote concordant (same order in both vec-
tors) and discordant (opposite order) pairs, while Tref and
Tinf account for ties in each vector. This non-parametric mea-
sure quantifies the probability that the inferred pseudotime
ordering aligns with the reference, invariant to monotonic
transformations. Scores range in [−1, 1], with 1 indicat-
ing perfect ordinal agreement, -1 complete inversion, and
0 statistical independence; magnitudes reflect the strength
of association, where |τ | > 0.5 suggests strong concor-
dance. Computational complexity is O(n2) due to pairwise
comparisons, limiting scalability for large n. Its principal
strength lies in robustness to non-linearities and distribu-
tional assumptions, providing a distribution-free assessment
of rank correspondence; however, sensitivity diminishes in
the presence of frequent tied ranks, common in discretized
or coarsely resolved pseudotime estimates, and computa-
tional cost becomes prohibitive for datasets exceeding 104

cells.

D.3.11. NORMALIZED MUTUAL INFORMATION

The Normalized Mutual Information (NMI) quantifies the
statistical dependence between reference and inferred pseu-
dotime distributions, addressing whether the inferred tra-
jectory captures non-linear and non-monotonic patterns in
cellular progression timing beyond rank or linear correla-
tions (Kvålseth, 2017; Belghazi et al., 2018; Duncan, 1970;
Kraskov et al., 2004; Vinh et al., 2010). The metric oper-
ates on z-score normalized pseudotime vectors (pref, pinf),
computed by adaptively discretizing both vectors into bins
determined by the Freedman-Diaconis rule—optimizing for
data spread while handling zero-variance cases (Freedman
& Diaconis, 1981)—then calculating the mutual information

between discretized distributions normalized by their aver-
age entropy: NMI = I(pref;pinf)

(H(pref)+H(pinf))/2
, where I denotes

mutual information and H entropy. Scores range in [0, 1],
with 1 indicating perfect dependency (including inverted or
nonlinearly transformed orderings) and 0 statistical indepen-
dence; intermediate values reflect the strength of distribu-
tional alignment. Computational complexity is O(n log n)
from sorting and adaptive binning. The metric’s principal
strength lies in invariance to monotonic transformations
and sensitivity to arbitrary distributional correspondences;
however, dependence on discretization granularity and in-
sensitivity to directional relationships limit its utility for
assessing temporal coherence, as identical scores may arise
from progression-preserving versus scrambled orderings
with equivalent dependency strength.

D.3.12. MUTUAL INFORMATION KDE

The Mutual Information (MI) KDE metric quantifies the
statistical dependence between reference and inferred pseu-
dotime vectors, addressing whether cellular progression
timing in the inferred trajectory preserves non-linear, non-
monotonic associations with the ground-truth temporal or-
dering. The metric operates on z-score standardized pseudo-
time vectors (pref, pinf), computing their mutual information
via kernel density estimation (KDE) with covariance regu-
larization and data whitening (Weglarczyk, 2018; Zandieh
et al., 2023; Tong et al., 2025). After standardization, joint
and marginal probability densities were estimated using
Gaussian KDEs with bandwidths optimized via the Scott
rule (Scott, 1979), stabilized through Cholesky decompo-
sition of the regularized covariance matrix and whitening
to prevent numerical instability. The MI was calculated as
MI(pref, pinf) = E[log(pXY (x, y)/(pX(x)pY (y))], where
pXY and pX , pY denote joint and marginal densities esti-
mated from whitened data, adjusted by the Jacobian deter-
minant of the whitening transform (Duncan, 1970; Liao &
He, 2021; Kraskov et al., 2004). The score ranges from 0
(statistical independence) to ∞, with higher values indicat-
ing stronger dependence; interpretation relies on relative
comparisons due to the unbounded range. Computational
complexity is O(n2) from pairwise KDE evaluations, limit-
ing scalability to very large datasets. A principal strength
lies in non-parametric capture of arbitrary dependencies,
including non-linear and non-functional associations unde-
tectable by correlation-based metrics; however, estimator
bias increases for small sample sizes (n < 100), and re-
sults depend on bandwidth selection, requiring standardized
inputs to ensure comparability across systems.

D.3.13. CDF CRAMÉR-VON MISES

The Cramér-von Mises (CvM) statistic evaluates whether
the inferred pseudotime distribution globally aligns with
the reference, answering whether cellular progression tim-
ing is captured without systematic bias across the entire
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trajectory. It operates on normalized pseudotime vectors
(pref, pinf), first min-max scaling each to [0, 1] to mitigate
scale discrepancies, then computing the integrated squared
difference between their empirical cumulative distribution
functions (ECDFs) via the two-sample Cramér-von Mises
test (Genest et al., 2006; 2007). Let Fref and Finf denote the
ECDFs; the CvM statistic aggregates (Finf(x)− Fref(x))

2

over all observed x, weighted by the pooled sample distri-
bution. The result is a non-negative score where 0 indicates
identical ECDFs and higher values reflect increasing diver-
gence; its magnitude depends on both distributional shape
and spread. Computational complexity is O(n log n) due
to ECDF sorting, where n is the number of cells. A princi-
pal strength is its non-parametric, holistic sensitivity to any
deviation in cumulative distribution, making it robust to non-
monotonic or nonlinear temporal distortions; however, the
statistic conflates biologically meaningful temporal shifts
with stochastic noise and requires sufficient cell counts to
reliably estimate ECDFs, potentially overpenalizing minor
discrepancies in small datasets.

D.3.14. KOLMOGOROV-SMIRNOV STATISTIC

The Kolmogorov-Smirnov (KS) statistic evaluates the maxi-
mum discrepancy between the empirical cumulative distribu-
tion functions (CDFs) of reference and inferred pseudotime
vectors, addressing whether the inferred trajectory reca-
pitulates the global temporal distribution of cell states in
Gref (Lopes et al., 2007; Steinskog et al., 2007; Drezner
et al., 2010; Razali et al., 2011). The metric operates
on min-max normalized pseudotime vectors (pref, pinf) ∈
[0, 1]n × [0, 1]n, where normalization ensures scale invari-
ance. The KS statistic was computed as the supremum
of absolute differences between the CDFs of pref and pinf:
D = supx∈[0,1] |Fref(x)− Finf(x)|, where Fref and Finf de-
note the empirical CDFs. The score ranges in [0, 1], with
0 indicating identical CDFs and higher values reflecting
increasing divergence; values approaching 1 signify max-
imal distributional mismatch. Computational complexity
is O(n log n) due to sorting operations for CDF estimation.
A principal strength is the metric’s non-parametric nature,
requiring no assumptions about distributional form while be-
ing sensitive to point-wise differences; however, sensitivity
is typically greatest near the median rather than distribu-
tion tails, and small sample sizes may reduce reliability, as
finite-sample CDF estimates become less precise.

D.3.15. GEARY’S C FOR PSEUDOTIME

Geary’s C statistic evaluates whether cells proximal in the
reference trajectory graph exhibit coherent pseudotimes
in the inferred trajectory, addressing whether local tem-
poral coherence is preserved relative to the reference topol-
ogy (Anselin, 1995; DeTomaso & Yosef, 2021; DeTomaso
et al., 2019; de Jong et al., 1984). The metric operates
on the reference adjacency matrix Aref and inferred pseu-

dotime vector pinf, first standardizing pinf to zero mean
and unit variance to isolate spatial patterns. A cell-cell
adjacency matrix was derived from Aref by propagating
inter-cell-type connections to individual cells, then nor-
malized to row-stochasticity. Geary’s C was computed as

C = (n−1)
2W

∑
i,j wij(pinf,i−pinf,j)

2∑
i(pinf,i−p̄inf)2

, where wij denotes adja-
cency weights, W their global sum, and p̄inf the mean pseu-
dotime. Scores range [0, 2], where values below 1 indicate
positive spatial autocorrelation (neighboring cells have simi-
lar pseudotimes), 1 implies randomness, and values above 1
suggest negative autocorrelation (neighbors diverge). Com-
putational complexity is dominated by sparse matrix opera-
tions, scaling linearly with the number of non-zero edges in
Aref. A principal strength is sensitivity to local pseudotime
discrepancies, capturing fragmented or inverted progression
along reference branches; however, dependence on the spa-
tial weights matrix necessitates careful normalization, and
the statistic conflates topological inaccuracies with pseudo-
time noise, potentially overpenalizing biologically plausible
temporal heterogeneity within connected regions.

D.3.16. MORAN’S I FOR PSEUDOTIME

The Moran’s I metric evaluates whether cells adjacent in
the reference trajectory exhibit spatial autocorrelation in
their inferred pseudotime, testing if locally connected cell
states share similar progression timing (de Jong et al., 1984;
Tiefelsdorf & Boots, 1995; Van den Berge et al., 2020).
The score operates on the reference cell-type adjacency
matrix Aref and inferred pseudotime vector pinf, first ex-
panding Aref into a cell-cell adjacency matrix by connecting
cells sharing adjacent types, then computing Moran’s I as
I = n

W ·
∑

i,j wij(pinf,i−p̄inf)(pinf,j−p̄inf)∑
i(pinf,i−p̄inf)2

, where n is the cell
count, wij are adjacency-derived weights, W their global
sum, and p̄inf the mean pseudotime. The statistic ranges
[−1, 1], with I ≈ 1 indicating strong positive autocorre-
lation (adjacent cells share similar pseudotimes), I ≈ −1
dispersion, and I ≈ 0 spatial randomness; higher values
denote better coherence with the reference topology. Com-
puted in O(n) time via sparse linear algebra, the metric’s
principal strength is its direct assessment of pseudotemporal
consistency with the reference graph’s local structure. How-
ever, it disregards edge directionality and depends critically
on the reference adjacency’s construction, potentially con-
flating biological proximity with graph abstraction artifacts.

D.3.17. GRAPH EDIT DISTANCE

The Graph Edit Distance (GED) quantifies the structural
dissimilarity between the reference and inferred trajectory
graphs by computing the minimum number of edge addi-
tions or deletions required to transform one graph into the
other (Gao et al., 2010; Blumenthal et al., 2020; Abu-Aisheh
et al., 2015). The metric operates on the binary adjacency
matrices (Aref, Ainf), where Ainf is obtained by thresholding
the inferred inter-type connectivity matrix. After excluding
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self-loops, edge sets for both graphs were extracted and their
symmetric difference computed, with GED defined as the
cardinality of this set, equivalent to the total count of edges
present in exactly one graph. The resulting score is a non-
negative integer, where 0 indicates isomorphic graphs and
higher values reflect increasingly divergent topologies; com-
putational complexity is O(t2) in the number of cell types t,
due to pairwise edge comparisons. A principal strength lies
in its direct interpretation as the minimal edit cost for graph
alignment, providing an unambiguous measure of structural
fidelity; however, the metric’s quadratic scaling renders it
impractical for large t, and its sensitivity to thresholding
artifacts or minor edge discrepancies may overemphasize
topological noise in sparse graphs.

D.3.18. FROBENIUS

The Frobenius metric quantifies the global structural dis-
similarity between the reference and inferred cell-type
transition graphs, addressing whether the inferred adja-
cency matrix Winf preserves the topological connectivity
of the reference graph Aref. The metric operates on the
adjacency matrices (Aref,Winf) ∈ {0, 1}t×t × Rt×t, com-
puted as the Frobenius norm (Böttcher & Wenzel, 2008;
Peng et al., 2016) of their element-wise difference matrix:

∥Aref −Winf∥F =
√∑t

i=1

∑t
j=1(a

ref
ij − winf

ij )
2. This norm

measures the Euclidean distance between vectorized ad-
jacency matrices, providing a holistic assessment of edge
agreement across all t cell types. The metric yields a non-
negative scalar, where 0 indicates identical adjacency struc-
tures; higher values reflect increasing discrepancies in edge
presence, with upper bounds determined by the number of
discordant edges. Computational complexity is O(t2) due
to full matrix traversal, remaining tractable for typical cell-
type counts t. A principal strength lies in its sensitivity to
all structural deviations, comprehensively capturing both
spurious and missing edges; however, the metric does not
localize discrepancies or prioritize biologically critical con-
nections, treating all edge mismatches equally regardless of
their position or biological relevance in the trajectory.

D.3.19. ACCURACY

The Accuracy metric quantifies the global structural con-
gruence between the reference and inferred cell-type ad-
jacency graphs, addressing the question of how precisely
both present and absent edges are recovered in the inferred
topology (Ratner, 2017; Huffaker et al., 2010). The score
operates on the reference binary adjacency matrix Aref and
the inferred weighted adjacency matrix Winf, where the lat-
ter was binarized via a user-specified threshold τ to yield
Ainf. Accuracy was computed as the proportion of matching
elements between Aref and Ainf, equivalent to the ratio of
true positives (correctly inferred edges) and true negatives
(correctly inferred non-edges) to the total number of pos-
sible edges. Scores span [0, 1], with 1 indicating perfect

agreement between reference and inferred graphs, 0 com-
plete discordance, and intermediate values reflecting the
fraction of correctly recovered edges and non-edges; higher
scores denote superior fidelity. The computation requires
O(t2) time for t cell types, reflecting element-wise com-
parison of t × t matrices. A principal strength lies in the
metric’s conceptual simplicity and balanced consideration
of both edge presence and absence; however, performance is
sensitive to threshold selection and may be inflated in sparse
graphs where true negatives dominate, while its inability to
distinguish between false positive and false negative errors
limits granular insight into directional discrepancies in edge
inference.

D.3.20. L1 NORM

The L1 Norm quantifies the total magnitude of edge dis-
crepancies between the reference and inferred adjacency
matrices, addressing how much the inferred graph’s con-
nectivity deviates from the ground truth in terms of edge
presence and weight (Wang et al., 2011; Miller et al., 2010).
The metric operates on the pair (Aref,Winf), where Aref is
the reference adjacency matrix and Winf denotes the inferred
weighted adjacency matrix. The score was computed as the
L1 norm of the element-wise difference between the two
matrices, ∥Aref − Winf∥1 =

∑
i,j |Aref,ij − Winf,ij |, sum-

ming absolute deviations across all edges. The score is
non-negative, with 0 indicating identical adjacency matrices
and higher values reflecting cumulative discrepancies; the
computational complexity is O(t2) in the number of cell
types t due to full matrix traversal. A principal strength is
the metric’s simplicity and direct interpretability as a total
error measure, sensitive to both the number and magnitude
of edge-wise differences; however, it uniformly weights
discrepancies irrespective of topological context, potentially
obscuring the structural impact of specific edge changes and
lacking spatial localization within the graph.

D.3.21. SPECTRAL DISTANCE

The Spectral Distance assesses topological dissimilarity be-
tween the reference and inferred cell-type adjacency graphs
by comparing their spectral properties, addressing whether
the inferred graph preserves global structural characteristics
such as connectivity and expansion (Jovanović & Stanić,
2012; Konukoglu et al., 2012). The metric operates on
adjacency matrices (Aref,Winf), computing eigenvalues for
each and sorting them to account for permutation invariance;
the spectral distance was then calculated as the Euclidean
norm of the difference between these sorted eigenvalues,
d = ∥λ(Aref) − λ(Winf)∥2, where λ(·) denotes the sorted
eigenvalue spectrum. The score is non-negative, with d = 0
indicating identical spectra (isomorphic graphs under the
same basis) and higher values reflecting increasing topolog-
ical divergence; practical upper bounds depend on matrix
dimensions and edge densities. Computational complex-
ity is dominated by eigendecomposition at O(t3) for t cell
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types, making it efficient for small t but prohibitive for large
graphs. A principal strength is sensitivity to global proper-
ties like spectral gaps and connected components, which are
invariant to local perturbations; however, the metric cannot
discern local edge discrepancies and may yield identical
scores for non-isomorphic cospectral graphs, which share
eigenvalues despite differing topologies.

D.3.22. HAMMING DISTANCE

The Hamming Distance quantifies the number of edge dis-
crepancies between the inferred and reference cell-type ad-
jacency matrices, answering how topologically faithful the
inferred graph is in terms of binary edge presence (Ganagi &
Ramane, 2016; Ehounou et al., 2020). The metric operates
on the reference adjacency matrix Aref and the thresholded
inferred adjacency matrix Ainf, computed by binarizing the
inferred inter-type connectivity matrix Winf using a user-
specified threshold. The score was calculated as the element-
wise sum of mismatched entries between Aref and the bi-
narized Ainf, equivalent to the cardinality of the symmetric
difference between their edge sets:

∑
i,j |Aref,ij − Ainf,ij |.

Scores range from 0 (identical graphs) to t2 (maximally
dissimilar graphs), where t is the number of cell types;
higher values indicate greater structural divergence. The
computational complexity is O(t2) due to exhaustive pair-
wise comparison. A principal strength is its interpretability
as a direct count of edge additions or deletions required to
reconcile the graphs; however, the metric disregards edge
weights, topological context, and hierarchical importance of
specific edges, rendering it insensitive to whether discrepan-
cies occur in critical transitions or peripheral connections.
Additionally, dependence on the binarization threshold may
inflate scores if the inferred graph’s continuous connectivity
structure is inadequately discretized.

D.3.23. JACCARD SIMILARITY

The Jaccard Similarity assesses the overlap between the
edge sets of the reference and inferred cell-type graphs, an-
swering how topologically similar the inferred trajectory is
to the ground truth (Sathre et al., 2022; Besta et al., 2020).
It operates on the reference adjacency matrix Aref and the
inferred weighted adjacency matrix Winf, with the latter bi-
narized via a user-defined threshold τ to yield Ainf. The
score was computed as the ratio |Eref ∩ Einf| / |Eref ∪ Einf|,
where Eref and Einf denote the edge sets of Aref and thresh-
olded Ainf, respectively. Values range from 0 (no common
edges) to 1 (identical edge sets), with higher scores indi-
cating stronger topological agreement; the worst-case time
complexity is O(t2) for t cell types, proportional to the num-
ber of edges in practice. A principal strength is its intuitive
interpretation as the fraction of shared edges, providing a
direct measure of structural fidelity; limitations include sen-
sitivity to the threshold τ , disregard for edge weights and
directionality, and potential misestimation when edge multi-

plicities or graded connectivity inform trajectory validity.

D.3.24. PRECISION

The Precision metric evaluates the proportion of inferred
edges that are present in the reference trajectory, addressing
whether the inferred graph avoids spurious transitions not
supported by the ground truth (James et al., 2013; Sokolova
& Lapalme, 2009; Powers, 2020; Besta et al., 2020). The
score operates on the reference adjacency matrix Aref and
the inferred weighted adjacency matrix Winf, which was
thresholded at a user-specified value τ to yield a binary
adjacency matrix Ainf = I(Winf ≥ τ). Precision was com-
puted as the ratio of true positives (edges present in both
Aref and Ainf) to predicted positives (all edges in Ainf), for-
malized as precision = ∥Aref ◦ Ainf∥1 / ∥Ainf∥1, where ◦
denotes element-wise multiplication and ∥·∥1 the L1 norm.
Scores range in [0, 1], with 1 indicating all inferred edges
are correct and 0 indicating none are present in the reference;
higher values denote better specificity in edge prediction.
The computation requires O(t2) time for t cell types due
to pairwise matrix comparisons. A principal strength is its
direct assessment of edge prediction reliability, critical for
avoiding false-positive transitions in downstream analyses;
however, precision does not penalize false negatives and can
be artificially inflated in sparse graphs by conservatively pre-
dicting few edges, while threshold sensitivity necessitates
careful parameterization to balance specificity and recall.

D.3.25. RECALL

The recall metric evaluates the proportion of true edges
in the reference trajectory graph Gref that are successfully
recovered by the inferred adjacency structure, addressing
whether critical state transitions in the biological process are
preserved (James et al., 2013; Sokolova & Lapalme, 2009;
Powers, 2020; Besta et al., 2020). The score operates on
the reference adjacency matrix Aref and the inferred adja-
cency matrix Winf ∈ Rt×t, which contains continuous edge
weights. To compute recall, Winf was first binarized via a
user-defined threshold τ , yielding Ainf = I(Winf ≥ τ); true
positives were counted as

∑
i,j I(Aref,ij = 1 ∧Ainf,ij = 1),

while actual positives corresponded to
∑

i,j Aref,ij . The re-
call score was then calculated as the ratio of true positives
to actual positives, equivalent to TP/(TP + FN) in binary
classification. Scores range from 0 to 1, where 1 indicates
all reference edges were recovered and 0 signifies complete
failure to detect true transitions; higher values denote su-
perior edge recovery. With t cell types, the computation
requires O(t2) time due to pairwise comparisons across the
adjacency matrices. A principal strength is its direct inter-
pretability for assessing structural fidelity, as missing edges
directly imply overlooked biological transitions; however,
the metric disregards false positives entirely and is sensi-
tive to the choice of τ , which may inflate scores if overly
permissive or underestimate performance if too stringent.
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D.3.26. F1 SCORE

The F1 Score evaluates the accuracy of edge prediction
in the inferred adjacency matrix relative to the reference
graph, addressing whether the inferred trajectory recovers
true cell-type transitions while balancing false positives
and false negatives (James et al., 2013; Sokolova & La-
palme, 2009; Powers, 2020; Besta et al., 2020). The met-
ric operates on the binary adjacency matrices (Aref, Ainf),
where the inferred matrix Ainf was obtained by threshold-
ing a weighted inter-type connectivity matrix. To com-
pute the score, true positives (edges present in both matri-
ces), predicted positives (edges in Ainf), and actual pos-
itives (edges in Aref) were enumerated; precision (frac-
tion of predicted edges that are true) and recall (fraction
of true edges recovered) were calculated as precision =
TP/predicted positives and recall = TP/actual positives,
respectively. The F1 Score was derived as their harmonic
mean: F1 = 2 · precision · recall/(precision+ recall), yield-
ing a value in [0, 1] where higher scores indicate better-
balanced edge recovery. The metric’s computational com-
plexity is O(t2) for t cell types, dominated by pairwise
comparisons across the adjacency matrices. A principal
strength is its synthesis of precision and recall into a unified
measure, penalizing extremes of over- or under-prediction;
however, reliance on a user-defined threshold for binariza-
tion and exclusion of true negatives—which may dominate
sparse graphs—limit interpretability in scenarios with class
imbalance or ambiguous edge weights.

D.3.27. MANTEL CORRELATION

The Mantel correlation evaluates whether the inferred cell-
type-level graph preserves the global connectivity struc-
ture of the reference trajectory by statistically assessing the
correlation between their respective shortest-path distance
matrices (Legendre & Fortin, 2010; Legendre et al., 2015;
Borcard & Legendre, 2012). The metric operates on the ref-
erence adjacency matrix Aref and the inferred weighted adja-
cency matrix Winf. Each adjacency matrix was converted to
a graph, and all-pairs shortest path distances were computed
using the Floyd-Warshall algorithm (Hougardy, 2010) to
derive distance matrices Dref and Dinf; the Mantel test then
calculated the Spearman rank correlation between the vec-
torized upper triangles of these matrices, with significance
assessed via permutation testing. The resulting correlation
coefficient served as the similarity score. The coefficient
ranges in [−1, 1], where 1 indicates perfect structural concor-
dance, -1 perfect inverse correlation, and 0 no association;
higher values denote greater preservation of the reference’s
global connectivity. The Floyd-Warshall step dominates
complexity at O(t3) per graph for t cell types, making the
metric computationally intensive for large t. A principal
strength is the incorporation of global topological informa-
tion through shortest-path distances, capturing higher-order
structural relationships beyond direct adjacency compar-
isons; however, the metric requires fully connected graphs

and assumes distance matrices meaningfully represent the
underlying biological trajectory, potentially failing when
graphs contain disconnected components or when shortest
paths do not reflect biological progression.

D.3.28. AVERAGE SHORTEST PATH DIFFERENCE

The Average Shortest Path Difference evaluates whether
the inferred graph preserves the global navigability and
efficiency of information flow inherent to the reference tra-
jectory’s connectivity structure (Gonzalez-Escribano et al.,
2022; Goldberg & Harrelson, 2005; Mao & Zhang, 2013).
The metric operates on adjacency matrices (Aref, Zinf),
where Zinf ∈ {Ainf,Winf} represents the inferred graph’s
binary or weighted adjacency structure. For each graph,
the average shortest path length—computed via the Floyd-
Warshall algorithm (Hougardy, 2010) with O(t3) complex-
ity for t cell types—was derived by averaging geodesic
distances between all connected node pairs, considering
edge weights if present; the absolute difference between
these averages quantified structural divergence. Scores are
non-negative, with 0 indicating identical global navigabil-
ity and higher values reflecting increasing discrepancy in
connectivity efficiency; the metric is particularly sensitive
to topological perturbations that alter critical paths. A prin-
cipal strength lies in its holistic assessment of graph-wide
transport efficiency, capturing deviations in overall connec-
tivity that local edge-wise comparisons may miss; however,
the requirement for fully connected graphs, neglect of indi-
vidual path distributions, and quadratic sensitivity to minor
edge modifications that induce disproportionate changes in
average path length limit its utility for fragmented or noisy
trajectories.

D.3.29. LAPLACIAN SPECTRAL EMD

The Laplacian Spectral Earth Mover’s Distance (EMD)
quantifies global structural dissimilarity between the ref-
erence cell-type adjacency graph and the inferred trajec-
tory’s connectivity by comparing their spectral properties
(Dodonova et al., 2016; Gambhir et al., 2025; Aouchiche &
Hansen, 2013; Nath & Paul, 2014). This metric evaluates
whether the inferred graph preserves the reference’s topo-
logical invariants—such as connectivity patterns and com-
munity structure—encoded in the eigenvalues of the graph
Laplacian. The inputs were the reference adjacency matrix
Aref ∈ {0, 1}t×t and the inferred weighted adjacency matrix
Winf ∈ Rt×t. For each graph, the graph Laplacian was com-
puted as L = D−A, where D is the diagonal degree matrix;
the eigenvalues of L were extracted, normalized by their
sum (equivalent to the trace of L), and compared via the
Wasserstein distance (refer to D.3.2) to measure the minimal
cost of transforming one normalized eigenvalue distribution
into the other. The resulting score is non-negative, with 0
indicating identical spectra (isomorphic graphs) and higher
values reflecting increasing topological divergence; com-
putational complexity is O(t3) due to eigendecomposition,
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scaling cubically with the number of cell types t. A prin-
cipal strength is the metric’s sensitivity to global structural
properties—including connected components, community
organization, and spectral gaps—while remaining agnos-
tic to local edge-wise discrepancies; however, reliance on
undirected graphs and prohibitive eigendecomposition costs
for large t limit applicability to small or densely connected
cell-type graphs, and normalization failures may occur if
either graph is disconnected or empty.

D.3.30. PERMUTATION-MARGINALIZED SSIM

The Permutation-Marginalized Structural Similarity Index
(SSIM) assesses whether the inferred weighted adjacency
matrix Winf shares consistent local structural patterns with
the reference Aref across all possible node orderings, ad-
dressing whether their spatial organizations are perceptually
similar irrespective of arbitrary cell-type indexing (Brunet
et al., 2011; Bakurov et al., 2022). The metric operates
on adjacency matrices (Aref,Winf), treating them as inten-
sity images where pixel values encode edge weights. To
marginalize over label permutations, the SSIM—which
compares luminance, contrast, and structure via local win-
dowed statistics—was computed over multiple permutations
of rows and columns, either exhaustively (for small t) or
through Monte Carlo sampling (for large t), then averaged.
The final score 1

K

∑K
k=1 SSIM(A

(k)
ref ,W

(k)
inf ) reflects the ex-

pected similarity under random node alignments, where
A

(k)
ref and W

(k)
inf denote the k-th permutation. Scores range

in [−1, 1], with 1 indicating identical structural patterns, -1
inverse correlation, and 0 no similarity; higher values denote
permutation-invariant consistency. Complexity is O(Kt2)
for t cell types and K permutations, manageable for typical
t but scaling quadratically with t. A principal strength is
label invariance, critical for graph comparisons where node
order carries no semantic meaning; however, reliance on
local image-like features may overlook global topological
discrepancies, and computational cost grows non-trivially
with t when exhaustive permutation is required.

D.3.31. CLUSTERING COEFFICIENT DIFFERENCE

The Clustering Coefficient Difference evaluates whether the
inferred cell-type adjacency matrix preserves the local clus-
tering structure of the reference graph, specifically address-
ing the preservation of tightly-knit communities (triangles).
It operates on the reference and inferred adjacency matri-
ces (Aref,Winf). The score was computed as the absolute
difference between the average clustering coefficients of the
two graphs, with each coefficient calculated as the mean
of node-wise clustering coefficients that quantify the den-
sity of triangles incident to each node; edge weights were
incorporated to account for connection strength (Watts &
Strogatz, 1998; Opsahl & Panzarasa, 2009; Tantardini et al.,
2019). The score ranges from 0 (identical local clustering)
to 1 (maximal dissimilarity), with higher values indicating

divergence in local connectivity patterns; computational
complexity is O(t3) for dense graphs but scales with the
number of edges in sparse topologies. A principal strength
is its sensitivity to local structural perturbations affecting
community cohesiveness, such as spurious or missing trian-
gles; however, the metric does not capture global topological
discrepancies and may be inflated by edge noise that selec-
tively impacts triangle formation without altering broader
connectivity.

D.3.32. GDV SIMILARITY

The GDV Similarity metric evaluates the preservation of lo-
cal connectivity patterns between the reference and inferred
cell-type adjacency graphs by comparing their distributions
of small connected subgraphs (graphlets). The score an-
swers whether the inferred graph recapitulates the preva-
lence and configuration of 3-node and 4-node motifs—such
as paths, cycles, stars, and triangles—that encode critical
biological information about branching, differentiation, and
cellular neighborhood organization (Pržulj, 2007; Yaveroğlu
et al., 2014; Milenković & Pržulj, 2008). The metric op-
erates on symmetric adjacency matrices (Aref, Ainf), where
Ainf is obtained by thresholding the inferred inter-type con-
nectivity matrix. For each graph, Graphlet Degree Vectors
(GDVs) were computed by enumerating all 3-node and 4-
node connected subgraphs, classifying them into 8 prede-
fined types, and counting each node’s participation; this
yielded, for each node, an 8-dimensional vector encoding its
local topology. Jensen-Shannon Divergence (JSD) was then
calculated between the two graphs’ node-wise distributions
of counts for each graphlet type, aggregated across types
via averaging, and transformed into a similarity score as
1 − JSD. The score ranges from 0 (maximal divergence
in local structure) to 1 (identical GDV distributions), with
higher values indicating better preservation of motif archi-
tecture. Computational complexity is dominated by GDV
enumeration, scaling as O(t4) for t cell types, rendering the
metric suitable for moderate-sized graphs but challenging at
scale. A principal strength is its sensitivity to local topologi-
cal patterns that global metrics overlook, providing granular
insight into motif conservation; however, reliance on ex-
haustive subgraph enumeration limits scalability, and the
focus on small graphlets may underrepresent higher-order
connectivity patterns critical for complex trajectories.

D.3.33. WEISFEILER-LEHMAN DISTANCE

The Weisfeiler-Lehman Distance evaluates whether the in-
ferred adjacency matrix preserves the hierarchical multi-
scale connectivity patterns of the reference graph by quanti-
fying their structural isomorphism through iterative neigh-
borhood aggregation (Shervashidze et al., 2011; Kriege
et al., 2020; Morris et al., 2019). The metric operates on
binarized adjacency matrices (Aref, Ainf), thresholded to dis-
card weak edges and optionally stripped of self-loops. To
compute the distance, both matrices were converted into
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undirected graphs, followed by synchronized Weisfeiler-
Lehman (WL) label refinement over h iterations—a proce-
dure that augments node labels with compressed multiset
representations of their h-hop neighborhoods. The WL sub-
tree kernel aggregated counts of matching label sequences
across iterations, measuring similarity as the normalized
inner product κ(Aref, Ainf)/

√
κ(Aref, Aref) · κ(Ainf, Ainf),

where κ denotes the subtree kernel; the final distance was
1−κnorm. Scores range in [0, 1], with 0 indicating structural
identity and higher values reflecting divergence; complex-
ity is O(ht2) for t cell types due to iterative neighborhood
aggregation. A principal strength is sensitivity to hierar-
chical topological patterns invariant to node permutations;
however, the distance depends on the binarization threshold
and iteration depth, disregards edge weights, and does not
localize discrepancies to substructures.

D.3.34. GIN GNN SIMILARITY

This metric assesses whether the inferred cell-type adja-
cency matrix Ainf preserves the multi-scale topological
properties of the reference graph Aref, addressing struc-
tural fidelity through graph neural embeddings. The in-
puts (Aref, Ainf) were converted to node feature matrices
via 13 topological descriptors—including eigenvector cen-
trality, weighted PageRank (Andersen et al., 2007), and
structural core numbers—then processed through a fixed-
weight Graph Isomorphism Network (GIN) to generate node
embeddings (Xu et al., 2018; Kim & Ye, 2020; Chen et al.,
2019; Bai et al., 2019). Node features were aggregated into
graph-level embeddings through stabilized moment encod-
ing (mean, variance, skewness, kurtosis), interaction terms
(element-wise products, normalized differences), and posi-
tional encodings of sorted embeddings; the final similarity
was computed as the cosine similarity between graph embed-
dings: s = ⟨eref,einf⟩

∥eref∥∥einf∥ , where eref, einf denote the aggregated
embeddings. Scores range [−1, 1], with 1 indicating identi-
cal structural profiles and -1 anticorrelation; higher values
reflect stronger multi-scale topological alignment. Com-
putational complexity is dominated by O(t3) eigenvector
centrality computations but mitigated by fixed GIN infer-
ence. The metric’s principal strength lies in its theoretically
grounded use of GIN’s Weisfeiler-Lehman isomorphism
expressivity and multi-feature aggregation, enabling sensi-
tivity to both local connectivity patterns and global graph
topology; however, reliance on ad-hoc feature engineering
and threshold-sensitive binarization may conflate structural
differences with feature scaling artifacts or obscure continu-
ous edge weight information.

D.3.35. MAXIMUM COMMON SUBGRAPH DISTANCE

The Maximum Common Subgraph (MCS) distance evalu-
ates the structural similarity between the inferred and ref-
erence cell-type adjacency matrices, addressing whether
the inferred trajectory graph captures the essential con-

nectivity patterns of the ground-truth topology (Bunke &
Shearer, 1998; Sanfeliu & Fu, 1983; Riesen & Bunke, 2009;
Gao et al., 2010). The metric operates on the binary adja-
cency matrices (Aref, Ainf), where the inferred matrix was
binarized via a user-defined threshold. The core compu-
tation converts both matrices into undirected graphs and
calculates their Graph Edit Distance (GED) under a cost
model that allows free node substitutions (permitting graph
isomorphism checks), prohibits node insertions/deletions
via prohibitive costs, and assigns unit costs to edge inser-
tions or deletions. This configuration reduces the GED
to |Eref| + |Einf| − 2|EMCS|, where EMCS denotes the edge
set of the maximum common subgraph, thereby measuring
the minimum number of edge operations needed to align
the graphs. The MCS distance ranges from 0 (isomorphic
graphs) upwards, with higher values indicating greater struc-
tural divergence; its computational complexity is NP-hard
due to the combinatorial nature of subgraph isomorphism,
though optimized heuristics enable tractable computation
for graphs with t ≤ 60 cell types. A principal strength is
its invariance to node permutations and satisfaction of met-
ric properties (non-negativity, identity, symmetry, triangle
inequality), ensuring robust topological comparison; how-
ever, reliance on exact GED computation limits scalability
to large graphs, and potential non-convergence may yield
NaN values, necessitating fallback strategies in practice.

D.3.36. RANDOM WALK KERNEL DISTANCE

The Random Walk Kernel Distance quantifies the dis-
similarity between the global connectivity structures of
reference and inferred cell-type adjacency matrices, an-
swering whether the inferred graph preserves the multi-
scale transition patterns encoded in the reference topol-
ogy (Li et al., 2012; Kang et al., 2012; Kashima et al.,
2003). The metric operates on symmetric adjacency matri-
ces (Aref,Winf) ∈ {0, 1}t×t × Rt×t, computing a normal-
ized random walk kernel that compares walk counts across
all path lengths up to a truncation limit kmax. For decay
factor λ, the kernel K(G,H) =

∑kmax
k=0 λ

k trace(Ak
refW

k
inf)

aggregates weighted traces of aligned matrix powers, cap-
turing the agreement in walk structures; the normalized
kernel Knorm = K(G,H)/

√
K(G,G)K(H,H) ensures

scale invariance via Cauchy-Schwarz bounding (Borgwardt
& Kriegel, 2005). The final distance 1 − Knorm ranges in
[0, 1], where 0 indicates identical walk structures and 1 max-
imal divergence; higher values denote increasing topological
distortion. To ensure convergence, λ is constrained below
1/(ρ(Aref)ρ(Winf)), where ρ denotes spectral radius, with
kmax automatically adjusted to avoid numerical insignifi-
cance. Computational complexity is O(kmaxt

3) due to kmax
matrix multiplications, limiting scalability for large t. The
metric’s principal strength lies in its holistic integration of lo-
cal and global connectivity via exponentially decaying walk
contributions, providing robustness to localized discrepan-
cies; however, sensitivity to λ and truncation effects may
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bias comparisons when long-range dependencies dominate
biological transitions.

D.3.37. PERSISTENCE DIAGRAM DISTANCE

The Persistence Diagram Distance evaluates the topologi-
cal fidelity of the inferred graph by quantifying discrepan-
cies in multiscale topological features—specifically con-
nected components (0-dimensional homology) and cy-
cles (1-dimensional homology)—between the reference
and inferred cell-type adjacency matrices (Cohen-Steiner
et al., 2005; Kerber et al., 2017). The metric operates on
(Aref,Winf), where Winf is the inferred weighted adjacency
matrix. For each matrix, edge weights were normalized to
[0, 1], converted to distances via reciprocal transformation
with regularization to avoid division by zero, and augmented
by shortest-path distances to ensure global connectivity. A
Vietoris-Rips filtration was applied to the resulting distance
matrix (Bauer, 2021), constructing a simplicial complex
that tracks the birth and death of topological features across
scales; persistence diagrams for dimensions 0 (connected
components) and 1 (cycles) were extracted, with infinite
persistence features approximated by finite values scaled to
the maximal finite death time. The 1-Wasserstein distance
(Carriere et al., 2017) between corresponding diagrams of
reference and inferred graphs was computed for each homol-
ogy dimension and summed, yielding a composite topologi-
cal divergence score. The score is non-negative, with lower
values indicating closer topological correspondence; compu-
tational complexity is dominated by the O(t3) shortest-path
calculation for t cell types and O(t2) persistence diagram
comparisons. A principal strength lies in jointly capturing
discrepancies in component structure and cyclic patterns,
enabled by the stability of Wasserstein distance under per-
turbations; limitations include sensitivity to distance matrix
regularization heuristics, exclusion of higher-dimensional
topological features (e.g., voids), and prohibitive computa-
tional cost for large t.

D.3.38. BRANCH SILHOUETTE SCORE

The Branch Silhouette Score evaluates whether cells from
distinct trajectory branches form well-separated clusters in
the inferred embedding, addressing the biological question
of how effectively the representation preserves bifurcation
events and lineage segregation (refer to D.2.1 for ASW
description). The metric operates on the reference adja-
cency matrix Aref and the full embedding Y , leveraging
cell-type annotations to assign cells to terminal branches
derived from Aref’s hierarchical structure. Each cell was
mapped to the most terminal branch (leaf) reachable via the
shortest path from the root in Aref, prioritizing biologically
distal branches to maximize cluster distinctiveness. The
silhouette score was computed as s = 1

n

∑n
i=1

bi−ai

max(ai,bi)
,

where ai denotes the mean intra-branch distance and bi the
mean nearest-inter-branch distance for cell i in Y , using a

user-specified distance metric. Scores range [−1, 1], with
higher values indicating better branch separation; a score
of 1 implies perfect clustering, −1 complete overlap, and
0 indifferentiable branches. The computational complexity
is O(n2) due to pairwise distance calculations, which may
limit scalability for large n. A principal strength is the di-
rect alignment with biological trajectory topology, ensuring
clusters correspond to ground-truth branches; however, the
metric assumes Aref is a directed tree and requires sufficient
cell-type annotations, failing to capture continuum-like dif-
ferentiation or subtle substructure within branches.

D.3.39. NORMALIZED MEAN CURVATURE SCORE

The Normalized Mean Curvature Score (NMCS) quan-
tifies the geometric complexity of developmental trajec-
tories in the embedding space relative to the reference
graph structure, answering whether inferred cell-state tran-
sitions exhibit biologically plausible curvature patterns.
The metric operates on the reference adjacency matrix
Aref and cell embedding Y , where Aref encodes permit-
ted transitions between t cell types and Y provides low-
dimensional coordinates for all cells. Developmental paths
were extracted as source-to-sink routes in Aref, then rep-
resented in Y by cubic splines fitted to cell-type cen-
troids along each path. For each spline C(s) parame-
terized by arc length s, the instantaneous curvature κ
was computed via the generalized n-dimensional formula
κ =

√
||C ′′(s)||2 − (C ′(s) · C ′′(s)/||C ′(s)||)2/||C ′(s)||3,

capturing local deviation from linear progression; path-level
scores were normalized by π and aggregated across all paths
using the median to yield the final score. NMCS ranges in
[0, 1], where 0 indicates perfectly linear trajectories and 1
corresponds to maximal curvature complexity; higher values
denote intricate branching patterns or abrupt fate decisions.
The computational complexity is dominated by spline fit-
ting (O(n) per path) and path enumeration (O(t2) for dense
graphs). A principal strength lies in explicit modeling of
branching topology through multiple developmental path-
ways, providing sensitivity to both global trajectory geom-
etry and local transition smoothness; however, reliance on
cubic splines may underestimate curvature in highly discon-
tinuous embeddings, and path extraction becomes compu-
tationally intensive for graphs with exponential growth in
source-sink routes.

D.3.40. MORAN’S I FOR EMBEDDING

Moran’s I evaluates whether the inferred embedding Y pre-
serves the spatial autocorrelation structure dictated by the
reference trajectory’s topology, addressing the biological
question of how well local similarity patterns in the em-
bedding align with the connectivity defined by Gref (For a
detailed derivation and the original citations, refer to Sec-
tion D.3.16; the present formulation here is analogous apart
from the alternative weighting scheme). The metric operates
on (Aref, Y ), where Aref is the reference adjacency matrix
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and Y is the full cell embedding. To compute Moran’s I,
the reference cell-type adjacency Aref was first expanded
into a cell-cell adjacency matrix W ∈ Rn×n by connecting
all cells of adjacent types, then row-normalized to form a
spatial weights matrix. For each dimension of Y , Moran’s
I was calculated as I = n∑

i,j Wij
·

∑
i,j Wij(yi−ȳ)(yj−ȳ)∑

i(yi−ȳ)2 ,
where n is the number of cells, yi is the embedding value
of cell i, and ȳ the dimension-wise mean; the final score
averaged I across all embedding dimensions. Scores range
approximately in [−1, 1], with 1 indicating perfect positive
spatial autocorrelation (embedding similarity aligns with
reference connectivity), -1 perfect dispersion, and 0 no spa-
tial structure; higher values denote better preservation of the
reference topology. The complexity is O(n) per embedding
dimension due to sparse matrix-vector operations, making
it linear in cell count for fixed dimensionality. A princi-
pal strength is its sensitivity to global and local embedding
structure through the spatial weights matrix, providing a
holistic measure of topological fidelity; however, the metric
assumes cell-type adjacency perfectly reflects expected cell-
cell relationships, potentially overpenalizing embeddings
that capture substructure within annotated types or exhibit
biologically valid deviations from the reference graph.

D.3.41. GEARY’S C FOR EMBEDDING

The Geary’s C Embedding metric quantifies the extent to
which local dissimilarities in the full embedding Y align
with non-adjacent cell-type relationships in the reference
graph Gref, addressing whether biologically distant cell states
exhibit systematically larger embedding-space deviations
(For a detailed derivation and the original citations, refer
to Section D.3.15; the present formulation here is analo-
gous apart from the alternative weighting scheme). The
metric operates on (Aref, Y ), where Aref is the reference ad-
jacency matrix and Y the N -cell embedding. For each
cell type in Gref, a cell-cell adjacency matrix was con-
structed by propagating Aref to all cells via label-wise pool-
ing, creating a sparse weight matrix W ∈ RN×N where
Wij = Aref,uv

if cell i belongs to type u and cell j to type
v. Geary’s C was computed per embedding dimension as

Cd = (N−1)
2
∑

ij Wij

∑
ij Wij(Yid−Yjd)

2∑
i(Yid−Ȳd)2

for dimension d, then av-

eraged across dimensions. Scores range [0, 2], with values
< 1 indicating positive spatial autocorrelation (local homo-
geneity), 1 randomness, and > 1 anti-correlation (excessive
local heterogeneity); lower scores denote better preserva-
tion of reference-driven dissimilarity patterns. Complexity
is O(|E|+Ne2) for |E| reference edges and e dimensions,
dominated by pairwise difference computations. A principal
strength is sensitivity to local variance anomalies comple-
mentary to global autocorrelation measures like Moran’s
I; however, dependence on label-wise adjacency propaga-
tion may obscure cell-specific trajectory deviations, while
normalization assumptions limit interpretability for embed-
dings with non-stationary variance structures.

D.3.42. EMBEDDING DISTANCE CORRELATION

This metric evaluates whether the relative distances between
cell types in a low-dimensional embedding space mirror
their topological relationships in the reference trajectory
graph, addressing how well the embedding preserves the
graph’s structural geometry (Székely et al., 2007; Mantel,
1967; Moon et al., 2019). The computation operates on the
reference graph adjacency matrix Aref and the full embed-
ding matrix Y , leveraging cell-type labels to compute cen-
troid positions in the embedding space. For each pair of cell
types, the shortest path distance in the undirected version
of Aref was computed via breadth-first search, while their
embedding distance was derived as the Euclidean distance
between corresponding centroids. Spearman’s rank correla-
tion coefficient ρ was then calculated between these two sets
of pairwise distances, excluding pairs disconnected in the
reference graph. The resultant ρ ranges in [−1, 1], where 1
indicates perfect monotonic correspondence between graph
and embedding distances, 0 implies no association, and -1
denotes perfect inverse correlation (biologically implausi-
ble); higher values signify stronger structural preservation.
With t cell types, complexity is O(t2) from pairwise com-
parisons and all-pairs shortest paths, remaining tractable
for typical t values. A principal strength is the metric’s in-
variance to scaling transformations in either space, focusing
purely on relative distance ordering; however, reliance on
distinct cell-type centroids assumes homogeneous popula-
tions and may fail when within-type variance dominates
between-type separation, while quadratic scaling limits util-
ity for extremely large type sets.

D.3.43. SAMMON’S STRESS

Sammon’s Stress evaluates how well the low-dimensional
embedding Y preserves the global and local topological
structure of the reference trajectory graph Gref, with empha-
sis on accurate representation of proximate cell-type rela-
tionships critical for biological transitions (Sammon, 2006;
Lee & Verleysen, 2008; Ghojogh et al., 2020). The metric
operates on the reference adjacency matrix Aref and the full
embedding Y , computing pairwise shortest-path distances
between cell types in Gref and Euclidean or cosine distances
between their centroids in Y . To ensure scale invariance, an
optimal scaling factor s∗ was analytically derived to min-
imize the stress function S = 1∑

i<j dij

∑
i<j

(dij−seij)
2

dij
,

where dij and eij denote graph and embedding distances,

respectively; s∗ is given by s∗ =
∑

i<j eij∑
i<j(e

2
ij/dij)

. The re-
sulting stress S is non-negative, with lower values (theoret-
ically bounded below by 0) indicating stronger structural
preservation; values below 0.1 typically denote high fidelity.
Computational complexity is dominated by all-pairs shortest
paths (O(t3) for t cell types) and centroid distance calcu-
lations (O(t2e)), though sparse graphs reduce this to O(t2)
with connected components. A principal strength is the op-
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timal scaling factor, which eliminates sensitivity to arbitrary
embedding scales while emphasizing local relationships
through inverse-distance weighting; however, reliance on
cell-type centroids may obscure within-type heterogeneity,
and exclusion of disconnected node pairs limits applicability
to fully connected reference trajectories.

D.3.44. GRAPH-BASED TRUSTWORTHINESS

The Graph-Based Trustworthiness metric evaluates the
preservation of local neighborhoods between the cell type
hierarchy defined by the reference graph and the low-
dimensional embedding, addressing whether biologically
proximate cell types in Gref remain neighboring in the
learned manifold (Venna & Kaski, 2001; Jiang et al., 2016;
Ge et al., 2023). The score operates on the reference ad-
jacency matrix Aref and the full embedding Y , computing
for each cell the permissible cross-type neighbors based
on graph distances and penalizing those that appear prema-
turely in the embedding’s nearest neighbors. For a cell i of
type v, the allowed rank threshold for cross-type neigh-
bors was determined by ti = max(k − mi, 0), where
mi counts same-type neighbors; penalties accrued when
cross-type neighbors of i in Y exceeded ti in graph-based
rank, computed via shortest-path distances and cumula-
tive type counts. The total penalty was normalized by the
theoretical maximum—accounting for cell type frequen-
cies and graph connectivity—yielding a score T (k) =
1 − (

∑
penalties)/(

∑
max penalties). Scores range in

[0, 1], with 1 indicating perfect neighborhood preservation
and 0 maximal violation; higher values denote better align-
ment. Preprocessing graph distances requires O(t2) time,
while neighbor validation scales as O(nk) for n cells and k
neighbors. The metric’s principal strength lies in leveraging
explicit cell type hierarchies to assess embedding fidelity,
ensuring robustness to varying type distributions; however,
reliance on shortest-path distances may overlook nuanced
biological relationships, and preprocessing becomes pro-
hibitive for large t.

D.3.45. NEIGHBORHOOD PRESERVATION SCORE

The Neighborhood Preservation Score (NPS) evaluates
how well an embedding preserves transitions between cell
types defined by the reference biological graph, addressing
whether local neighborhoods in the embedding space cor-
respond to permissible state transitions (Lee & Verleysen,
2008; Heiser & Lau, 2020; Martins et al., 2015). The met-
ric operates on the reference adjacency matrix Aref and the
inferred embedding Y , leveraging the K-nearest neighbor
(KNN) graph derived from Y to assess neighborhood com-
position. For each cell, neighbors in the KNN graph were
examined to identify those with cell types adjacent to the
cell’s type in Aref; cells with a proportion of different-type
neighbors exceeding a threshold τ were retained, and the
fraction of their different-type neighbors corresponding to
allowed transitions in Aref was computed. The final score

was obtained by averaging these fractions across qualifying
cells. NPS ranges from 0 to 1, where 1 indicates perfect
preservation of reference transitions in embedding neigh-
borhoods, and 0 denotes no alignment; higher values reflect
better biological fidelity. The computation scales linearly
with the number of cells n, O(n), assuming a fixed KNN
size. A principal strength is its focus on biologically crit-
ical cross-type transitions, enhancing robustness to homo-
geneous neighborhoods through thresholding; however, the
score depends on the choice of τ and may underrepresent
transitions in cells with sparse cross-type interactions.

D.3.46. DIRECTIONALITY PRESERVATION

The Directionality Preservation metric evaluates whether
local directional relationships in the inferred embedding
Y align with transitions encoded in the reference graph
Gref, addressing whether biological trajectories manifest
as geometrically coherent progressions in the embedding
space. The metric operates on (Aref, Y ), where Aref is
the reference adjacency matrix and Y the full embedding.
For each edge (u → v) in Gref, the centroids of nodes u
and v were computed, defining a graph direction vector
∆uv = centroidv − centroidu. Cells proximal to the line
segment between centroids were identified, expanded via
their k-nearest neighbors, and subjected to local PCA; the co-
sine similarity between the first principal component (PC1)
and ∆uv was calculated, measuring directional alignment.
The final score averaged these similarities across all edges.
Values range in [−1, 1], with 1 indicating perfect alignment,
0 no systematic correlation, and -1 anti-correlation; higher
scores reflect stronger preservation of reference directions.
Complexity scales as O(|E|(ke+ e3)) for |E| edges, k cells
per edge, and e embedding dimensions. A principal strength
is the integration of local manifold structure through PCA,
enabling detection of directional signals beyond pairwise
distances; however, reliance on linear PCA components and
sensitivity to neighbor-graph parameters may obscure non-
linear directional relationships or overemphasize spurious
local correlations.

D.3.47. WASSERSTEIN DISTANCE FOR EMBEDDING

The Wasserstein Distance (WD) evaluates the alignment
between the distribution of cell-type transitions prescribed
by the biological graph and the empirical transition patterns
observed in the embedding’s neighborhood structure. This
metric addresses whether the embedding preserves the per-
missible state transitions defined by the reference trajectory
while respecting their topological proximity (Huizing et al.,
2022; Schiebinger et al., 2019; Peyré et al., 2019; Panare-
tos & Zemel, 2019; Piccoli & Rossi, 2016; Carriere et al.,
2017). The computation operates on the reference adjacency
matrix Aref and the embedding Y , leveraging the latter’s
k-nearest-neighbor (kNN) graph to model local transition
likelihoods. For each cell type u, two probability distribu-
tions were constructed: pu (reference transitions), derived
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from Aref’s outgoing edges from u, and qu (embedding
transitions), estimated from the kNN cell-type composition
among neighbors of cells annotated as u. The Wasserstein
distance between pu and qu was computed using a cost
matrix C ∈ Rt×t, where Cij encoded the shortest-path
distance between cell types i and j in Aref; unreachable
pairs incurred a penalty of t+ 1. The final score averaged
these distances across all cell types. WD ranges from 0 (per-
fect alignment) to unbounded positive values, with lower
scores indicating better structural concordance. Computa-
tional complexity is O(n + t4), dominated by the O(t3)
earth mover’s distance computation per cell type and O(n)
neighbor aggregation. A key strength is the integration of
global graph topology via shortest-path costs, ensuring bi-
ologically meaningful penalization of transitions violating
trajectory connectivity. However, WD assumes kNN neigh-
borhoods directly reflect transition probabilities and may
over-penalize disconnected graph components, potentially
conflating biological rarity with structural incompatibility.

D.3.48. DIRECTED TRAJECTORY VALIDATION SCORE

The Directed Trajectory Validation Score (DTVS) evalu-
ates whether the local neighborhood structure in a cell em-
bedding Y aligns with the branching topology of a refer-
ence trajectory Aref, addressing how well the embedding
preserves biologically defined developmental bifurcations
(Jeon et al., 2023; Thrun et al., 2023; Liu et al., 2019; Rieck
& Leitte, 2015; Cape et al., 2024). The metric operates
on (Aref, Y ) by first identifying branch points in Aref and
their descendant branches, then comparing spectral clusters
derived from Y ’s k-nearest-neighbor graph against branch
memberships predicted through neighbor voting. For each
branch point, cells were assigned to branches via major-
ity voting of their neighbors’ cell-type labels in Y , while
spectral clustering with Y ’s connectivities matrix generated
topology-driven clusters; the weighted F1-score between
these assignments quantified local-to-global consistency,
with harmonic penalties applied for undetected branches.
Scores range in [0, 1], where 1 indicates perfect alignment
between embedding neighborhoods and reference branches,
and 0 denotes complete discordance; computational com-
plexity is dominated by spectral clustering at O(n3) per
branch point. The principal strength lies in jointly evaluat-
ing local neighbor agreements and global manifold structure
through multi-scale validation; however, dependence on ac-
curate cell-type annotations and sensitivity to the spectral
clustering hyperparameters may obscure topological fidelity
when label noise exists or branch sizes are imbalanced.
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