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Abstract

Dataset Distillation is the task of synthesizing small datasets from large ones while
still retaining comparable predictive accuracy to the original uncompressed dataset.
Despite significant empirical progress in recent years, there is little understanding
of the theoretical limitations/guarantees of dataset distillation, specifically, what
excess risk is achieved by distillation compared to the original dataset, and how
large are distilled datasets? In this work, we take a theoretical view on kernel ridge
regression (KRR) based methods of dataset distillation such as Kernel Inducing
Points. By transforming ridge regression in random Fourier features (RFF) space,
we provide the first proof of the existence of small (size) distilled datasets and
their corresponding excess risk for shift-invariant kernels. We prove that a small
set of instances exists in the original input space such that its solution in the RFF
space coincides with the solution of the original data. We further show that a
KRR solution can be generated using this distilled set of instances which gives an
approximation towards the KRR solution optimized on the full input data. The size
of this set is linear in the dimension of the RFF space of the input set or alternatively
near linear in the number of effective degrees of freedom, which is a function of
the kernel, number of datapoints, and the regularization parameter λ. The error
bound of this distilled set is also a function of λ. We verify our bounds analytically
and empirically.

1 Introduction

Motivated by the growing data demands of modern deep learning, dataset distillation [ZB21,
NNXL21, ZNB22, WZTE18] aims to summarize large datasets into significantly smaller synthetic
distilled datasets, which when trained on retain high predictive accuracy, comparable to the original
dataset. These distilled datasets have applications in continual learning [ZNB22, SCCB22], architec-
ture search [SRL+19], and privacy preservation [CKF22]. Recent years have seen the development
of numerous distillation algorithms, but despite this progress, the field has remained largely empirical.
Specifically, there is little understanding of what makes one dataset “easier to distill" than another, or
whether such small synthetic datasets even exist.

This work aims to fill this gap by providing the first bounds on the sufficient size and relative error
associated with distilled datasets. Noting prior work relating neural network training to kernel
ridge regression (KRR), we consider dataset distillation in the kernel ridge regression settings with
shift-invariant kernels. By casting the problem into the Random Fourier Feature (RFF) space, we
show that: The size and relative error of distilled datasets is governed by the kernel’s “number
of effective degrees of freedom", dλk . Specifically, in Section 4, we show that distilled sets of size
Ω(dλk log d

λ
k), exist, with 12λ+ 2Lλ predictive error on the training dataset, and only 8λ error with
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respect to the optimal solution computed on the full dataset, where λ is the kernel ridge regression
regularization parameter and Lλ the KRR training error on the original dataset; see Theorem 3 and
Remark 7 for full details.

These bounds hold in practice for both real and synthetic datasets. In section 5, we validate our
theorem by distilling synthetic and real datasets with varying sizes and values of dλk , showing that in
all scenarios our bounds accurately predict the error associated with distillation.

2 Related work

Coresets. Coresets are weighted selections from a larger training dataset, which, when used for train-
ing, yield similar outcomes as if the whole dataset was used [MSSW18, MBL20, PDM22, MEM+22].
The key benefit of using coresets is that they significantly speed up the training process, unlike when
the full data set is used. Current coresets methods incorporate clustering techniques [FL11, LBK16,
BLHK16], bilevel optimization [BMK20], sensitivity analysis [MSSW18, HCB16, TMF20, MSF20],
and surrogate models for approximation [TZM+23]. Newer strategies are specifically designed for
neural networks, where before each training epoch, coresets are chosen such that their gradients align
with the gradients of the entire dataset [MBL20, PDM22, TZM+23], followed by training the model
on the chosen coreset. Although coresets are usually theoretically supported, these methods fall short
when the aim is to compute a coreset once for a full training procedure.

Dataset Distillation. To this end, dataset distillation algorithms construct synthetic datasets (not
necessarily a subset from the original input) such that gradient descent training on the synthetic data-
points results in high predictive accuracy on the real dataset. Cast as a bilevel optimization problem,
early methods involve unrolling training computation graph [WZTE18] for a few gradient descent
steps and randomly sampled weight initializations. More sophisticated methods aim to approximate
the unrolled computation using kernel methods [NCL21, NNXL21, ZNB22, LHAR22a, LHLR23a],
surrogate objectives such gradient matching [ZMB21, ZB21], trajectory matching [CWT+22] or
implicit gradients [LHLR23b]. The kernel-induced points (KIP) algorithm [NCL21, NNXL21] is
a technique that employs Neural Tangent Kernel (NTK) theory[JGH18, LHAR22b] to formulate
the ensuing loss: LKIP = 1

2∥yt −KTSK
−1
SSyS∥22. This loss signifies the predictive loss of training

infinitely wide networks on distilled datapoints XS with corresponding labels yS , on the original
training set and labels XT , yT , with K·,· being the NTK. Dataset distillation is closely related to the
use of inducing points to accelerate Gaussian Processes [SG05, TRB16], for which convergence rates
exist, but the existence of such inducing points is not unknown [BRVDW19].

From dataset distillation to kernel ridge regression. Kernel ridge regression (KRR) extends
the linear machine learning ridge regression model by using a kernel function to map input data
into higher-dimensional feature spaces, allowing for more complex non-linear relationships between
variables to be captured [Mur12]. Various methods have been proposed to improve and accelerate
the training process of kernel ridge regression. Most notably, Random Fourier Features [RR07]
approximates shift-invariant kernel functions by mapping the input data into a lower-dimensional
feature space using a randomized cosine transformation. This has been shown to work effectively
in practice due to regularizing effects [JSS+20], as well as providing approximation bounds to the
full kernel ridge regression [SS15, AKM+17, LTOS19]. Training infinite-width neural networks can
be cast as kernel ridge regression with the Neural Tangent Kernel (NTK) [JGH18], which allows a
closed-form solution of the infinite-width neural network’s predictions, enabling kernel-based dataset
distillation algorithms such as [NCL21, NNXL21, LHAR22a].

3 Background

Goal. We provide the first provable guarantees on the existence and approximation error of a small
distilled dataset in the KRR settings. We first provide notations that will be used throughout the paper.

Notations. Let H be a Hilbert space with ∥·∥H as its norm. For a vector a ∈ Rn, we use ∥a∥2 to
denote its Euclidean norm, and ai to denote its ith entry for every i ∈ [n]. For any positive integer n,
we use the convention [n] = {1, 2, · · · , n}. Let A ∈ Rn×m be a matrix, then, for every i ∈ [n] and
j ∈ [m], Ai∗ denotes the ith row of A, A∗j denotes the jth column of A, and Ai,j is the jth entry of
the ith row of A. Let B ∈ Rn×n, then we denote the trace of B by Tr(B). We use Im ∈ Rm×m to
denote the identity matrix. Finally, vectors are addressed as column vectors unless stated otherwise.
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3.1 Kernel ridge regression

Let X 2 Rn � d be a matrix and lety 2 Rn be a vector. Letk : Rd � Rd ! [0; 1 ) be a kernel
function, and letK 2 Rn � n be its corresponding kernel matrix with respect to the rows ofX ; i.e.,
K i;j = k (X i � ; X j � ) for everyi; j 2 [n]. Let � > 0 be a regularization parameter. The goal of
kernel ridge regression (KRR) involvingX ; y; k; and� is to �nd

� �
[X ;y;k ] 2 arg min

� 2 Rn

1
n

ky � K � k2
2 + �� T K �: (1)

We use the notationf �
[X ;y;k ] : Rd ! R to denote the in-sample prediction by applying the KRR

solution obtained onX ; y and� using the kernelk, i.e., for everyx 2 Rd,

f �
[X ;y;k ](x) =

nX

i =1

� �
[X ;y;k ] i

k (X i � ; x) : (2)

To provide our theoretical guarantees on the size and approximation error for the distilled datasets,
the following assumption will be used in our theorem and proofs.

Assumption 1. We inherit the same theoretical assumptions used at [LTOS21] for handling the
KRR problem: (I) LetF be the set of all functions mappingRd to R. Let f � 2 F be the minimizer

of
nP

i =1
jyi � f (X i � )j2, subject to the constraint that for everyx 2 Rd andy 2 R, y = f � (x) + � ,

whereE(� ) = 0 andVar(� ) = � 2. Furthermore, we assume thaty is bounded, i.e.,jyj � y0. (II) We

assume that


 f �

[X ;y;k ]





H
� 1. (III) For a kernelk, denote with� 1 � � � � � � n the eigenvalues of

the kernel matrixK . We assume that the regularization parameter satis�es0 � n� � � 1.

The logic behind our assumptions.First, the idea behind Assumption (I) is that the pair(X ; y)
can be linked through some function that can be from either the same family of kernels that we
support (i.e., shift-invariant) or any other kernel function. In the context of neural networks, the
intuition behind Assumption (I) is that there exists a network from the desired architectures that gives
a good approximation for the data. Assumption (II) aims to simplify the bounds used throughout
the paper as it is a pretty standard assumption, characteristic to the analysis of random Fourier
features [LTOS19, RR17]. Finally, Assumption (III) is to prevent under�tting. Speci�cally speaking,
the largest eigenvalue ofK (K + n� I n ) � 1 is � 1

( � 1 + n� ) . Thus, in the case ofn� > � 1, the in-sample
prediction is dominated by the termn� . Throughout the following analysis, we will use the above
assumptions. Hence, for the sake of clarity, we will not repeat them, unless problem-speci�c
clari�cations are required.

Connection to Dataset distillation of neural networks.Since the neural network kernel in the case
of in�nite width networks describes a Gaussian distribution [JGH18], we aim at proving the existence
of small sketches (distilled sets) for the input data with respect to the KRR problem with Gaussian
kernel. However, the problem with this approach is that the feature space (in the Gaussian kernel
corresponding mapping) is rather intangible or hard to map to, and sketch (distilled set) construction
techniques require the representation of these points in the feature space.

To resolve this problem, we use a randomized approximated feature map, e.g., random Fourier
features (RFF), and weighted random Fourier features (Weighted RFF). The dot product between
every two mapped vectors in this approximated feature map aims to approximate their Gaussian
kernel function [RR07]. We now restate a result connecting ridge regression in the RFF space (or
alternatively weighted RFF), and KRR in the input space.

Theorem 2 (A result of the proof of Theorem 1 and Corollary 2 of [LTOS21]). Let X 2 Rn � d

be an input matrix,y 2 Rn be an input label vector,k : Rd � Rd ! [0; 1 ) be a shift-invariant
kernel function, andK 2 Rn � n , where8i; j 2 [n] : K i;j = k(X i � ; X j � ). Let � > 0, and let

d�
K = Tr

�
K (K + n� I n ) � 1

�
. Lets� 2 


�
d�

K log
�
d�

K

��
be a positive integer. Then, there exists

a pair (�; eX ) such that (i)� is a mapping� : Rd ! Rs� (which is based on either the weighted
RFF function or the RFF function [LTOS21]), (ii) eX is a matrix eX 2 Rn � s� where for everyi 2 [n],
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eX i � := � (X i � ), and (iii) (�; eX ) satis�es

1
n

nX

i =1

�
�
�
�yi � f �

[eX ;y;� ]

�
eX i �

� �
�
�
�

2

�
1
n

nX

i =1

�
�
�yi � f �

[X ;y;k ] (X i � )
�
�
�
2

+ 4 �;

where f �
[eX ;y;� ] : Rs� ! R such that for every row vectorz 2 Rs� , f �

[eX ;y;� ](z) =

z
�

eX T eX + �ns � � I s�

� � 1
eX T y. Note that, Table 1 gives bounds ons� when� / 1p

n .

Intution behind Theorem 2. Theorem 2 bounds the difference (additive approximation error)
between (i) the MSE loss between the ground truth labels and the predictions obtained by applying
Kernel Ridge regression (KRR) on the raw (original) data, and (ii) the MSE between the ground truth
labels and the predictions obtained when applying Ridge regression on the mapped (full) training
data via random Fourier features (RFF). Theorem 2 will be utilized to set the minimal dimension of
theRFF which yields the desired additive approximation, i.e.,4� . Thus the intuition behind using
this theorem is to link the dimension of theRFF with the size of the distilled set. In other words, we
use this error bound and suf�cient size (of the minimal dimension of theRFF) to provide proof of the
suf�cient small size of the distilled set.

4 Main result: on the existence of small distilled sets

In what follows, we show that for any given matrixX 2 Rn � d and a label vectory 2 Rn , there
exists a matrixS 2 Rs� � d and a label vectoryS 2 Rr such that the �tting solution in the RFF space
mapping ofS is identical to that of the �tted solution on the RFF space mapping ofX . With suchS
andyS , we proceed to provide our main result showing that one can construct a solution for KRR
in the original space ofS which provably approximates the quality of the optimal KRR solution
involving X andy. Thus, we obtain bounds on the minimal distilled set size required for computing
a robust approximation, as well as bounds on the error for such a distilled set.

We now provide Theorem 3 followed by its proof of the existence of a small distilled set. Then we
provide extensive details and intuitive explanations about the steps of the proof.

Theorem 3(On the existence of some distilled data). Let X 2 Rn � d be a matrix,y 2 Rn be a label
vector,k : Rd � Rd ! [0; 1 ) be a kernel function,� = (0 ; 1) [ f 2g, and lets� and eX be de�ned
as in Theorem 2. Assume that the rank ofeX is s� , then, there exists a matrixS 2 Rs� � d and a label
vectoryS such that

(i) the weighted RFF mappingeS 2 Rs� � s� of S, satis�es that
�

eX T eX + �ns � � I s�

� � 1
eX T y =

�
eST eS + �ns � � I s�

� � 1
eST yS ; and

(ii) there exists an in-sample predictionf �; X ;y
[S;y S ;k ] (not necessarily the optimal onS and ys)

satisfying

1
n

nX

i =1

�
�
� f �

[X ;y;k ] (X i � ) � f �; X ;y
[S;y S ;k ] (X i � )

�
�
�
2

� min
� 2 �

�
2 max

�
�;

4
� 2

�
+

2 min
�

1 + �;
4 (1 + � )

3�

��
�;

(3)

and

1
n

nX

i =1

�
�
�yi � f �; X ;y

[S;y S ;k ] (X i � )
�
�
�
2

� min
� 2 �

min
n

1 + �; 4(1+ � )
3�

o

n

nX

i =1

�
�
�yi � f �

[X ;y;k ] (X i � )
�
�
�
2

+
�

4 min
�

1 + �;
4 (1 + � )

3�

�
+ 2 max

�
�;

4
� 2

��
�:

(4)

4



Proof. Let S be any matrix inRs� � d such its weighted RFF mappingeS is of rank equal to that ofeX

and for everyi 2 [s� ],
nP

j =1
k (Si � ; X i � ) 6= 0 .

Proof of (i). To ensure (i), we need to �nd a corresponding properyS . We observe that
�

eST eS + �ns � � I s�

� �
eX T eX + �ns � � I s�

� � 1
eX T y = eST yS

Let b =
�

eST eS + �ns � � I s�

� �
eX T eX + �ns � � I s�

� � 1
eX T y, be the left-hand side term above.b is a

vector of dimensions� . Hence we need to solveb = eST yS for yS . SinceS has full rank then we
have a linear system involvings� variables ands� equations. Thus, the solution to such a system

exists and isyS =
�

eST
� y

b, where(�)y denotes the pseudo-inverse of the given matrix.

Proof of (ii). Inspired by [LHAR22a] and [NCL20], the goal is to �nd a set of instances that their
in-sample prediction with respect to the input data (X in our context) would lead to an approximation
towards the solution that one would achieve if the KRR was used only with the input data. To that
end, we introduce the following Lemm.

Lemma 4 (Restatement of Lemma 6 [LTOS21]). Under Assumption 1 and the de�nitions
in Theorem 2, for everyf 2 H with kf kH � 1, with constant probability, it holds that

inf
p s� k� k2 �

p
2

� 2 Rs �

nP

i =1

1
n

�
�
� f (X i � ) � eX i � �

�
�
�
2

� 2�:

Note that Lemma 4 shows that for every in-sample prediction function with respect toX , there
exists a query� 2 Rs� in the RFF space of that input data such that the distance between the in-
prediction sample function in the input space and the in-sample prediction in the RFF space is at2� .

Furthermore, at [LTOS21] it was shown that� is de�ned as� = 1
s�

eX T
�

eX eX T + n� I s�

� � 1
f [X ];

wheref [X ]i = f (X i � ) for everyi 2 [n].

We thus set out to �nd an in-sample prediction function that is de�ned overS such that by its in�mum
by Lemma 4 would be the same solution� that the ridge regression oneX attains with respect to the
y. Speci�cally speaking, we want to �nd an in-sample predictionf �; X ;y

[S;y S ;k ] (�) such that

� =
1
s�

eX T
�

1
s�

eX eX T + n� I s�

� � 1

fS [X ]; (5)

where (i) fS [X ] 2 Rn such that for everyi 2 [n], fS [X ]i = f �; X ;y
[S;y S ;k ] (X i � ), and

(ii) f �; X ;y
[S;y S ;k ] (�) =

s� +1P

i =1
� i k (Si � ; �) such that� 2 Rs� .

Hence we need to �nd an in-sample prediction functionf �; X ;y
[S;y S ;k ] satisfying 5. Now, notice that

� 2 Rs� , fS [X ] 2 Rn and eX T
�

1
s�

eX eX T + n� I n

� � 1
2 Rs� � n . Due to the fact that we aim to �nd

f �; X ;y
[S;y S ;k ], such a task boils down to �nding� 2 Rs� which de�nesf �; X ;y

[S;y S ;k ] as in (ii). The above
problem can be reduced to a system of linear equations where the number of equalities iss� , while
the number of variables iss� .

To do so, we denote1s�
eX T

�
1

s�
eX eX T + n� I n

� � 1
by Â , and observe that we aim to solve

� = Â f �
S [X ] = Â

2

6
6
6
6
6
6
6
6
6
4

s�P

i =1
� i k (Si � ; X 1� )

s�P

i =1
� i k (Si � ; X 2� )

...
s�P

i =1
� i k (Si � ; X n � )

3

7
7
7
7
7
7
7
7
7
5

:
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We now show that every entrybj (j 2 [s� ]) in � can be rewritten as inner products between another
pair of vectors inRs� instead of the inner product between two vectors inRn . Formally, for every
j 2 [s� ], it holds that

� j = Â j �

2

6
6
6
6
6
6
6
6
6
4

s�P

i =1
� i k (Si � ; X 1� )

s�P

i =1
� i k (Si � ; X 2� )

...
s�P

i =1
� i k (Si � ; X n � )

3

7
7
7
7
7
7
7
7
7
5

=
� nP

t =1
Â j;t k (S1� ; X t � ) ; � � � ;

nP

t =1
Â j;t k

�
S(s� ) � ; X t �

� �
2

6
4

� 1
...

� s�

3

7
5 :

Thus, for everyj 2 [s� ], de�ne A j � =
� nP

t =1
Â j;t k (S1� ; X t � ) ; � � � ;

nP

t =1
Â j;t k

�
Ss� � ; X t �

� �
2 Rs� .

In other words,A is a the result of a Hadamard multiplication ofÂ and a1-rank matrixG such that

each of its rows is equal to
� nP

t =1
k (S1� ; X t � ) ; � � � ;

nP

t =1
k

�
Ss� � ; X t �

� �
:

Since the rank of̂A is full, i.e., rank (A) = rank
�

eX T
�

1
s�

eX eX T + n� I n

� � 1
�

= rank
�

eX
�

= s�

by assumption, then it holds that

rank (A) = rank
�

Â � G
�

= rank
�

D v ÂD u

�
= rank

�
Â

�
;

where the �rst equality holds by de�nition ofA and� denoting the Hadamard multiplication product,
the second inequality holds since by construction ofS andG = uvT such thatu; v 2 Rs� are vector
with non-zero entries, andDu ; D v 2 Rs� � s� are diagonal matrices where their diagonal areu andv
respectively. The last inequality holds by property of rank function, i.e., the rank of any product of
pair of square matricesC andD such thatD is of full rank is equal to the rank ofC.

The right-hand side of (5) can reformulated as

1
s�

eX T
�

1
s�

eX eX T + n� I n

� � 1

fS [X ] = A �; (6)

where now we only need to solve� = A �: Such a linear system of equations has a solution since we
haves� variables (the length of� ) ands� equations and the rankA is equal tos� . For simplicity, a
solution to the above equality would be� := ( A )y �: To proceed in proving (ii) with all of the above
ingredients, we utilize the following tool.

Lemma 5(Special case of De�nition 6.1 from [BFL+ 16]). LetX be a set, and let
�

X; k�k2
2

�
be a

2-metric space i.e., for everyx; y; z 2 X , kx � yk2
2 � 2

�
kx � zk2

2 + ky � zk2
2

�
: Then, for every

" 2 (0; 1), andx; y; z 2 X ,

(1 � " ) ky � zk2
2 �

4
"2 kx � zk2

2 � k x � yk2
2 �

4
"2 kx � zk2

2 + (1 + ") ky � zk2
2 : (7)

We note that Lemma 5 implies thatx; y; z 2 Rd

kx � yk2
2 � min

� 2 �
max

�
�;

4
� 2

�
kx � zk2

2 + min
�

1 + �;
4 (1 + � )

3�

�
ky � zk2

2 : (8)

where for� = 2 we get the inequality associated with the property of2-metric, and for any� 2 (0; 1),
we obtain the inequality (7).
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We thus observe that

1
n

nX

i =1

�
�
� f �

[X ;y;k ] (X i � ) � f �; X ;y
[S;y S ;k ] (X i � )

�
�
�
2

=
1
n

nX

i =1

�
�
�
� f

�
[X ;y;k ] (X i � ) � f �

[eX ;y;� ]

�
eX i �

�
+ f �

[eX ;y;� ]

�
eX i �

�
� f �; X ;y

[S;y S ;k ] (X i � )

�
�
�
�

2

� min
� 2 �

max
�

�; 4
� 2

	

n

nX

i =1

�
�
�
� f

�
[X ;y;k ] (X i � ) � f �

[eX ;y;� ]

�
eX i �

� �
�
�
�

2

+

min
n

1 + �; 4(1+ � )
3�

o

n

nX

i =1

�
�
�
� f

�
[eX ;y;� ]

�
eX i �

�
� f �; X ;y

[S;y S ;k ] (X i � )

�
�
�
�

2

� min
� 2 �

2 max
�

�;
4
� 2

�
� + 2 min

�
1 + �;

4 (1 + � )
3�

�
�

= min
� 2 �

�
2 max

�
�;

4
� 2

�
+ 2 min

�
1 + �;

4 (1 + � )
3�

��
�;

where the �rst equality holds by adding and subtracting the same term, the �rst inequality holds by
Lemma 5, and the second inequality holds by combining the wayf �; X ;y

[S;y S ;k ] was de�ned and Theorem 2.
Finally, to conclude the proof of Theorem 3, we derive 4

1
n

nX

i =1

�
�
�yi � f �; X ;y

[S;y S ;k ] (X i � )
�
�
�
2

=
1
n

nX

i =1

�
�
�
�yi � f �

[eX ;y;� ]

�
eX i �

�
+ f �

[eX ;y;� ]

�
eX i �

�
� f �; X ;y

[S;y S ;k ] (X i � )

�
�
�
�

2

� min
� 2 �

min
n

1 + �; 4(1+ � )
3�

o

n

nX

i =1

�
�
�
�yi � f �

[eX ;y;� ]

�
eX i �

� �
�
�
�

2

+
max

�
�; 4

� 2

	

n

nX

i =1

�
�
�
� f

�
[eX ;y;� ]

�
eX i �

�
� f �; X ;y

[S;y S ;k ] (X i � )

�
�
�
�

2

� min
� 2 �

min
n

1 + �; 4(1+ � )
3�

o

n

nX

i =1

�
�
�
�yi � f �

[eX ;y;� ]

�
eX i �

� �
�
�
�

2

+ 2 max
�

�;
4
� 2

�
�

� min
� 2 �

min
n

1 + �; 4(1+ � )
3�

o

n

nX

i =1

�
�
�yi � f �

[X ;y;k ] (X i � )
�
�
�
2

+
�

4 min
�

1 + �;
4 (1 + � )

3�

�
+ 2 max

�
�;

4
� 2

��
�;

(9)

where the equality holds by adding and subtracting the same term, the �rst inequality holds by(8),
and the second inequality follows as a result of the wayf �

S was constructed and the fact that� is its
in�mum based on Lemma 4, and the last inequality holds by Theorem 2.

Intuition behind Theorem 3. The goal of Theorem 3 is to prove the existence of a small distilled set
S (its size is a function of the minimal dimension of the RFF mapping required to ensure the provable
additive approximation stated in Theorem 2) satisfying that: (i) The Ridge regression model trained
on the mapped training data via RFF is identical to that of the Ridge regression model trained on the
mapped small distilled set via RFF, (ii) more importantly there exists a KRR solution formulated
for S with respect to the loss of the whole big dataX , which approximates the KRR solution on
the whole dataX (which is the goal of KRR-based dataset distillation techniques). Thus, (iii) we
derive bounds on the difference (approximation error) between (1) The MSE between the ground
truth labels of the full data and their corresponding predictions obtained by the speci�c KRR model
(we previously described) on our distilled set and (2) The MSE between the ground truth labels and
the predictions obtained when applying KRR on the whole dataX .
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The heart of our approach lies in connecting the minimal dimension of the RFF required for
provable additive approximation and the size of the distilled set. This is �rst done by showing that the
distilled set can be any setS of instances from the input space (e.g., images) and their corresponding
labels, as long as the corresponding labels must maintain a certain property. Speci�cally speaking,
the labels of the distilled set need to be in correlation with the normal of the best hyperplane

found to �t the mapped training data via RFFeX via the Ridge regression model trained on
�

eX ; y
�

,

i.e.,
�

eST eS + �ns � �I s�

� �
eX T eX + �ns � �I s�

� � 1
eX T y = eST yS . From here, the idea hinges upon

showing the existence of a KRR model (represented by a prediction function) that would be dependent
on the prediction function that can be obtained from applying the Ridge regression problem to the
mapped full training data via RFF. With such a model, the idea is to retrieve the predictions obtained
when using the Ridge regression problem from the mapped training data via RFF via the use of some
KRR model used on the distilled set. We thus show that through careful mathematical derivations,
equation reformulation (involving ), and solving a system of equations, one is able to show the
existence of a KRR solution that would allow us to use Theorem 2. Finally, to obtain our bounds, we
also rely on the use of the weak triangle inequality. To that end, we now utilize the described KRR
model on the distilled data together with Theorem 2 to achieve (iii).

Remark 6. Note that the assumption thateX is of full rank (i.e.,s� ) can be dropped easily from
Theorem 3, and as a result, we obtain thatS can containr (rank of eX ) instances (rows ofS). For
additional details, please refer to Section E in the Appendix.

To simplify the bounds stated at Theorem 3, we provide the following remark.

Remark 7. By �xing � := 2 , the bounds in Theorem 3 become

1
n

nX

i =1

�
�
� f �

[X ;y;k ] (X i � ) � f �; X ;y
[S;y S ;k ] (X i � )

�
�
�
2

� 8�;

and
1
n

nX

i =1

�
�
�yi � f �; X ;y

[S;y S ;k ] (X i � )
�
�
�
2

�
2
n

nX

i =1

�
�
�yi � f �

[X ;y;k ] (X i � )
�
�
�
2

+ 12�:

As for �xing � := " 2 (0; 1), we obtain that

1
n

nX

i =1

�
�
�yi � f �; X ;y

[S;y S ;k ] (X i � )
�
�
�
2

�
1 + "

n

nX

i =1

�
�
�yi � f �

[X ;y;k ] (X i � )
�
�
�
2

+
�

4 (1 + ") +
8
"2

�
�:

5 Experimental Study

To validate our theoretical bounds, we performed distillation on three datasets: two synthetic datasets
consisting of data generated from a Gaussian Random Field, and classi�cation of two clusters, and
one real dataset of MNIST binary and multi-class classi�cation. Full experimental details for all
experiments are available in the appendix.

2d Gaussian Random Fields.We �rst test our bounds by distilling data generated from the Gaussian
Process prior induced by a kernel,k on 2d data. We use a squared exponential kernel with lengthscale

parameterl = 1 :5: k(x; x 0) = e�
jj x � x 0jj 2

2
2 l 2 . ForX , we samplen = 105 datapoints fromN (0; � 2

x ),
with � x 2 [0:25; 5:0]. We then sampley � N (0; K XX + � 2

y I n ), � y = 0 :01. We �x � = 10 � 5 and
distill down tos = d�

k logd�
k . The resulting values ofd�

k , s, and compression ratios are plotted in
�g. 2. We additionally plot the predicted upper bound given by Remark 7 and the actual distillation
loss. Our predicted upper bound accurately bounds the actual distillation loss. To better visualize
how distillation affects the resulting KRR prediction, we show the KRR predictive functionf �

X and
the distilled predictivef �

S for � x = 5 :0 in �g. 1b and �g. 1c.

Two Gaussian Clusters Classi�cation. Our second synthetic dataset is one consisting of two
Gaussian clusters centered at(� 2; 0) and(2; 0), with labels� 1 and+1 , respectively. Each cluster
contains 5000 datapoints so thatn = 105. Each cluster as standard deviation� x 2 [0:25; 5:0].
Additionally, two allow the dataset to be easily classi�ed, we clip thex coordinates of clusters 1 and
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