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Abstract

Extraction of experimental procedures from hu-001
man language in scientific literature and patents002
into actionable sequences in robotics language003
holds immense significance in scientific do-004
mains. Such an action extraction task is par-005
ticularly challenging given the intricate details006
and context-dependent nature of the instruc-007
tions, especially in fields like chemistry where008
reproducibility is paramount. In this paper, we009
introduce ACTIONIE, a method that leverages010
Large Language Models (LLMs) to bridge this011
divide by converting actions written in natural012
language into executable Python code. This en-013
ables us to capture the entities of interest, and014
the relationship between each action, given the015
features of Programming Languages. Utilizing016
linguistic cues identified by frequent patterns,017
ActionIE provides an improved mechanism to018
discern entities of interest. While our method is019
broadly applicable, we exemplify its power in020
the domain of chemical literature, wherein we021
focus on extracting experimental procedures022
for chemical synthesis. The code generated023
by our method can be easily transformed into024
robotics language which is in high demand in025
scientific fields. Comprehensive experiments026
demonstrate the superiority of our method. In027
addition, we propose a graph-based metric to028
more accurately reflect the precision of extrac-029
tion. We also develop a dataset to address the030
scarcity of scientific literature occurred in ex-031
isting datasets.032

1 Introduction033

Recently, the integration of Natural Language Pro-034

cessing (NLP) techniques into various scientific035

fields has achieved significant success (Wang et al.,036

2019; Soleimani et al., 2022; Song et al., 2023;037

Lai et al., 2023). Among the applications, extract-038

ing information from unstructured scientific litera-039

ture has been one with growing significance (Guo040

et al., 2022; Zhong et al., 2023a,b). For example,041

Figure 1: An example of action extraction from liter-
ature that describes a sequence of chemical reaction
actions. The text is drawn from Vaucher et al. (2020a).

chemists typically look through a wide range of 042

publications to select candidate protocols for one 043

organic synthesis scene, based on their own reading 044

and repetitive trial-and-error procedures (Davies, 045

2019; Vaucher et al., 2021). 046

Therefore, structured chemical data, including 047

reaction formulae, chemical entities, and experi- 048

ment conditions, facilitates effective utilization and 049

automatic analysis, such as indexing and search- 050

ing by keywords; discovering and analyzing rela- 051

tions between entities; clustering related objects 052

and discovering potential patterns; automatically 053

executing protocols; and predicting and optimizing 054

experiment conditions. Representatively, Figure 1 055

presents a case of structured chemical experimen- 056

tal procedure, essential for guiding practitioners 057

in their laboratory work (Vaucher et al., 2020b; 058

Zeng et al., 2023). This task involves extracting a 059

sequence of chemical reaction actions from a scien- 060

tific text passage, where each action is defined by 061
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an operation and its corresponding attributes. For062

instance, in the example “ADD EtOAc” shown in063

Figure1, “ADD” represents the operation, and the064

chemical “EtOAc” is the attribute.065

However, the discovery of new chemical ex-066

perimental procedures is scattered across unstruc-067

tured scientific text and described in various writing068

styles, posing a significant challenge to the auto-069

matic creation of reaction action databases. Exist-070

ing chemical databases, predominantly commer-071

cial ones such as Reaxys (Elsevier B.V., 2023),072

SciFinder (Chemical Abstracts Service (CAS),073

2023), and Pistachio (NextMove Software, 2023),074

depend extensively on the manual contributions of075

domain experts. Analyzing, indexing, and utiliz-076

ing scientific literature typically requires extensive077

and costly annotation or labeling by human experts.078

Moreover, this method is prone to errors due to079

the sheer volume of rapidly expanding scientific080

data. Despite the considerable manual effort, these081

databases prioritize storing information on the re-082

actants, products, and reaction conditions, rather083

than the concrete sequences of chemical actions.084

This is primarily because manually designing these085

experiment procedures is both time-consuming and086

costly.087

To tackle this issue, various studies have em-088

ployed text mining techniques (Hawizy et al., 2011;089

Swain and Cole, 2016; Vaucher et al., 2020b; Wang090

et al., 2022b; Zeng et al., 2023) to automatically091

extract structured information on procedures from092

unstructured text, leveraging the advancements in093

NLP field. However, extracting experimental pro-094

cedures remains a challenging task. One major095

hurdle is the complexity and variability of scien-096

tific language, which often features intricate sen-097

tence structures, domain-specific terminology, ab-098

breviations, and acronyms. These elements pose099

substantial difficulties for sequential tagging-based100

approaches. For example, as shown in Figure 1,101

a text describing a series of chemical reaction ac-102

tions includes the “WASH” operation followed by103

three chemicals. While sequential tagging-based104

methods might recognize the chemical compounds,105

they often struggle to accurately identify the opera-106

tions and associate them with their corresponding107

attributes. Furthermore, the scarcity of large, anno-108

tated datasets poses an additional obstacle to train-109

ing deep learning models on chemical experimental110

data effectively.111

In this paper, we choose chemical experiment112

procedures as a case study, and explore the po-113

tential of large language models (LLMs) to ex- 114

tract structured data from the complex and domain- 115

specific language in chemical papers and patents. 116

We propose a novel approach that frames the pro- 117

cedure extraction task as a code generation prob- 118

lem, where we express the experimental procedures 119

as a series of pre-defined operations, and utilize 120

the unique features of coding, such as classes, in- 121

heritance, and types, to structure this information. 122

Our method leverages the capabilities of LLMs in 123

few-shot in-context learning, reducing the need for 124

large amounts of annotated data, and accelerating 125

the preparation process. Moreover, our proposed 126

framework also offers an easy solution to gener- 127

ate protocols for different automated platforms by 128

applying different language configurations. 129

From the perspective of evaluation, we first pin- 130

point shortcomings within current evaluation met- 131

rics for the chemical action extraction task, and 132

propose a novel metric based on graph-matching 133

that substantially improves correlation with human 134

judgments. Existing benchmarks largely concen- 135

trate on patent documents, which are inherently 136

well-structured. To more accurately meet the real- 137

world demands of practitioners, we meticulously 138

annotate a test set derived from chemistry litera- 139

ture, which offers a more comprehensive evalu- 140

ation of model performance. Notably, our new 141

benchmark is considerably more extensive than 142

previous ones, with an average length of 770.8 143

characters compared to 158.2 characters, provid- 144

ing a testing environment that mirrors realistic sce- 145

narios more closely. Experimentally, our method 146

ActionIE demonstrates consistent superiority over 147

strong baseline models, both against traditional 148

benchmarks and our newly established testbed. 149

2 Related Work 150

The practice of using NLP in structured scientific 151

data extraction has seen significant advancements, 152

from utilizing traditional NLP techniques to inte- 153

grating code generation methods into structure ex- 154

traction, which is especially influenced by the grow- 155

ing capabilities of large language models (LLMs). 156

2.1 Action Extraction in Chemical Documents 157

The algorithms for action extraction in chemical 158

texts evolve with the development of NLP. Earlier 159

approaches, such as ChemDataExtractor (Swain 160

and Cole, 2016) and ChemicalTagger (Hawizy 161

et al., 2011), used part-of-speech tagging tech- 162
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Figure 2: Overview of ActionIE.

niques to perform named entity recognition on163

chemical literature. These methods were fast and164

effective at extracting key information, but had lim-165

ited capabilities at handling more complex sentence166

structures in patent documents. In recent years,167

the transformer structure has also been introduced168

to action extraction. Paragraph2Actions (Vaucher169

et al., 2020b) used a transformer-based encoder-170

decoder architecture trained on human-annotated171

data to generate action sequences.172

More recent advancements in NLP are led by173

pretrained LLMs. Wang et al. (2022b) finetuned174

a BERT model to perform named entity recog-175

nition on materials and extract synthesis actions176

on a dataset of solution-based inorganic materials177

synthesis. Zeng et al. (2023) finetuned both a T5178

model and a GPT-3.5 model on a human-annotated179

dataset. While these transformer-based models ex-180

cel in capturing the semantics of diverse scientific181

language, they rely on human-annotated datasets,182

which are created under extensive labor from do-183

main experts, and are prone to human errors. Also,184

these methods hard-code structure definitions in-185

side their framework, and have to infer structure186

semantics based on the training data, which could187

lead to inaccuracies if the training data is not repre-188

sentative enough.189

2.2 Leveraging Programming Languages for190

Structure Extraction Tasks191

With the overwhelming success of very large192

decoder-only language models (such as GPT-3193

(Brown et al., 2020), GPT-3.5 and GPT-4 (Ope-194

nAI, 2023), PaLM 2 (Anil et al., 2023), Llama 2195

(Touvron et al., 2023), etc.) on a variety of NLP196

tasks, recent research has increasingly focused on 197

the application of LLMs for scientific structure ex- 198

traction tasks. Agrawal et al. (2022) demonstrated 199

the power of zero-shot learning on GPT-3 for ex- 200

tracting information from clinical texts. Dunn et al. 201

(2022) further performed chemical entities and re- 202

lation extraction with a GPT-3 model finetuned on 203

500 input-output pairs. Zhong et al. (2023b) uses 204

GPT-4 to capture the roles of chemical entities in 205

scientific text. 206

On the other hand, the large language models 207

show noteworthy improvement in code generation. 208

Codex (Tyers et al., 2023), finetuned from a GPT 209

model, has shown remarkable abilities in code com- 210

pletion. The recent year has seen the application of 211

GPT-based agents (Hong et al., 2023; Zhou et al., 212

2023; Wang et al., 2024), which leverage the rea- 213

soning and decision abilities of GPT models along 214

with Chain-of-Thought approaches, in program- 215

ming tasks. 216

Among these developments of structure extrac- 217

tion and code generation, Code4Struct (Wang et al., 218

2022a) extracts structured event information from 219

natural language using code generation. It aligns 220

programming constructs, such as class definitions, 221

inheritance, and functions with the entity and event 222

types of interest, utilizing both the structural and 223

semantic information of coding. 224

3 ActionIE Framework 225

3.1 Task Formulation 226

Given a text T , we aim to extract all procedures 227

(actions) P = {(o1, a1), ..., (on, an)}, oi ∈ S men- 228

tioned in T in sequence, where S is a set of pre- 229
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Module Name Models

Pattern Mining Flan-T5-Large
Text Rephrasing GPT-4-0613
Code Generation GPT-4-0613
Code to Natural Language Pre-defined Rules

Table 1: Models used for each module in ActionIE.

defined operation types, and ai is the pre-defined at-230

tributes of operation Oi. Note that rather than iden-231

tifying the specific role a substitute plays within232

a reaction, our task focuses on the category of at-233

tribute to which it belongs. Following prior work234

(Vaucher et al., 2020a), we set the pre-defined op-235

eration types as follows: Add, CollectLayer, Con-236

centrate, Degas, DrySolid, DrySolution, Extract,237

Filter, MakeSolution, Microwave, Partition, PH,238

PhaseSeparation, Purify, Quench, Recrystallize,239

Reflux, SetTemperature, Sonicate, Stir, Triturate,240

Wait, Wash, Yield, FollowOtherProcedure, Invali-241

dAction, OtherLanguage, and NoAction. Defini-242

tions for each action are described in Appendix243

A.244

3.2 Action Extraction with Programming245

Languages246

Previous methods utilize a large amount of rules247

and patterns provided by human or train a model248

in a supervised way which require cost-sensitive249

labelled data. In addition, the definitions of ac-250

tions may change based on the needs of scientists.251

Under certain circumstances, re-creating rules and252

patterns by human may be required for unsuper-253

vised methods; and relabelling data may be needed254

for supervised methods.255

Driven by the aforementioned drawbacks, and256

with the emergence of Large Language Models257

(LLMs), we propose to use LLMs to tackle this258

action extraction task, as they have demonstrated259

promising capabilities in information extraction,260

particularly in data-scarce scenarios. Naively, one261

may directly input a paragraph along with all defini-262

tions of actions and ask LLMs to extract the action263

information. However, this approach poses some264

problems. The first is the well-known hallucina-265

tion problem of the generation from LLMs (Huang266

et al., 2023). LLMs may generate actions that are267

not in the pre-defined action set since LLMs may268

directly output the verb found in the paragraph269

as an action or output an action not in the pre-270

defined set based on its summarization. Further-271

more, LLMs may output detailed action sequences272

Figure 3: Rephrasing Example.

while it should summarize some of the actions. For 273

instance, the ground-truth action for text “Add HCl 274

to pH 5.” (adding HCl until the pH of the liquid 275

is 5) is “PH with HCl to pH 5.”, while LLMs also 276

include the “ADD” action which results in “ADD 277

HCl; PH with HCl to pH5.” This demonstrates that 278

LLMs fail to understand the relationship between 279

actions. 280

In light of these limitations, we propose to refor- 281

mulate the action extraction task as a code writing 282

problem for LLMs that we transform each action 283

type into a Python class. This has a few advantages. 284

First, the abstract nature of class in programming 285

languages and the relationship between classes in- 286

cluding “Inheritance” and “Composition” relation- 287

ships help LLMs better interpret the relationships 288

between actions. Second, class variables in pro- 289

gramming languages enable LLMs to understand 290

what needs to be extracted for each action. Next, 291

it is more suitable for an environment that needs 292

changing the set of actions and the interested in- 293

formation for each action. The users can easily 294

define the operations they want to extract and the 295

attributes for each operation by simply modifying 296

the Python class file which is fed to the LLMs. 297

Finally, this minimizes the gap between natural 298

language and robotics language as it is more conve- 299

nient to transform the Python code produced by our 300

method to the code that can be executed by robots. 301

Figure 6 demonstrates the prompt we use for code 302

generation. 303

3.3 External Information Guided Extraction 304

Text Rephrasing Scientific literature may have 305

its own writing style that is different from ordinary 306

writing, particularly in chemistry literature. We 307

propose to first use LLMs to rephrase the given 308

paragraph for two main reasons. First, rephrasing 309

complex scientific texts into simpler language en- 310
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hances their comprehensibility for large language311

models like GPT-4, which are pre-trained on gen-312

eral, non-scientific text sources. Second, it intro-313

duces domain knowledge encoded in the language314

model. This is examplified in the case presented315

in Figure 3. The original paragraph (a) contains a316

phrase “m.p. 49 °C”, which is usually been mis-317

interpreted as environment temperature. By lever-318

aging LLMs for rephrasing, “m.p.” is rephrased319

as “melting point”, shown in Figure 3, and leads320

to a correct extraction. In practice, we prompt321

GPT-4 to rephrase the input text, as well as feeding322

in the mined patterns to keep the structure of the323

rephrased text as much as possible. Figure 5 shows324

the prompt we use for text rephrasing.325

Pattern-guided Extraction For human, it is pos-326

sible to identify certain action information, even327

lack of any prior domain knowledge. Consider an328

example “Partition between water (100 mL) and329

ethyl acetate (100 mL)” (Vaucher et al., 2020a).330

We can identify that “water (100 mL)” and “ethyl331

acetate (100 mL)” are the chemicals involved in332

the “Partition” action. This can be accomplished333

by the guidance of linguistic cues, including the334

semantics of phrases and the structure of sentences.335

Motivated by this observation, we utilize fre-336

quent patterns in the text that indicate specific re-337

action actions as linguistic cues to guide LLMs to338

extract action information. Take “PH” action as339

an example, we first use a special token “[Chem-340

ical]” to replace all occurrences of the chemical341

with CHEMDATAEXTRACTOR (Swain and Cole,342

2016). Several seed patterns are created, such as343

pH [pH] with [Chemical]. The red [pH] indicates344

a pH value, and the blue [Chemical] indicates the345

chemical for adjusting the pH. With a set of seed346

patterns for each action, we mine the enriched pat-347

terns through 1) labeling all occurrences in the cor-348

pus with seed patterns, 2) training a Flan-T5 model349

in a question-answering fashion, 3) re-labeling the350

corpus with the trained Flan-T5 model, and 4) se-351

lecting the most frequent patterns as the enriched352

patterns.353

After merging enriched patterns with seed pat-354

terns as new seed patterns, we repeat the afore-355

mentioned process to mine more reliable patterns356

iteratively.357

3.4 Extracted Action Evaluation358

We observe that some actions are equivalent to each359

other, for instance, [MakeSolution] with A and B is360

equivalent to [Add] A; [Add] B, and sometimes the 361

order of actions does not matter. Previous evalua- 362

tion metrics do not consider the order of actions nor 363

the equivalence between actions, and penalize mis- 364

matches. In order to take the order of actions and 365

their equivalences, we propose a graph-based met- 366

ric called GRAPH MATCHING SIMILARITY. Given 367

a sentence t with n ∈ Z actions a1, a2, ..., an, and 368

equivalent relations f : A → {A}, where A is a 369

set of actions and ai is an arbitrary action, we first 370

construct its corresponding graph G. Details can 371

be found in Algorithm 1. 372

Algorithm 1 Algorithm for Action Graph Construc-
tion
Input: Sentence t = (a1, a2, ..., an) Equivalent

Relations f : A→ {A}
Output: Graph G = (V,E)

procedure CONSTRUCTGRAPH(t, f )
V = {a1}
for i← 2 to n− 1 do

V ∪ {ai};E ∪ {(ai, ai−1), (ai+1, ai)}
if ai ∈ D(f) then

V ∪ {f(ai)}
E ∪ {(f(ai), ai−1), (ai+1, f(ai))}

end if
end for
return G = (V,E)

end procedure

After constructing graphs for the ground truth 373

sentence and the sentence to be evaluated, we com- 374

pare the similarity of the two graphs with graph 375

kernels, illustrated in Algorithm 2. 376

Algorithm 2 Algorithm for Evaluating Extracted
Actions in Natural Language

Input: Ground Truth Sentence
t = (a1, a2, ..., an), Sentence to be Evaluated
t′ = (a′1, a

′
2, ..., a

′
m), Equivalent Relations f ,

Graph Kernel k : G×G→ R
Output: Similarity Score s

G← ConstructGraph(t, f)
G′ ← ConstructGraph(t′, f)
s← k(G,G′)

Graph kernels are widely used for evaluating 377

the similarity between two graphs (Vishwanathan 378

et al., 2010). The implementation is conducted with 379

GraKeL (Siglidis et al., 2020). The evaluation with 380

human judgements compared with other metrics 381
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can be found at Section 4.3.382

4 Experiments383

4.1 Experimental Setup384

Datasets We evaluate the effectiveness of our385

method on two datasets. One is the test set used386

in previous work (Vaucher et al., 2020a), which387

contains 352 texts related to an experimental proce-388

dure for chemical synthesis. We refer this dataset389

as PATENTACTION as all the paragraphs in it are390

from patent data. Dataset statistics can be found in391

Appendix B. The input is a paragraph from chem-392

ical literature which contains one or multiple ac-393

tions. The output is a combination of pre-defined394

actions in natural language. This dataset is de-395

signed for evaluating action extraction in chemical396

literature setting based on chemist’s need.397

Since extracting action information from sci-398

entific literature is of the same significance as399

from patent data, collabrating with chemists, we400

construct a dataset called SCIENTIFICACTION.401

100 long paragraphs are collected from ChemRxiv402

(Cambridge Open Engage, 2023). The average403

length of paragraphs in ScientificAction is 770.77,404

while the average length in PatentAction is only405

158.24. ScientificAction will be released upon the406

acceptance of the paper.407

Baselines We compare ActionIE with several408

state-of-art methods: Paragraph2Actions (Vaucher409

et al., 2020a), ChemTrans (Zeng et al., 2023),410

GALACTICA-6.7b(Taylor et al., 2022), and GPT-4411

(OpenAI, 2023).412

Implementation Details We choose GPT-4-413

0613 (OpenAI, 2023) as the model for extrac-414

tion, which supports up to 8,192 tokens. We use415

“google/flan-t5-large” (Raffel et al., 2020) for lin-416

guistic pattern extraction. GPT-4 (OpenAI, 2023)417

is accessed through OpenAI api. For the parame-418

ters of GPT-4 (OpenAI, 2023), we use sampling419

temperature t = 0, and set 500 as the maximum420

number of new tokens.421

Evaluation Metrics for Natural Language Fol-422

lowing previous work, we use BLEU score (Pap-423

ineni et al., 2002) and Levenshtein Similarity (Lev-424

enshtein et al., 1966) to evaluate the quality of425

extracted actions in natural language. Following426

previous work, the BLEU score is modified since427

the original BLEU score does not consider short428

sentences which is common in the test data. The429

proposed GRAPH MATCHING SIMILARITY is also 430

used for evaluating in the natural language level. 431

Evaluation Metrics for Operation Level In or- 432

der to verify the quality of the extracted action se- 433

quence in operation level, we use precision, recall, 434

and F1 scores. The sets of operations in ground 435

truth and output are compared, and the attributes 436

are ignored. To better consider the order of opera- 437

tions, we employ SeqMatch-O (SM-O) proposed 438

in Zeng et al. (2023), an evaluation metric for se- 439

quence matching in operation level. For details of 440

SeqMatch-O, please refer to Zeng et al. (2023). 441

Evaluation Metrics for Attribute Level Fol- 442

lowing previous work, we leverage SeqMatch-A 443

(SM-A) proposed in Zeng et al. (2023) for veri- 444

fying the quality of attribute-level extraction. For 445

each matched position in SeqMatch-O, the leven- 446

shtein similarity is calculated for each argument 447

pair, and the average argument score is used rather 448

than the original 1 in SM-O. Please refer to Zeng 449

et al. (2023) for more details. 450

4.2 Experimental Results 451

Results for Extraction in Natural Language 452

The first part of Table 2 represents the results of ex- 453

traction in natural language in PatentAction dataset. 454

ChemTrans cannot output natural language action 455

sequences, hence, its scores are not calculated. Our 456

proposed ACTIONIE significantly outperforms all 457

baselines in levenshtein similarity, and outperforms 458

all baselines in BLEU except Paragraph2Actions, 459

but still get a very close score. GALACTICA- 460

6.7 performs poorly as it is not designed for this 461

task. GPT-4 demonstrates its promising perfor- 462

mance given its comparable scores with just 10 463

demonstrations. 464

The second part of Table 2 represents the re- 465

sult of extraction in natural language in Scientifi- 466

cAction, a more complex and challenging dataset 467

than PatentAction. Paragraph2Actions is trained 468

on patent data and does not generalize well in sci- 469

entific literature. Sometimes, Paragraph2Actions 470

only outputs FollowOtherProcedure action and ig- 471

nores other actions described in the input paragraph. 472

Even GPT-4 receive higher scores in levenshtein 473

similarity, demonstrating better generalization than 474

Paragraph2Actions. Ablation study highlights the 475

significance of using patterns as linguistic cues, in 476

all cases, we gain much improvement by utilizing 477

the patterns. 478
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Models BLEU Levenshtein
Similarity Precision Recall F1 Graph Matching

Similarity SM-O SM-A

Results for PatentAction (Avg Length: 158.24)

Supervised Methods
Paragraph2Actions 0.8511 0.8927 0.9017 0.9034 0.8985 0.8003 0.8893 0.8629
ChemTrans - - 0.5927 0.4325 0.4866 - 0.4401 -

Few-shot Methods (10-shot)
Galactica-6.7b 0.0051 0.1336 0.3526 0.2705 0.2732 0.2921 0.1453 0.0534
GPT-4 0.4280 0.6822 0.7537 0.7758 0.7458 0.7923 0.7566 0.6633
ACTIONIE 0.8237 0.9018 0.9126 0.9198 0.9101 0.8136 0.8880 0.8521

- Patterns 0.6829 0.8070 0.8458 0.8220 0.8218 0.8074 0.8248 0.7583

Results for ScientificAction (Avg Length: 770.77)

Supervised Methods
Paragraph2Actions 0.4907 0.5380 0.8643 0.5933 0.6633 0.6391 0.5922 0.5118
ChemTrans - - 0.9212 0.4583 0.5982 - 0.4924 -

Few-shot Methods (10-shot)
Galactica-6.7b - - - - - - - -
GPT-4 0.4571 0.6625 0.7858 0.7175 0.7312 0.7574 0.6670 0.5137
ACTIONIE 0.7808 0.8394 0.9236 0.8166 0.8584 0.8013 0.8277 0.7087

- Patterns 0.7193 0.8160 0.8942 0.8033 0.8444 0.7980 0.8099 0.6757

Table 2: Overall experimental results. ChemTrans does not support outputting natural language, only the operations
are evaluated. Galactica-6.7b fails when the input is too long, therefore, the result is not reported.

Figure 4: Case Study.
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Metric Name Pearson Spearman
Kendall’s

Tau

BLEU 0.1791 0.2427 0.2055

Levenshtein
Similarity

0.1742 0.2603 0.2179

Graph Matching
Similarity

0.3144 0.2976 0.3058

Table 3: Metric Correlations with Human Judgements.

Results for Operation-Level Extraction The479

middle columns of Table 2 represents the results480

of operational-level extraction. In the PatentAction481

dataset, ACTIONIE beats all baselines in precision,482

recall, and F1 scores, and have very close scores483

with Paragraph2Actions in SeqMatch-O (0.8880 vs484

0.8893).485

In the ScientificAction dataset, ACTIONIE out-486

performs all baselines. Both Paragraph2Actions487

and ChemTrans are trained on patent data, and488

achieve a high precision, but have a low recall and489

F1 scores.490

As for the albation study, ACTIONIE benefits491

significantly from the improvement provided by492

the patterns, which suggests that the patterns effec-493

tively help identify the actions.494

Results for Attribute-Level Extraction As495

listed in the last column of Table 2, in PatentAction496

dataset, ACTIONIE outperforms all baselines ex-497

cept Paragraph2Actions, but still has a competitive498

score (0.8521 vs 0.8629).499

In ScientificAction dataset, ACTIONIE surpasses500

all baselines by a substantial margin. Note that501

GPT-4 receives a slightly higher score than Para-502

graph2Actions, which further implies the limitation503

of supervised methods such as Paragraph2Actions504

and ChemTrans.505

4.3 Evaluation Metric Analysis506

To better understand how well our proposed507

GRAPH MATCHING SIMILARITY metric aligns508

with human evaluation, we randomly sample 100509

outputs produced by Paragraph2Actions, GPT-4,510

and ACTIONIE, which are then given a score by511

chemists from 1 to 5. We calculate three correla-512

tion coefficients, Pearson, Spearman, and Kendall’s513

Tau. As the results shown in Table 3, the pro-514

posed GRAPH MATCHING SIMILARITY is better515

aligned with human judgements than BLEU and516

Levnshtein Similarity.517

4.4 Case Study 518

We randomly sample an example from SCIENTIFIC- 519

PATENT and study the output of different methods 520

(see Figure 4). Paragraph2Actions only outputs 521

FollowOtherProcedure action, and it has been no- 522

ticed that it consistently does so whenever the input 523

mentions another procedure. While the model is 524

supervised to do so, this is an unwanted behavior 525

since the output would ignore any other actions 526

mentioned in the text. ChemTrans only captures 527

the YIELD action, though it includes many details 528

of the reagent. However, ChemTrans will fail if 529

we are also interested in the melting point (mp) 530

of the product given it is a supervised method. It 531

also misclassifies the product as reagent. GPT-4 532

correctly extracts most of the actions and their at- 533

tributes while missing the first ADD action, and 534

the order of actions is wrong. 535

5 Conclusion and Future Work 536

In this paper, we propose ACTIONIE, a framework 537

for extracting experimental action sequences from 538

scientific literature. Our approach leverages the 539

strength of LLMs by transforming the action ex- 540

traction problem into a coding question for LLMs. 541

Additionally, it incorporates text rephrasing and 542

linguistic knowledge which further improve the 543

overall performance. To more accurately evalu- 544

ate the extraction quality, we introduce a graph- 545

based metric, GRAPH MATCHING SIMILARITY. 546

We have also developed a dataset, SCIENTIFICAC- 547

TION, to offset the lack of scientific literature oc- 548

curred in previous datasets. Experiments demon- 549

strate that ACTIONIE outperforms state-of-the-art 550

baselines and GRAPH MATCHING SIMILARITY is 551

more aligned with human judgements than previ- 552

ous evaluation metrics. For future developments, 553

one exciting yet challenging direction is to explore 554

deeper into different aspects of the extraction pro- 555

cess and integrating these parts into an automated 556

workflow that transforms scientific papers into ac- 557

tionable experiments. This contains identifying 558

relevant paragraphs from scientific papers that de- 559

scribe experimental procedures, creating a robotic 560

system that runs the extracted chemical actions, 561

and automated outcome validation. 562

Limitation 563

The limitations of this paper are stated as follows: 564

1. In our experiments, we use GPT-4 as the back- 565

bone model through OpenAI’s API. Although 566
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ACTIONIE can be incorporated with other567

causal language models, the performance may568

change when using different language mod-569

els. In addition, the performance might be570

changed by the modification of GPT-4 since571

its performance may be different over time572

(OpenAI, 2023). Replacing the GPT-4 API573

with a static large language model such as574

Llama-2 (Touvron et al., 2023) could alleviate575

this issue, but this may require considerable576

computing resources, which are often limited.577

2. Although the dataset proposed in this paper is578

collected from scientific literature and is much579

longer than previous datasets, it is still shorter580

than a scientific paper. Extracting informa-581

tion from a full paper may not be possible if582

it is too long, given that current GPT-4 API583

has token limits. Integrating a text segmenta-584

tion module may be one direction to solve this585

problem. Another direction may be deploy-586

ing techniques that reduce the token limits587

(Bertsch et al., 2023).588
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A Action Type842

We adopt the same action types as in the previous843

study, including 26 pre-defined action types. We844

include the detailed descriptions of action types in845

(Vaucher et al., 2020a) as a reference in Table 4 to846

help readers better understand the action types.847

B Dataset statistics 848

The number of each action type mentioned in all 849

352 samples are summarized in Table 5. 850

C Prompt 851

Figure 5 demonstrates the prompt for text rephras- 852

ing. Figure 6 represents the prompt for code gener- 853

ation. 854
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Figure 5: Prompt for Text Rephrasing.

Figure 6: Prompt for Code Generation.
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Action Type Description

Add Add a substance to the reactor
CollectLayer Select aqueous or organic fraction(s)
Concentrate Evaporate the solvent (rotavap)
Degas Purge the reaction mixture with a gas
DrySolid Dry a solid
DrySolution Dry an organic solution with a desiccant
Extract Transfer compound into a different solvent
Filter Separate solid and liquid phases
MakeSolution Mix several substances to generate a mixture or solution
Microwave Heat the reaction mixture in a microwave apparatus
Partition Add two immiscible solvents for subsequent phase separation
PH Change the pH of the reaction mixture
PhaseSeparation Separate the aqueous and organic phases
Purify Purification
Quench Stop reaction by adding a substance
Recrystallize Recrystallize a solid from a solvent or mixture of solvents
Reflux Reflux the reaction mixture
SetTemperature Change the temperature of the reaction mixture
Sonicate Agitate the solution with sound waves
Stir Stir the reaction mixture for a specified duration
Triturate Triturate the residue
Wait Leave the reaction mixture to stand for a specified duration
Wash Wash (after filtration, or with immiscible solvent)
Yield Phony action, indicates the product of a reaction
FollowOtherProcedure The text refers to a procedure described elsewhere
InvalidAction Unknown or unsupported action
OtherLanguage The text is not written in English
NoAction The text does not correspond to an actual action

Table 4: Pre-defined action types used in this paper.
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Action Type Total number of occurences

Add 255
CollectLayer 37
Concentrate 54
Degas 1
DrySolid 12
DrySolution 22
Extract 34
Filter 34
MakeSolution 62
Microwave 0
Partition 5
PH 47
PhaseSeparation 4
Purify 24
Quench 8
Recrystallize 2
Reflux 7
SetTemperature 60
Sonicate 0
Stir 118
Triturate 3
Wait 19
Wash 45
Yield 37
FollowOtherProcedure 15
InvalidAction 11
OtherLanguage 2
NoAction 25

Table 5: Dataset statistics.
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