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ABSTRACT

Graph Neural Networks (GNNs) have shown great promise in processing graph-
structured data, but they often require large amounts of labeled data and are sensi-
tive to noise. In this paper, we propose a novel node-level data augmentation ap-
proach that leverages a Variational Autoencoder (VAE) within a dual-task learning
framework to address these challenges. Our method utilizes the VAE to gener-
ate enriched node representations that capture both structural and feature-related
information, which are then combined with the original node features for clas-
sification by a Graph Attention Network (GAT). Experiments conducted on the
Cora, Citeseer, and Pubmed datasets show that our approach outperforms base-
line models, achieving up to 7.3% higher accuracy in Pubmed, and surpassing
recent state-of-the-art data augmentation techniques. This work highlights the
effectiveness of dual-task learning for robust feature enhancement and advances
data augmentation strategies in GNNs.

1 INTRODUCTION

Graph-structured data is increasingly prevalent across domains, including social networks, biolog-
ical systems, and recommendation engines. Graph Neural Networks (GNNs) have become central
tools for analyzing such data due to their success in tasks like node classification, link prediction,
and community detection (Kipf & Welling, [2017; |Velickovi¢ et al., 2018). Despite this success,
GNNGs often require extensive labeled data and can be sensitive to noise or structural perturbations,
limiting their applicability in settings where high-quality labeled data is scarce or noisy.

Traditional augmentation techniques, such as edge manipulation or node feature masking, aim to in-
crease data diversity and robustness but may fail to fully capture the complex dependencies in graph
structures. These methods risk introducing unrealistic modifications that disrupt graph integrity, thus
necessitating more refined augmentation approaches (You et al., 2020; Rong et al., 2020).

Variational Autoencoders (VAEs) (Kingma & Welling| 2014)) offer a probabilistic framework for
learning expressive latent representations and have been adapted for graph tasks like link prediction
and graph generation (Kipf & Welling} 2016} [Salha et al., 2019). However, their potential for node-
level data augmentation, particularly in supervised learning, remains underexplored. Leveraging
VAE-generated latent representations within a GNN framework may enrich node features in a way
that maintains structural coherence and improves robustness to noise.

In this work, we propose a novel node-level data augmentation method that combines a VAE with
a dual-task learning framework to generate enriched node representations. Unlike traditional ap-
proaches, our method uses a multi-channel encoder that treats various GNN architectures as comple-
mentary filters. Each GNN channel—such as GCN, GAT, SAGE, or GIN—extracts unique structural
patterns, effectively decomposing data into multi-faceted representations. This modular, filter-based
design allows our framework to flexibly incorporate additional GNN variants, enhancing feature
diversity and task adaptability.

Our approach simultaneously trains the VAE for both data reconstruction and node classification,
creating latent representations that are both structurally informative and task-relevant. This study
is constrained by limited resources, which directs our focus towards methods that can demonstrate
robustness and scalability within these constraints. In this way, the VAE serves as a core innovation
in generating new features that improve robustness against noise and enriches the original feature
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set. By using this combination of VAE-driven feature augmentation and a multi-channel encoder,
our framework is not only robust to noisy environments but also highly adaptable to different graph
structures, enabling users to select channels based on dataset characteristics and task needs.

Our main contributions are summarized as follows:

* VAE-based Node-Level Augmentation: We introduce a VAE framework that produces
enriched latent node representations, addressing both data scarcity and robustness in noisy
environments.

* Filter-based Multi-Channel Encoder for Structural Diversity: By treating multiple
GNN architectures (GCN, GAT, SAGE, GIN) as filters that capture distinct structural pat-
terns, our encoder flexibly decomposes data to improve representational quality.

* Dual-task Learning Framework: The dual-task approach combines data reconstruction
and node classification, yielding a discriminative latent space that enhances node classifi-
cation while preserving structural integrity.

The remainder of the paper is organized as follows: Section 2 reviews related work in graph data
augmentation and VAEs for graphs; Section 3 details our proposed method; Section 4 presents ex-
perimental results and analysis; Section 5 discusses findings and limitations, including a discussion
on potential applications for diverse graph structures; and Section 6 concludes with future research
directions.

2 RELATED WORK

2.1 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) have become the standard approach for learning on graph-
structured data (Kipf & Welling, 2017; [Velickovi¢ et al., |2018)). Key architectures, including
Graph Convolutional Networks (GCN) (Kipf & Welling| [2017), Graph Attention Networks (GAT)
(Velickovic et al. 2018)), GraphSAGE (Hamilton et al., 2017), and Graph Isomorphism Networks
(GIN) (Xu et al.l 2019), have shown effectiveness in tasks such as node classification, link pre-
diction, and community detection. Each of these architectures captures different aspects of graph
structure: GCNs focus on local aggregation, GAT's use attention mechanisms for adaptive neighbor
importance, SAGE aggregates neighborhood information to capture long-range dependencies, and
GIN improves expressive power for isomorphism properties in graphs.

However, GNNs often suffer from limitations like over-smoothing—where node features become
indistinguishable in deeper layers—and the need for substantial labeled data to achieve high perfor-
mance (Alon & Yahav| 2021} [Zhao et al., 2023). Moreover, single-architecture approaches may be
insufficient to fully capture diverse structural information in complex graph data. Our multi-channel
encoder addresses these limitations by treating each GNN architecture as a distinct filter, combining
their unique strengths in a modular framework to enhance feature diversity and adaptability.

2.2  VARIATIONAL AUTOENCODERS FOR GRAPHS

Variational Autoencoders (VAEs) (Kingma & Welling| 2014) provide a probabilistic approach to
learning latent representations and have been leveraged in graph learning for tasks such as link
prediction and graph generation. Notable VAE-based models, such as VGAE (Kipf & Welling,
2016) and GraphVAE (Simonovsky & Komodakis| [2018)), primarily focus on unsupervised learning
and graph generation by modeling distributions over adjacency matrices and node features. While
these models contribute to generative tasks, their potential for direct node-level data augmentation
in supervised learning remains underexplored.

The VAE model is typically trained by minimizing a combined objective of reconstruction loss and
Kullback-Leibler (KL) divergence:

LVAE = Eq,(z[x)[log p(x|2)] — KL(q4(2[x)||ps(2)) (1)
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where x represents the input node features, and z is the latent representation learned by the encoder.
In our work, this objective is adapted to create task-relevant, augmented node representations for
supervised node classification, enhancing feature richness and robustness against noise.

2.3 DATA AUGMENTATION IN GRAPHS

Data augmentation techniques in graph learning aim to improve model generalization by artifi-
cially increasing data diversity. In graph settings, common methods like DropEdge (Rong et al.,
2020)—which randomly removes edges—and GraphMix (Verma et al., 202 1))—which creates mixed
node features—have been proposed to address issues like over-smoothing and overfitting. GraphCL
(You et al.| [2020) further introduces contrastive learning with augmentations like node dropping and
edge perturbation to encourage model robustness.

However, these techniques often rely on random perturbations, which may inadvertently disrupt
essential structural information. Our approach differs by generating structured, task-relevant repre-
sentations using VAE to maintain graph integrity, offering a more refined augmentation strategy that
preserves important structural dependencies for node classification.

2.4 MULTI-TASK LEARNING IN GNNS

Multi-task learning (MTL) (Caruana, [1997) is commonly used to enhance model generalization by
simultaneously training on related tasks, as seen in applications like node classification combined
with link prediction (Zhang & Chen, 2018)) or community detection (Sun et al., 2019). Dual-task
learning, a subset of MTL, enables GNNs to learn more robust and discriminative representations
by balancing information across tasks. In our framework, we integrate dual-task learning within the
VAE, simultaneously training for both data reconstruction and node classification. This approach
improves feature representation quality and robustness, as it allows the model to learn a latent space
that benefits both reconstruction and task-specific objectives.

2.5 OUR CONTRIBUTION

While VAEs, data augmentation, and multi-task learning have each been explored within GNN
frameworks, their combined potential in a modular framework for node-level data augmentation
is less explored. By introducing a VAE with a dual-task learning framework and a filter-based
multi-channel encoder, we bridge this gap, enabling the generation of enriched, task-relevant node
representations. This method is not only effective for node classification but also provides a highly
adaptable framework for diverse graph tasks by allowing the selection of different GNN channels
based on the data characteristics and task requirements.

3 METHODS

Our proposed method consists of two main components: a VAE with a multi-channel encoder for
node-level data augmentation, and a GAT for node classification using the augmented features
to evaluate the effectiveness of the augmentation process. The dual-task learning framework
trains the VAE simultaneously for both data reconstruction and node classification, ensuring that the
learned representations are both robust and task-relevant.

3.1 BASELINE MODEL: DOUBLE-LAYER GAT

To establish a benchmark in our experimental study, we implemented a two-layer GAT as the base-
line, capturing relational dynamics within the graph structure for progressive refinement of node
representations. After systematic hyperparameter tuning, we identified optimal settings: a learning
rate of 0.01, a hidden layer size of 1, 28 attention heads in the first layer, and 12 in the second, using
the Adam optimizer with a weight decay of 0.001. Our baseline model achieved a node classification
accuracy of 82.8%, with precision, recall, and F1 scores of 0.810, 0.841, and 0.822, respectively,
providing a strong foundation for comparisons with our proposed framework.
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Figure 1: Encoder Structure

3.2 UPSTREAM TASK: VAE WITH AUXILIARY NODE CLASSIFICATION TASK

For the upstream task, we designed a Variational Autoencoder (VAE) to capture latent represen-
tations of the Cora dataset through a dual-task training approach. The VAE encoder maps the input
graph data to a latent space, while the decoder reconstructs the data from these latent representa-
tions. Notably, the encoder’s reparameterized output (specifically the mean ) serves a dual role: it
contributes to the data reconstruction and simultaneously acts as input for an auxiliary node clas-
sification task through two stacked linear layers. This dual-task setup allows the VAE to produce
embeddings that are robust to noise while enhancing downstream classification performance.

3.2.1 ENCODER ARCHITECTURE

The encoder design, shown in Figure[T] captures features and structures through several key stages:

- Initial Linear Layer Node features are first projected into a higher-dimensional space, providing
an enriched representation that supports subsequent convolutional operations.

- Multi-channel Convolutional Layers The encoder’s core component is the multi-channel con-
volutional layer, comprising multiple parallel graph convolutional operations. By treating GCN,
GAT, SAGE, and GIN layers as unique filters, each capturing different structural properties, the
model gains a more comprehensive understanding of the graph:

* GCN Layer: Aggregates local connectivity patterns to capture neighborhood features.
* GAT Layer: Uses an attention mechanism to prioritize important nodes, enhancing rela-
tional representation.
* SAGE Layer: Aggregates information for long-range dependencies, offering a broader
graph perspective.
* GIN Layer: Emphasizes isomorphism properties, maintaining nuanced node feature rep-
resentations.
- Feature Fusion The outputs of the convolutional layers are concatenated, merging the strengths
of each graph convolutional operation into a single, enriched feature representation.

- Output Linear Layers This concatenated representation is then fed into two parallel linear lay-
ers to estimate the latent space parameters x (mean) and log o2 (log variance), defining the latent
distribution for reconstruction.
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Figure 2: Two-stage Experimental Framework

3.2.2 VAE TRAINING

VAE Loss The VAE’s loss function combines reconstruction loss and a KL divergence term:
Lyvag = Eq, (z1x) [10g po(x|2)] — KL(qy(z|x)||ps (z)) )

where x represents the input node features, and z is the latent representation.

Dual-task Training In our training framework, the encoder output serves both reconstruction and
node classification. By training the encoder on both tasks, it learns to generate latent representations
beneficial for both, enhancing classification accuracy and retaining high-quality reconstructions.

Loss Weight Adjustment The dual-task loss function incorporates weighted contributions from
reconstruction and classification losses:

Liotal = @ Lrecon + b+ Lelass 3)

where a and b are weight parameters for each loss. In practice, the classification loss tends to be 10
to 100 times smaller than the reconstruction loss. To balance these, we amplify the classification
loss by approximately 4500 times, achieving a scale alignment that prevents dominance by either
task, optimizing overall performance and accuracy.

3.3 NODE-LEVEL DATA AUGMENTATION STRATEGY

To augment node features, we concatenate the latent vector p (obtained via the encoder’s reparam-
eterization) with the original node feature vector data . x. This combined representation enriches
each node’s feature vector, enhancing the downstream model’s ability to classify nodes accurately.

3.4 DOWNSTREAM TASK: GAT WITH AUGMENTED FEATURES

For the downstream task, we use the augmented feature representations as input to a two-layer GAT
model. Additional hyperparameter tuning was conducted to optimize performance, validating the
effectiveness of our data augmentation strategy.

3.5 PERFORMANCE EVALUATION

We evaluate the effectiveness of our proposed method using four metrics: accuracy, F1 score, preci-
sion, and recall, calculated on a consistent data split to ensure fair comparison. This setup enables a
comprehensive assessment of model performance for node classification tasks.
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We compare three configurations: the baseline GAT with original features, GAT with single-task
VAE-augmented features, and GAT with features augmented by our dual-task VAE. This comparison
highlights the impact of our augmentation strategy and dual-task learning on classification accuracy
and model robustness.

4 EXPERIMENTAL RESULTS

4.1 DATASETS

We evaluated our method on three widely used benchmark citation network datasets: Cora, Citeseer,
and Pubmed (McCallum et al., 2000; (Giles et al., |1998} [Sen et al., [2008]). These datasets cover a
range of graph sizes, feature dimensions, and sparsity levels, making them ideal for testing the
robustness and generalizability of graph-based models.

e Cora: 2,708 nodes, 5,429 edges, 1,433 features, 7 classes.
* Citeseer: 3,327 nodes, 4,732 edges, 3,703 features, 6 classes.
* Pubmed: 19,717 nodes, 44,338 edges, 500 features, 3 classes.

4.2 EXPERIMENTAL FRAMEWORK

Our study adopts a two-stage framework to enhance GNN performance for node classification tasks.
In the first stage, a Variational Autoencoder (VAE) is used to learn latent representations of the
graph data, capturing both structural and feature information. In the second stage, these latent
representations are combined with raw features to serve as inputs for a Graph Attention Network
(GAT), enabling enriched feature-based classification. The VAE is trained under a dual-task learning
framework to ensure that the learned representations are both task-relevant and structurally coherent.

4.3 EXPERIMENTAL SETUP

Due to computational resource constraints, this study evaluates the proposed method on three widely
used benchmark datasets: Cora, Citeseer, and Pubmed. While these datasets are smaller in scale
compared to emerging large-scale graph benchmarks, they provide a well-established foundation
for validating methodological effectiveness. Future work will explore the scalability of the proposed
framework on larger and more complex datasets as resources permit.

We follow the dataset splits used in (Yang et al.l 2016), with 20 nodes per class for training, 500
nodes for validation, and 1,000 nodes for testing. All models were implemented in PyTorch and
PyTorch Geometric (Fey & Lenssen, 2019), and hyperparameter tuning was performed on the vali-
dation set.

The following experimental settings were adopted: Random seed: 42, Optimizer: Adam, Learning
rate: 0.0001, Weight decay: 0 and Loss weight adjustment: Classification loss scaled by a factor of
4,500 to align it with the reconstruction loss magnitude.

To evaluate the proposed method’s robustness and effectiveness, we conducted experiments under
two conditions:

* Fixed conditions: The same random seed (42) was used for both augmented data genera-
tion and model training to ensure consistency and highlight the method’s potential.

* Random conditions: Different random seeds were used for augmented data generation and
training across multiple runs, reflecting the method’s performance in varying real-world
scenarios.

This dual evaluation framework allows for a comprehensive assessment of both the method’s peak
performance and its robustness across diverse settings.

4.4 IMPACT OF VAE NODE-LEVEL DATA AUGMENTATION

Single-source configurations (e.g., Decoder-only: 80.7% accuracy on Cora) showed limited perfor-
mance. Combined configurations (Raw+NR) significantly improved accuracy (up to 88.6% under
MCC), leveraging latent features and preserving raw structural information.

6
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Table 1: Ablation Study on Cora Dataset with MCC: GCN+GAT+SAGE+GIN

Model Train Data Dual Task Loss Adjust Accuracy (%) F1 (%)
GAT+DVAE Decoder (VAE-Only) False False 80.7 79.9
GAT+DVAE NR (Latent Only) False False 81.8 81.1
GAT+DVAE Raw+NR False False 82.6 81.9
GAT+DVAE Raw+NR True False 82.6 82.2
GAT+DVAE Raw+NR True True 88.6 87.3

4.5 EFFECT OF DUAL-TASK TRAINING AND LOSS WEIGHT ADJUSTMENT

The dual-task framework demonstrated measurable benefits for node classification, increasing accu-
racy by approximately 0.6% on the Cora dataset when enabled. Furthermore, scaling the classifica-
tion loss by a factor of 4,500 to align its magnitude with the reconstruction loss significantly boosted
performance, achieving an accuracy of 88.6% on the Cora dataset. This highlights the importance
of task-relevant latent representations and balanced optimization in node classification tasks.

4.6 EFFECT OF MCC ARCHITECTURE

To evaluate the impact of the multi-channel convolutional layer (MCC) on model performance, we
conducted a detailed ablation study. Starting from a single GCN layer, we progressively added more
GNN variants (GAT, SAGE, GIN) to construct the MCC architecture. The results, shown in Table
demonstrate that incorporating additional GNN variants consistently improves performance. This
improvement can be attributed to the diverse structural patterns captured by different GNN layers,
with GIN effectively mitigating over-smoothing and SAGE capturing long-range dependencies.

Table 2: MCC Structure Influence on Results

MODEL ARCHITECTURE ACC F1
GAT+DVAE MCC: GCN+GAT 0.865 0.849
GAT+DVAE MCC: GCN+GAT+SAGE 0.878 0.860

GAT+DVAE MCC: GCN+GAT+SAGE+GIN 0.886 0.873

4.7 COMPARISON OF AUGMENTATION METHODS ON GRAPH DATASETS

In Table 3] we present a comparative analysis of the performance of GAT+DVAE against the base-
line model, two-layer GAT, across various datasets, demonstrating the general effectiveness of our
approach with different random seeds. Building on this overview, Table [] delves deeper into the
specifics of our method’s performance on the Cora dataset, where GAT+DVAE is pitted against
other state-of-the-art graph augmentation techniques. Key observations include:

* Baseline and Traditional VAE Usage (Decoder-Only): The GAT+Decoder (VAE-Only)
configuration, representing a traditional use of VAE for data generation, achieves an accu-
racy of 80.7%. While this result demonstrates the utility of decoder-generated features, it
is lower than methods that integrate latent representations or task-specific features.

* Supervised and Self-Supervised Augmentation Methods: Recent methods like DropE-
dge and GraphMAE leverage self-supervised learning or edge perturbations for augmen-
tation (Hou et al., [2022)). GraphMAE achieves 84.2%, while DropEdge reaches 87.6%,
showing their ability to address over-smoothing and improve generalization.

* Our Method (GAT+DVAE): By combining task-relevant latent features, raw features, and
dual-task training, GAT+DVAE achieves the highest accuracy of 88.6%, outperforming
GraphMAE (+4.4%) and DropEdge (+1.0%). This highlights the advantages of our frame-
work in integrating structural and task-relevant information.
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Table 3: Performance Comparison Across Fixed and Random Conditions

Dataset Condition Model Accuracy (%) Std (%) Improvement (%)
Cora Random GAT 83.0 +0.7 -
Fixed GAT+DVAE 88.1 +0.4 +6.1
Random GAT+DVAE 88.1 +0.3 +6.1
Citeseer Fixed GAT 70.1 +0.8 -
Fixed GAT+DVAE 754 +0.8 +7.6
Random GAT+DVAE 74.1 +1.5 +5.7
Pubmed Fixed GAT 79.0 +0.3 -
Fixed GAT+DVAE 85.7 +0.2 +8.5
Random GAT+DVAE 85.6 +0.7 +8.4

Notel: Fixed conditions use the same seed (42) to generate augmented data and run the experiments in
different seeds, ensuring consistency. Random conditions involve varying seeds for both data generation and
training, reflecting the method’s robustness across different settings.

Note2: The accuracy for the GAT on Citeseer is lower than 72.5% in (Hou et al.||2022)), due to the use of the
two-layer GAT architecture in our experiments.

Table 4: Comparison of Augmentation Methods on Cora Dataset

Model Accuracy (%) Model Accuracy (%)
Unsupervised Methods
GAE 71.5+04 GPT-GNN 80.1+1.0
GATE 83.2+0.6 DGI 82.3+0.6
MVGRL 83.5+04 GRACE 81.9+04
BGRL 82.7+0.6 InfoGCL 83.5+0.3
CCA-SSG 84.0+04 GraphMAE 84.2+04
Supervised Methods
GAT 83.0+£0.7 GAT+partitioning 80.11 £0.84
GAT+Decoder (VAE-Only) 80.7 £ 0.5 GCN 81.5+£0.7
GAT+completion 80.5+x1.2 GCN+DropEdge 87.6
GAT+clustering 794 £0.7 GCN+DVAE (Our) 87.9+04
GAT+DVAE (Our) 88.1 +0.4

4.8 VISUALIZATION OF LATENT SPACE

To validate the quality of the VAE-learned representations, we visualized the latent embeddings
using t-SNE, as shown in Figure[3] The augmented representations exhibited clear class boundaries,
illustrating the improved distinguishability of node features after augmentation.

5 DISCUSSION

5.1 EXPERIMENTAL RESULTS ANALYSIS AND ABLATION STUDY

The results show that our framework greatly improves GAT’s performance in node classification.
The ablation study revealed that combining raw features with latent representations (Raw+NR) sig-
nificantly outperformed single-source methods, with accuracy on Cora increasing from 80.7% to
88.6%. This underscores the value of task-relevant latent features and confirms the effectiveness of
our dual-task framework in balancing reconstruction and classification goals.

5.2 IMPACT OF ARCHITECTURE COMPLEXITY

Our experiments indicate that increasing architectural complexity by integrating various GNNs
(GCN, GAT, SAGE, GIN) into the multi-channel convolutional layer (MCC) enhances perfor-
mance. Each GNN contributes unique strengths, such as GIN’s ability to prevent over-smoothing
and SAGE’s capacity for long-range dependency capture, leading to more robust node embeddings.
This suggests that Further expanding MCC could enhance performance.
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Figure 3: t-SNE Visualization of Latent Space Embeddings

5.3 EFFECTIVENESS OF DUAL-TASK TRAINING AND LOSS WEIGHT ADJUSTMENT

The dual-task learning framework, combining data reconstruction and node classification, proved
essential for creating task-relevant latent spaces. Without dual-task training, the learned latent rep-
resentations primarily reflect the reconstruction objective, limiting their utility for downstream tasks.
Enabling dual-task training increased accuracy on the Cora dataset by approximately 0.6%, while
further loss weight adjustment (scaling classification loss by 1,000x) aligned the two objectives, re-
sulting in a final accuracy of 88.6%. This approach effectively balances the competing objectives,
enabling the model to generate task-relevant features that maintain structural coherence.

5.4 MITIGATING OVER-SMOOTHING WITH NODE-LEVEL DATA AUGMENTATION

Over-smoothing, a well-known challenge in GNNs, occurs when node representations become in-
distinguishable in deeper networks. Our method’s node-level data augmentation strategy effectively
addresses this issue by introducing enriched features derived from the VAE’s latent space. By con-
catenating raw features with task-specific latent representations, our approach preserves node-level
distinctions, enabling GAT to achieve higher classification accuracy and improved robustness. This
enhancement is particularly evident in models incorporating multi-channel convolutional layers,
which capture diverse local and global structural patterns.

5.5 VISUALIZATION AND INTERPRETABILITY

Visualization of the VAE-learned latent space further validates the model’s ability to improve node-
level feature distinguishability. As shown in Figure[3] the t-SNE visualization reveals well-separated
class boundaries, indicating that the augmented features enhance class separability. This inter-
pretability is crucial for understanding how the model processes complex graph-structured data
and demonstrates that the learned representations align with the underlying class structure. Such
visualization provides valuable insights for analyzing and refining node embeddings.

5.6 FUTURE APPLICATIONS AND TASK GENERALIZATION

The flexibility of our VAE-based data augmentation framework makes it adaptable to a wide range
of graph-related tasks. By modifying the auxiliary task in the dual-task framework, the model can
generate latent representations tailored to applications such as community detection, link prediction,
and graph clustering. Additionally, expanding the MCC architecture to include more specialized
GNN variants could further enhance feature expressiveness, enabling the framework to generalize
across diverse graph datasets. For instance, integrating hierarchical GNNs or relational GNNs could
improve performance on multi-relational or hierarchical graphs.
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5.7 LIMITATIONS AND FUTURE WORK
5.7.1 RESOURCE CONSTRAINTS AND PRACTICAL FEASIBILITY

This study was conducted under constrained computational resources, which limited the scale of
experiments to medium-sized datasets. Despite these constraints, the proposed framework achieved
state-of-the-art performance, demonstrating its efficacy in resource-limited environments. Future
research will aim to extend the evaluation to large-scale datasets, such as those in the Open Graph
Benchmark (OGB), and explore efficient model optimization techniques to enhance scalability.

5.7.2 COMPUTATIONAL COMPLEXITY AND SCALABILITY

A notable limitation of our method is the increased computational complexity introduced by the VAE
and multi-channel encoder. Training the VAE with dual-task objectives requires additional compu-
tational resources, particularly for large-scale graphs. Future research could explore lightweight
convolutional layers, model pruning techniques, or efficient training algorithms to address this chal-
lenge. Transfer learning and self-supervised learning could also reduce dependence on labeled data,
making the framework more scalable and applicable to real-world scenarios.

5.7.3 GENERALIZABILITY TO LARGER AND NOISIER GRAPH DATASETS

While our method performs well on Cora, Citeseer, and Pubmed datasets, its effectiveness on larger
or noisier graphs remains to be validated. Graphs with complex structures, such as dynamic or
hierarchical graphs, may require architectural modifications, such as adaptive latent space modeling
or dynamic feature fusion mechanisms. Future experiments on diverse datasets, including social
networks or knowledge graphs, will further evaluate the framework’s robustness and generalizability.

5.7.4 INTEGRATION WITH OTHER DATA AUGMENTATION TECHNIQUES

Although our study focuses on VAE-based node-level augmentation, integrating other augmentation
techniques could further enhance model performance. For example, combining edge perturbation,
subgraph sampling, and contrastive learning with our method could create a hybrid augmentation
framework. This approach would generate more diverse and task-specific data variations, enabling
the model to adapt to a broader range of graph analysis tasks.

5.7.5 POTENTIAL FOR BROADER APPLICATIONS

The flexibility of our framework extends beyond node classification. For instance, by adapting
the dual-task framework to optimize for link prediction or community detection, the model could
address diverse graph analysis challenges. Future work could explore multi-task configurations that
combine these objectives, enhancing the framework’s utility for multi-faceted graph analytics.

6 CONCLUSION

This study presents a novel VAE-based data augmentation method that significantly enhances GNN
performance on node classification tasks. By integrating multi-channel convolutional layers and a
dual-task training framework, we developed a robust approach for managing noisy and incomplete
data, achieving notable improvements in classification accuracy and feature distinguishability.

The adaptability of this framework extends beyond node classification to other graph-based tasks,
such as community detection and link prediction, by adjusting the auxiliary task in the dual-task
learning setup. Future research could explore incorporating more advanced architectures, optimizing
for larger datasets, and integrating additional data augmentation techniques to further enhance the
model’s effectiveness and scalability.

Overall, this VAE-based augmentation framework offers a promising direction for constructing flex-
ible and high-performance models in graph data analysis, contributing to the development of robust
and adaptable solutions for various applications in the graph learning domain.
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