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Abstract

Understanding the continuous evolution of populations from discrete temporal
snapshots is a critical research challenge, particularly in fields like developmental
biology and systems medicine where longitudinal tracking of individual entities is
often impossible. Such trajectory inference is vital for unraveling the mechanisms
of dynamic processes. While Schrodinger Bridge (SB) offer a potent framework,
their traditional application to pairwise time points can be insufficient for systems
defined by multiple intermediate snapshots. This paper introduces Multi-Marginal
Schrédinger Bridge Matching (MSBM), a novel algorithm specifically designed
for the multi-marginal SB problem. MSBM extends iterative Markovian fitting
(IMF) to effectively handle multiple marginal constraints. This technique ensures
robust enforcement of all intermediate marginals while preserving the continuity of
the learned global dynamics across the entire trajectory. Empirical validations on
synthetic data and real-world single-cell RNA sequencing datasets demonstrate the
competitive or superior performance of MSBM in capturing complex trajectories
and respecting intermediate distributions, all with notable computational efficiency.

1 Introduction

Understanding the continuous evolution of populations from discrete temporal snapshots represents
a significant challenge in various scientific disciplines, particularly in fields like developmental
biology [7, 42] and systems medicine [29] where tracking individual entities longitudinally is often
unfeasible. The ability to infer trajectories from such snapshot data is crucial for elucidating the
underlying mechanisms of dynamic processes. The Schrodinger Bridge (SB) problem, originally
rooted in statistical mechanics [43], has garnered substantial interest in machine learning as an
entropy-regularized, continuous-time formulation of optimal transport [20, 30]. It seeks to identify
the most probable evolutionary path between prescribed initial and terminal distributions, and has
been successfully employed in generative modeling [3, 4, 9, 26, 27, 37, 38, 45, 49].

However, many real-world scenarios present observations or constraints at multiple time points, not
just at the beginning and end of a process. For instance, in single-cell RNA sequencing (scRNA-seq)
experiments, which are pivotal for studying complex biological processes like cell differentiation, cells
are typically destroyed upon measurement [0, 17, 28]. This destructive nature makes it impossible
to track individual cells over time, thus necessitating the inference of developmental trajectories
from population-level snapshots collected at several intermediate stages. Similarly, meteorological
systems may have partial observations across various times [11, 32]. Such situations necessitate
a multi-marginal generalization of the SB problem (mSBP), where the path measure must align
with prescribed marginal distributions at multiple intermediate time points. While the traditional
SB framework offers a powerful approach, its standard application to pairwise time points can
prove insufficient for systems characterized by multiple intermediate snapshots. Although more
specialized methods for mSBP have recently been developed [8, 18, 44], the direct application of
some multi-marginal approaches can lead to error accumulation if not carefully managed, particularly
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when learned controls are even slightly inaccurate. These challenges highlight the need for robust
and scalable solutions for the mSBP that can effectively integrate information across all observed
time points.

This paper introduces Multi-Marginal Schrédinger Bridge Matching (MSBM), a novel algorithm
specifically developed to address the multi-marginal SB problem by building upon and extending the
Iterative Markovian Fitting (IMF) algoritmhs [36, 45]. MSBM is designed to effectively manage mul-
tiple marginal constraints by constructing local SBs on each interval and seamlessly integrating them.
This local construction strategy, underpinned by a shared global parametrization of control functions,
ensures the robust enforcement of all intermediate marginal distributions while crucially preserving
the continuity of the learned global dynamics across the entire trajectory. Empirical validations
conducted on synthetic datasets as well as real-world single-cell RNA sequencing data demonstrate
that MSBM achieves competitive or superior performance in capturing complex trajectories and
accurately respecting intermediate distributions, all while exhibiting notable computational efficiency.
Our work aims to provide a robust and scalable computational method for these multi-marginal
settings, addressing the critical need for consistent and tractable dynamic inference when data is
available as snapshots at multiple time points.

‘We summarize our contributions as follows:

» We extend the theoretical and algorithmic foundations of SBs, including the IMF iteration and
optimal control perspectives, to the challenging multi-marginal setting.

* We introduce an efficient modeling approach for trajectory inference, that constructs and
smoothly integrates local SBs across sub-intervals, inherently allows for parallelized train-
ing, leading to significant speed-ups.

» Through comprehensive experiments on both synthetic and real-world single-cell RNA sequenc-
ing data, we demonstrate that MSBM accurately models complex population dynamics and
outperforms state-of-the-art methods in both trajectory fidelity and computational speed.

Notation. Let P|o 7] denote the space of continuous functions taking values in R? on the interval
[0, T]. We use an uppercase letter P € Py 7 to represent a path measure. For a path measure
P € Pyo, 1), the marginal distribution at discrete time points 7 = {to, ..., #}, where 0 = tg < t; <
... < t, = T is denoted by P € P, where we define P as the set of measures P over R**I71,
Additionally, the conditional distribution of P, given 7, is denoted by P~ € P 7}. Moreover, a
path measure P can be defined as mixture. For any Borel measurable set A € B(2), P can be defined
by P(A) = [pax r Pi7(Alx7)dP7(x7), where P € Py and P € Pr, and we use the shorthand
x7 = (X1, - ,X)and [0 : k] := {0,1,--- , k}. The Kullback-Leibler (KL) divergence between
two probability measures . and v on space X is defined as Dky, (u|v) = [, log %(X)du(X) when
1 is absolutely continuous with respect to v (u < v), and Dkr,(u|v) = 400 otherwise. We will
often refer to probability measures on R? and their Lebesgue densities interchangeably, under the
standard assumption of absolute continuity. Finally, for a function V' : [0, T] x R — R, we define
the gradient and laplcaian operators with respect to x € R% as V) and AV, respectively, and its
partial derivative with respect to time ¢ € [0, 7] as 9; V.

2 Preliminaries

2.1 Schrodinger Bridge Matching (SBM)

The Schrodinger Bridge problem (SBP) [16, 43] is a stochastic optimal transport problem [30] that
seeks the optimal transport plan for endpoint marginals py and pp. In this paper, we focus on the
dynamical representation, where a reference distribution Q € P[o, 7y is induced by the SDEs:

dX; = fi(X¢)dt + 0 dWy, X ~ po, 1

where f; : R? — R is a drift, 0 € R is a diffusion, and W, € R? is a standard Wiener process.
With the base reference path measure Q, the dynamic representation of the SB [20, 35, 39] is:

min Dkp,(P|Q), subjectto Py~ pg, Pr~ pr. (SBP)
PEPo, 1
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Recent advancements in dynamical optimal transport [37, 45] have introduced a novel numerical
methodology for solving SBP. This approach reframes SBP by decomposing its dynamical constraints
into the time-evolving marginal distributions P, for all ¢ € [0, T'] and the joint coupling Py 7. This
optimization relies on IMF [45], a technique that iteratively refines the path measure P € Py 7).
IMF alternates between two projection called Markovian and Reciprocal projections to preserve the
correct endpoint marginals (po, pr) throughout the optimization.

Reciprocal Projection R. For a given reference measure QQ from (1), and a path measure P with
marginals specified at end points 7 = {0, T} the reciprocal projection is defined as:

R(P, T) :=PrQir = Po,rQpo,1- )

This projection constructs a new path measure by taking the endpoint coupling Py 7 from P and
forming a mixture of bridge process using Q conditioned on these end points. Sampling from
IT := R(P, T) involves drawing end points samples (X¢, X1) ~ Py o and then generating a path
XZ— between them using conditional reference measure Qo7 which induced by following SDEs, for
any (Xo, X7):

dX] = [f:(X]) + 0*V1og Qpy;(x7|X] )] dt + cdW;, X = xo, (3)

If Q|o,7 has tractable bridge formulation, for example, when Q is chosen as a Brownian motion
i.e.,dX; = 0dWy, sampling the path at time ¢ given the endpoints can be performed as:

X7 ~ N (1= 5)Xo+ A£X7,t(1 — £)o?), where (Xo,X7) ~ Po 7. )

Markov Projection M. Although the reciprocal projection R in (2) preserves end point marginals
(po, pr), its sampling process in (4) requires both (X, X7 ), making it non-Markovian and thus
ill-suited for generative modeling aimed at sampling from pp without knowing X. The Markov
projection M resolves this by projecting IT := R(IP, T) into a family of Markov process while
ensuring P* = II, for all ¢ € [0,7]. Again, when Q is chosen as a Brownian motion i.e., dX; =
odW, the Markov projection of II, P* = M(II, T), is induced by following SDEs:

dX} = ov*(t,X})dt + odW,, X§ ~ 1, ®)
where  v*(t,x) = 7 (EQW [Xr|X; =x] —x). (6)

Intuitively, the term Eq,,, [X7|X; = x] can be understood as a prediction of the target state X;.
Flow matching [23] of Bridge matching [37] tackles the approximation X7. ~ Eq,., [Xr|X: = x]
by learning a drift function. This learned drift guides the evolution of X such that its terminal
state aligns with the target, often by regressing the drift agains a target drift derived from samples of
(Xo, X7) under the reference conditional bridge measure Qo 7.

Building upon the projections R and M, Schrodinger Bridge Matching (SBM) methods [37, 45]
refines the path measure through an alternating iteraive procedure:

pen+1) . M(]P;(2n)’7-)7 pn+2) ._ R(P(2n+1)’7')_ @)

Initialized with P(©) = IP’(O)Q 0.7 utilizin P is independent coupling of o and pr along with the
T 0, gl r p pling ol p P g
reference conditional bridge measure Q7. Please refer to [37, 45] for more details.

3 Multi-Marginal Iterative Markovian Fitting

Dynamic SB methods, as discussed in Section 2, have traditionally focused on problems defined
by two endpoint marginal distributions, (pg, pr). However, in real-world applications, particularly
in fields like developmental biology (e.g., sScRNA-seq studies of cellular differentiation), systems
are often observed through snapshots at multiple intermediate time points, not just at the beginning
and end of a process. This prevalence of multi-stage data highlights a critical limitation of standard
SB approaches. While the theoretical extension of SB methods to handle multiple marginals has
been explored [1, 31], the development of robust and scalable computational methods for these
multi-marginal settings has lagged. Recently, methods with IPF-type objectives have been derived
for multi-marginal cases [8, 44]. However, challenges persist in ensuring global dynamic consistency
across all intervals, maintaining computational tractability as the number of marginals increases.
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In this section, we extends the SBM framework—conventionally applied to problems with two
endpoint marginals (pg, pr) and foundational to IMF methods—to handle cases involving k + 1
multiple snapshots (po, pt,, - - , pr) on discrete time stamps 7 = {t, t1,- -, tx} where 0 =t <
t; < --- <ty = T"'. Similar to SBP, the dynamic multi-marginal Schrodinger Bridge problem can
be formally defined as [10] the entropy minimization problem:

min Dk (P|Q), subjectto Py~ p,, VteT. (mSBP)
PGP[O,T]

To find a most probable path P*SE?, the solution of mSBP under multiple constraints, we will generalize
the principles of SBM in Section 2.1 to the multi-marginal cases in Section 3.1. The extension of
dynamic SB optimality [20, 35] and the associated stochastic optimal control problem [39] to multi-
marginal settings is presented in Appendix A.

3.1 Multi-Marginal Projection operators

To develop multi-marginal extension of SBM, we investigate how the IMF framework can be adapted
to scenarios with multiple snapshots (i.e., where the set of time points 7 has cardinality |7 | > 2).
This adaptation necessitates extending the fundamental building blocks of SBM—specifically, the
reciprocal projection R and the Markov projection M—to handle multiple marginal constraints.

Multi-Marginal Reciprocal Projection R™. First, we state and prove a proposition that character-
izes the reciprocal structure of conditional path measures. In particular, we focus on a mixture of
bridges IT = II7Q|7 € P|o 7} constrained by the marginals at multiple timestamps in 7.

Proposition 1 (Reciprocal Property). For any x1 = (X0,X¢,, - ,X7) € R>*EHD gnd t €
[ti—1,t;), the marginal distribution of Q1 (-|x7) at t satisfies:
Q\T(Xt\XT) = Q|ti,1,ti (Xt‘xthti,l)- (®)

Therefore, for any P € Pjo 1) the reciprocal projection R™(P, T') admits the following factorization:
R™P,T) =PrQir =Pry . 1, Qlto tx = Prortw I 1om1Qpie_y1sr Prae. ©)

A key implication of the reciprocal property, detailed in Proposition 1, is that a mixture of diffusion
bridges constrained on 7 factorizes into independent segments over successive time intervals. This
factorization simplifies the analysis and simulation of the overall path measure. Since each segment
can then be treated as a standard conditional bridge process as in (3), closed-form sampling, such as
in (4), can be applied independently in parallel to each subinterval {t; 1,; };c[1:4]. This tractability
is essential for developing an efficient multi-marginal SBM algorithm.

Multi-Marginal Markov Projection M™. With the reciprocal property and factorization in (9),
we show that the Markov projection on multi-marginal case can be constructed by similar fashion.

Proposition 2 (Multi-Marginal Markovian Projection). Let I1 € Py 1) admit factorzation in (9). The
multi-marginal Markov projection of 11, P* := M™(I1,T') € Pjo 1), is associated with the SDE:

dX5 = [ft(X}) + ov* (¢, X])] dt + cdWy,  X§ ~ I, (10)
where v*(t,x) = 30 1, 1) En, , [V1og Qy, e(Xe, [X) X, = x] . (11)
Moreover, v* satisfies the Fokker-Planck equation (FPE) [40]:
Dipi = —V - (v} () (X)) + S Ap(x) =0, p =11, VEET, (12)
where p; is marginal density of 11;. In other words, Py =11, for all t € [0,T). d

As established in Proposition 2, constructing a global diffusion process via (10) with the optimal
control v* (11)) yields a multi-marginal Markov projection XE‘O 7] that is continuous over the entire

time interval [0,7]. The continuity arises because the local Markov projections, Xﬁ,,l ¢» On

each sub-interval are derived from factorized conditional bridge Q‘tFMi in (9). These bridges are

'Our framework accommodates arbitrary time intervals between successive time stamps.
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anchored by identical marginal distributions at there shared boundaries; for instance, both X[*t,71 4
and Xf‘t tin] is guaranteed to match the marginal distribution p;, at time ¢;. Consequently, these local

diffusion processes connect seamlessly at adjacent timestamps, resulting in a smooth and well-defined
path for X?O.T]' The well-defined nature of the global path, in conjunction with the projections R™
and M™, is fundamental to successfully applying the SBM framework to the mSBP. Finally, the
uniquness condition for standard SB [45, Proposition 5] can also be extended to multi-marginal case.

Proposition 3 (Uniqueness). Let P* be a Markov measure which is reciprocal class of Q satisfying
P} = py forall t € T. Then, P* is unique solution P™? of the mSBP.

Building on the projection operators R™, M™ with the uniquness result of Proposition 3, we can
apply the iterative algorithm used in SBM algorithm [45, Algorithm 1] to the multi-marginal setting:

P+ = pum(pr) 7)) PR = REm(pCrtD) T > 2. (13)
The convergence guarantees proved for the iteration apply equally well to the multi-marginal case.

Proposition 4 (Convergence). P(") = P™5P of mSBP as n 1 oo with iterative procedure in (13).

3.2 Practical Implementation.

In practice, at each iteration n of (13) we approximate the optimal control v* from (11) by a neural
network vy. By Girsanov theorem, 6 are chosen to minimize the following training objective function:

‘C(Gv T7 HT) = foTEHt,T[HO'V IOg Q,BT(t)|t(XBT(t)|Xt) - U@(t, Xt)||2dt]7 (14)

where 7 (t) = min, {u > t|t € T} € [0,T] is the most recent time point in 7 after time ¢. With
this notation, the SBM can be generalized to the case of multi-marginal constraints. For example,
when 7 = {0, T} then (14) reduces to the objective function described in [45].

The learned Markov control vg- (t,%;) then ensures PY" = TI, for all ¢ € [0, T]. Moreover, prior
SBM algorithms interleave forward and backward-time Markov projections to re-anchor the terminal

distribution and prevent bias between ]P’gzl) and II7 accumulate for each n € N. In the multi-marginal
setting, we again build the backward-time Markov projection as in Proposition 2 by gluing the local
bridge reversals, so that P* is governed by both SDEs (10) and the corresponding backward dynamics:

dY: = [_fot(Y:) + O'U*(t, Y:)] dt + O'th, YS ~ HT) (]5)
where u*(tvy) = Zf:ll(ti—lyti](t)EHt\ti_l [V loth‘ti—l(Yt‘Yti—l)|Yt = Y} ) (16)

where the backward optimal control * in (16) can be approximated with neural network ug where ¢
is chosen to minimize the following training objective function with v7-(t) = max, {u < t|t € T}:

T
£(¢7 T’ HT) = / ]EHt,T[HUv IOg QtI'yT(t) (Yt|Y’YT(t)) - U¢(t, Yt)||2dt]' (17)
0

4 Multi-Marginal Schrodinger Bridge Matching

A naive extension of the standard SBM using, multi-marginal projections R™ and M™ in Sec 3,
encounters significant limitations not present in the traditional two-endpoint setting. In such an

extension, each iteration typically enforces marginal constraints only at the global endpoints (pg, pr).
The multi-marginal coupling H(;-L) at each iteration n of (13) is then derived by propagating the

projected dynamics in (10) or (15) solely from these end points py or pr, respectively.

This approach leads to critical issues specific to the multi-marginal context. Firstly, if the learned
controls, such as v* (forward) or u* (backward), are even slightly inaccurate, significant biases
can arise between the inferred intermediate marginals (HE?), e Hgil) and the target marginals

(Pty> - s Pty )- Secondly, these discrepancies tend to accumulate iteratively. This accumulation is

exacerbated because, beyond an initialization I1(®) = }P’%@Q”— with ]P’%Q), independent joint coupling

of {p:}+c7, where the joint distribution might be informed by all prescribed data distributions,
the subsequent self-refinement process for the dynamics often does not directly incorporate the
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Algorithm 1 Training of MSBM Algorithm 2 Simulation of MSBM (forward)

1: Input: Snapshots {p; }ce7, bridge Qj, N € N Input: Initial po, learned control vg+

2: Let {P }ic (1.4 joint coupling of {pre, ieia- Sample Xo ~ po
3: forn e {0,...,N — 1} do Simulate forward SDE over [0, T]

*x . *
4. forie€ {l,...,k—1} doin parallel dOXt = [fe + ove- (£, XP)] dt + 0d W,
(2n) (2n) utput: Trajectory X 7
Let II-™ = Py,

5
6: Estimate £(¢, Ti, H%n), Q)
7
8

Estimate £(¢) = Ele L(¢,Ts, H%n)va) Naive MSBM

© ugs =argmin, SF L L(9) ' ¢ ﬁ. *
9:  Simulate local backward SBs {]P“’(Q""H)}ie[l:k] ey o o A

10:  fori € {1,...,k — 1} do in parallel

1 LetIEY = pZrtt X ke
. : (2n+1) X g A
12: Estimate £(0, 7;, 1T Q) e S
. P o i (2n+1) X Ground Truth
13: Estimate £(0) = >_;_, £(0, 75, 1L, Q73) ® Trj e th e i e b t;

—— Generated

14: wgr = argming ¢ £(0, Tz, H%"H))
15:  Simulate local forward SBs {Pft’(zn+2)}

i—15ts)

Figure 1: (Left) The naive extension fails to
model intermediate states due to the accumu-

16: endfor lation of errors. (Right) In contrast, MSBM
17: Output: vy, ug successfully models the ground truth data.
intermediate data distributions (p¢,,- - - , pt,_, ) into its training objective except po and pr. Without

explicit targets for the intermediate marginals guiding each iteration, the inferred paths between pg
and pr can “collapse” or drift away from the desired states. Consequently, precisely satisfying all
intermediate constraints becomes increasingly challenging as iterations proceed.

To address this issue of error accumulation and ensure all marginal constraints {p; }+c7 are satis-
fied, we propose a method that involves constructing local SBs on each interval [t;_1, ;] and then
seamlessly gluing them together. Instead of propagating dynamics from the global endpoints py and
pr alone, our approach first establishes local SBs for each segment. The resulting local couplings
are then systematically integrated to satisfy all specified marginal distributions {p; }:c7 across the
entire time interval [0, T']. This local construction strategy helps prevent the compounding of errors at
intermediate time points while still aiming to achieve the overall multi-marginal SB solution, P"SEP,
The theoretical basis is provided by the following result.

Corollary 5 (Multi-Marginal Schrodinger Bridge). Assume a sequence of controls {v*, u'};c (1.4,
where each v',u® induced local SBs P of SBP over local interval [t;_1,t;] with distributions
(pt:_1» pt.) in a forward and backward direction, respectively. If limgy, v (t,x) = v (t, x) and
limg s, , ui(t,x) = u'=1(¢,x) forall i € [1 : k], then P™PP of mSBP induced by following SDEs:

dX; = [f1(X]) + ov* (¢, X)] dt + cdWy,  X§ ~ po. (18a)
dY? = [~ fr_ (YD) + ou* (£, YY) dt + 0dWy, Yi ~ pr, (18b)

where  v*(t,x) = Y0 1y (Ov (X)), wt(t,x) = S8 1, (0ui(t,x).  (18¢)

Building upon Corollary 5, we introduce our Multi-Marginal Schrodinger Bridge Matching (MSBM)
method to solve the mSBP. A cornerstone of MSBM is divide the global mSBP into local SBPs while
maintaining the continuity of the composite drift functions v* and v* in (18c¢) across adjacent intervals,
which guarantees a globally continuous diffusion process inducing P"¥", Furthermore, by explicitly
constraining each local SBs, P, on its corresponding marginals (py,_,, pt, ), MSBM is designed to
mitigate the accumulation of bias at intermediate marginals, as shown in Figure 1.

A key challenge of the MSBM is rigorously satisfying the continuity conditions at the boundaries of
local controls: limsqs, v (¢,x) = v (¢,x) and limy)¢, , u®(t,x) = u'~1(¢,x) forall i € [1 : k]. If
these conditions are not met, discontinuities or “kinks” can arise at the intermediate time steps. Such
kinks would imply that the overall path measure P* # M™(PP", 7). This would, in turn, hinder the
optimlaity for mSBP, because, following Proposition 3, the desired continuous Markov process is a
fixed point of both R™ and Markov projections M™ under multiple time points 7

P =R™P,T)=M=(P,T). (19)
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To construct local SBs such that the continuity requirements for forming a valid global solution are
met, thereby preventing the aforementioned kinks and ensuring (19), our MSBM introduces a shared
global parametrization vg, u¢ for its respective local controls {vt, ui}ie[L %) for each sub-interval,
where each local controls are parallel updated with following aggregate objective function:

k

k
L(0) =) L6, T, 17), L(¢) =) L(¢Ti7), (20a)

i=1 i=1

where 7; = {t;_1,t;} define sub-intervals with local coupling IT; for end-points marginals in
interval [t;_1,t;] and £ is defined in (14) and (17) for forward and backward direction, respectively.

The MSBM training procedure, summarized in Algorithm 1, adapts the standard IMF algorithm
presented in [45, Algorithm 1]. A key distinction in our MSBM approach is the parallel application
of the IMF procedure to each local time interval, utilizing globally shared forward vg and backward
u4 across all local intervals. This parallel processing across sub-intervals contributes to a significant
reduction in overall training time.

5 Related Work

The solution of SBP often utilize Iterative Proportional Fitting (IPF) [19], with modern adaptations
learning SDE drifts for two-marginal settings [4, 9, 13, 49]. A distinct iterative approach, IMF, as
featured in [37, 45], offers improved stability by alternating projections onto different classes of
path measures. Moreover, emerging research also explores non-iterative algorithm [12, 38]. These
methodologies primarily concentrate on the SB problem itself, iteratively refining path measures or
directly computing the bridge measure. Moreover, the SB algorithm is studied under the assumption
that the optimal coupling is given [27, 46]. While recent studies have extended foundational SB ideas
to the multi-marginal setting of mSBP, research in this area remains relatively limited.

In multi-marginal setting, [8] extends the problem to phase space to encourage smoother trajectories
and introduces a novel training methodology inspired by the Bregman iteration [5] to handle multiple
marginal constraints. Relatedly, [44] presented an approach that, similar to our work, segments the
problem across intervals; they learn piecewise SBs and use likelihood-based training to iteratively
refine a global reference dynamic. While these methods are often IPF-based or focus on specific
reference refinement strategies, our MSBM extends the previous IMF-type algorithm into multi-
marginal setting and effectively handles multiple constraints. We demonstrate that our MSBM
framework offers substantial gains in training efficiency. This enhanced efficiency is primarily
attributed to its direct multi-marginal formulation that adeptly manages multiple constraints, thereby
circumventing the computationally intensive iterative refinements common in IPF-based methods

Paralleling these SB-centric developments, other significant lines of work model dynamic trajectories
by directly learning potential functions or velocity fields, often drawing from optimal transport
or continuous normalizing flows. For instance, [18, 24-26] extend SBs to incorporate potentials
or mean-field interactions, connecting to stochastic optimal control and earlier mean-field game
frameworks [22, 41]. The broader field of trajectory inference from snapshot data, crucial for
applications like scRNA-seq, has seen methods like [48] using CNFs with dynamic OT, and [15]
employing Neural ODEs on learned data manifolds. More recently, [33, 34] offer variational
objectives to learn dynamics from marginal samples.

6 Experiments

In this section, we empirically demonstrate the effectiveness of our MSBM. Specifically, our goal
is to infer a dynamic model from datasets composed of samples from marginal distributions p;
observed at discrete time points. We evaluate MSBM on both synthetic datasets and real-world single-
cell RNA sequencing datasets, including human embryonic stem cells (hESC) [11] and embryoid
body (EB) [32]. To ensure consistency and fair comparison, our experiments follow the respective
experimental setups established by baseline methods. In particular, for the petal dataset, we adopt
the experimental setup from DMSB [8], and for the hESC dataset, we follow SBIRR [44]. For
the EB dataset, we perform evaluations on both 5-dim and 100-dim PCA-reduced data; here, we
follow the 100-dim experimental setup of DMSB and the 5-dim setup from NLSB [18]. Accordingly,
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Figure 3: Comparison of generated population dynamics using MIOFlow, DMSB and MSBM on a
2-dim petal dataset. All trajectories are generated by simulating the dynamics from py,.

we utilize evaluation metrics consistent with previous studies, including the Sliced-Wasserstein
Distance (SWD)[2], Maximum Mean Discrepancy (MMD)[14], as well as the 1-Wasserstein (WV;)
and 2-Wasserstein (VV,) distances. All experimental results reported are averaged mean value over
three independent runs with different random seeds. We highlight the best-performing results in bold
and the second-best results in blue. Further experimental details are provided in Appendix C.

6.1 Synthetic Data

Petal The petal dataset [15] serves as a sim- P —3] o010 2

ple yet complex challenge because it mimics 4 D 0.08 | r .
the natural dynamics seen in processes such as 031 p g 0.061 4

cellular differentiation, which include phenom- - 02l # 0,04

ena like bifurcations and merges. We compare ' 0.02 ,4:>R.<:
our MSBM with MIOFlow [15] and DMSB [8] B e = I UL S S
in Figure 2. As shown in Figure 3, we ob- A AR

serve that MSBM pxhibits the most accurate and Figure 2: Evaluation results of W, and MMD.
clearly defined trajectory, closely resembling the

ground truth. Furthermore, Figure 2 demonstrates the evaluation results for the trajectories through
W, and MMD distances, highlighting that MSBM consistently outperforms MIOFlow and DMSB.

6.2 Single-cell Sequencing Data

We evaluated our MSBM on real-world single-cell RNA sequencing data from two sources: 1) human
embryonic stem cells (hESCs) [11] undergoing differentiation into definitive endoderm over a 4-day
period, measured at 6 distinct time points (£o:0 hours, ¢1:12 hours, ¢5:24 hours, ¢3:36 hours, t4:72
hours, and ¢5:96 hours); 2) embryoid body (EB) cells [32] differentiating into mesoderm, endoderm,
neuroectoderm, and neural crest over 27 days, with samples collected at 5 time windows (¢(:0-3 days,
t1:6-9 days, t5:12-15 days, t3:18-21 days, and t4:24-27 days). Following the experimental setup of
baselines, we preprocessed these datasets using the pipeline outlined in [48], and the collected cells
were projected into a lower-dimensional space using principal component analysis (PCA).

hESC To follow the experimental setup from SBIRR [44], we Table 1: Performance on the 5-
reduced the data to the first five principal components and excluded ~dim PCA of hESC dataset. W,
the final time point ¢ from our dataset, resulting in three train- is compute between test p;, and
ing time points 7 = {t¢, t2, ¢4} and two intermediate test points generated p;, by simulating the
Tiest = {t1,t3}. Our objective was to train the dynamics based on dynamics from test py,.

the available marginals at the training points in 7 and interpolate

the intermediate test marginals at Tyes¢, Wwhich were not observed | W2l  Runtime
during training. Table 1 demonstrates that our proposed MSBM  Methods | t1 t3 | hours
method performs competitively, achieving lower W, distances. TrajectoryNet! [ 1.30 1.93]  10.19
DMSB' 1.10 1.51] 1554

1.08 1.33]0.36 (0.38)"

Embryoid Body We validate our MSBM on both 5-dim and SBIRR'
100-dim PCA spaces. First, for the 5-dim experiment, we adopt the =~ MSBM (Ours) [1.09 1.30|  0.09
experimental setup from NLSB. Given 5 observation time points 1 result from [44].

T = {to,t1,t2,t3,t4}, we divide the data using train/test splits p5* / p52, with the goal of predicting
population-level dynamics from p;*. Similar to NLSB, we train the dynamics based on p%¥ and
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Table 3: Performance on the 100-dim PCA of Figure 4: Comparison of generated population dy-
EB dataset. MMD and SWD are computed be-namics using DMSB and MSBM on a 100-dim PCA
tween test p;® and generated p;, by simulating of EB dataset. The plot displays the first two princi-
the dynamics from test py?. pal components as the x and y axes, respectively.

| MMD | SWD | DMSB MSBM Groud Truth
Methods |[Full t; to t3 |Full ¢ t2 i3 oW R ¥
NLSBT [18] ]0.66 0.38 0.37 0.37]0.54 0.55 0.54 0.55
MIOFlow [15](0.23 0.23 0.90 0.23]0.35 0.49 0.72 0.50
DMSBT [8]  0.03 0.04 0.04 0.04]0.16 0.20 0.19 0.18
MSBM [0.02 0.04 0.04 0.05]0.11 0.18 0.17 0.19

to .t - b ts ta — traj

t result from [8].
evaluate the V), distance between p;® and the generated p;, from previous test snapshot p;® .
In Table 2, we find that MSBM outperforms several SB methods.

For the 100-dim experiment, we borrow the experimental
setup from DMSB, where the goal is predict population
dynamics given that observations are available for all time

Table 2: Performance on the 5-dim PCA
of EB dataset. V; is computed between
test p;* and generated p;, by simulating

points 7 (denoted as Full in Table 3), or when one of
the snapshot is left out (denoted as ¢; in Table 3, where
snapshot pt* at t; is excluded during training). The high \

the dynamics from previous test pj° .

Wil

performance in this task represent the robustness of the  Methods | 1t ts ts Mean
model to accurately predict populatlon dynamlgs. InTa- " ISDET 21] 0.69 0.1 0.85 0.81 0.82
ble 3, MSBM consistently yields performance improve-  TrajectoryNet [48]|0.73 1.06 0.90 1.01 0.93
ments. Moreover, as shown in Figure 4, the trajectories  IPF (GP)' [49] 0.70 1.04 0.94 0.98 0.92
and generated marginal distributions 57 in PCA space fur- PF(NN)! L4 0.73 0.89 0.84 0.83 0.82
. . . . . . - Q

ther justifies the numerical result and highlights the variety Ii]isF]?TS][)li] 1 g";’g 8'22 (1)'2(1) (1)'(7)(9) g'ig
and quality of the samples produced by MSBM. OT-CPM' [47] 0.78 0.76 0.77 0.75 0.77

WLF-SB* [34] 0.63 0.79 0.77 0.75 0.73
Computational Efficiency For an fair comparison of  MsBM (Ours) |0.64 0.73 0.72 0.73 0.71

training efficiency against recent multi-marginal SB al- * result from [15], £ result from (341,

gorithms, we benchmarked DMSB and SBIRR on the identical hardware configuration employed
for MSBM (denoted by * in Table 1). On the hESC dataset, MSBM achieved a runtime over 4x
faster than SBIRR. Furthermore, on the petal and 100-dim PCA of EB dataset, MSBM significantly
outperformed DSMB in training speed, with detailed results presented in Figure 5.

This enhanced computational efficiency primarily originates from Petal EB
core algorithmic differences. SBIRR, for example, utilizes maxi- [ tos
mum likelihood training, which requires extensive gradient compu- £

tations and the storage of all intermediate paths. DMSB employs an £ 0.87

IPF-type objective with Bregman Iteration [5]. In contrast, MSBM
directly optimizes controls using an IMF-type objective, which not
only eliminates the need to store intermediate states but also fa-
cilitates parallel computation across sub-intervals. This approach
substantially promotes faster convergence of the algorithm.

_Runtime
e
(=}
3

MSBM DMSB
Figure 5: Training time

MSBM DMSB

7 Conclusion and Limitation

This paper revisits previously established frameworks for the SBP, extending them to the mSBP.
Specifically, we introduce a computationally efficient framework for mSBP, termed MSBM, which
builds upon existing SBM methods [37, 45]. MSBM is tailored for various trajectory inference
problems where snapshots of data are available at multi-marginal time steps. Through the successful
adaptation of the IMF algorithm to this multi-marginal setting, our approach significantly accelerates
training processes while ensuring accurate dynamic modeling when compared to existing methods.

Despite these advantages, the performance degradation of MSBM is more pronounced than that
of DMSB when a time point is omitted in Table 3. This may occur because the including velocity
term could better accommodate unknown trajectory. Furthermore, the current MSBM framework
is restricted to the case involving snapshot data samples, highlighting a need for enhancements to
address problems with continuous potentials, such mean-field games [18, 24-26].
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The key claims stated in the abstract and introduction correspond appropriately
to the scope of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The conclusion section provides a discussion on the limitations.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

» The authors are encouraged to create a separate Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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549 Justification: Yes, we are confident that our proof and assumptions are both valid and
550 adequate.

551 Guidelines:

552 * The answer NA means that the paper does not include theoretical results.

553  All the theorems, formulas, and proofs in the paper should be numbered and cross-
554 referenced.

555 * All assumptions should be clearly stated or referenced in the statement of any theorems.
556 * The proofs can either appear in the main paper or the supplemental material, but if
557 they appear in the supplemental material, the authors are encouraged to provide a short
558 proof sketch to provide intuition.

559 * Inversely, any informal proof provided in the core of the paper should be complemented
560 by formal proofs provided in appendix or supplemental material.

561 * Theorems and Lemmas that the proof relies upon should be properly referenced.

562 4. Experimental result reproducibility

563 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
564 perimental results of the paper to the extent that it affects the main claims and/or conclusions
565 of the paper (regardless of whether the code and data are provided or not)?

566 Answer: [Yes]

567 Justification: Yes, all the necessary data to reproduce the results can be found in the Appendix
568 C.

569 Guidelines:

570 * The answer NA means that the paper does not include experiments.

571 * If the paper includes experiments, a No answer to this question will not be perceived
572 well by the reviewers: Making the paper reproducible is important, regardless of
573 whether the code and data are provided or not.

574 * If the contribution is a dataset and/or model, the authors should describe the steps taken
575 to make their results reproducible or verifiable.

576 * Depending on the contribution, reproducibility can be accomplished in various ways.
577 For example, if the contribution is a novel architecture, describing the architecture fully
578 might suffice, or if the contribution is a specific model and empirical evaluation, it may
579 be necessary to either make it possible for others to replicate the model with the same
580 dataset, or provide access to the model. In general. releasing code and data is often
581 one good way to accomplish this, but reproducibility can also be provided via detailed
582 instructions for how to replicate the results, access to a hosted model (e.g., in the case
583 of a large language model), releasing of a model checkpoint, or other means that are
584 appropriate to the research performed.

585 * While NeurIPS does not require releasing code, the conference does require all submis-
586 sions to provide some reasonable avenue for reproducibility, which may depend on the
587 nature of the contribution. For example

588 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
589 to reproduce that algorithm.

590 (b) If the contribution is primarily a new model architecture, the paper should describe
591 the architecture clearly and fully.

592 (c) If the contribution is a new model (e.g., a large language model), then there should
593 either be a way to access this model for reproducing the results or a way to reproduce
594 the model (e.g., with an open-source dataset or instructions for how to construct
595 the dataset).

596 (d) We recognize that reproducibility may be tricky in some cases, in which case
597 authors are welcome to describe the particular way they provide for reproducibility.
598 In the case of closed-source models, it may be that access to the model is limited in
599 some way (e.g., to registered users), but it should be possible for other researchers
600 to have some path to reproducing or verifying the results.

601 5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provided our code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have included the details of the experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, we ran our code three times and reported the mean and standard deviations
in the appendix. Due to space limitations, only the mean values are presented in the main
text. The complete results can be found in Appendix C.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes, the necessary resources are included in the experimental details section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We support the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work aimed at advancing the field of machine learning.
Our research may have various societal consequences. However, we do not believe any of
these require specific emphasis here.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We believe our paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes, the license and terms of use are noted.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not involve crowdsourcing or research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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810 16. Declaration of LLLM usage

811 Question: Does the paper describe the usage of LLMs if it is an important, original, or
812 non-standard component of the core methods in this research? Note that if the LLM is used
813 only for writing, editing, or formatting purposes and does not impact the core methodology,
814 scientific rigorousness, or originality of the research, declaration is not required.

815 Answer: [NA]

816 Justification: We do not use LLM for core methodology, scientific rigorousness, or originality
817 of the research.

818 Guidelines:

819 * The answer NA means that the core method development in this research does not
820 involve LLMs as any important, original, or non-standard components.

821 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
822 for what should or should not be described.
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