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Abstract

Understanding the continuous evolution of populations from discrete temporal1

snapshots is a critical research challenge, particularly in fields like developmental2

biology and systems medicine where longitudinal tracking of individual entities is3

often impossible. Such trajectory inference is vital for unraveling the mechanisms4

of dynamic processes. While Schrödinger Bridge (SB) offer a potent framework,5

their traditional application to pairwise time points can be insufficient for systems6

defined by multiple intermediate snapshots. This paper introduces Multi-Marginal7

Schrödinger Bridge Matching (MSBM), a novel algorithm specifically designed8

for the multi-marginal SB problem. MSBM extends iterative Markovian fitting9

(IMF) to effectively handle multiple marginal constraints. This technique ensures10

robust enforcement of all intermediate marginals while preserving the continuity of11

the learned global dynamics across the entire trajectory. Empirical validations on12

synthetic data and real-world single-cell RNA sequencing datasets demonstrate the13

competitive or superior performance of MSBM in capturing complex trajectories14

and respecting intermediate distributions, all with notable computational efficiency.15

1 Introduction16

Understanding the continuous evolution of populations from discrete temporal snapshots represents17

a significant challenge in various scientific disciplines, particularly in fields like developmental18

biology [7, 42] and systems medicine [29] where tracking individual entities longitudinally is often19

unfeasible. The ability to infer trajectories from such snapshot data is crucial for elucidating the20

underlying mechanisms of dynamic processes. The Schrödinger Bridge (SB) problem, originally21

rooted in statistical mechanics [43], has garnered substantial interest in machine learning as an22

entropy-regularized, continuous-time formulation of optimal transport [20, 30]. It seeks to identify23

the most probable evolutionary path between prescribed initial and terminal distributions, and has24

been successfully employed in generative modeling [3, 4, 9, 26, 27, 37, 38, 45, 49].25

However, many real-world scenarios present observations or constraints at multiple time points, not26

just at the beginning and end of a process. For instance, in single-cell RNA sequencing (scRNA-seq)27

experiments, which are pivotal for studying complex biological processes like cell differentiation, cells28

are typically destroyed upon measurement [6, 17, 28]. This destructive nature makes it impossible29

to track individual cells over time, thus necessitating the inference of developmental trajectories30

from population-level snapshots collected at several intermediate stages. Similarly, meteorological31

systems may have partial observations across various times [11, 32]. Such situations necessitate32

a multi-marginal generalization of the SB problem (mSBP), where the path measure must align33

with prescribed marginal distributions at multiple intermediate time points. While the traditional34

SB framework offers a powerful approach, its standard application to pairwise time points can35

prove insufficient for systems characterized by multiple intermediate snapshots. Although more36

specialized methods for mSBP have recently been developed [8, 18, 44], the direct application of37

some multi-marginal approaches can lead to error accumulation if not carefully managed, particularly38
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when learned controls are even slightly inaccurate. These challenges highlight the need for robust39

and scalable solutions for the mSBP that can effectively integrate information across all observed40

time points.41

This paper introduces Multi-Marginal Schrödinger Bridge Matching (MSBM), a novel algorithm42

specifically developed to address the multi-marginal SB problem by building upon and extending the43

Iterative Markovian Fitting (IMF) algoritmhs [36, 45]. MSBM is designed to effectively manage mul-44

tiple marginal constraints by constructing local SBs on each interval and seamlessly integrating them.45

This local construction strategy, underpinned by a shared global parametrization of control functions,46

ensures the robust enforcement of all intermediate marginal distributions while crucially preserving47

the continuity of the learned global dynamics across the entire trajectory. Empirical validations48

conducted on synthetic datasets as well as real-world single-cell RNA sequencing data demonstrate49

that MSBM achieves competitive or superior performance in capturing complex trajectories and50

accurately respecting intermediate distributions, all while exhibiting notable computational efficiency.51

Our work aims to provide a robust and scalable computational method for these multi-marginal52

settings, addressing the critical need for consistent and tractable dynamic inference when data is53

available as snapshots at multiple time points.54

We summarize our contributions as follows:55

• We extend the theoretical and algorithmic foundations of SBs, including the IMF iteration and56

optimal control perspectives, to the challenging multi-marginal setting.57

• We introduce an efficient modeling approach for trajectory inference, that constructs and58

smoothly integrates local SBs across sub-intervals, inherently allows for parallelized train-59

ing, leading to significant speed-ups.60

• Through comprehensive experiments on both synthetic and real-world single-cell RNA sequenc-61

ing data, we demonstrate that MSBM accurately models complex population dynamics and62

outperforms state-of-the-art methods in both trajectory fidelity and computational speed.63

Notation. Let P[0,T ] denote the space of continuous functions taking values in Rd on the interval64

[0, T ]. We use an uppercase letter P ∈ P[0,T ] to represent a path measure. For a path measure65

P ∈ P[0,T ], the marginal distribution at discrete time points T = {t0, . . . , tk}, where 0 = t0 < t1 <66

· · · < tk = T is denoted by PT ∈ PT , where we define PT as the set of measures P over Rd×|T |.67

Additionally, the conditional distribution of P, given T , is denoted by P|T ∈ P[0,T ]. Moreover, a68

path measure P can be defined as mixture. For any Borel measurable set A ∈ B(Ω), P can be defined69

by P(A) =
∫
Rd×|T | P|T (A|xT )dPT (xT ), where P ∈ P0,T and P ∈ PT , and we use the shorthand70

xT := (x1, · · · ,xk) and [0 : k] := {0, 1, · · · , k}. The Kullback-Leibler (KL) divergence between71

two probability measures µ and ν on space X is defined as DKL(µ|ν) =
∫
X log dµ

dν (X)dµ(X) when72

µ is absolutely continuous with respect to ν (µ ≪ ν), and DKL(µ|ν) = +∞ otherwise. We will73

often refer to probability measures on Rd and their Lebesgue densities interchangeably, under the74

standard assumption of absolute continuity. Finally, for a function V : [0, T ]× Rd → R, we define75

the gradient and laplcaian operators with respect to x ∈ Rd as ∇V and ∆V , respectively, and its76

partial derivative with respect to time t ∈ [0, T ] as ∂tV .77

2 Preliminaries78

2.1 Schrödinger Bridge Matching (SBM)79

The Schrödinger Bridge problem (SBP) [16, 43] is a stochastic optimal transport problem [30] that80

seeks the optimal transport plan for endpoint marginals ρ0 and ρT . In this paper, we focus on the81

dynamical representation, where a reference distribution Q ∈ P[0,T ] is induced by the SDEs:82

dXt = ft(Xt) dt+ σ dWt, X0 ∼ ρ0, (1)

where ft : Rd → Rd is a drift, σ ∈ R is a diffusion, and Wt ∈ Rd is a standard Wiener process.83

With the base reference path measure Q, the dynamic representation of the SB [20, 35, 39] is:84

min
P∈P[0,T ]

DKL(P|Q), subject to P0 ∼ ρ0, PT ∼ ρT . (SBP)
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Recent advancements in dynamical optimal transport [37, 45] have introduced a novel numerical85

methodology for solving SBP. This approach reframes SBP by decomposing its dynamical constraints86

into the time-evolving marginal distributions Pt for all t ∈ [0, T ] and the joint coupling P0,T . This87

optimization relies on IMF [45], a technique that iteratively refines the path measure P ∈ P[0,T ].88

IMF alternates between two projection called Markovian and Reciprocal projections to preserve the89

correct endpoint marginals (ρ0, ρT ) throughout the optimization.90

Reciprocal Projection R. For a given reference measure Q from (1), and a path measure P with91

marginals specified at end points T = {0, T} the reciprocal projection is defined as:92

R(P, T ) := PT Q|T = P0,TQ|0,T . (2)

This projection constructs a new path measure by taking the endpoint coupling P0,T from P and93

forming a mixture of bridge process using Q conditioned on these end points. Sampling from94

Π := R(P, T ) involves drawing end points samples (X0,XT ) ∼ P0,T and then generating a path95

XT
t between them using conditional reference measure Q|0,T which induced by following SDEs, for96

any (x0,xT ):97

dXT
t =

[
ft(X

T
t ) + σ2∇ logQT |t(xT |XT

t )
]
dt+ σdWt, XT

0 = x0, (3)

If Q|0,T has tractable bridge formulation, for example, when Q is chosen as a Brownian motion98

i.e., dXt = σdWt, sampling the path at time t given the endpoints can be performed as:99

XT
t ∼ N

(
(1− t

T )X0 +
t
T XT , t(1− t

T )σ
2
)
, where (X0,XT ) ∼ P0,T . (4)

Markov Projection M. Although the reciprocal projection R in (2) preserves end point marginals100

(ρ0, ρT ), its sampling process in (4) requires both (X0,XT ), making it non-Markovian and thus101

ill-suited for generative modeling aimed at sampling from ρT without knowing XT . The Markov102

projection M resolves this by projecting Π := R(P, T ) into a family of Markov process while103

ensuring P⋆ = Πt for all t ∈ [0, T ]. Again, when Q is chosen as a Brownian motion i.e., dXt =104

σdWt, the Markov projection of Π, P⋆ = M(Π, T ), is induced by following SDEs:105

dX⋆
t = σv⋆(t,X⋆

t )dt+ σdWt, X⋆
0 ∼ Π0, (5)

where v⋆(t,x) = 1
T−t

(
EQT |t [XT |Xt = x]− x

)
. (6)

Intuitively, the term EQT |t [XT |Xt = x] can be understood as a prediction of the target state X⋆
t .106

Flow matching [23] of Bridge matching [37] tackles the approximation X⋆
T ≈ EQT |t [XT |Xt = x]107

by learning a drift function. This learned drift guides the evolution of X⋆
t such that its terminal108

state aligns with the target, often by regressing the drift agains a target drift derived from samples of109

(X0,XT ) under the reference conditional bridge measure Q|0,T .110

Building upon the projections R and M, Schrödinger Bridge Matching (SBM) methods [37, 45]111

refines the path measure through an alternating iteraive procedure:112

P(2n+1) := M(P(2n), T ), P(2n+2) := R(P(2n+1), T ). (7)

Initialized with P(0) = P(0)
T Q|0,T , utilizing P(0)

T is independent coupling of ρ0 and ρT along with the113

reference conditional bridge measure Q|T . Please refer to [37, 45] for more details.114

3 Multi-Marginal Iterative Markovian Fitting115

Dynamic SB methods, as discussed in Section 2, have traditionally focused on problems defined116

by two endpoint marginal distributions, (ρ0, ρT ). However, in real-world applications, particularly117

in fields like developmental biology (e.g., scRNA-seq studies of cellular differentiation), systems118

are often observed through snapshots at multiple intermediate time points, not just at the beginning119

and end of a process. This prevalence of multi-stage data highlights a critical limitation of standard120

SB approaches. While the theoretical extension of SB methods to handle multiple marginals has121

been explored [1, 31], the development of robust and scalable computational methods for these122

multi-marginal settings has lagged. Recently, methods with IPF-type objectives have been derived123

for multi-marginal cases [8, 44]. However, challenges persist in ensuring global dynamic consistency124

across all intervals, maintaining computational tractability as the number of marginals increases.125
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In this section, we extends the SBM framework−conventionally applied to problems with two126

endpoint marginals (ρ0, ρT ) and foundational to IMF methods−to handle cases involving k + 1127

multiple snapshots (ρ0, ρt1 , · · · , ρT ) on discrete time stamps T = {t0, t1, · · · , tk} where 0 = t0 <128

t1 < · · · < tk = T 1. Similar to SBP, the dynamic multi-marginal Schrödinger Bridge problem can129

be formally defined as [10] the entropy minimization problem:130

min
P∈P[0,T ]

DKL(P|Q), subject to Pt ∼ ρt, ∀t ∈ T . (mSBP)

To find a most probable path PmSBP, the solution of mSBP under multiple constraints, we will generalize131

the principles of SBM in Section 2.1 to the multi-marginal cases in Section 3.1. The extension of132

dynamic SB optimality [20, 35] and the associated stochastic optimal control problem [39] to multi-133

marginal settings is presented in Appendix A.134

3.1 Multi-Marginal Projection operators135

To develop multi-marginal extension of SBM, we investigate how the IMF framework can be adapted136

to scenarios with multiple snapshots (i.e., where the set of time points T has cardinality |T | > 2).137

This adaptation necessitates extending the fundamental building blocks of SBM—specifically, the138

reciprocal projection R and the Markov projection M—to handle multiple marginal constraints.139

Multi-Marginal Reciprocal Projection Rmm. First, we state and prove a proposition that character-140

izes the reciprocal structure of conditional path measures. In particular, we focus on a mixture of141

bridges Π = ΠT Q|T ∈ P[0,T ] constrained by the marginals at multiple timestamps in T .142

Proposition 1 (Reciprocal Property). For any xT := (x0,xt1 , · · · ,xT ) ∈ Rd×(k+1) and t ∈143

[ti−1, ti), the marginal distribution of Q|T (·|xT ) at t satisfies:144

Q|T (xt|xT ) = Q|ti−1,ti(xt|xti ,xti−1). (8)

Therefore, for any P ∈ P[0,T ] the reciprocal projection Rmm(P, T ) admits the following factorization:145

Rmm(P, T ) = PT Q|T = Pt0,··· ,tkQ|t0,··· ,tk = Pt0,··· ,tk
∏k

i=1Q|ti−1,ti , P-a.e. (9)

A key implication of the reciprocal property, detailed in Proposition 1, is that a mixture of diffusion146

bridges constrained on T factorizes into independent segments over successive time intervals. This147

factorization simplifies the analysis and simulation of the overall path measure. Since each segment148

can then be treated as a standard conditional bridge process as in (3), closed-form sampling, such as149

in (4), can be applied independently in parallel to each subinterval {ti−1, ti}i∈[1:k]. This tractability150

is essential for developing an efficient multi-marginal SBM algorithm.151

Multi-Marginal Markov Projection Mmm. With the reciprocal property and factorization in (9),152

we show that the Markov projection on multi-marginal case can be constructed by similar fashion.153

Proposition 2 (Multi-Marginal Markovian Projection). Let Π ∈ P[0,T ] admit factorzation in (9). The154

multi-marginal Markov projection of Π, P⋆ := Mmm(Π, T ) ∈ P[0,T ], is associated with the SDE:155

dX⋆
t = [ft(X

⋆
t ) + σv⋆(t,X⋆

t )] dt+ σdWt, X⋆
0 ∼ Π0, (10)

where v⋆(t,x) =
∑k

i=1 1[ti−1,ti)EΠti|t

[
∇ logQti|t(Xti |Xt)|Xt = x

]
. (11)

Moreover, v⋆ satisfies the Fokker-Planck equation (FPE) [40]:156

∂tρt = −∇ · (v⋆t (x)ρt(x)) + σ2

2 ∆ρt(x) = 0, ρt = Πt, ∀t ∈ T , (12)

where pt is marginal density of Πt. In other words, P⋆
t = Πt for all t ∈ [0, T ]. d157

As established in Proposition 2, constructing a global diffusion process via (10) with the optimal158

control v⋆ (11)) yields a multi-marginal Markov projection X⋆
[0,T ] that is continuous over the entire159

time interval [0, T ]. The continuity arises because the local Markov projections, X⋆
[ti−1,ti]

, on160

each sub-interval are derived from factorized conditional bridge Q|ti−1,ti in (9). These bridges are161

1Our framework accommodates arbitrary time intervals between successive time stamps.
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anchored by identical marginal distributions at there shared boundaries; for instance, both X⋆
[ti−1,ti]

162

and X⋆
[ti,ti+1]

is guaranteed to match the marginal distribution ρti at time ti. Consequently, these local163

diffusion processes connect seamlessly at adjacent timestamps, resulting in a smooth and well-defined164

path for X⋆
[0,T ]. The well-defined nature of the global path, in conjunction with the projections Rmm165

and Mmm, is fundamental to successfully applying the SBM framework to the mSBP. Finally, the166

uniquness condition for standard SB [45, Proposition 5] can also be extended to multi-marginal case.167

Proposition 3 (Uniqueness). Let P⋆ be a Markov measure which is reciprocal class of Q satisfying168

P⋆
t = ρt for all t ∈ T . Then, P⋆ is unique solution PmSBP of the mSBP.169

Building on the projection operators Rmm,Mmm with the uniquness result of Proposition 3, we can170

apply the iterative algorithm used in SBM algorithm [45, Algorithm 1] to the multi-marginal setting:171

P(2n+1) := Mmm(P(2n), T ), P(2n+2) := Rmm(P(2n+1), T ), |T | > 2. (13)

The convergence guarantees proved for the iteration apply equally well to the multi-marginal case.172

Proposition 4 (Convergence). P(n) = PmSBP of mSBP as n ↑ ∞ with iterative procedure in (13).173

3.2 Practical Implementation.174

In practice, at each iteration n of (13) we approximate the optimal control v⋆ from (11) by a neural175

network vθ. By Girsanov theorem, θ are chosen to minimize the following training objective function:176

L(θ, T ,ΠT ) =
∫ T

0
EΠt,T [||σ∇ logQβT (t)|t(XβT (t)|Xt)− vθ(t,Xt)||2dt], (14)

where βT (t) = minu{u > t|t ∈ T } ∈ [0, T ] is the most recent time point in T after time t. With177

this notation, the SBM can be generalized to the case of multi-marginal constraints. For example,178

when T = {0, T} then (14) reduces to the objective function described in [45].179

The learned Markov control vθ⋆(t,xt) then ensures Pθ⋆

t = Πt for all t ∈ [0, T ]. Moreover, prior180

SBM algorithms interleave forward and backward-time Markov projections to re-anchor the terminal181

distribution and prevent bias between P(n)
T and ΠT accumulate for each n ∈ N. In the multi-marginal182

setting, we again build the backward-time Markov projection as in Proposition 2 by gluing the local183

bridge reversals, so that P⋆ is governed by both SDEs (10) and the corresponding backward dynamics:184

dY⋆
t = [−fT−t(Y

⋆
t ) + σu⋆(t,Y⋆

t )] dt+ σdWt, Y⋆
0 ∼ ΠT , (15)

where u⋆(t,y) =
∑k

i=11(ti−1,ti](t)EΠt|ti−1

[
∇ logQt|ti−1

(Yt|Yti−1
)|Yt = y

]
, (16)

where the backward optimal control u⋆ in (16) can be approximated with neural network uϕ where ϕ185

is chosen to minimize the following training objective function with γT (t) = maxu{u < t|t ∈ T }:186

L(ϕ, T ,ΠT ) =

∫ T

0

EΠt,T [||σ∇ logQt|γT (t)(Yt|YγT (t))− uϕ(t,Yt)||2dt]. (17)

4 Multi-Marginal Schrödinger Bridge Matching187

A naı̈ve extension of the standard SBM using, multi-marginal projections Rmm and Mmm in Sec 3,188

encounters significant limitations not present in the traditional two-endpoint setting. In such an189

extension, each iteration typically enforces marginal constraints only at the global endpoints (ρ0, ρT ).190

The multi-marginal coupling Π
(n)
T at each iteration n of (13) is then derived by propagating the191

projected dynamics in (10) or (15) solely from these end points ρ0 or ρT , respectively.192

This approach leads to critical issues specific to the multi-marginal context. Firstly, if the learned193

controls, such as v⋆ (forward) or u⋆ (backward), are even slightly inaccurate, significant biases194

can arise between the inferred intermediate marginals (Π
(n)
t1 , · · ·Π(n)

tk−1
) and the target marginals195

(ρt1 , · · · , ρtk−1
). Secondly, these discrepancies tend to accumulate iteratively. This accumulation is196

exacerbated because, beyond an initialization Π(0) = P(0)
T Q|T with P(0)

T , independent joint coupling197

of {ρt}t∈T , where the joint distribution might be informed by all prescribed data distributions,198

the subsequent self-refinement process for the dynamics often does not directly incorporate the199
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Algorithm 1 Training of MSBM

1: Input: Snapshots {ρt}t∈T , bridge Q|T , N ∈ N
2: Let {P(0)

Ti
}i∈[1:k] joint coupling of {ρt∈Ti}i∈[1:k].

3: for n ∈ {0, . . . , N − 1} do
4: for i ∈ {1, . . . , k − 1} do in parallel
5: Let Π(2n)

Ti
= P(2n)

Ti

6: Estimate L(ϕ, Ti,Π
(2n)
Ti

,Q|Ti
)

7: Estimate L̃(ϕ) =
∑k

i=1 L(ϕ, Ti,Π
(2n)
Ti

,Q|Ti
)

8: uϕ⋆ = argminϕ

∑k
i=1L̃(ϕ)

9: Simulate local backward SBs {Pi,(2n+1)}i∈[1:k]

10: for i ∈ {1, . . . , k − 1} do in parallel
11: Let Π(2n+1)

Ti
= P(2n+1)

Ti

12: Estimate L(θ, Ti,Π
(2n+1)
Ti

,Q|Ti
)

13: Estimate L̃(θ) =
∑k

i=1 L(θ, Ti,Π
(2n+1)
Ti

,Q|Ti
)

14: vθ⋆ = argminθ

∑k
i=1L(θ, Ti,Π

(2n+1)
Ti

)

15: Simulate local forward SBs {Pi,(2n+2)

[ti−1,ti]
}

16: end for
17: Output: v⋆θ , u⋆

ϕ

Algorithm 2 Simulation of MSBM (forward)

Input: Initial ρ0, learned control vθ⋆
Sample X0 ∼ ρ0
Simulate forward SDE over [0, T ]
dX⋆

t = [ft + σvθ⋆(t,X
⋆
t )] dt+ σdWt,

Output: Trajectory X⋆
[0,T ]

Naïve MSBM

t0 t1 t2 t3
Ground Truth
Traj
Generated

Figure 1: (Left) The naı̈ve extension fails to
model intermediate states due to the accumu-
lation of errors. (Right) In contrast, MSBM
successfully models the ground truth data.

intermediate data distributions (ρt1 , · · · , ρtk−1
) into its training objective except ρ0 and ρT . Without200

explicit targets for the intermediate marginals guiding each iteration, the inferred paths between ρ0201

and ρT can “collapse” or drift away from the desired states. Consequently, precisely satisfying all202

intermediate constraints becomes increasingly challenging as iterations proceed.203

To address this issue of error accumulation and ensure all marginal constraints {ρt}t∈T are satis-204

fied, we propose a method that involves constructing local SBs on each interval [ti−1, ti] and then205

seamlessly gluing them together. Instead of propagating dynamics from the global endpoints ρ0 and206

ρT alone, our approach first establishes local SBs for each segment. The resulting local couplings207

are then systematically integrated to satisfy all specified marginal distributions {ρt}t∈T across the208

entire time interval [0, T ]. This local construction strategy helps prevent the compounding of errors at209

intermediate time points while still aiming to achieve the overall multi-marginal SB solution, PmSBP.210

The theoretical basis is provided by the following result.211

Corollary 5 (Multi-Marginal Schrödinger Bridge). Assume a sequence of controls {vi, ui}i∈[1:k],212

where each vi, ui induced local SBs Pi of SBP over local interval [ti−1, ti] with distributions213

(ρti−1
, ρti) in a forward and backward direction, respectively. If limt↑ti v

i(t,x) = vi+1(t,x) and214

limt↓ti−1
ui(t,x) = ui−1(t,x) for all i ∈ [1 : k], then PmSBP of mSBP induced by following SDEs:215

dX⋆
t = [ft(X

⋆
t ) + σv⋆(t,X⋆

t )] dt+ σdWt, X⋆
0 ∼ ρ0. (18a)

dY⋆
t = [−fT−t(Y

⋆
t ) + σu⋆(t,Y⋆

t )] dt+ σdWt, Y⋆
0 ∼ ρT , (18b)

where v⋆(t,x) =
∑k

i=11[ti−1,ti)(t)v
i(t,x), u⋆(t,x) =

∑k
i=11(ti−1,ti](t)u

i(t,x). (18c)

Building upon Corollary 5, we introduce our Multi-Marginal Schrödinger Bridge Matching (MSBM)216

method to solve the mSBP. A cornerstone of MSBM is divide the global mSBP into local SBPs while217

maintaining the continuity of the composite drift functions v⋆ and u⋆ in (18c) across adjacent intervals,218

which guarantees a globally continuous diffusion process inducing PmSBP. Furthermore, by explicitly219

constraining each local SBs, Pi, on its corresponding marginals (ρti−1
, ρti), MSBM is designed to220

mitigate the accumulation of bias at intermediate marginals, as shown in Figure 1.221

A key challenge of the MSBM is rigorously satisfying the continuity conditions at the boundaries of222

local controls: limt↑ti v
i(t,x) = vi+1(t,x) and limt↓ti−1 u

i(t,x) = ui−1(t,x) for all i ∈ [1 : k]. If223

these conditions are not met, discontinuities or “kinks” can arise at the intermediate time steps. Such224

kinks would imply that the overall path measure P⋆ ̸= Mmm(P⋆

, T ). This would, in turn, hinder the225

optimlaity for mSBP, because, following Proposition 3, the desired continuous Markov process is a226

fixed point of both Rmm and Markov projections Mmm under multiple time points T :227

P
⋆

= Rmm(P
⋆

, T ) = Mmm(P
⋆

, T ). (19)
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To construct local SBs such that the continuity requirements for forming a valid global solution are228

met, thereby preventing the aforementioned kinks and ensuring (19), our MSBM introduces a shared229

global parametrization vθ, uϕ for its respective local controls {vi, ui}i∈[1:k] for each sub-interval,230

where each local controls are parallel updated with following aggregate objective function:231

L̃(θ) =
k∑

i=1

L(θ, Ti,ΠTi
), L̃(ϕ) =

k∑
i=1

L(ϕ, Ti,ΠTi
), (20a)

where Ti = {ti−1, ti} define sub-intervals with local coupling ΠTi
for end-points marginals in232

interval [ti−1, ti] and L is defined in (14) and (17) for forward and backward direction, respectively.233

The MSBM training procedure, summarized in Algorithm 1, adapts the standard IMF algorithm234

presented in [45, Algorithm 1]. A key distinction in our MSBM approach is the parallel application235

of the IMF procedure to each local time interval, utilizing globally shared forward vθ and backward236

uϕ across all local intervals. This parallel processing across sub-intervals contributes to a significant237

reduction in overall training time.238

5 Related Work239

The solution of SBP often utilize Iterative Proportional Fitting (IPF) [19], with modern adaptations240

learning SDE drifts for two-marginal settings [4, 9, 13, 49]. A distinct iterative approach, IMF, as241

featured in [37, 45], offers improved stability by alternating projections onto different classes of242

path measures. Moreover, emerging research also explores non-iterative algorithm [12, 38]. These243

methodologies primarily concentrate on the SB problem itself, iteratively refining path measures or244

directly computing the bridge measure. Moreover, the SB algorithm is studied under the assumption245

that the optimal coupling is given [27, 46]. While recent studies have extended foundational SB ideas246

to the multi-marginal setting of mSBP, research in this area remains relatively limited.247

In multi-marginal setting, [8] extends the problem to phase space to encourage smoother trajectories248

and introduces a novel training methodology inspired by the Bregman iteration [5] to handle multiple249

marginal constraints. Relatedly, [44] presented an approach that, similar to our work, segments the250

problem across intervals; they learn piecewise SBs and use likelihood-based training to iteratively251

refine a global reference dynamic. While these methods are often IPF-based or focus on specific252

reference refinement strategies, our MSBM extends the previous IMF-type algorithm into multi-253

marginal setting and effectively handles multiple constraints. We demonstrate that our MSBM254

framework offers substantial gains in training efficiency. This enhanced efficiency is primarily255

attributed to its direct multi-marginal formulation that adeptly manages multiple constraints, thereby256

circumventing the computationally intensive iterative refinements common in IPF-based methods257

Paralleling these SB-centric developments, other significant lines of work model dynamic trajectories258

by directly learning potential functions or velocity fields, often drawing from optimal transport259

or continuous normalizing flows. For instance, [18, 24–26] extend SBs to incorporate potentials260

or mean-field interactions, connecting to stochastic optimal control and earlier mean-field game261

frameworks [22, 41]. The broader field of trajectory inference from snapshot data, crucial for262

applications like scRNA-seq, has seen methods like [48] using CNFs with dynamic OT, and [15]263

employing Neural ODEs on learned data manifolds. More recently, [33, 34] offer variational264

objectives to learn dynamics from marginal samples.265

6 Experiments266

In this section, we empirically demonstrate the effectiveness of our MSBM. Specifically, our goal267

is to infer a dynamic model from datasets composed of samples from marginal distributions ρt268

observed at discrete time points. We evaluate MSBM on both synthetic datasets and real-world single-269

cell RNA sequencing datasets, including human embryonic stem cells (hESC) [11] and embryoid270

body (EB) [32]. To ensure consistency and fair comparison, our experiments follow the respective271

experimental setups established by baseline methods. In particular, for the petal dataset, we adopt272

the experimental setup from DMSB [8], and for the hESC dataset, we follow SBIRR [44]. For273

the EB dataset, we perform evaluations on both 5-dim and 100-dim PCA-reduced data; here, we274

follow the 100-dim experimental setup of DMSB and the 5-dim setup from NLSB [18]. Accordingly,275
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Figure 3: Comparison of generated population dynamics using MIOFlow, DMSB and MSBM on a
2-dim petal dataset. All trajectories are generated by simulating the dynamics from ρt0 .

we utilize evaluation metrics consistent with previous studies, including the Sliced-Wasserstein276

Distance (SWD)[2], Maximum Mean Discrepancy (MMD)[14], as well as the 1-Wasserstein (W1)277

and 2-Wasserstein (W2) distances. All experimental results reported are averaged mean value over278

three independent runs with different random seeds. We highlight the best-performing results in bold279

and the second-best results in blue. Further experimental details are provided in Appendix C.280

6.1 Synthetic Data281
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Figure 2: Evaluation results of W2 and MMD.

Petal The petal dataset [15] serves as a sim-282

ple yet complex challenge because it mimics283

the natural dynamics seen in processes such as284

cellular differentiation, which include phenom-285

ena like bifurcations and merges. We compare286

our MSBM with MIOFlow [15] and DMSB [8]287

in Figure 2. As shown in Figure 3, we ob-288

serve that MSBM exhibits the most accurate and289

clearly defined trajectory, closely resembling the290

ground truth. Furthermore, Figure 2 demonstrates the evaluation results for the trajectories through291

W2 and MMD distances, highlighting that MSBM consistently outperforms MIOFlow and DMSB.292

6.2 Single-cell Sequencing Data293

We evaluated our MSBM on real-world single-cell RNA sequencing data from two sources: 1) human294

embryonic stem cells (hESCs) [11] undergoing differentiation into definitive endoderm over a 4-day295

period, measured at 6 distinct time points (t0:0 hours, t1:12 hours, t2:24 hours, t3:36 hours, t4:72296

hours, and t5:96 hours); 2) embryoid body (EB) cells [32] differentiating into mesoderm, endoderm,297

neuroectoderm, and neural crest over 27 days, with samples collected at 5 time windows (t0:0-3 days,298

t1:6-9 days, t2:12-15 days, t3:18-21 days, and t4:24-27 days). Following the experimental setup of299

baselines, we preprocessed these datasets using the pipeline outlined in [48], and the collected cells300

were projected into a lower-dimensional space using principal component analysis (PCA).301

Table 1: Performance on the 5-
dim PCA of hESC dataset. W2

is compute between test ρti and
generated ρ̂ti by simulating the
dynamics from test ρt0 .

W2 ↓ Runtime

Methods t1 t3 hours

TrajectoryNet† 1.30 1.93 10.19
DMSB† 1.10 1.51 15.54
SBIRR† 1.08 1.33 0.36 (0.38)∗

MSBM (Ours) 1.09 1.30 0.09

† result from [44].

hESC To follow the experimental setup from SBIRR [44], we302

reduced the data to the first five principal components and excluded303

the final time point t6 from our dataset, resulting in three train-304

ing time points T = {t0, t2, t4} and two intermediate test points305

Ttest = {t1, t3}. Our objective was to train the dynamics based on306

the available marginals at the training points in T and interpolate307

the intermediate test marginals at Ttest, which were not observed308

during training. Table 1 demonstrates that our proposed MSBM309

method performs competitively, achieving lower W2 distances.310

Embryoid Body We validate our MSBM on both 5-dim and311

100-dim PCA spaces. First, for the 5-dim experiment, we adopt the312

experimental setup from NLSB. Given 5 observation time points313

T = {t0, t1, t2, t3, t4}, we divide the data using train/test splits ρtrT /ρteT , with the goal of predicting314

population-level dynamics from ρtrt0 . Similar to NLSB, we train the dynamics based on ρtrT and315
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Table 3: Performance on the 100-dim PCA of
EB dataset. MMD and SWD are computed be-
tween test ρteti and generated ρ̂ti by simulating
the dynamics from test ρtet0 .

MMD ↓ SWD ↓

Methods Full t1 t2 t3 Full t1 t2 t3

NLSB† [18] 0.66 0.38 0.37 0.37 0.54 0.55 0.54 0.55

MIOFlow† [15] 0.23 0.23 0.90 0.23 0.35 0.49 0.72 0.50

DMSB† [8] 0.03 0.04 0.04 0.04 0.16 0.20 0.19 0.18

MSBM 0.02 0.04 0.04 0.05 0.11 0.18 0.17 0.19

† result from [8].

Figure 4: Comparison of generated population dy-
namics using DMSB and MSBM on a 100-dim PCA
of EB dataset. The plot displays the first two princi-
pal components as the x and y axes, respectively.

DMSB MSBM Groud Truth

t0 t1 t2 t3 t4 traj

evaluate the W1 distance between ρteti and the generated ρ̂ti from previous test snapshot ρteti−1
.316

In Table 2, we find that MSBM outperforms several SB methods.317

Table 2: Performance on the 5-dim PCA
of EB dataset. W1 is computed between
test ρteti and generated ρ̂ti by simulating
the dynamics from previous test ρteti−1

.

W1 ↓

Methods t1 t2 t3 t4 Mean

Neural SDE† [21] 0.69 0.91 0.85 0.81 0.82

TrajectoryNet† [48] 0.73 1.06 0.90 1.01 0.93

IPF (GP)† [49] 0.70 1.04 0.94 0.98 0.92

IPF (NN)† [4] 0.73 0.89 0.84 0.83 0.82

SB-FBSDE† [9] 0.56 0.80 1.00 1.00 0.84

NLSB† [18] 0.68 0.84 0.81 0.79 0.78

OT-CFM† [47] 0.78 0.76 0.77 0.75 0.77

WLF-SB‡ [34] 0.63 0.79 0.77 0.75 0.73

MSBM (Ours) 0.64 0.73 0.72 0.73 0.71

† result from [18], ‡ result from [34].

For the 100-dim experiment, we borrow the experimental318

setup from DMSB, where the goal is predict population319

dynamics given that observations are available for all time320

points T (denoted as Full in Table 3), or when one of321

the snapshot is left out (denoted as ti in Table 3, where322

snapshot ρtrti at ti is excluded during training). The high323

performance in this task represent the robustness of the324

model to accurately predict population dynamics. In Ta-325

ble 3, MSBM consistently yields performance improve-326

ments. Moreover, as shown in Figure 4, the trajectories327

and generated marginal distributions ρ̂T in PCA space fur-328

ther justifies the numerical result and highlights the variety329

and quality of the samples produced by MSBM.330

Computational Efficiency For an fair comparison of331

training efficiency against recent multi-marginal SB al-332

gorithms, we benchmarked DMSB and SBIRR on the identical hardware configuration employed333

for MSBM (denoted by ∗ in Table 1). On the hESC dataset, MSBM achieved a runtime over 4×334

faster than SBIRR. Furthermore, on the petal and 100-dim PCA of EB dataset, MSBM significantly335

outperformed DSMB in training speed, with detailed results presented in Figure 5.336

Figure 5: Training time

This enhanced computational efficiency primarily originates from337

core algorithmic differences. SBIRR, for example, utilizes maxi-338

mum likelihood training, which requires extensive gradient compu-339

tations and the storage of all intermediate paths. DMSB employs an340

IPF-type objective with Bregman Iteration [5]. In contrast, MSBM341

directly optimizes controls using an IMF-type objective, which not342

only eliminates the need to store intermediate states but also fa-343

cilitates parallel computation across sub-intervals. This approach344

substantially promotes faster convergence of the algorithm.345

7 Conclusion and Limitation346

This paper revisits previously established frameworks for the SBP, extending them to the mSBP.347

Specifically, we introduce a computationally efficient framework for mSBP, termed MSBM, which348

builds upon existing SBM methods [37, 45]. MSBM is tailored for various trajectory inference349

problems where snapshots of data are available at multi-marginal time steps. Through the successful350

adaptation of the IMF algorithm to this multi-marginal setting, our approach significantly accelerates351

training processes while ensuring accurate dynamic modeling when compared to existing methods.352

Despite these advantages, the performance degradation of MSBM is more pronounced than that353

of DMSB when a time point is omitted in Table 3. This may occur because the including velocity354

term could better accommodate unknown trajectory. Furthermore, the current MSBM framework355

is restricted to the case involving snapshot data samples, highlighting a need for enhancements to356

address problems with continuous potentials, such mean-field games [18, 24–26].357
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1. Claims498

Question: Do the main claims made in the abstract and introduction accurately reflect the499

paper’s contributions and scope?500

Answer: [Yes]501

Justification: The key claims stated in the abstract and introduction correspond appropriately502

to the scope of the paper.503

Guidelines:504

• The answer NA means that the abstract and introduction do not include the claims505

made in the paper.506

• The abstract and/or introduction should clearly state the claims made, including the507

contributions made in the paper and important assumptions and limitations. A No or508

NA answer to this question will not be perceived well by the reviewers.509

• The claims made should match theoretical and experimental results, and reflect how510

much the results can be expected to generalize to other settings.511

• It is fine to include aspirational goals as motivation as long as it is clear that these goals512

are not attained by the paper.513

2. Limitations514

Question: Does the paper discuss the limitations of the work performed by the authors?515

Answer: [Yes]516

Justification: The conclusion section provides a discussion on the limitations.517

Guidelines:518

• The answer NA means that the paper has no limitation while the answer No means that519

the paper has limitations, but those are not discussed in the paper.520

• The authors are encouraged to create a separate ”Limitations” section in their paper.521

• The paper should point out any strong assumptions and how robust the results are to522

violations of these assumptions (e.g., independence assumptions, noiseless settings,523

model well-specification, asymptotic approximations only holding locally). The authors524

should reflect on how these assumptions might be violated in practice and what the525

implications would be.526

• The authors should reflect on the scope of the claims made, e.g., if the approach was527

only tested on a few datasets or with a few runs. In general, empirical results often528

depend on implicit assumptions, which should be articulated.529

• The authors should reflect on the factors that influence the performance of the approach.530

For example, a facial recognition algorithm may perform poorly when image resolution531

is low or images are taken in low lighting. Or a speech-to-text system might not be532

used reliably to provide closed captions for online lectures because it fails to handle533

technical jargon.534

• The authors should discuss the computational efficiency of the proposed algorithms535

and how they scale with dataset size.536

• If applicable, the authors should discuss possible limitations of their approach to537

address problems of privacy and fairness.538

• While the authors might fear that complete honesty about limitations might be used by539

reviewers as grounds for rejection, a worse outcome might be that reviewers discover540

limitations that aren’t acknowledged in the paper. The authors should use their best541

judgment and recognize that individual actions in favor of transparency play an impor-542

tant role in developing norms that preserve the integrity of the community. Reviewers543

will be specifically instructed to not penalize honesty concerning limitations.544

3. Theory assumptions and proofs545

Question: For each theoretical result, does the paper provide the full set of assumptions and546

a complete (and correct) proof?547

Answer: [Yes]548
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Justification: Yes, we are confident that our proof and assumptions are both valid and549

adequate.550
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• The answer NA means that the paper does not include theoretical results.552

• All the theorems, formulas, and proofs in the paper should be numbered and cross-553

referenced.554

• All assumptions should be clearly stated or referenced in the statement of any theorems.555

• The proofs can either appear in the main paper or the supplemental material, but if556

they appear in the supplemental material, the authors are encouraged to provide a short557

proof sketch to provide intuition.558

• Inversely, any informal proof provided in the core of the paper should be complemented559

by formal proofs provided in appendix or supplemental material.560

• Theorems and Lemmas that the proof relies upon should be properly referenced.561

4. Experimental result reproducibility562

Question: Does the paper fully disclose all the information needed to reproduce the main ex-563

perimental results of the paper to the extent that it affects the main claims and/or conclusions564

of the paper (regardless of whether the code and data are provided or not)?565

Answer: [Yes]566

Justification: Yes, all the necessary data to reproduce the results can be found in the Appendix567

C.568
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• The answer NA means that the paper does not include experiments.570

• If the paper includes experiments, a No answer to this question will not be perceived571

well by the reviewers: Making the paper reproducible is important, regardless of572

whether the code and data are provided or not.573

• If the contribution is a dataset and/or model, the authors should describe the steps taken574

to make their results reproducible or verifiable.575

• Depending on the contribution, reproducibility can be accomplished in various ways.576

For example, if the contribution is a novel architecture, describing the architecture fully577

might suffice, or if the contribution is a specific model and empirical evaluation, it may578

be necessary to either make it possible for others to replicate the model with the same579

dataset, or provide access to the model. In general. releasing code and data is often580

one good way to accomplish this, but reproducibility can also be provided via detailed581

instructions for how to replicate the results, access to a hosted model (e.g., in the case582

of a large language model), releasing of a model checkpoint, or other means that are583

appropriate to the research performed.584

• While NeurIPS does not require releasing code, the conference does require all submis-585

sions to provide some reasonable avenue for reproducibility, which may depend on the586

nature of the contribution. For example587

(a) If the contribution is primarily a new algorithm, the paper should make it clear how588

to reproduce that algorithm.589

(b) If the contribution is primarily a new model architecture, the paper should describe590

the architecture clearly and fully.591

(c) If the contribution is a new model (e.g., a large language model), then there should592

either be a way to access this model for reproducing the results or a way to reproduce593

the model (e.g., with an open-source dataset or instructions for how to construct594

the dataset).595

(d) We recognize that reproducibility may be tricky in some cases, in which case596

authors are welcome to describe the particular way they provide for reproducibility.597

In the case of closed-source models, it may be that access to the model is limited in598

some way (e.g., to registered users), but it should be possible for other researchers599

to have some path to reproducing or verifying the results.600

5. Open access to data and code601

14



Question: Does the paper provide open access to the data and code, with sufficient instruc-602

tions to faithfully reproduce the main experimental results, as described in supplemental603

material?604

Answer: [Yes]605

Justification: We provided our code.606

Guidelines:607

• The answer NA means that paper does not include experiments requiring code.608

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/609

public/guides/CodeSubmissionPolicy) for more details.610

• While we encourage the release of code and data, we understand that this might not be611

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not612

including code, unless this is central to the contribution (e.g., for a new open-source613

benchmark).614

• The instructions should contain the exact command and environment needed to run to615

reproduce the results. See the NeurIPS code and data submission guidelines (https:616

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.617

• The authors should provide instructions on data access and preparation, including how618

to access the raw data, preprocessed data, intermediate data, and generated data, etc.619

• The authors should provide scripts to reproduce all experimental results for the new620

proposed method and baselines. If only a subset of experiments are reproducible, they621

should state which ones are omitted from the script and why.622

• At submission time, to preserve anonymity, the authors should release anonymized623

versions (if applicable).624

• Providing as much information as possible in supplemental material (appended to the625

paper) is recommended, but including URLs to data and code is permitted.626

6. Experimental setting/details627

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-628

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the629

results?630

Answer: [Yes]631

Justification: We have included the details of the experiments.632

Guidelines:633

• The answer NA means that the paper does not include experiments.634

• The experimental setting should be presented in the core of the paper to a level of detail635

that is necessary to appreciate the results and make sense of them.636

• The full details can be provided either with the code, in appendix, or as supplemental637

material.638

7. Experiment statistical significance639

Question: Does the paper report error bars suitably and correctly defined or other appropriate640

information about the statistical significance of the experiments?641

Answer: [Yes]642

Justification: Yes, we ran our code three times and reported the mean and standard deviations643

in the appendix. Due to space limitations, only the mean values are presented in the main644

text. The complete results can be found in Appendix C.645

Guidelines:646

• The answer NA means that the paper does not include experiments.647

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-648

dence intervals, or statistical significance tests, at least for the experiments that support649

the main claims of the paper.650

• The factors of variability that the error bars are capturing should be clearly stated (for651

example, train/test split, initialization, random drawing of some parameter, or overall652

run with given experimental conditions).653
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• The method for calculating the error bars should be explained (closed form formula,654

call to a library function, bootstrap, etc.)655

• The assumptions made should be given (e.g., Normally distributed errors).656

• It should be clear whether the error bar is the standard deviation or the standard error657

of the mean.658

• It is OK to report 1-sigma error bars, but one should state it. The authors should659

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis660

of Normality of errors is not verified.661

• For asymmetric distributions, the authors should be careful not to show in tables or662

figures symmetric error bars that would yield results that are out of range (e.g. negative663

error rates).664

• If error bars are reported in tables or plots, The authors should explain in the text how665

they were calculated and reference the corresponding figures or tables in the text.666

8. Experiments compute resources667

Question: For each experiment, does the paper provide sufficient information on the com-668

puter resources (type of compute workers, memory, time of execution) needed to reproduce669

the experiments?670

Answer: [Yes]671

Justification: Yes, the necessary resources are included in the experimental details section.672

Guidelines:673

• The answer NA means that the paper does not include experiments.674

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,675

or cloud provider, including relevant memory and storage.676

• The paper should provide the amount of compute required for each of the individual677

experimental runs as well as estimate the total compute.678

• The paper should disclose whether the full research project required more compute679

than the experiments reported in the paper (e.g., preliminary or failed experiments that680

didn’t make it into the paper).681

9. Code of ethics682

Question: Does the research conducted in the paper conform, in every respect, with the683

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?684

Answer: [Yes]685

Justification: We support the NeurIPS Code of Ethics.686

Guidelines:687

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.688

• If the authors answer No, they should explain the special circumstances that require a689

deviation from the Code of Ethics.690

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-691

eration due to laws or regulations in their jurisdiction).692

10. Broader impacts693

Question: Does the paper discuss both potential positive societal impacts and negative694

societal impacts of the work performed?695

Answer: [NA]696

Justification: This paper presents work aimed at advancing the field of machine learning.697

Our research may have various societal consequences. However, we do not believe any of698

these require specific emphasis here.699

Guidelines:700

• The answer NA means that there is no societal impact of the work performed.701

• If the authors answer NA or No, they should explain why their work has no societal702

impact or why the paper does not address societal impact.703
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• Examples of negative societal impacts include potential malicious or unintended uses704

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations705

(e.g., deployment of technologies that could make decisions that unfairly impact specific706

groups), privacy considerations, and security considerations.707

• The conference expects that many papers will be foundational research and not tied708

to particular applications, let alone deployments. However, if there is a direct path to709

any negative applications, the authors should point it out. For example, it is legitimate710

to point out that an improvement in the quality of generative models could be used to711

generate deepfakes for disinformation. On the other hand, it is not needed to point out712

that a generic algorithm for optimizing neural networks could enable people to train713

models that generate Deepfakes faster.714

• The authors should consider possible harms that could arise when the technology is715

being used as intended and functioning correctly, harms that could arise when the716

technology is being used as intended but gives incorrect results, and harms following717

from (intentional or unintentional) misuse of the technology.718

• If there are negative societal impacts, the authors could also discuss possible mitigation719

strategies (e.g., gated release of models, providing defenses in addition to attacks,720

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from721

feedback over time, improving the efficiency and accessibility of ML).722

11. Safeguards723

Question: Does the paper describe safeguards that have been put in place for responsible724

release of data or models that have a high risk for misuse (e.g., pretrained language models,725

image generators, or scraped datasets)?726

Answer: [NA]727

Justification: We believe our paper poses no such risks.728

Guidelines:729

• The answer NA means that the paper poses no such risks.730

• Released models that have a high risk for misuse or dual-use should be released with731

necessary safeguards to allow for controlled use of the model, for example by requiring732

that users adhere to usage guidelines or restrictions to access the model or implementing733

safety filters.734

• Datasets that have been scraped from the Internet could pose safety risks. The authors735

should describe how they avoided releasing unsafe images.736

• We recognize that providing effective safeguards is challenging, and many papers do737

not require this, but we encourage authors to take this into account and make a best738

faith effort.739

12. Licenses for existing assets740

Question: Are the creators or original owners of assets (e.g., code, data, models), used in741

the paper, properly credited and are the license and terms of use explicitly mentioned and742

properly respected?743

Answer: [Yes]744

Justification: Yes, the license and terms of use are noted.745

Guidelines:746

• The answer NA means that the paper does not use existing assets.747

• The authors should cite the original paper that produced the code package or dataset.748

• The authors should state which version of the asset is used and, if possible, include a749

URL.750

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.751

• For scraped data from a particular source (e.g., website), the copyright and terms of752

service of that source should be provided.753

• If assets are released, the license, copyright information, and terms of use in the754

package should be provided. For popular datasets, paperswithcode.com/datasets755

has curated licenses for some datasets. Their licensing guide can help determine the756

license of a dataset.757
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• For existing datasets that are re-packaged, both the original license and the license of758

the derived asset (if it has changed) should be provided.759

• If this information is not available online, the authors are encouraged to reach out to760

the asset’s creators.761

13. New assets762

Question: Are new assets introduced in the paper well documented and is the documentation763

provided alongside the assets?764

Answer: [NA]765

Justification: The paper does not release new assets.766

Guidelines:767

• The answer NA means that the paper does not release new assets.768

• Researchers should communicate the details of the dataset/code/model as part of their769

submissions via structured templates. This includes details about training, license,770

limitations, etc.771

• The paper should discuss whether and how consent was obtained from people whose772

asset is used.773

• At submission time, remember to anonymize your assets (if applicable). You can either774

create an anonymized URL or include an anonymized zip file.775

14. Crowdsourcing and research with human subjects776

Question: For crowdsourcing experiments and research with human subjects, does the paper777

include the full text of instructions given to participants and screenshots, if applicable, as778

well as details about compensation (if any)?779

Answer: [NA]780

Justification: We do not involve crowdsourcing or research with human subjects.781

Guidelines:782

• The answer NA means that the paper does not involve crowdsourcing nor research with783

human subjects.784

• Including this information in the supplemental material is fine, but if the main contribu-785

tion of the paper involves human subjects, then as much detail as possible should be786

included in the main paper.787

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,788

or other labor should be paid at least the minimum wage in the country of the data789

collector.790

15. Institutional review board (IRB) approvals or equivalent for research with human791

subjects792

Question: Does the paper describe potential risks incurred by study participants, whether793

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)794

approvals (or an equivalent approval/review based on the requirements of your country or795

institution) were obtained?796

Answer: [NA]797

Justification: We do not involve crowdsourcing or research with human subjects798

Guidelines:799

• The answer NA means that the paper does not involve crowdsourcing nor research with800

human subjects.801

• Depending on the country in which research is conducted, IRB approval (or equivalent)802

may be required for any human subjects research. If you obtained IRB approval, you803

should clearly state this in the paper.804

• We recognize that the procedures for this may vary significantly between institutions805

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the806

guidelines for their institution.807

• For initial submissions, do not include any information that would break anonymity (if808

applicable), such as the institution conducting the review.809
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16. Declaration of LLM usage810

Question: Does the paper describe the usage of LLMs if it is an important, original, or811

non-standard component of the core methods in this research? Note that if the LLM is used812

only for writing, editing, or formatting purposes and does not impact the core methodology,813

scientific rigorousness, or originality of the research, declaration is not required.814

Answer: [NA]815

Justification: We do not use LLM for core methodology, scientific rigorousness, or originality816

of the research.817

Guidelines:818

• The answer NA means that the core method development in this research does not819

involve LLMs as any important, original, or non-standard components.820

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)821

for what should or should not be described.822
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