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ABSTRACT

In many real-world decision-making scenarios, agents are confronted with incom-
plete and imperfect information, requiring them to make choices based on lim-
ited knowledge. Imperfect-information games tackle this challenge by organising
different potential situations into so-called information sets, i.e. sets of possible
world states that are indistinguishable from one observer’s perspective, but di-
rectly evaluating an information set is difficult. A common but often suboptimal
strategy is to evaluate the individual states in the set with a perfect information
evaluator and combine the results. This not only presents problems related to
translating perfect information evaluations to imperfect information settings but
is also immensely costly in situations with extensive hidden information. This
work focuses on learning direct evaluators for information sets by assessing only
a subset of the states in the information set, thereby reducing the overall cost of
evaluation. Critically, we focus on one question: How many states should be sam-
pled from a given information set? This involves a trade-off between the cost
of computing a training signal and its accuracy. We present experimental results
in three settings: an artificial MNIST variant with hidden information, Heads-Up
Poker, and Reconnaissance Blind Chess. Our results show that the number of
sampled states significantly influences the efficiency of training neural networks.
However, there are diminishing returns when sampling a large number of states.
Notably, in the three regarded domains, using one, two and two samples respec-
tively leads to the best performance concerning the total number of evaluations
required. This research contributes to the understanding of how to optimise the
sampling of information sets in scenarios of incomplete information, thus offering
practical insight into the balance between computational cost and accuracy.

1 INTRODUCTION

Imperfect-information games, games characterised by unobservable aspects, are an important part of
Game AI research. In recent years, they have received increased attention due to the inherent com-
plexity of managing incomplete information. This category encompasses a wide array of games,
spanning from classical card games like Poker and Bridge to adaptions of traditional board games
such as Dark Hex and Reconnaissance Blind Chess, as well as real-time video games like Starcraft,
Dota II and Counter-Strike. Thus, we see much interest - commercially and scientifically - in master-
ing this category of games. However, the methods that conquered many classical perfect-information
games like AlphaZero (Silver et al., 2018) do not necessarily carry over to imperfect-information
games (Schmid et al., 2021) easily and mostly require specialised techniques.

In imperfect-information settings, decisions are typically based on a fusion of public information
and an implicitly learned or directly computed expected value of the hidden information. While
there are several different approaches to learning evaluations implicitly (see Section 3), we focus
on learning them explicitly in a supervised fashion. Our central concept revolves around receiv-
ing training signals for imperfect information states via the expected value of all possible perfect
information states. At every decision point of an imperfect-information game, the set of all pos-
sible states from one observer’s perspective is called an information set. While enumerating such
a set may not be possible for real-time games, it is feasible for many sequential games such as
Poker and Reconnaissance Blind Chess. We define the evaluation of an imperfect-information state
as the expected value over all evaluations of states in its information set. The goal is to learn an
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evaluator which encapsulates this relationship between and imperfect-information state and a target
evaluation. However, doing this perfectly would require evaluating every state across all obtainable
information sets, which is often not a feasible task. Thus, this work investigates how we can reduce
the computational work required by only sampling subsets of each information set.

We begin this work by outlining the problem more formally (Section 2) and give a brief overview
of related work and problems (Section 3). Subsequently, we empirically investigate the problem in
three settings with different types of hidden information:

• MNIST with uncertainty: This introduces the general concept by corrupting the training
labels with which a classifier is trained.

• Heads-Up Poker: Here we evaluate a 2-card hand without knowledge about the commu-
nity cards or the opponent’s cards, sampling from information sets to estimate evaluations.

• Reconnaissance Blind Chess (RBC) (Gardner et al., 2019): In this chess variant, the
opponent’s moves are often uncertain because of limited information. We aim to evaluate
the public state based on evaluations of determinised positions.

We summarise our results in Section 5 and give an outlook on potential future extensions in Sec-
tion 6.

2 PROBLEM STATEMENT

We formalise the problem as follows: Given is a dataset of examples D = (xi, yi) ⊂ X × Y ,
where each label yi = f(xi,hi) is determined by an unknown function f , dependent not only on
the observable information xi, but also on the hidden information hi. Our goal is to find a function
g(x) which approximates f(x,h), such that ∀i : g(xi) ≈ f(xi,hi). Obviously, this task is non-
trivial, and such a function g does not always exist, as the same observable x̃ can occur multiple
times with different labels because in general f(x̃,h(1)) ̸= f(x̃,h(2)) for h(1) ̸= h(2).

Our motivation for this problem originates from imperfect information games, where the informa-
tion set represents all possible game states given one player’s information. In several such games,
remarkable performance has been achieved by basing the imperfect information gameplay, whether
implicitly or explicitly, on perfect-information evaluations of states in an information set (Blüml
et al., 2023; Bertram et al., 2022; Browne et al., 2012). In RBC, many strong programs rely heavily
on classical engines for evaluating conventional chess positions (Gardner et al., 2019; Perrotta et al.,
2021; Gardner et al., 2023). The idea is to evaluate the public information state by the expected value
of the states in the information set. Similarly, the value of a player’s hand in Poker can be estimated
as the expected value of the hand over all possible variations of the community and opponent’s cards.

It is important to acknowledge the limitations of basing imperfect-information policy fully on
perfect-information evaluations, and it is trivial to construct counterexamples where this fails. Nev-
ertheless, often no better estimates exist and learned evaluations can subsequently be refined through
reinforcement learning or other techniques.

The central objective of this work is to learn the function g which receives the public information of
a state x and approximates the expected value of that state. This expectation is received by iterating
over the information set:

ŷ =
∑
h

P (h|x) · f(x,h) (1)

Here, h ∈ I are all possible configurations of private information that are part of the information
set I, f is an evaluator of a perfect information state and P is a function which gives the probability
of each hidden state for the given configuration x. In our experiments, we assume that all possible
determinations are equally likely, i.e. P (h|x) = 1/|I(x)|. In general, P can be more complex and
can be heuristically approximated based on past behaviours or observations (Bertram et al., 2023).

A simple strategy to learn g is to collect samples of the form (xi, ŷi), i.e., to compute the exact value
ŷi as in equation 1 for a large number of training positions xi, and to use supervised learning to
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learn the function ŷi = g(xi) from these samples. However, this approach generally is too costly
due to the potentially large size of information sets, so obtaining a single ŷi would require tens of
thousands of queries to the evaluator. Alternatively, ŷ can be approximated by randomly sampling
only a few of the possible h(j), resulting in less accurate training signals ẏ at a lower computational
cost.

In our work, we aim to answer a fundamental question: Given a fixed budget of N perfect in-
formation evaluations, how should we generate training data for the learner? Options range from
generating N different training examples xi, each labelled with one randomly sampled evaluation,
over using a fixed number of k evaluations to generate labels for N/k positions, up to exhausting
the budget with exactly computing ŷ for as many examples as possible. This trade-off between the
training set size (the number of distinct xi) and label quality (the number of evaluations used to
estimate the intended target values ŷi for each xi) forms the core focus of this paper.

Several learning settings are special cases of this formulation. Conventional classification emerges
when hi = ∅,∀i, i.e. when no hidden information determines the label yi. Similarly, learning from
noisy labels can be formulated with a single hidden variable hi, which determines whether the origi-
nal label remains intact or is corrupted. Knowledge of this hidden information makes the underlying
function f deterministic, but g does not have access to the information about the corruption.

3 RELATED WORK

The problem formulated in Section 2 is multifaceted and occurs in several different learning
paradigms, thus we can only give a brief overview of how it manifests in practice.

Our initial experiment on MNIST (Section 4.1) is closely related to research in the area of noisy
labels (Snow et al., 2008; Khetan et al., 2018), which extends to crowd-sourcing (Sheng et al., 2008;
Karger et al., 2014) and aggregating labels from different labellers. It also shares commonalities
with active learning (Settles, 2012), which in our case is a problem of deciding whether to re-sample
an existing example to improve label quality or to obtain a new sample to increase overall training
data quantity. Importantly, most of this research aims to improve data distribution to the labellers
or to reduce bias post-sampling, which differs significantly from choosing a sampling frequency a
priori. In addition, they deal with categorical or binary labels, while we mostly address domains
with real-valued evaluations.

In the context of imperfect-information games, numerous different approaches exist to, explicitly or
implicitly, evaluate an information set. Techniques such as Perfect Information Monte Carlo (Long
et al., 2010; Furtak & Buro, 2013) combine evaluations of different perfect-information searches into
a policy for the imperfect-information state and Information Set Monte Carlo Tree Search (White-
house et al., 2011) operates on information sets. Counterfactual Regret Minimization (Zinkevich
et al., 2007), as well as its successors, and ReBeL (Brown et al., 2020) learn the utility of individual
information sets through self-play. Recent work by Blüml et al. (2023) samples individual world
states and constructs imperfect-information policies based on their evaluations. In essence, most
techniques for solving imperfect information games involve estimating the value of information
sets, further motivating the importance of the question which we aim to answer.

Finally, this paper is concerned with learning to approximate the value of a set, which is defined as
the mean of all of its items, by sampling a subset of it. At its core, this general idea that sampling
more states from the information set will lead to a more accurate estimate of its overall value is sim-
ply an instance of the law of large numbers and thus finds application in a variety of problems. This
trade-off between quantity and quality of evaluations is also analogous to the choice of rollout policy
in classical Monte Carlo Tree Search (Browne et al., 2012), where one has to decide between ran-
dom rollouts (fast, and thus allowing a larger quantity, but less informative) and more sophisticated
rollout-policies (slower, thus limiting their number, but better at approximating true behaviour).

4 EXPERIMENTS

In this section, we present a series of experiments designed to investigate the trade-off between (a)
obtaining a fresh training example and (b) increasing the labelling quality of an existing sample.
The learner has a limited budget of total sampling queries N and can decide whether to spend it on
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(a) or (b). We construct multiple runs with different numbers of samples k per training example.
Each query yields one possible target value, which will be aggregated into an overall label that is
used for training. The source code for all experiments will be made public after reviews to preserve
anonymity.

4.1 MNIST

In the first experiment, we create an imperfect-information adaption of MNIST (Deng, 2012). This
serves as a first investigation into the effect of sampling different amounts of labels for a single
example.

4.1.1 SETUP

Each original training example (xi, yi) is annotated with a hidden variable hi = (hi), which is set
to ∅ with probability (1 − p), or, with a probability of p, set to a uniform randomly sampled class
label. If hi = ∅, the original label is used in the transformed dataset (xi, ŷi), i.e., ŷi ← yi, otherwise
yi ← hi is used. Effectively, this adds uniform class noise to the learning problem, but it is modelled
as an imperfect information scenario, where knowledge of hi would facilitate the learning task, as
a perfect-information classifier could learn that values of hi ̸= ∅ directly determine the class label.
However, the learner only has access to the imperfect information (xi, ŷi). It thus has to be able
to deal with possibly contradicting samples (xi, ŷi) and (xj , ŷj), where xi = xj but ŷi ̸= ŷj , and
effectively learn to associate the expected value E[ŷi] = yi with each xi. After drawing repeated
samples for xi, they are aggregated via voting for the most frequently observed class; ties are broken
randomly.

We train a basic convolutional neural network on online-generated samples with varying values of
k, representing the number of labels sampled per training example, and the corruption probability p.
One difficulty is that when comparing the influence of k and p on the training process of the network,
we can either regard the performance as a function of the total number of samples generated, the
number of gradient updates taken, or the wall time passed. Without knowledge about the relation of
these, every choice introduces some bias into the comparison; when regarding only the total number
of samples generated, variants with more samples per training example have fewer opportunities to
update the parameters of the network, but when only considering the number of updates, runs with
fewer validations have no real chance to perform better as they possess a noisier training signal.
Using the wall time introduces hardware biases.

4.1.2 RESULTS

The initial findings are summarised in Figure 1, where we compare which choice of k leads to
the best peak accuracy over multiple runs, either given a budget of 1 million labels generated or 1
million updates performed. Additional training curves can be found in the Appendix (Figures 9 and
10). When equating for the total quantity of generated labels, sampling a label multiple times leads
to worse results in almost all cases. Only for very high noise levels, repeated sampling (k = 3) is
advisable. Note that there can be no difference in performance for k = 1 and k = 2 in all settings
because labelling a sample twice does not lead to a higher chance of returning the true label (see
Lemma A.1). Even when equating for the total number of parameter updates, no difference is found
between the peak accuracies, with the extremely high 99% noise setting being the only exception,
where overall performance is improved with more samples.

Thus, we conclude that sampling multiple labels leads to worse efficiency than using a simple sample
for this experiment. However, this could be attributed to the learner’s ability to see the same training
example multiple times in different epochs, thus mitigating the downside of only sampling once.

4.2 TEXAS HOLD’EM POKER

This experiment aims to use the observations from Section 4.1 in a real-world setting where we have
to balance the label accuracy with the number of total training examples seen. Here, the learner aims
to estimate the win probability of a given 2-card hand of cards in two-player heads-up poker. This
is a direct implementation of the problem outlined in Section 2.
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Figure 1: Comparison of best choice (given by highest average test-accuracy achieved) of number
of labels sampled per training example for different label corruption levels for a fixed budget of
evaluations (top) and a fixed budget of parameter updates of the learner (bottom).

4.2.1 SETUP

In principle, for a given hand x, g(x) could be directly computed as the average over all possible hid-
den contexts hx, but doing so would require immense computational resources. Without accounting
for symmetry, a player can have

(
52
2

)
= 1326 unique Poker hands. One would need to compute all

possible arrangements of the remaining cards into two opponent cards and five community cards,
i.e.

(
52
2

)
·
(
50
2

)
·
(
48
5

)
= 2,781,381,002,400 total combinations. For each of these combinations, one

needs to evaluate which player won the game and average this for all configurations that pertain to
the same player’s hand to estimate the overall winning probability of that hand. While public data
for the win-chances of a hand exists, such data is only available for the most popular games and
computing them is much costlier in other games with higher degrees of uncertainty or more expen-
sive state evaluations. Thus we aim to decrease the computational cost by only sampling parts of the
information set instead of enumerating it entirely.

When training the Neural Network, we sample k different configurations of cards for the given hand,
evaluate the result of this configuration (0, 1 or 0.5), and train the network to predict the mean of all
k samples. Sampling more combinations leads to a smaller difference between the estimate and the
ground truth, but more computation is required to generate them, which results in a smaller amount
of total hands seen when equating for the total number of evaluations.

4.2.2 RESULTS

As a first estimate, Figure 2 shows the discrepancy between an estimated hand strength through
evaluations and the true win chance according to a table 1. Notable, with only a single sampled
configuration, it is impossible to exactly receive the true win chance of most hands as the only
possible results are 0, 0.5, and 1, thus resulting in three error clusters of the histogram for one

1https://www.winallpoker.com/wp-content/uploads/Heads-up-poker-odds-win.
pdf
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Figure 2: Error in evaluating the change of winning with a given hand pre-flop- in heads-up poker.
Estimations are computed by averaging over n samples of possible opponent hands and rivers.
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Figure 3: Average training curves of learning to evaluate a poker hand with different numbers of
evaluations per training example. The x-axis is logarithmically scaled either by the total number of
hand evaluations (top) or by the total number of update steps made (bottom).

sample. This means that repeated sampling not only increases the probability of being close to the
true evaluation, it also improves how close the sampled evaluations can potentially be.

The training process (Figure 3) shows that training with fewer evaluations per example leads to much
quicker progress when regarding the performance in relation to the total number of evaluations, but
when the examples have higher-quality evaluations, each update is more meaningful. However,
comparing the best versions (Figure 4), we see that even when equating for the total number of
evaluations requested, using a single evaluation leads to worse peak results than using two, three,
five, and ten sampled evaluations. When equating for training updates, more evaluations perform
strictly better than less, which stands in contrast to Section 4.1, where peak results did not improve
with more samples in almost all settings. It is not clear what causes this discrepancy, but we speculate
that it is related to using real-valued evaluations as opposed to categorical labels, which might be
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Figure 4: Average lowest received error for the different options of hand validations given a total
budget of either 100M hand evaluations or 1M training updates.

more forgiving. All in all, these results suggest that multiple samples are useful for this setting, but
naturally, spending too much computation on a single example degrades the overall performance as
total training data quantity diminishes.

4.3 RECONNAISSANCE BLIND CHESS

Finally, we test one last setting; Reconnaissance Blind Chess.2 RBC is an imperfect-information
adaption of chess, where players receive limited information about the opponent’s moves. When
training agents to play this game, it is highly useful to be able to evaluate a specific situation (i.e.
the received observations at one point in time), and evaluation functions for regular chess are readily
available (e.g., from open-source programs such as Stockfish3. Thus, computing the average eval-
uation of all states in an information set is an intuitive approach, but doing so is infeasible in the
game, as the information set can involve thousands of different game states. As such, this game is
a real-world example of the problem we are trying to investigate: How can we best invest a given
computational budget to generate the most informative training information?

4.3.1 SETUP

For this experiment, training data is created offline in advance for each k, thus allowing each Neural
Network to train without requesting additional evaluations. Each learner has a fixed budget of 1
million state evaluations, which are calls to a Stockfish engine, that can be arbitrarily distributed
among different information sets. Based on the previous results, sensible values of k were chosen
as{1,2,3,5,10,25,50,100,1000}, thus resulting in datasets of approximately {1M, 500k, 333k, 200k,
100k, 40k, 20k, 10k, 1k} examples respectively.4 Importantly, the number of potential public-
information states to get evaluated in this experiment is much higher than in the previous Sections 4.1
and 4.2. For MNIST, the training data is limited to 60,000 images and in Poker, there are 1326 unique
2-card hands. However, in RBC, the number of potential observations which form one information
set is estimated to be 10139 (Markowitz et al., 2018), enormously larger than our training datasets,
thus minimising the probability of overlapping training example and increasing the importance of
meaningful target value estimations.
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Figure 5: Error in evaluating the odds of winning
for a given observation. Estimations are com-
puted by averaging over k samples of possible
board states, true evaluation is defined as the av-
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Figure 6: Average lowest received error for train-
ing datasets created with a total budget of 1M
sampled boards. For each training example, k
different boards are sampled from the informa-
tion set, leading to 1M/k different training exam-
ples.

4.3.2 RESULTS

First, regarding the differences between the true evaluation of an information set and the approx-
imated one given by k samples (Figure 5), we receive the expected result: Sampling only a small
number of states can lead to a large discrepancy between the approximation and the ground truth, but
we see diminishing returns, such that sampling more than 50 positions only leads to slight improve-
ments in the approximation. Thus, we would expect that sampling multiple states is beneficial, but
more than 50 states should lead to meaningful degradation in performance due to the corresponding
large reduction of training data quantity.

This observation is confirmed by the results in Figures 6 and 7. The training curves in Figure 7 show
that training with a single sample results in poor overall accuracy due to the noisy training signal,
but vast oversampling reduces the number of different training examples too much. Figure 6 shows
that k = 1 and k = 1000 are the worst choices in this experiment. Similarly to the findings of
Section 4.2, we see that multiple samples are aiding training.

5 SUMMARY AND CONCLUSION

With this work, we provided the first experimental results on the influence of sampling different
numbers of states from an information set to enable a neural network to learn an evaluation of the
whole set. For a given task, a total budget of N evaluations is given, which are distributed among
samples from different information sets, varying how many states are obtained from each (k). Thus,
we investigated the trade-off between the overall number of training samples generated and the
accuracy of their associated labels.

As a first observation, the trade-off is additionally influenced by the cost of generating evaluations
and the cost of making an update to the learner. Thus, the specific choice of k for one domain will
be related to the balance of these costs.

To answer the initial question of how a fixed evaluation budget should be distributed, we find that
in the MNIST setting (Section 4.1), sampling multiple labels does not lead to better performance
in the majority of conditions. This could be a result of the task being rather simple, such that

2https://rbc.jhuapl.edu/
3https://stockfishchess.org/
4The exact numbers vary slightly because the information set can consist of fewer states than k, thus ex-

hausting it completely.
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Figure 7: Average training curves of learning to evaluate a history of observations with different
numbers of unique board states sampled from the information set per training example. X-axis
scaled by the total number of evaluations seen. Curves vary in length because the Neural Network
is trained until no further improvements are seen, which happens at different points in time.

label inaccuracy does not significantly impact the performance. However, it may also suggest that
when dealing with categorical labels, the benefits of sampling multiples diminish since a single label
can already adequately represent the target. Conversely, in the two real-valued tasks (Sections 4.2
and 4.3), we find that generating multiple evaluations consistently improves the performance and
efficiency of the neural network. In these two domains, Heads Up Poker and Reconnaissance Blind
Chess, we find that sampling two evaluations per training example lead to overall best results and
only using one sample did not perform well compared to the other options. As the results for both
domains were similar, we speculate that these findings will translate to more scenarios, but more
work is required to validate this.

6 FUTURE WORK

We see multiple intriguing lines of further work based on these initial findings. First, we here
assumed no agency over the process of sampling from the information sets and no possibility of
varying the number of sampled states online. Being able to change either of those assumptions
will likely lead to better results and some strategies have previously been outlined by Sheng et al.
(2008) for categorical tasks. Secondly, it is unclear whether real-world scenarios exist where very
high numbers of samples are applicable. Our first experiment (Section 4.1), albeit artificial, hinted
that such settings might exist in niche cases. Finally, while our general formulation holds for other
distributions of states, we used a uniform distribution of states for our experiments. While this
assumption is sensible for the first two of our experiments, information sets like the ones processed
in Section 4.3 do not have uniform distributions in practice. Knowledge of this, or even access to a
proxy of such a distribution would lead to more accurate estimations in real-world tasks. Whether a
non-uniform distribution changes the best choice of sampled evaluations will be investigated in the
future.
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A APPENDIX

A.1 MNIST

Probability of receiving corrupted label
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Figure 8: Probability of voting the wrong label for a sample in relation to the number of individual
samples requested and the probability that any label was corrupted to a random label. Large areas of
the space have a low chance of corruption, so repeated sampling will likely not be needed for those.
For the higher-noise settings, repeated sampling of one label might lead to improved training.

Lemma A.1. When majority-voting the label that shall be returned for a given example, sampling
exactly k = 2 different labels does not improve the probability of returning the true label of that
example compared to k = 1.

Proof. Let there be c different potential labels for a given example with one label l+ being correct
and all labels l−,i being incorrect. p+ denotes the probability of receiving the true label and p−
denotes the probability of receiving each individual wrong label. Naturally, p+ + (c − 1) · p− =
1. When sampling exactly one label, the probability of receiving l+ is p+ and the probability of
receiving any l− is 1 − p+ as given by the definition. When sampling two labels, three different
options arise:

1. We receive l+ twice, this occurs with probability p2+ and will return l+ with probability 1.

2. We receive l+ and any l− (or vice versa), which occurs with probability 2·(p+ ·(1−p+)) =
2 · (p+− p2+). In this case, a tie between two labels occurs, and a random label of both will
be returned, i.e. l+ is returned with probability 1/2 · 2 · (p+ − p2+) = p+ − p2+.

3. We receive any two l−, which happens with probability (1− p+)
2 and will return l+ with

probability 0.

Thus, we receive l+ with probability p2+ + p+ − p2+ + 0 = p+, which is the same probability as
when sampling one label.
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Figure 9: Comparison of test-accuracy over time for different combinations of label corruption rate
and number of labels sampled per training example. The X-axis is equalised by the total number of
labels that were generated.
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Figure 10: Comparison of test-accuracy over time for different combinations of label corruption rate
and number of labels sampled per training example. The X-axis is equalised by the total number of
parameter updates performed.
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