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Abstract

Many machine learning tasks can be formulated
as a stochastic compositional optimization (SCO)
problem such as reinforcement learning, AUC
maximization and meta-learning, where the ob-
jective function involves a nested composition
associated with an expectation. Although many
studies have been devoted to studying the conver-
gence behavior of SCO algorithms, there is little
work on understanding their generalization, that
is, how these learning algorithms built from train-
ing data would behave on future test examples.
In this paper, we provide the stability and gen-
eralization analysis of stochastic compositional
gradient descent algorithms in the framework of
statistical learning theory. Firstly, we introduce
a stability concept called compositional uniform
stability and establish its quantitative relation with
generalization for SCO problems. Then, we es-
tablish the compositional uniform stability results
for two notable stochastic compositional gradi-
ent descent algorithms, namely SCGD and SCSC.
Finally, we derive dimension-independent excess
risk bounds for SCGD and SCSC by balancing
stability results and optimization errors. To the
best of our knowledge, these are the first-ever
known results on stability and generalization anal-
ysis of stochastic compositional gradient descent
algorithms.
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1. Introduction
Recently, stochastic compositional optimization (SCO)
has attracted considerable interest (Chen et al., 2021a;b;
Dentcheva et al., 2017; Ghadimi et al., 2020; Hu et al.,
2020; Tolstaya et al., 2018; Wang et al., 2017; 2016; Zhang
& Lan, 2020) in machine learning. It has the following form:

min
x∈X

{
F (x) = f ◦ g(x) = Eν [fν(Eω[gω(x)])]

}
, (1)

where f ◦g(x) = f(g(x)) denotes the function composition,
f : Rd → R and g : Rp → Rd are differentiable functions,
ν, ω are random variables, and X is a convex domain in Rp.
SCO generalizes the classic (non-compositional) stochas-
tic optimization where its objective function F (·) involves
nested compositions of functions and each composition is
associated with an expectation.

SCO problem (1) instantiates various learning problems.
For example, reinforcement learning (Sutton & Barto, 2018;
Szepesvári, 2010) aims to obtain a value function of the
given policy that can be considered as an SCO problem
(Wang et al., 2017). Model-agnostic meta-learning (MAML)
(Finn et al., 2017) finds a common initialization for rapid
adaptation to new tasks, which was essentially a SCO prob-
lem, as pointed out by Chen et al. (2021a). Portfolio op-
timization with risk aversion (Shapiro et al., 2021), bias-
variance issues in supervised learning (Dentcheva et al.,
2017; Tolstaya et al., 2018), and robust group distributional
optimization (Qi et al., 2021a; Jiang et al., 2022b) can also
be formulated in similar SCO forms. Likewise, other learn-
ing tasks, such as maximization of the area under precision-
recall curves (AUCPRC), and other compositional perfor-
mance measures, can be cast in a similar way (Yang, 2022).

There are a substantial number of studies devoted to study-
ing the convergence behavior of stochastic compositional op-
timization algorithms for solving (1). Wang et al. (2017) pio-
neered the non-asymptotic analysis of the so-called stochas-
tic compositional gradient decent algorithms (SCGD) which
employed two-time scales with a slower stepsize to update
the variable and a faster one used in the moving average
sequence yt+1 to track the inner function g(xt). An acceler-
ated version of SCGD was analyzed by Wang et al. (2016)
and its adapted variant was studied by Tutunov et al. (2020).
In particular, Chen et al. (2021a) proposed the stochasti-
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cally corrected SCGD called SCSC which was shown to
enjoy the same convergence rate as that of standard SGD in
the non-compositional setting. Further extensions and their
convergence analysis were investigated in different settings
such as single timescale (Ghadimi et al., 2020; Ruszczyn-
ski, 2021), variance reduction techniques (Hu et al., 2019;
Devraj & Chen, 2019; Lin et al., 2018), and applications to
nonstandard learning tasks (Yang, 2022).

On the other important front, one crucial aspect of machine
learning is the development of learning algorithms that can
achieve strong generalization performance. Generalization
refers to the ability of a learning algorithm to perform well
on unseen or future test data, despite being trained on a lim-
ited set of historical training data. In the last couple of years,
we have witnessed a large amount of work on addressing
the generalization analysis of the vanilla stochastic gradient
descent (SGD) with focus on the classical ERM formulation
in the non-compositional setting. In particular, the stabil-
ity and generalization of SGD have been studied using the
uniform argument stability (Bassily et al., 2020; Charles
& Papailiopoulos, 2018; Hardt et al., 2016; Kuzborskij &
Lampert, 2018) and the on-average model stability (Lei &
Ying, 2020). In Farnia & Ozdaglar (2021); Lei et al. (2021);
Zhang et al. (2021), different stability and generalization
measures are investigated for minimax optimization algo-
rithms. However, to our knowledge, there is no work to
understand the important stability and generalization prop-
erties of stochastic compositional optimization algorithms
despite their increasing popularity in solving many machine
learning tasks (Chen et al., 2021a; Dentcheva et al., 2017;
Jiang et al., 2022b; Wang et al., 2017; Yang & Ying, 2022;
Yang, 2022).

Our Contributions. In this paper, we are mainly interested
in the stability and generalization of stochastic composi-
tional optimization algorithms in the framework of Statisti-
cal Learning Theory(Vapnik, 1999; Bousquet et al., 2004).
Our main contributions are summarized below.
• We introduce a stability concept called compositional

uniform stability which is tailored to handle the composi-
tion structure in SCO problems. Furthermore, we show
the qualitative connection between this stability concept
and the generalization error for randomized SCO algo-
rithms. Regarding technical contributions, we show that
this connection can mainly be derived by estimating the
stability terms involving the outer function fν and the
vector-valued generalization term of the inner function
gω , which will be further estimated using the sample split-
ting argument (Bousquet et al., 2020; Lei, 2022).

• More specifically, we establish the compositional uniform
stability of SCGD and SCSC in the convex and smooth
case. Our stability bound mainly involves two terms,
that is, the empirical variance associated with the inner
function gω and the convergence of the moving average

sequence to track gS(xt). Then we establish the excess
risk bounds O(1/

√
n+1/

√
m) for both SCGD and SCSC

by balancing the stability results and optimization errors,
where n and m denote the numbers of training data involv-
ing ν and ω, respectively. Our results demonstrate that to
achieve the same excess risk rate of O(1/

√
n+ 1/

√
m),

SCGD requires a larger number of iterations, approxi-
mately T ≍ max(n3.5,m3.5), while SCSC only needs
T ≍ max(n2.5,m2.5).

• We further extend the analysis of stability and general-
ization for SCGD and SCSC in the strongly convex and
smooth case. Specifically, we show that SCGD requires
approximately T ≍ max(n10/3,m10/3) iterations, while
SCSC only needs T ≍ max(n7/3,m7/3) iterations to
achieve the excess risk rate of O(1/n+ 1/

√
m).

1.1. Related Work
In this section, we review related work on algorithmic sta-
bility and generalization analysis of stochastic optimization
algorithms and algorithms for compositional problems.

Stochastic Compositional Optimization. The seminal
work of Wang et al. (2017) introduced SCGD with two time
scales, and Wang et al. (2016) presented an accelerated ver-
sion. Lian et al. (2017) incorporated variance reduction,
while Ghadimi et al. (2020) proposed a modified SCGD
with a single timescale. Chen et al. (2021a) introduced
SCSC, a stochastically corrected version with the same con-
vergence rate as vanilla SGD. Ruszczynski (2021); Zhang
& Lan (2020) explored problems with multiple levels of
composition, and Wang & Yang (2022) proposed SOX for
compositional problems. Recently, there has been a growing
interest in applying stochastic compositional optimization
algorithms to optimize performance measures in machine
learning, such as AUC scores (Qi et al., 2021b; Lei & Ying,
2021; Yang, 2022). Most of these studies have focused
mainly on convergence analysis.

Algorithmic Stability and Generalization for the Non-
Compositional Setting. Uniform stability and generaliza-
tion of ERM were established by Bousquet & Elisseeff
(2002) in a strongly convex setting. Elisseeff et al. (2005)
studied stability of randomized algorithms, and Feldman
& Vondrak (2019); Bousquet et al. (2020) derived high-
probability generalization bounds for uniformly stable algo-
rithms. Hardt et al. (2016) established uniform argument sta-
bility and generalization of SGD in expectation for smooth
convex functions. Kuzborskij & Lampert (2018) established
data-dependent stability results for SGD. On-average model
stability and generalization of SGD were derived in Lei
& Ying (2020) for convex objectives in smooth and non-
smooth settings. The stability and generalization of SGD
with continuous convex and Lipschitz objectives were stud-
ied in Bassily et al. (2020). For the non-convex and smooth
cases, the stability of SGD was investigated in Charles &
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Papailiopoulos (2018); Lei & Ying (2020); Lei et al. (2022).
Further extensions were made for SGD in pairwise learning
(Shen et al., 2019; Yang et al., 2021), Markov chain SGD
(Wang et al., 2022), and minimax optimization algorithms
(Farnia & Ozdaglar, 2021; Lei et al., 2021). However, ex-
isting studies have primarily focused on SGD algorithms
and their variants for the standard ERM problem in the
noncompositional setting.

Recently, Hu et al. (2020) studied the generalization and
uniform stability of the exact minimizer of the ERM coun-
terpart for the SCO problem using the uniform convergence
approach (Bartlett & Mendelson, 2002; Vapnik, 2013; Zhou,
2002). They also showed uniform stability of its ERM min-
imizer under the assumption of a Hölderian error bound
condition that instantiates strong convexity. Their bounds
are algorithm-independent. To the best of our knowledge,
there is no existing work on stability and generalization for
stochastic compositional optimization algorithms, despite
their popularity in solving machine learning tasks.

Organization of the Paper. The paper is organized as
follows. Section 2 formulates the learning problem and
introduces the necessary stability concepts. Two popular
stochastic compositional optimization algorithms, SCGD
(Wang et al., 2017) and SCSC (Chen et al., 2021a), are
presented to solve (1). The main results on stability and gen-
eralization for SCGD and SCSC algorithms are illustrated
in Section 3. Finally, Section 4 concludes the article.

2. Problem Setting
In this section, we illustrate the objective of generalization
analysis and the stability concept used in the framework
of Statistical Learning Theory (Vapnik, 2013; Bousquet
et al., 2004). Then, we describe two popular optimization
schemes, i.e. SCGD and SCSC, for solving the SCO prob-
lems, as well as other necessary notation.

2.1. Target of Generalization Analysis

For simplicity, we are mainly concerned with the case that
the random variables ν and ω are independent, which means
that g(x) = E[gω(x)] = E[gω(x)|ν] for any ν. This is the
case that was considered in Wang et al. (2017). In particu-
lar, important learning tasks such as group distributionally
robust optimization (DRO) (Qi et al., 2021a) and AUC maxi-
mization (Kar et al., 2013; Liu et al., 2018; Ying et al., 2016;
Yang & Ying, 2022; Zhao et al., 2011) are two notable
examples described below.

Specifically, DRO formulations are capable of handling
noisy data, adversarial data, and imbalanced classification
data and have received considerable attention in machine
learning. In Qi et al. (2021a), a class of group DRO is

formulated as

min
x∈X

FS(x) := λ log
( 1

m

m∑
j=1

exp(ℓ(xTaj , bj)/λ)
)
,

which can be reduced to SCO problem with fνi(y) =
λ log(y) for any νi, gωj

(x) = exp(ℓ(xTaj , bj)/λ) with
ωj = {aj , bj} being an input/output pair. For AUC maxi-
mization, Lei & Ying (2021); Yang & Ying (2022) showed
that maximizing the AUC score with the least squares loss
can be considered an SCO problem:

min
w∈Rd

E[(hw(x))− a(w)))
2 |y = 1]

+ E[(hw(x′)− b(w))
2 |y′ = 1] + (1− a (w) + b (w))

2
,

where hw(·) is the decision function, a(w) = E[hw(x)|y =
1], and b(w) = E[hw(x′)|y′ = −1]. The above two exam-
ples fall into the setting where ν and ω are independent.
Lastly, it is worth mentioning that in Appendix E we briefly
discuss the case where the random variables ν and ω depend
on each other.

In practice, we do not know the population distributions for
ν and ω for SCO problem (1) but only have access to a set
of training data S = Sν ∪ Sω where both Sν =

{
νi : i =

1, . . . , n
}

and Sω =
{
ωj : j = 1, . . .m

}
are distributed

independently and identically (i.i.d.). As such, SCO prob-
lem (1) is reduced to the following nested empirical risk for
SCO:

min
x∈X

{
FS(x) := fS(gS(x))

=
1

n

n∑
i=1

fνi

( 1
m

m∑
j=1

gωj
(x)
)}

, (2)

where gS : Rp → Rd and fS : Rd → R are the empirical
versions of f and g in (1) and are defined, respectively,
by gS(x) =

1
m

∑m
j=1 gωj

(x) and fS(y) =
1
n

∑n
i=1 fνi

(y).
We refer to F (x) and FS(x) as the (nested) true risk and
empirical risk, respectively, in this stochastic compositional
setting.

Denote the least (nested) true and empirical risks, re-
spectively, by F (x∗) = infx∈X F (x) and F (xS

∗ ) =
infx∈X FS(x). For a randomized algorithm A, denote
by A(S) its output model based on the training data S.
Then, our ultimate goal is to analyze the excess general-
ization error (i.e., excess risk) of A(S) which is given by
F (A(S))− F (x∗). It can be decomposed as follows:
ES,A[F (A(S))− F (x∗)]

= ES,A[F (A(S))− FS(A(S))] + ES,A[FS(A(S))− FS(x∗)]

≤ ES,A[F (A(S))− FS(A(S))]

+ ES,A[FS(A(S))− FS(x
S
∗ )], (3)

where we have used the fact that FS(x
S
∗ ) ≤ FS(x∗) by the

definition of xS
∗ . The first term on the right hand side of
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(3) is called the generalization (error) gap (i.e., estimation
error) and the second term is the optimization error. The
optimization error (convergence analysis) in our study builds
upon the analysis conducted in previous works such as Wang
et al. (2017); Chen et al. (2021a). However, our main focus
is on estimating the generalization gap using the algorithmic
stability approach (Bousquet & Elisseeff, 2002; Hardt et al.,
2016; Lei & Ying, 2020). In order to achieve this, we
introduce a proper definition of stability in the compositional
setting, which will be outlined below.

2.2. Uniform Stability for SCO

Existing work of stability analysis (Hardt et al., 2016;
Kuzborskij & Lampert, 2018; Lei & Ying, 2020) focused on
SGD algorithms in the non-compositional ERM setting. We
will extend the algorithmic stability analysis to estimate the
estimation error (i.e., generalization gap) for SCO problems.

In our new setting, when we consider neighboring training
data sets differing in one single data point, the change of
one data point can happen in either Sν or Sω. In particular,
for any i ∈ [1, n] and j ∈ [1,m], let Si,ν be the neighboring
set of S where only i-th data point νi in Sν is changed to
ν′i while Sω remains the same. Likewise, denote by Sj,ω be
the neighboring set of S where only j-th data point ωℓ in Sω

is changed to ω′
j while Sν remains unchanged. Throughout

the paper, we also denote by S′ = S′
ν ∪ S′

ω the i.i.d. copy
of S where S′

ν = {ν′1, . . . , ν′n} and S′
ω = {ω′

1, . . . , ω
′
m}.

Definition 2.1 (Compositional Uniform Stability). We say
that a randomized algorithm A is (ϵν , ϵω)-uniformly stable
for SCO problem (1) if, any i ∈ [1, n], j ∈ [1,m], there
holds

EA[∥A(S)−A(Si,ν)∥] ≤ ϵν ,

and EA[∥A(S)−A(Sj,ω)∥] ≤ ϵω, (4)

where the expectation EA[·] is taken w.r.t. the internal ran-
domness of A not the data points.

We will show the relationship between the compositional
uniform stability (i.e., Definition 2.1) and the generalization
error (gap) which holds for any randomized algorithm. To
do this, we need the following assumption.

Assumption 2.2. We assume that fν and gω are Lipschitz
continuous with parameters Lf and Lg , respectively, i.e.,

(i) supν ∥fν(y)− fν(ŷ)∥ ≤ Lf∥y− ŷ∥ for all y, ŷ ∈ Rd.

(ii) supω ∥gω(x)−gω(x̂)∥ ≤ Lg∥x−x̂∥ for all x, x̂ ∈ Rp.

The Lipschitz continuous assumption on fν and gω is widely
used in existing work (Wang et al., 2017; Chen et al., 2021a;
Jiang et al., 2022b; Wang & Yang, 2022) on optimization
error analysis. It is also imposed in Hu et al. (2020) on the
generalization analysis of the exact risk minimizer of SCO.

The following theorem establishes the relationship between
the stability of SCGD and its generalization.

Theorem 2.3. If Assumption 2.2 is true and the randomized
algorithm A is ϵ-uniformly stable then

ES,A

[
F (A(S))− FS(A(S))

]
≤ LfLgϵν + 4LfLgϵω

+Lf

√
m−1ES,A[Varω(gω(A(S)))],

where the variance term Varω(gω(A(S))) =
Eω

[
∥gω(A(S))− g(A(S))∥2

]
.

Remark 2.4. Theorem 1 describes the relationship between
the compositional uniform stability and generalization (gap)
for any randomized algorithm for SCO problems. It can
be regarded as an extension of the counterpart for the
non-compositional setting (Hardt et al., 2016). Indeed,
if we let gω(x) = x, then gS(x) = gω(x) = x for any
ω and S, the SCO problem is reduced to the standard
non-compositional setting, i.e., F (x) = Eν [fν(x)] and
FS(x) = 1

n

∑n
i=1 fνi

(x). In this case, our result in The-
orem 1 indicates, since there is no randomness w.r.t. ω, that
ES,A

[
F (A(S))− FS(A(S))

]
≤ Lf ϵν which is exactly the

case in the non-compositional setting (Hardt et al., 2016).
Remark 2.5. There are major technical challenges to de-
riving the relation between stability and generalization for
SCO algorithms. First, it is not obvious to relate the gener-
alization error to the compositional uniform stability as we
defined. The decoupling between inner random variables
and outer random variables is a key that allows us to conduct
the analysis. Second, recall that, in the classical (noncompo-
sitional) setting, given the i.i.d. data S = {z1, . . . , zn}, the
empirical and population risks are given by FS(A(S)) =
1
n

∑n
i=1 f(A(S); zi) and F (A(S)) = Ez[f(A(S); z], re-

spectively. Let Si = {z1, . . . , zi−1, z
′
i, zi+1, . . . , zn} be the

neighboring set of S, but differ in the i-th data point. Using
the symmetry between the i.i.d. datasets S = {z1, . . . , zn}
and S′ = {z′1, z′2, . . . , z′n}, one can observe that

ES,A[F (A(S))− FS(A(S))] = ES,A,S′
[ 1
n

n∑
i=1

f(A(Si); zi)

− 1

n

n∑
i=1

f(A(S); zi)
]
≤ Lf∥A(Si)−A(S)∥.

However, due to the compositional structure in our setting,
one can see that

ES,A

[
F (A(S))− FS(A(S))

]
= ES,A

[
Eν [fν

(
g(A(S))

)
]− 1

n

n∑
i=1

fνi

(
g(A(S))

)]
+ ES,A

[ 1
n

n∑
i=1

(
fνi

(
g(A(S))

)
− fνi

( 1
m

m∑
j=1

gωj
(A(S))

))]
.
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Algorithm 1 (Stochastically Corrected) Stochastic Compo-
sitional Gradient Descent

1: Inputs: Training data Sν =
{
νi : i =

1, . . . , n
}
, Sω =

{
ωj : j = 1, . . . ,m

}
; Number

of iterations T , parameters {ηt}, {βt}
2: Initialize x0 ∈ X and y0 ∈ Rd

3: for t = 0 to T − 1 do
4: Randomly sample jt ∈ [1,m], obtain gωjt

(xt) and
∇gωjt

(xt) ∈ Rp×d

5: SCGD update: yt+1 = (1− βt)yt + βtgωjt
(xt)

6: SCSC update: yt+1 = (1 − βt)yt + βtgωjt
(xt) +

(1− βt)(gωjt
(xt)− gωjt

(xt−1))
7: Randomly sample it ∈ [1, n], obtain ∇fνit

(yt+1) ∈
Rd

8: Update:
9: xt+1 = ΠX

(
xt − ηt∇gωjt

(xt)∇fνit
(yt+1)

)
10: end for
11: Outputs: A(S) = xT or xτ ∼ Unif({xt}Tt=1)

The first term on the right-hand side of the above equality
can be handled similarly as the non-compositional setting.
The main challenge comes from the second term which,
by the Lipschitz property of fν , involves a vector-valued
generalization ES,A

[∥∥g(A(S))− 1
m

∑m
j=1 gωj

(A(S))
∥∥] be-

cause one can not interchange the expectation and the norm.
We will overcome this obstacle using the sample-splitting
argument (Bousquet et al., 2020; Lei, 2022).

2.3. SCO Optimization Algorithms

We will study two popular optimization algorithms for solv-
ing (2), i.e., SCGD (Wang et al., 2017) and SCSC (Chen
et al., 2021a). Their pseudo-code is given in Algorithm 1.
For SCGD, the updating sequence in Line 5 of Algorithm 1

yt+1 = (1− βt) yt + βtgωjt
(xt)

is used to track the expectation of gS(xt) =
Ejt [gωjt

(xt)] = 1
m

∑m
j=1 gωj

(xt). As shown in Wang
et al. (2017), SCGD needs to choose a smaller stepsize
ηt than the stepsize βt to be convergent. This prevents the
SCGD from choosing the same stepsize as SGD for the
non-compositional stochastic problems. To address this is-
sue, Chen et al. (2021a) proposed a stochastically corrected
version of SCGD which is referred to as SCSC. In particular,
the sequence yt+1 is given in Line 6 of Algorithm 1:

yt+1 = (1− βt)(yt + gωjt
(xt)− gωjt

(xt−1)) + βtgωjt
(xt).

With yt+1 as an approximator for g(xt), the model parame-
ter x is updated using the stochastic gradient descent step
as given in Line 9 of Algorithm 1.

Below we list definitions about strong convexity and smooth-
ness which will be used in subsequent sections.

Definition 2.6. A function F : Rp → R is σ-strongly
convex with some σ ≥ 0 if, for any u, v ∈ Rp, we have
F
(
u
)
≥ F

(
v
)
+
〈
∇F

(
v
)
, u− v

〉
+ σ

2 ∥u− v∥2. If σ = 0,
we say that F is convex.

Definition 2.7. A function F : Rp → R is L-smooth if, for
any u, v ∈ Rp, we have ∥∇F

(
u
)
−∇F

(
v
)
∥ ≤ L∥u− v∥.

In general, smoothness implies the gradient update of F
cannot be overly expansive. Also the convexity and L-
smooth of F implies that the gradients are co-coercive, hence
we have〈

∇F
(
u
)
−∇F

(
v
)
, u− v

〉
≥ 1

L
∥∇F

(
u
)
−∇F

(
v
)
∥2.

(5)

Note that if F is σ strongly convex, then φ
(
x
)
= F

(
x
)
−

σ
2 ∥x∥

2 is convex with
(
L− σ

)
-smooth. Then, applying (5)

to φ yields the following inequality:

⟨∇F (u)−∇F (v), u− v⟩ ≥ Lσ

L+ σ
∥u− v∥2

+
1

L+ σ
∥∇F (u)−∇F (v)∥2. (6)

3. Stability and Generalization
In this section, we will present our main results on esti-
mating the stability bounds for SCGD and SCSC which
subsequently can lead to estimation of their generalization
gaps from Theorem 2.3. Then, we start from the error de-
composition (3) to derive the bounds for their excess risks by
trade-offing the bounds for the above generalization (error)
gaps and optimization errors. We will present results in two
different cases, i.e., convex and strongly convex settings, in
different subsections. For brevity, we summarize our results
for the excess risks for SCGD and SCSC in Table 1. Before
illustrating our main results, we list some assumptions.

Assumption 3.1. We assume that the following conditions
hold.

(i) With probability 1 w.r.t S, there holds
supx∈X

1
m

∑m
j=1

[
∥gωj

(x)− gS(x)∥2
]
≤ Vg .

(ii) With probability 1 w.r.t. S,
supx∈X

1
m

∑m
j=1[∥∇gωj

(x)−∇gS(x)∥2] ≤ Cg .

(iii) With probability 1 w.r.t. ν, fν(·) has Lipschitz continu-
ous gradients, i.e. ∥∇fν(y)−∇fν(ȳ)∥ ≤ Cf∥y − ȳ∥
for all y, ȳ ∈ Rd.

(iv) With probability 1 w.r.t. ν and S, fν(gS(·))
is L-smooth, i.e., ∥∇gS(x)∇fν(gS(x)) −
∇gS(x

′)∇fν(gS(x
′))∥ ≤ L∥x − x′∥ for any

x, x′ ∈ X .

Remark 3.2. There are many practical applications aligning
with our SCO problem and meeting Assumptions 2.2 and
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3.1. In particular, for the distributionally robust optimization
(Qi et al., 2021a) mentioned in Section 2.1, the loss ℓ(·, b)
being convex and smooth for any b. Since exp and log are
non-decreasing functions, from the fact that the composi-
tion of a nondecreasing function and a convex function is
convex, we conclude that FS(·) is convex, a case that we
focus mainly on in our paper. If X is a bounded domain,
Lipschitz continuity and smoothness conditions hold true.
The smoothness asusmptions are standard in the literature
of stochastic compositional optimization, e.g., Wang et al.
(2017); Chen et al. (2021a).

3.1. Convex Setting

In this subsection, we present our main results for SCGD
and SCSC in the convex setting.

Stability Results. The following theorem establishes the
compositional uniform Stability (See Definition 2.1) for
SCGD and SCSC in the convex setting.

Theorem 3.3 (Stability, Convex). Suppose that Assumption
2.2 and 3.1 hold true and fν(gS(·)) is convex. Consider
Algorithm 1 with ηt = η ≤ 1

2L , and βt = β ∈ (0, 1) for any
t ∈ [0, T − 1]. Then, the outputs A(S) = xT of both SCGD
and SCSC at iteration T are compositionally uniform stable
with

ϵν + ϵω=O
(LfLg

n
ηT +

LfLg

m
ηT +

√
CgLfη

√
T

+CfLg sup
S

T−1∑
j=0

η
(
EA[∥yj+1 − gS(xj)∥2]

) 1
2

)
. (7)

The proof for Theorem 3.3 is deferred to Appendix C.1.
Remark 3.4. In this remark, we discuss how the function
composition plays a role in the stability analysis for SCGD
and SCSC and then compare our results with that for SGD
in the non-compositional setting (Hardt et al., 2016). To this
end, considering the step sizes ηt = η and n = m, then (7)
is reduced to the following estimation:

ϵν + ϵω =O
(ηT

n
+
√
Cgη

√
T

+ η sup
S

T−1∑
j=0

(
EA[∥yj+1 − gS(xj)∥2]

) 1
2

)
. (8)

It was shown in Hardt et al. (2016) that the uniform stability
for SGD with convex and smooth losses is of the order
O
(
ηT
n

)
. By comparing these two results, we can see how the

compositional structure plays a role in the stability analysis.
Indeed, in contrast to the result for SGD, there are two
extra terms in (8) for SCGD and SCSC, i.e.,

√
Cgη

√
T

and η supS
∑T−1

j=0

(
EA[∥yj+1 − gS(xj)∥2]

) 1
2 . Here, Cg is

the (empirical) variance of the gradient of inner function,
i.e., supx∈X

1
m

∑m
j=1 ∥∇gωj (x)−∇gS(x)∥2 ≤ Cg given

in Assumption 3.1 and the other extra term arises when

the moving-average sequence yt+1 is used to track gS(xt).
More importantly, our stability results indicate that, in order
to boost generalization, it’s vital to decrease the variance
bound Cg (e.g., via larger minibatches for ω) and ensuring
fast convergence of EA[∥yj+1 − gS(xj)∥2]. Notice that, if
we let gω(x) = x, then gS(x) = gω(x) = x for any ω and
S, then SCGD and SCSC reduce to the classical SGD, and
our stability result (8) is the same as that of SGD since two
extra terms mentioned above will be all zeros due to the fact
that yj+1 = gS(xj) = xj and Cg = 0 in this case.

Combining (7) with the estimation for EA[∥yj+1 −
gS(xj)∥2] (Wang et al., 2017; Chen et al., 2021a) (see also
Lemma A.1 and its self-contained proof in Appendix A),
one can get the following explicit stability results.

Corollary 3.5. Let Assumption 2.2 and 3.1 hold true and
fν(gS(·)) be convex. Consider Algorithm 1 with ηt = η ≤
1
2L , and βt = β ∈ (0, 1) for any t ∈ [0, T − 1] and the
output A(S) = xT . Let c be an arbitrary constant. Then,
we have the following results:

• SCGD is compositional uniformly stable with

ϵν + ϵω = O
(
ηTn−1 + ηTm−1 + ηT

1
2

+ ηT−c/2+1β−c/2 + η2β−1T + ηβ1/2T
)
.

• SCSC is compositional uniformly stable with

ϵν + ϵω = O
(
ηTn−1 + ηTm−1 + ηT

1
2

+ ηT−c/2+1β−c/2 + η2β− 1
2T + ηβ1/2T

)
.

Generalization results. Using the error decomposition (3),
Corollary 3.5 and Theorem 2.3, we can derive the excess
risk rates. To this end, we need the following results to
estimate the optimization error, i.e., FS(A(S))− FS(x

S
∗ ).

Theorem 3.6 (Optimization, Convex). Suppose Assumption
2.2 and 3.1 (i), (iii) hold for the empirical risk FS and
FS is convex, EA∥xt − xS

∗ ∥2 is bounded by Dx for all
t ∈ [0, T−1] and EA∥y1−gS(x0)∥2 is bounded by Dy . Let
A(S) = 1

T

∑T
t=1 xt be the solution produced by Algorithm

1 with SCGD or SCSC update, ηt = η and βt = β for some
a, b ∈ (0, 1]. Let c be an arbitrary constant.

• For SCGD update, there holds

EA[FS(A(S))−FS(x
S
∗ )]

= O
(
Dx(ηT )

−1 + L2
fL

2
gη + CfDy(βT )

1−c(ηT )−1

+ CfVgβ
2η−1 + CfL

2
fL

3
gDxηβ

−1
)
.

• For SCSC update, there holds

EA[FS(A(S))−FS(x
S
∗ )]

= O
(
Dx(ηT )

−1 + L2
fL

2
gη + CfDy(βT )

−cβ− 1
2

+CfVgβ
1
2 + CfL

2
fL

3
gη

2β− 3
2 + CfL

2
gDxβ

1
2

)
.
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Table 1. Number of Iterations T that Achieves Excess Risk for SCGD And SCSC Algorithm

setting
algorithm

SCGD SCSC

Convex FS

# Iterations T ≍ max(n3.5,m3.5) T ≍ max(n2.5,m2.5)

Excess risk O
(

1√
n
+ 1√

m

)
O
(

1√
n
+ 1√

m

)
Strongly Convex FS

# Iterations T ≍ max(n10/3,m10/3) T ≍ max(n7/3,m7/3)

Excess risk O
(

1
n + 1√

m

)
O
(

1
n + 1√

m

)

The boundedness assumptions are satisfied if the domain X
is bounded in Rp. The detailed proofs are given in Appendix
C.2 and C.3. Note that the upper-bounds for the optimization
error given in the above theorem hold true uniformly for any
training data S.

Combining the above results with the stability bounds in
Corollary 3.5 and Theorem 2.3, we can derive the following
excess risk bounds for SCGD and SCSC.
Theorem 3.7 (Excess Risk Bound, Convex). Suppose As-
sumptions 2.2 and 3.1 hold true and fν(gS(·)) is convex,
EA[∥xt − xS

∗ ∥2] is bounded by Dx for all t ∈ [0, T − 1]
and EA[∥y1 − gS(x0)∥2] is bounded by Dy. Let A(S) =
1
T

∑T
t=1 xt be a solution produced by Algorithm 1 with

SCGD or SCSC update and η = T−a and β = T−b for
some a, b ∈ (0, 1].
• If we select T ≍ max(n3.5,m3.5), η = T− 6

7 and
β = T− 4

7 , then, for the SCGD update, we have that
ES,A

[
F (A(S))− F (x∗)

]
= O

(
1√
n
+ 1√

m

)
.

• If we select T ≍ max(n2.5,m2.5), η = T− 4
5 and

β = T− 4
5 , then, for the SCSC update, there holds

ES,A

[
F (A(S))− F (x∗)

]
= O( 1√

n
+ 1√

m
).

Remark 3.8. In the appealing work (Hu et al., 2020), the uni-
form convergence using concentration inequalities and the
number of coverage is used to study the generalization gap
(estimation error) of the ERM minimizer related to the SCO
problems. Applying their results to our case, they proved
the following results: assuming that X is a bounded domain,
fν and gω are both Lipschitz continuous and bounded, there
holds, with high probability,

F (A(S))− FS(A(S)) ≤ sup
x∈X

|F (x)− FS(x)|

= O
(√ p

m+ n

)
which is highly dependent on the dimension of the domain
X ⊆ Rp. Comparing with their bounds, we can get excess
risk bounds which is dimension independent of the optimiza-
tion domain X ⊆ Rp. Dimension-independent generaliza-
tion bounds were also provided in Hu et al. (2020) which
requires the Hölder error bound condition (e.g., strong con-
vexity). The proof there depends heavily on the property of

the ERM minimizer of the SCO problem and does not apply
to SCGD and SCSC.
Remark 3.9. Theorem 3.7 shows that the generalization
error for SCGD can be achieved by the rate O

(
1/

√
n +

1/
√
m
)

in the convex case after appropriately selecting the
iteration number T and step sizes η and β. Recall that in the
noncompositional setting, Hardt et al. (2016); Lei & Ying
(2020) established generalization error bounds O

(
1/

√
n
)

by choosing T ≍ n for SGD in the convex and smooth case.
To achieve a similar rate, our results indicate that SCGD
and SCSC need more iterations to do that. The reason may
be due to the usage of the moving average sequence yt+1 to
track gS(xt) and the (empirical) variance term for the inner
function gω as mentioned in Remark 3.4.
Remark 3.10. Note that in Theorem 3.3 we present the
stability result of the last iterate A(S) = xT . While
in Theorem 3.7 we present the generalization bound of
A(S) = 1

T

∑T
t=1 xt, which is the average of the interme-

diate iterates x1, . . . , xT . This stems from the fact that
generalization is a combination of stability and optimiza-
tion, and the main focus of optimization is the average of
intermediate iterates in the convex setting (see e.g. Wang
et al. (2017)).

3.2. Strongly Convex Setting

Stability Results. The following theorem establishes the
compositional uniform Stability (See Definition 2.1) for
SCGD and SCSC in the strongly convex setting.
Theorem 3.11 (Stability, Strongly Convex). Suppose that
Assumption 2.2 and 3.1 hold true and fν(gS(·)) is σ-
strongly convex. Consider Algorithm 1 with ηt = η ≤
1/
(
2L + 2σ

)
and βt = β ∈ (0, 1) for t ∈ [0, T − 1] and

the output A(S) = xT . Then, SCGD and SCSC are compo-
sitional uniform stable with

ϵν + ϵω

= O
(LgLf (L+ σ)

σLm
+

LgLf (L+ σ)

σLn
+

Lf

√
Cg(L+ σ)η
√
σL

+ CfLgη sup
S

{T−1∑
j=0

(1− η
Lσ

L+ σ
)T−j−1

×
(
EA[∥yj+1 − gS(xj)∥2]

) 1
2

)}
. (9)

7
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The proof for Theorem 3.11 is given in Appendix D.1.
Remark 3.12. The stability for SGD with σ-strongly con-
vex and smooth losses is of the order O( 1

σn ) which was
established in Hardt et al. (2016). Comparing the result of
SGD with our SCGD and SCSC, we have two extra terms if
n = m, i.e., η supS

∑T−1
j=0 (1− η Lσ

L+σ )
T−j−1

(
EA[∥yj+1−

gS(xj)∥2]
) 1

2 and
Lf

√
Cg(L+σ)η
√
σL

, where Cg is the (em-
pirical) variance of the gradient of inner function,
i.e.supx∈X

1
m

∑m
j=1 ∥∇gωj

(x) − ∇gS(x)∥2 ≤ Cg . We
can see that if gω(x) = x, then gS(x) = gω(x) for any
ω and S. In this case, EA[∥yj+1 − gS(xj)∥2] and Cg will
be zeros. Therefore, our stability results in Theorem 3.11
match that of SGD in the non-compositional setting (Hardt
et al., 2016).

Combining Theorem 3.11 with the estimation for
EA[∥yj+1−gS(xj)∥2] in Lemma A.1 and using the Lemma
A.4 which is given in Appendix A, we can derive the explicit
stability bounds in the following corollary. Its detailed proof
is given at the end of Section D.1 in the appendix.

Corollary 3.13. Let Assumption 2.2 and 3.1 hold true and
fν(gS(·)) be σ-strongly convex. Consider Algorithm 1 with
ηt = η ≤ 1/

(
2L + 2σ

)
and βt = β ∈ (0, 1) for t ∈

[0, T − 1] and the output A(S) = xT . Let c be an arbitrary
constant. Then, we have the following results:

• SCGD is compositional uniformly stable with

ϵν+ϵω = O
(
n−1+m−1+η

1
2 +ηβ−1+β

1
2 +T− c

2 β− c
2

)
.

• SCSC is compositional uniformly stable with

ϵν+ϵω = O
(
n−1+m−1+η

1
2 +ηβ− 1

2 +β
1
2 +T− c

2 β− c
2

)
.

Generalization results. Using the error decomposition (3),
Corollary 3.13 and Theorem 3.11, we can derive the excess
risk rates. To this end, we need the following results to
estimate the optimization error, i.e., FS(A(S))− FS(x

S
∗ ).

Theorem 3.14 (Optimization, Strongly Convex). Suppose
Assumption 2.2 and 3.1 (i), (iii) hold for the empiri-
cal risk FS , and FS is σ-strongly convex, and η, T is
chosen such that (η(T − 1))−1 ≤ σ

2 . Let A(S) =(∑T
t=1(1− ση/2)T−txt

)
/
(∑T

t=1(1− ση/2)T−t
)

be
the solution produced by Algorithm 1 with SCGD or SCSC
update and ηt = η and βt = β for some a, b ∈ (0, 1].

• For SCGD update, there holds

EA[FS(A(S))− FS(x
S
∗ )]

= O
(
Dx(ηT )

−c + L2
fL

2
gη +

C2
fL

2
gDy

σ
(βT )−c

+
C2

fL
2
gVg

σ
β +

C2
fL

2
fL

5
g

σ
η2β−2

)
.

• For SCSC update, there holds

EA[FS(A(S))− FS(x
S
∗ )]

= O
(
Dx(ηT )

−c + L2
fL

2
gη +

C2
fL

2
gDy

σ
(βT )−c

+
C2

fL
2
gVg

σ
β +

C2
fL

2
fL

5
g

σ
η2β−1

)
.

Theorem 3.15 (Excess Risk Bound, Strongly Convex).
Suppose Assumption 2.2 and 3.1 hold true, fν(gS(·)) is
σ-strongly convex, and η, T is chosen such that (η(T −
1))−1 ≤ σ

2 . Denote Dx := EA[FS(x0) − FS(x
S
∗ )]

and Dy := EA[∥y1 − gS(x0)∥2] . Let A(S) =(∑T
t=1(1− ση/2)T−txt

)
/
(∑T

t=1(1− ση/2)T−t
)

be a
solution produced by Algorithm 1 with SCGD or SCSC up-
date and η = T−a and β = T−b for some a, b ∈ (0, 1].

• If we select T ≍ max(n
10
3 ,m

10
3 ), η = T− 9

10 and
β = T− 3

5 , then, for the SCGD update, we have that
ES,A

[
F (A(S))− F (x∗)

]
= O

(
1
n + 1√

m

)
.

• If we select T ≍ max(n
7
3 ,m

7
3 ), η = β = T− 6

7 , then, for

the SCSC update, there holds ES,A

[
F (A(S))−F (x∗)

]
=

O( 1n + 1√
m
).

Remark 3.16. Theorem 3.15 shows that the generalization
error for SCGD can be achieved the rate O(1/n+ 1/

√
m)

in the strongly convex case after carefully selecting the itera-
tion number T and constant stepsize η and β. It is worthy of
noting that, for achieving the rate O(1/n+ 1/

√
m), SCGD

needs iteration T ≍ max(n10/3,m10/3) in the strongly
convex case while Theorem 3.7 shows that it needs more
iterations, i.e., T ≍ max(n3.5,m3.5) in the convex case.
SCSC further improves the results as it only needs iteration
T ≍ max(n7/3,m7/3) in the strongly convex case.

Notice that our work focus on the challenge for convex and
strongly convex problems first. It would be difficult to an-
alyze non-convex objective without imposing conditions
about the objective since we aim to analyze both the gener-
alization error and optimization error to derive the excess
risk bound. Some future work on stability analysis in the
nonconvex case may be done under some assumption of
Hölderian error bound condition as in the appealing work
of Hu et al. (2020) or in the setting of shallow neural net-
work structure for the inner function gω(·) (e.g. Richards
& Kuzborskij (2021)) where the convexity is relaxed to the
weak convexity with enough large width for the neural net-
work or in the setting of neural tagent kernel regime (e.g.
Jacot et al. (2018); Nitanda & Suzuki (2020) ). Also as a
starting point, we only focus on the smooth setting in this
work. Existing results showed that it is possible to extend
our analysis to the non-smooth setting e.g., Lei & Ying
(2020) removed the smoothness assumption in the stability

8
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and generalization analysis of SGD for convex objectives
using the approximate non-expansiveness of the gradient
mapping. Hu et al. (2020) studied the generalization gap
(estimation error) with high probability in the non-smooth
setting for the minimizers of the ERM problem.

4. Conclusion
In this paper, we conduct a comprehensive study on the
stability and generalization analysis of stochastic compo-
sitional optimization (SCO) algorithms. We introduce the
concept of compositional uniform stability to handle the
function composition structure inherent in SCO problems.
By establishing the connection between stability and gener-
alization error, we provide stability bounds for two popular
SCO algorithms: SCGD and SCSC. In the convex case with
standard smooth assumptions, we demonstrate that both
SCGD and SCSC achieve an excess generalization error
rate of O(1/

√
n+ 1/

√
m), with SCSC requiring fewer it-

erations than SCGD. Furthermore, we extend our analysis
to the strongly convex case, where we show that SCGD and
SCSC achieve the same rate of O(1/

√
n + 1/

√
m) with

even fewer iterations than in the convex case.

There are several directions for future research. Firstly,
while our analysis only considers the convex and smooth
cases, an interesting avenue for future research is to con-
sider the case where the inner function and/or outer func-
tion are non-smooth and non-convex, e.g., neural networks
with Rectified Linear Unit (ReLU) activation function.
Secondly, it would be interesting to get optimal excess
risk rates O(1/

√
n + 1/

√
m) with linear time complex-

ity T = O
(
max(n,m)

)
for SCGD and SCSC. Thirdly, an

important and interesting direction is multi-level analysis.
In this setting, the stability result could involve the term∑N−1

n=1 ∥ytn − fn(y
t
n−1)∥2 where N is the number of levels
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Acknowledgements
We thank all reviewers for their valuable comments and
suggestions. The work was partially supported by NSF
grants under DMS-2110836, IIS-2103450, IIS-2110546,
NSF Career Award 1844403.

References
Bartlett, P. and Mendelson, S. Rademacher and gaussian

complexities: Risk bounds and structural results. Journal
of Machine Learning Research, 3:463–482, 2002.

Bassily, R., Feldman, V., Guzmán, C., and Talwar, K. Stabil-
ity of stochastic gradient descent on nonsmooth convex
losses. Advances in Neural Information Processing Sys-
tems, 33, 2020.

Bousquet, O. and Elisseeff, A. Stability and generalization.
Journal of Machine Learning Research, 2(Mar):499–526,
2002.

Bousquet, O., Boucheron, S., and Lugosi, G. Introduction
to statistical learning theory. Advanced Lectures on Ma-
chine Learning: ML Summer Schools 2003, Canberra,
Australia, February 2-14, 2003, Tübingen, Germany, Au-
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A. Technical Lemmas

Table 2. Notations
notations meaning mathematical language

Lf Lf -Lipschitz continuous of fν(·) supν ∥fν(y)− fν(ŷ)∥ ≤ Lf∥y − ŷ∥,∀y, ŷ ∈ R
Cf Cf -Lipschitz continuous of ∇fν(·) supν ∥∇fν(y)−∇fν(ȳ)∥ ≤ Cf∥y − ȳ∥,∀y, ȳ ∈ R
Lg Lg-Lipschitz continuous of gω(·) supω ∥gω (x)− gω (x̂)∥ ≤ Lg ∥x− x̂∥ ,∀x, x̂ ∈ X
Vg the empirical variance of the g(·) supx∈X

1
m

∑m
j=1 ∥gωj

(x)− gS(x)∥2 ≤ Vg

Cg the empirical variance of the ∇g(·) supx∈X
1
m

∑m
j=1 ∥∇gωj (x)−∇gS(x)∥2 ≤ Cg

L L smooth of fν(gS(·)) ∥gS(u)∇fν(gS(u))− gS(v)∇fν(gS(v))∥ ≤ L ∥u− v∥
ϵν , ϵω (ϵν , ϵω)-uniform stability
n,m n,m: the numbers of Sν and Sω , respectively

First, we list some signal notations in Table 2 for our paper setting. To derive the stability and generalization bounds, we
give the following lemmas.

The following lemma is directly adapted from Wang et al. (2017); Chen et al. (2021a) where both the population distribution
for the random variables ν and ω are the uniform distributions over Sν = {ν1, . . . , νn} and Sω = {ω1, . . . , ωm}. It states
that yt+1 behaves similarly to gS(xt)

Lemma A.1. Let Assumption 2.2 and 3.1 (i) hold and (xt, yt) be generated by Algorithm 1. Let ηt = η, and βt = β for
η, β > 0. Let c > 0 be an arbitrary constant.

• With SCGD update, we have

EA

[
∥yt+1 − gS

(
xt

)
∥2
]
≤
( c
e

)c
(tβ)−cEA[∥y1 − gS(x0)∥2] + L2

fL
3
g

η2

β2
+ 2Vgβ.

• With SCSC update we have

EA

[
∥yt+1 − gS

(
xt

)
∥2
]
≤
( c
e

)c
(tβ)−cEA

[
∥y1 − gS

(
x0

)
∥2
]
+ L2

fL
3
g

η2

β
+ 2Vgβ.

The next lemma was established in Schmidt et al. (2011) and this lemma was used in Wang et al. (2022).

Lemma A.2. Assume that the non-negative sequence ut : t ∈ N satisfies the following recursive inequality for all t ∈ N,

u2
t ≤ St +

t−1∑
τ=1

ατuτ .

where {Sτ : τ ∈ N} is an increasing sequence, S0 ≥ u2
0 and ατ for any τ ∈ N. Then, the following inequality holds true:

ut ≤
√
St +

t−1∑
τ=1

ατ .

Lemma A.3. For any ν, c > 0, we have
e−νx ≤

( c

νe

)c
x−c (10)

Lemma A.4. Let {ai}Ti=1, {bi}Ti=1 be two sequences of positive real numbers such that ai ≤ ai+1 and bi ≥ bi+1 for all i.
Then we have ∑T

i=1 aibi∑T
i=1 ai

≤
∑T

i=1 bi
T

. (11)

Proof. To show (11), it suffices to show
T∑

i=1

aibi

T∑
j=1

1 ≤
T∑

j=1

aj

T∑
i=1

bi.

12
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Rearranging the summation, it suffices to show

T∑
i=1

T∑
j=1

aibi −
T∑

i=1

T∑
j=1

ajbi ≤ 0.

The above inequality can be rewritten as

0 ≥
T∑

i=1

T∑
j=1

(ai − aj)bi =

T∑
i=1

T∑
j=i+1

(ai − aj)(bi − bj),

where the last equality holds due to the symmetry between i and j. Since for i < j we have ai ≤ aj and bi ≥ bj , we know
the above inequality holds, and thus (11) holds. Then we complete the proof.

A.1. Proof of Lemma A.1

The proof of Lemma A.1 leverages the following results.

Lemma A.5 (Lemma 2 in Wang et al. (2017)). Suppose Assumption 2.2 (ii) and 3.1 (i) hold for the empirical risk FS . By
running Algorithm 1 with SCGD update, we have

EA[∥yt+1 − gS(xt)∥2|Ft] ≤ (1− βt)∥yt − gS(xt−1)∥2 +
L2
g

βt
∥xt − xt−1∥2 + 2Vgβ

2
t (12)

Lemma A.6 (Lemma 1 in Chen et al. (2021a)). Suppose Assumption 2.2 (ii) and 3.1 (i) hold for the empirical risk FS . By
running Algorithm 1 with SCSC update, we have

EA[∥yt+1 − gS(xt)∥2|Ft] ≤ (1− βt)∥yt − gS(xt−1)∥2 + L2
g∥xt − xt−1∥2 + 2Vgβ

2
t (13)

Now we are ready to prove Lemma A.1.

Proof of Lemma A.1. We first present the proof for the SCGD update. Taking the expectation with respect to the internal
randomness of the algorithm over (12) and noting that EA[∥xt − xt−1∥2] ≤ L2

fL
2
gη

2
t−1, we get

EA[∥yt+1 − gS(xt)∥2] ≤ (1− βt)EA[∥yt − gS(xt−1)∥2] +
L2
fL

3
gη

2
t−1

βt
+ 2Vgβ

2
t .

Telescoping the above inequality from 1 to t yields

EA[∥yt+1 − gS(xt)∥2]

≤
t∏

i=1

(1− βi)EA[∥y1 − gS(x0)∥2] + L2
fL

3
g

t∑
i=1

t∏
j=i+1

(1− βj)
η2i−1

βi
+ 2Vg

t∑
i=1

t∏
j=i+1

(1− βj)β
2
i .

Note that
∏N

i=K(1− βi) ≤ exp(−
∑N

i=K βi) for all K ≤ N and βi > 0, then setting ηt = η, βt = β, thus we have

EA[∥yt+1 − gS(xt)∥2] ≤ exp(−βt)EA[∥y1 − gS(x0)∥2] +
t∑

i=1

(1− β)t−i(L3
gL

2
f

η2

β
+ 2Vgβ

2).

Using Lemma A.3 with ν = 1, we get

EA[∥yt+1 − gS(xt)∥2] ≤
( c
e

)c
(tβ)−cEA[∥y1 − gS(x0)∥2] + L3

gL
2
f

η2

β2
+ 2Vgβ,

where the inequality holds for
∑t

i=1(1− β)t−i ≤ 1
β . Then we get the desired result for the SCGD update. Next we present

the proof for the SCSC update. Taking the total expectation with respect to the internal randomness of the algorithm over
(13) and noting that EA[∥xt − xt−1∥2] ≤ LfLgη

2
t−1, we get

EA[∥yt+1 − gS(xt)∥2] ≤ (1− βt)EA[∥yt − gS(xt−1)∥2] + L2
fL

3
gη

2
t−1 + 2Vgβ

2
t .

13
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Telescoping the above inequality from 1 to t yields

EA[∥yt+1 − gS(xt)∥2]

≤
t∏

i=1

(1− βi)EA[∥y1 − gS(x0)∥2] + L2
fL

3
g

t∑
i=1

t∏
j=i+1

(1− βj)η
2
i−1 + 2Vg

t∑
i=1

t∏
j=i+1

(1− βj)β
2
i .

Note that
∏N

i=K(1− βi) ≤ exp(−
∑N

i=K βi) for all K ≤ N and βi > 0, then setting ηt = η, βt = β, thus we have

EA[∥yt+1 − gS(xt)∥2]

≤ exp(−tβ)EA[∥y1 − gS(x0)∥2] +
t∑

i=1

(1− β)t−i(L3
gL

2
fη

2 + 2Vgβ
2).

Using Lemma A.3 with ν = 1, we get

EA[∥yt+1 − gS(xt)∥2] ≤
( c
e

)c
(tβ)−cEA[∥y1 − gS(x0)∥2] + L3

gL
2
f

η2

β
+ 2Vgβ,

where the inequality holds for
∑t

i=1(1−β)t−i ≤ 1
β . Then we get the desired result for the SCSC update. Then we complete

the proof.

B. Proof for Section 2
Proof of Theorem 2.3. Write

ES,A

[
F (A(S))− FS(A(S))

]
= ES,A

[
Eν [fν

(
g(x)

)
]− 1

n

n∑
i=1

fνi

( 1
m

m∑
j=1

gωj
(x)
)]

= ES,A

[
Eν [fν

(
g(A(S))

)
]− 1

n

n∑
i=1

fνi

(
g(A(S))

)]
+ ES,A

[ 1
n

n∑
i=1

fνi

(
g(A(S))

)
− 1

n

n∑
i=1

fνi

( 1
m

m∑
j=1

gωj (A(S))
)]

≤ ES,A

[
Eν [fν

(
g(A(S))

)
]− 1

n

n∑
i=1

fνi

(
g(A(S))

)]
+ ES,A

[ 1
n

n∑
i=1

(
fνi

(
g(A(S))

)
− fνi

( 1
m

m∑
j=1

gωj
(A(S))

))]
. (14)

Now we estimate the two terms on the right-hand side of (14). Define S′,ν = {ν′1, ν′2, ..., ν′n, ω1, ω2, ..., ωm}. In particular,
we have that

ES,A

[
Eν [fν(g(A(S)))]− 1

n

n∑
i=1

fνi
(g(A(S)))

]
= ES,A,S′,ν

[ 1
n

n∑
i=1

fνi
(g(A(Si,ν)))− 1

n

n∑
i=1

fνi
(g(A(S)))

]
= ES,A,S′,ν

[ 1
n

n∑
i=1

(
fνi(g(A(Si,ν))− fνi(g(A(S))

)]
≤ Lf

1

n

n∑
i=1

ES,A,S′,ν [∥g(A(Si,ν))− g(A(S))∥]

≤ LfLg
1

n

n∑
i=1

ES,A,S′,ν [∥A(Si,ν)−A(S)∥] ≤ LfLgϵν . (15)
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Furthermore,

ES,A

[ 1
n

n∑
i=1

(
fνi

(
g(A(S))

)
− fνi

( 1
m

m∑
j=1

gωj
(A(S))

))]
≤ LfES,A

[∥∥g(A(S))− 1

m

m∑
j=1

gωj
(A(S))

∥∥]. (16)

Now it is sufficient to estimate the term ES,A

[∥∥g(A(S)) − 1
m

∑m
j=1 gωj

(A(S))
∥∥]. Note that, in general, g is a mapping

from Rp to Rd. To this end, we will use some ideas from Bousquet et al. (2020). To this end, we write

g(A(S))− 1

m

m∑
j=1

gωj (A(S))

=
1

m

m∑
j=1

Eω,ω′
j

[
gω(A(S))− gω

(
A
(
Sj,ω

))]
+

1

m

m∑
j=1

Eω′
j
[Eω

[
gω
(
A
(
Sj,ω

))]
− gωj

(
A
(
Sj,ω

)]
+

1

m

m∑
j=1

Eω′
j

[
gωj

(
A
(
Sj,ω

))
− gωj

(A(S))
]
.

It then follows that:

∥g(A(S))− 1

m

m∑
j=1

gωj (A(S))∥ ≤ 1

m

m∑
j=1

Eω,ω′
j
∥gω(A(S))− gω(A(Sj,ω))∥

+
1

m
∥

m∑
j=1

Eω′
j
[Eω[gω(A(Sj,ω))]− gωj (A(Sj,ω))]∥+ 1

m

m∑
j=1

Eω′
j
∥gωj

(
A
(
Sj,ω

))
− gωj (A(S))∥.

Note S and Sj,ω differ by a single example. By the assumption on stability and Definition 2.1, we further get

ES,A[∥g(A(S))− 1

m

m∑
j=1

gωj
(A(S))∥]

≤ ES,A[
1

m
∥

m∑
j=1

Eω′
j
[Eω[gω(A(Sj,ω))]− gωj (A(Sj,ω))]∥] + 2Lgϵω. (17)

Next step, we need to estimate ∥
∑m

j=1 Eω′
j
[Eω

[
gω
(
A
(
Sj,ω

))]
− gωj

(
A
(
Sj,ω

))
]∥.

Using a similar proof technique in paper (Lei, 2022), we can set ξj(S) as a function of S as follows

ξj(S) = Eω′
j
[Eω

[
gω
(
A
(
Sj,ω

))]
− gωj

(
A
(
Sj,ω

))
].

Notice that:

ES,A[∥
m∑
j=1

ξj(S)∥2] = ES,A[

m∑
j=1

∥ξj(S)∥2] +
∑

j,i∈[m]:j ̸=i

ES,A[⟨ξj(S), ξi(S)⟩]. (18)

According to the definition of ξj(S) and the Cauchy-Schwarz inequality, we know

ES,A[

m∑
j=1

∥ξj(S)∥2] =
m∑
j=1

ES,A[∥Eω′
j
[Eω[gω(A(Sj,ω))]− gωj (A(Sj,ω))]∥2]

≤
m∑
j=1

ES,A[∥Eω[gω(A(Sj,ω))]− gωj
(A(Sj,ω))∥2]

=

m∑
j=1

ES,A[∥Eω[gω(A(S))]− gω′
j
(A(S))∥2] = mES,A [Varω(gω(A(S)))] , (19)
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where the variance term Varω(gω(A(S))) = Eω

[
∥g(A(S))− gω(A(S))∥2

]
.

Next, we will estimate the second term on the right-hand side of (18). To this end, we define

Si,ω = {ω1, . . . , ωi−1, ω
′
i, ωi+1, . . . , ωm, ν1, . . . , νn} ;

Si,j,ω =
{
ω1, . . . , ωi−1, ω

′
i, ωi+1, . . . , ωj−1, ω

′
j , ωj+1, . . . , ωm, ν1, . . . , νn

}
.

Due to the symmetry between ω and ωj , we can have

Ewj
[ξj(S)] = 0,∀j ∈ [m] (20)

If j ̸= i,we have

ES,A

[〈
ξj
(
Si,ω

)
, ξi(S)

〉]
= ES,AEωi

[〈
ξj
(
Si,ω

)
, ξi(S)

〉]
= ES,A

[〈
ξj
(
Si,ω

)
,Eωi

[ξi(S)]
〉]

= 0,

where the second equality holds since the ξj
(
Si,ω

)
is independent of ωi and the last identity follows from Ewi

[ξi(S)] = 0
due to (20) . In a similar way, we can get the following equations for j ̸= i

ES,A

[〈
ξj(S), ξi

(
Sj,ω

)〉]
= ES,AEωj

[〈
ξj(S), ξi

(
Sj,ω

)〉]
= ES,A

[〈
Eωj [ξj(S)] , ξi

(
Sj,ω

)〉]
= 0,

and

ES,A

[〈
ξj
(
Si,ω

)
, ξi
(
Sj,ω

)〉]
= ES,AEωj

[〈
ξj
(
Si,ω

)
, ξi
(
Sj,ω

)〉]
= ES,A

[〈
Eωj

[
ξj
(
Si,ω

)]
, ξi
(
Sj,ω

)〉]
= 0.

Combining the above identities, we have j ̸= i

ES,A [⟨ξj(S), ξi(S)⟩] = ES,A

[〈
ξj(S)− ξj

(
Si,ω

)
, ξi(S)− ξi

(
Sj,ω

)〉]
≤ ES,A

[∥∥ξj(S)− ξj
(
Si,ω

)∥∥ · ∥∥ξi(S)− ξi
(
Sj,ω

)∥∥]
≤ 1

2
ES,A

[∥∥ξj(S)− ξj
(
Si,ω

)∥∥2]+ 1

2
ES,A

[∥∥ξi(S)− ξi
(
Sj,ω

)∥∥2] , (21)

where the third inequality use ab ≤ 1
2

(
a2 + b2

)
. With the definition of ξj(S), Si,ω and Si,j,ω, we can have the following

identity for j ̸= i

ES,A

[∥∥ξj(S)− ξj
(
Si,ω

)∥∥2]
= ES,A

[
∥Eω′

j
[Eω

[
gω
(
A
(
Sj,ω

))]
− gωj

(
A
(
Sj,ω

))
]− Eω′

j

[
Eω

[
gω
(
A
(
Si,j,ω

))]
− gωj

(
A
(
Si,j,ω

))]
∥2
]

= ES,A

[
∥Eω′

j
Eω

[
gω
(
A
(
Sj,ω

))
− gω

(
A
(
Si,j,ω

))]
+ Eω′

j

[
gωj

(
A
(
Si,j,ω

))
− gωj

(
A
(
Sj,ω

))]
∥2
]
.

Then using the elementary inequality (a+ b)2 ≤ 2
(
a2 + b2

)
and the Cauchy-Schwarz inequality, we get

ES,A

[∥∥ξj(S)− ξj
(
Si,ω

)∥∥2]
≤ 2ES,A

[
∥gω

(
A
(
Sj,ω

))
− gω

(
A
(
Si,j,ω

))
∥2
]
+ 2ES,A

[
∥gωj

(
A
(
Si,j,ω

))
− gωj

(
A
(
Sj,ω

))
∥2
]

≤ 2ES,A

[
L2
g

∥∥A (Sj,ω
)
−A

(
Si,j,ω

)∥∥2]+ 2ES,A

[
L2
g

∥∥A (Si,j,ω
)
−A

(
Sj,ω

)∥∥2] .
Since Si,ω and Si,j,ω differ by one example, it follows from the definition of stability, we can have

ES,A

[∥∥ξj(S)− ξj
(
Si,ω

)∥∥2] ≤ 4L2
gϵ

2
ω,∀j ̸= i.
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In a similar way, we can have

ES,A

[∥∥ξi(S)− ξi
(
Sj,ω

)∥∥2] ≤ 4L2
gϵ

2
ω,∀j ̸= i.

Combining above two inequalities into (21), we get∑
j,i∈[m]:j ̸=i

ES,A [⟨ξj(S), ξi(S)⟩] ≤ 4m(m− 1)L2
gϵ

2
ω,∀j ̸= i. (22)

Then combining the (22) and (19) into (18), we can have

ES,A

[
∥

m∑
j=1

ξj(S)∥2
]
= mES,A [Varω(gω(A(S)))] + 4m(m− 1)L2

gϵ
2
ω.

Then we get

ES,A

[
∥

m∑
j=1

ξj(S)∥
]
≤ (ES,A

[
∥

m∑
j=1

ξj(S)∥2
]
)1/2 ≤

√
mES,A [Varω(gω(A(S)))] + 2mLgϵω,

plugging the above inequality back into (17), we get

ES,A

[
∥g(A(S))− 1

m

m∑
j=1

gωj
(A(S))∥

]
≤
√

m−1ES,A [Varω(gω(A(S)))] + 4Lgϵω. (23)

Using the result (23) into (16) and then combining with the result (15) into (14), we get final result

ES,A

[
F (A(S))− FS(A(S))

]
≤ LfLgϵν + 4LfLgϵω + Lf

√
m−1ES,A [Varω(gω(A(S)))]

where Varω(gω(A(S))) = Eω

[
∥g(A(S))− gω(A(S))∥2

]
.

C. Proof for the Convex Setting
C.1. Stability

Proof of Theorem 3.3. For any k ∈ [n], define Sk,ν = {ν1, ..., νk−1, ν
′
k, νk+1, ..., νn, ω1, ..., ωm} as formed from Sν by

replacing the k-th element. For any l ∈ [m], define Sl,ω = {ν1, ..., νn, ω1, ..., ωl−1, ω
′
l, ωl+1, ..., ωm} as formed from Sω by

replacing the l-th element. Let {xt+1} and {yt+1} be produced by Algorithm 1 based on S, {xk,ν
t+1} and {yk,νt+1} be produced

by Algorithm 1 based on Sk,ν , {xl,ω
t+1} and {yl,ωt+1} be produced by Algorithm 1 based on Sl,ω . Let x0 = xk,ν

0 and x0 = xl,ω
0

be starting points in X . Since changing one sample data can happen in either Sν or Sω, we estimate EA

[
∥xt+1 − xk,ν

t+1∥
]

and EA

[
∥xt+1 − xl,ω

t+1∥
]

as follows.

Estimation of EA

[
∥xt+1 − xk,ν

t+1∥
]

We begin with the estimation of the term EA

[
∥xt+1 − xk,ν

t+1∥
]
. For this purpose, we will consider two cases, i.e., it ̸= k and

it = k.

Case 1 (it ̸= k). If it ̸= k, we have

∥xt+1 − xk,ν
t+1∥2 ≤ ∥xt − ηt∇gωjt

(xt)∇fνit
(yt+1)− xk,ν

t + ηt∇gωjt
(xk,ν

t )∇fνit
(yk,νt+1)∥2

= ∥xt − xk,ν
t ∥2 − 2ηt⟨∇gωjt

(xt)∇fνit
(yt+1)−∇gωjt

(xk,ν
t )∇fνit

(yk,νt+1), xt − xk,ν
t ⟩

+ η2t ∥∇gωjt
(xt)∇fνit

(yt+1)−∇gωjt
(xk,ν

t )∇fνit
(yk,νt+1)∥2. (24)

Taking the expectation w.r.t jt on the both sides of (24) implies that

Ejt

[
∥xt+1 − xk,ν

t+1∥2
]

≤ Ejt

[
∥xt − xk,ν

t ∥2
]
− 2ηtEjt

[
⟨∇gωjt

(xt)∇fνit
(yt+1)−∇gωjt

(xk,ν
t )∇fνit

(yk,νt+1), xt − xk,ν
t ⟩
]

+ η2tEjt

[
∥∇gωjt

(xt)∇fνit
(yt+1)−∇gωjt

(xk,ν
t )∇fνit

(yk,νt+1)∥2
]
. (25)

17
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We first estimate the second term on the right hand side of (25). It can be decomposed as

−2ηtEjt

[
⟨∇gωjt

(xt)∇fνit
(yt+1)−∇gωjt

(xk,ν
t )∇fνit

(yk,νt+1), xt − xk,ν
t ⟩
]

=− 2ηtEjt

[
⟨∇gωjt

(xt)∇fνit
(yt+1)−∇gωjt

(xt)∇fνit
(gS(xt)), xt − xk,ν

t ⟩
]

− 2ηtEjt

[
⟨∇gωjt

(xt)∇fνit
(gS(xt))−∇gS(xt)∇fνit

(gS(xt)), xt − xk,ν
t ⟩
]

− 2ηtEjt

[
⟨∇gS(xt)∇fνit

(gS(xt))−∇gS(x
k,ν
t )∇fνit

(gS(x
k,ν
t )), xt − xk,ν

t ⟩
]

− 2ηtEjt

[
⟨∇gS(x

k,ν
t )∇fνit

(gS(x
k,ν
t ))−∇gωjt

(xk,ν
t )∇fνit

(gS(x
k,ν
t )), xt − xk,ν

t ⟩
]

− 2ηtEjt

[
⟨∇gωjt

(xk,ν
t )∇fνit

(gS(x
k,ν
t ))−∇gωjt

(xk,ν
t )∇fνit

(yk,νt+1), xt − xk,ν
t ⟩
]
. (26)

Now we estimate the terms on the right hand side of (26) one by one. To this end, noticing that jt is independent of it and
xt, then Ejt

[
∇gωjt

(xt)∇fνit
(gS(xt))

]
= ∇gS(xt)∇fνit

(gS(xt)) holds true. Consequently,

− 2ηtEjt

[
⟨∇gωjt

(xt)∇fνit
(gS(xt))−∇gS(xt)∇fνit

(gS(xt)), xt − xk,ν
t ⟩
]
= 0,

− 2ηtEjt

[
⟨∇gS(x

k,ν
t )∇fνit

(gS(x
k,ν
t ))−∇gωjt

(xk,ν
t )∇fνit

(gS(x
k,ν
t )), xt − xk,ν

t ⟩
]
= 0. (27)

Then by Part (iv) of Assumption 3.1, we know fν(gS(·)) is L-smooth. Combining this with the convexity of fν(gS(·)) and
inequality (5), we get

⟨∇gS
(
xt

)
∇fνit

(gS(xt))−∇gS(x
k,ν
t )∇fνit

(gS(x
k,ν
t )), xt − xk,ν

t ⟩

≥ 1

L
∥∇gS(xt)∇fνit

(gS(xt))−∇gS(x
k,ν
t )∇fνit

(gS(x
k,ν
t ))∥2. (28)

Furthermore, noticing that xt is independent of jt, we get

− 2ηtEjt

[
⟨∇gωjt

(xt)∇fνit
(yt+1)−∇gωjt

(xt)∇fνit
(gS(xt)), xt − xk,ν

t ⟩
]

≤ 2ηtEjt

[∣∣⟨∇gωjt
(xt)(∇fνit

(yt+1)−∇fνit
(gS(xt))), xt − xk,ν

t ⟩
∣∣]

≤ 2ηtEjt

[
∥∇gωjt

(xt)(∇fνit
(yt+1)−∇fνit

(gS(xt)))∥∥xt − xk,ν
t ∥

]
≤ 2ηtEjt

[
∥∇gωjt

(xt)∥∥∇fνit
(yt+1)−∇fνit

(
gS(xt)

)
∥∥xt − xk,ν

t ∥
]

≤ CfLg2ηtEjt

[
∥yt+1 − gS(xt)∥

]
∥xt − xk,ν

t ∥, (29)

where the last inequality holds by Lg Lipschitz continuity of gω in Assumption 2.2(ii) and the Cf Lipschitz continuous
gradients of fν in Assumption 3.1(iii). Analogous to (29), we get

− 2ηtEjt

[
⟨∇gωjt

(xk,ν
t )∇fνit

(gS(x
k,ν
t ))−∇gωjt

(xk,ν
t )∇fνit

(yk,νt+1), xt − xk,ν
t ⟩
]

≤ 2CfLgηtEjt

[
∥yk,νt+1 − gS(x

k,ν
t )∥

]
∥xt − xk,ν

t ∥. (30)

Putting (27), (28), (29) and (30) into (26), we get that

− 2ηtEjt

[
⟨∇gωjt

(xt)∇fνit
(yt+1)−∇gωjt

(xk,ν
t )∇fνit

(yk,νt+1), xt − xk,ν
t ⟩
]

≤ 2CfLgηtEjt

[
∥yt+1 − gS(xt)∥

]
∥xt − xk,ν

t ∥+ 2CfLgηtEjt

[
∥yk,νt+1 − gS(x

k,ν
t )∥

]
∥xt − xk,ν

t ∥

− 2ηt
1

L
∥∇gS(xt)∇fνit

(gS(xt))−∇gS(x
k,ν
t )∇fνit

(gS(x
k,ν
t ))∥2. (31)

We estimate the third term on the right hand side of (25) as follows:

∥∇gωjt
(xt)∇fνit

(yt+1)−∇gωjt
(xk,ν

t )∇fνit
(yk,νt+1)∥

≤ ∥∇gωjt
(xt)∇fνit

(yt+1)−∇gωjt
(xt)∇fνit

(gS(xt))∥
+ ∥∇gωjt

(xt)∇fνit
(gS(xt))−∇gS(xt)∇fνit

(gS(xt))∥

+ ∥∇gS(xt)∇fνit
(gS(xt))−∇gS(x

k,ν
t )∇fνit

(gS(x
k,ν
t ))∥

+ ∥∇gS(x
k,ν
t )∇fνit

(gS(x
k,ν
t ))−∇gωjt

(xk,ν
t )∇fνit

(gS(x
k,ν
t ))∥

+ ∥∇gωjt
(xk,ν

t )∇fνit
(gS(x

k,ν
t ))−∇gωjt

(xk,ν
t )∇fνit

(yk,νt+1)∥.

18
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Taking square on both sides of the above inequality, we have that

η2t ∥∇gωjt
(xt)∇fνit

(yt+1)−∇gωjt
(xk,ν

t )∇fνit
(yk,νt+1)∥2

≤4η2tC
2
f∥∇gωjt

(xt)(yt+1 − gS(xt))∥2 + 4η2tC
2
f∥∇gωjt

(xt)(gS(x
k,ν
t )− yk,νt+1)∥2

+ 8η2t ∥(∇gωjt
(xt)−∇gS(xt))∇fνit

(gS(xt))∥2

+ 8η2t ∥(∇gωjt
(xk,ν

t )−∇gS(x
k,ν
t ))∇fνit

(gS(x
k,ν
t ))∥2

+ 4η2t ∥∇gS(xt)∇fνit
(gS(xt))−∇gS(x

k,ν
t )∇fνit

(gS(x
k,ν
t ))∥2, (32)

where we have used the fact that (
∑5

i=1 ai)
2 ≤ 4a21 + 4a22 + 4a23 + 8a24 + 8a25 and part (iii) of Assumption 3.1, i.e.,

Cf -Lipschitz continuity of ∇fν . Taking the expectation w.r.t. jt on both sides of (32), there holds

Ejt

[
η2t ∥∇gωjt

(xt)∇fνit
(yt+1)−∇gωjt

(xk,ν
t )∇fνit

(yk,νt+1)∥2
]

≤4η2tC
2
fEjt

[
∥∇gωjt

(xt)∥2∥yt+1 − gS(xt)∥2
]
+ 4η2tC

2
fEjt

[
∥∇gωjt

(xt)∥2∥gS(xk,ν
t )− yk,νt+1∥2

]
+ 8η2tEjt

[
∥∇gωjt

(xt)−∇gS(xt)∥2∥∇fνit
(gS(xt))∥2

]
+ 8η2tEjt

[
∥∇gωjt

(xk,ν
t )−∇gS(x

k,ν
t )∥2∥∇fνit

(gS(x
k,ν
t ))∥2

]
+ 4η2t ∥∇gS(xt)∇fνit

(gS(xt))−∇gS(x
k,ν
t )∇fνit

(gS(x
k,ν
t ))∥

≤4η2tC
2
fL

2
gEjt

[
∥yt+1 − gS(xt)∥2

]
+ 4η2tC

2
fL

2
gEjt

[
∥yk,νt+1 − gS(x

k,ν
t )∥2

]
+ 16η2tL

2
fCg

+ 4η2t ∥∇gS(xt)∇fνit
(gS(xt))−∇gS(x

k,ν
t )∇fνit

(gS(x
k,ν
t ))∥2, (33)

where the second inequality follows from the Lipschitz continuity of fν and gω according to Assumption 2.2 as well as part
(ii) of Assumption 3.1.

Putting (31) and (33) back into (25) implies that

Ejt

[
∥xt+1 − xk,ν

t+1∥2
]

≤ ∥xt − xk,ν
t ∥2 + 2CfLgηtEjt

[
∥yt+1 − gS∥

]
∥xt − xk,ν

t ∥

+ 2CfLgηtEjt

[
∥yk,νt+1 − gS(x

k,ν
t )∥

]
∥xt − xk,ν

t ∥

+ (4η2t − 2ηt
1

L
)∥∇gS(xt)∇fνit

(gS(xt))−∇gS(x
k,ν
t )∇fνit

(gS(x
k,ν
t ))∥2

+ 4η2tC
2
fL

2
gEjt

[
∥yt+1 − gS (xt)∥2

]
+ 4η2tC

2
fL

2
gEjt

[
∥yk,νt+1 − gS(x

k,ν
t )∥2

]
+ 16η2tL

2
fCg

≤ ∥xt − xk,ν
t ∥2 + 2CfLgηtEjt

[
∥yt+1 − gS(xt)∥

]
∥xt − xk,ν

t ∥

+ 2CfLgηtEjt

[
∥yk,νt+1 − gS(x

k,ν
t )∥

]
∥xt − xk,ν

t ∥

+ 4η2tC
2
fL

2
gEjt

[
∥yt+1 − gS (xt)∥2

]
+ 4η2tC

2
fL

2
gEjt

[
∥yk,νt+1 − gS(x

k,ν
t )∥2

]
+ 16η2tL

2
fCg,

where in the second inequality we have used the fact that ηt ≤ 1
2L .

Case 2 (it = k). If it = k, we have

∥xt+1 − xk,ν
t+1∥ = ∥xt − ηt∇gωjt

(xt)∇fνit
(yt+1)− xk,ν

t + ηt∇gωjt
(xk,ν

t )∇fν′
it
(yk,νt+1)∥

≤ ∥xt − xk,ν
t ∥+ ηt∥∇gωjt

(xt)∇fνit
(yt+1)−∇gωjt

(xk,ν
t )∇fν′

it
(yk,νt+1)∥

≤ ∥xt − xk,ν
t ∥+ ηt∥∇gωjt

(xt)∥∥∇fνit
(yt+1)∥+ ηt∥∇gωjt

(xk,ν
t )∥∥∇fν′

it
(yk,νt+1)∥

≤ ∥xt − xk,ν
t ∥+ 2LgLfηt,

where in the third inequality we have used Assumption 2.2, i.e., the Lipschitz continuity of fν and gω . Taking the square of
the terms on both sides of the above inequality and taking the expectation w.r.t. jt yield that

Ejt

[
∥xt+1 − xk,ν

t+1∥2
]
≤ ∥xt − xk,ν

t ∥2 + 4LgLfηt∥xt − xk,ν
t ∥+ 4L2

gL
2
fη

2
t . (34)
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Combining Case 1 and Case 2 together, we have that

Ejt

[
∥xt+1 − xk,ν

t+1∥2
]
≤ ∥xt − xk,ν

t ∥2 + 2CfLgηtEjt

[
∥yt+1 − gS(xt)∥

]
∥xt − xk,ν

t ∥

+ 2CfLgηtEjt

[
∥yk,νt+1 − gS(x

k,ν
t )∥

]
∥xt − xk,ν

t ∥

+ 4η2tC
2
fL

2
gEjt

[
∥yt+1 − gS(xt)∥2

]
+ 4η2tC

2
fL

2
gEjt

[
∥yk,νt+1 − gS(x

k,ν
t )∥2

]
+ 16η2tL

2
fCg

+ 4LgLfηt∥xt − xk,ν
t ∥I[it=k] + 4L2

gL
2
fη

2
t I[it=k]. (35)

Taking the expectation w.r.t. A on both sides of (35), we get that

EA

[
∥xt+1 − xk,ν

t+1∥2
]

≤EA

[
∥xt − xk,ν

t ∥2
]
+ 2CfLgηtEA

[
Ejt [∥yt+1 − gS(xt)∥]∥xt − xk,ν

t ∥
]

+ 2CfLgηtEA

[
Ejt [∥y

k,ν
t+1 − gS(x

k,ν
t )∥]∥xt − xk,ν

t ∥
]

+ 4η2tC
2
fL

2
gEA

[
∥yt+1 − gS(xt)∥2

]
+ 4η2tC

2
fL

2
gEA

[
∥yk,νt+1 − gS(x

k,ν
t )∥2

]
+ 16η2tL

2
fCg

+ 4LfLgηtEA[∥xt − xk,ν
t ∥I[it=k]] + 4L2

gL
2
fη

2
tEA[I[it=k]]

≤EA

[
∥xt − xk,ν

t ∥2
]
+ 2CfLgηt(EA

[
∥yt+1 − gS(xt)∥2

]
)1/2(EA

[
∥xt − xk,ν

t ∥2
]
)1/2

+ 2CfLgηt(EA

[
∥yk,νt+1 − gS(x

k,ν
t )∥2

]
)1/2(EA

[
∥xt − xk,ν

t ∥2
]
)1/2

+ 4η2tC
2
fL

2
gEA

[
∥yt+1 − gS(xt)∥2

]
+ 4η2tC

2
fL

2
gEA

[
∥yk,νt+1 − gS(x

k,ν
t )∥2

]
+ 16η2tL

2
fCg

+ 4LfLgηtEA[∥xt − xk,ν
t ∥I[it=k]] + 4L2

gL
2
fη

2
tEA[I[it=k]], (36)

where the second inequality holds by the Cauchy-Schwarz inequality. Observe that

EA[∥xt − xk,ν
t ∥I[it=k]] = EA[∥xt − xk,ν

t ∥Eit [I[it=k]]] =
1

n
EA[∥xt − xk,ν

t ∥] ≤ 1

n
(EA[∥xt − xk,ν

t ∥2])1/2.

Note that ∥x0 − xk,ν
0 ∥2 = 0. Combining above observation with (36) implies that

EA

[
∥xt+1 − xk,ν

t+1∥2
]

≤ 2CfLg

t∑
j=1

ηj(EA

[
∥yj+1 − gS(xj)∥2

]
)1/2

(
EA

[
∥xj − xk,ν

j ∥2
])1/2

+ 2CfLg

t∑
j=1

ηj(EA

[
∥yk,νj+1 − gS(x

k,ν
j )∥2

]
)1/2

(
EA

[
∥xj − xk,ν

j ∥2
])1/2

+ 4C2
fL

2
g

t∑
j=0

η2jEA

[
∥yj+1 − gS(xj)∥2

]
+ 4C2

fL
2
g

t∑
j=0

η2jEA

[
∥yk,νj+1 − gS(x

k,ν
j )∥2

]
+ 16L2

fCg

t∑
j=0

η2j +
4LgLf

n

t∑
j=1

ηj(EA

[
∥xj − xk,ν

j ∥2
]
)1/2 +

4L2
fL

2
g

n

t∑
j=0

η2j . (37)

For notational convenience, we denote by ut = (EA

[
∥xt − xk,ν

t ∥2
]
)1/2. Using this notation, from (37) we get that

u2
t ≤ 2CfLg

t−1∑
j=1

ηj(EA

[
∥yj+1 − gS(xj)∥2

]
)1/2uj + 2CfLg

t−1∑
j=1

ηj(EA

[
∥yk,νj+1 − gS(x

k,ν
j )∥2

]
)1/2uj

+ 4C2
fL

2
g

t−1∑
j=0

η2jEA

[
∥yj+1 − gS(xj)∥2

]
+ 4C2

fL
2
g

t−1∑
j=0

η2jEA

[
∥yk,νj+1 − gS(x

k,ν
j )∥2

]
+ 16L2

fCg

t−1∑
j=0

η2j +
4LgLf

n

t−1∑
j=1

ηjuj +
4L2

fL
2
g

n

t−1∑
j=0

η2j .
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We will apply Lemma A.2 to get the desired estimation from the above recursive inequality. To this end, we define

St = 4C2
fL

2
g

t−1∑
j=0

η2jEA

[
∥yj+1 − gS (xj)∥2

]
+ 4C2

fL
2
g

t−1∑
j=0

η2jEA

[
∥yk,νj+1 − gS(x

k,ν
j )∥2

]
+

4L2
fL

2
g

n

t−1∑
j=0

η2j + 16L2
fCg

t−1∑
j=0

η2j ,

αj = 2CfLgηj(EA

[
∥yj+1 − gS(xj)∥2

]
)1/2 + 2CfLgηj(EA

[
∥yk,νj+1 − gS(x

k,ν
j )∥2

]
)1/2 +

4LgLf

n
ηj .

Now applying Lemma A.2 with ut, St and αj defined above, we get

ut ≤
√

St +

t−1∑
j=1

αj

≤
(
4C2

fL
2
g

t−1∑
j=0

η2jEA

[
∥yj+1 − gS (xj)∥2

])1/2
+
(
4C2

fL
2
g

t−1∑
j=0

η2jEA

[
∥yk,νj+1 − gS(x

k,ν
j )∥2

])1/2
+
(4L2

fL
2
g

n

t−1∑
j=0

η2j
)1/2

+ (16L2
fCg

t−1∑
j=0

η2j )
1/2 + 2CfLg

t−1∑
j=1

ηj(EA

[
∥yj+1 − gS(xj)∥2

]
)1/2

+ 2CfLg

t−1∑
j=1

ηj(EA

[
∥yk,νj+1 − gS(x

k,ν
j )∥2

]
)1/2 +

4LfLg

n

t−1∑
j=1

ηj

≤ 4CfLg

t−1∑
j=0

ηj(EA

[
∥yj+1 − gS(xj)∥2

]
)1/2 + 4CfLg

t−1∑
j=0

ηj(EA

[
∥yk,νj+1 − gS(x

k,ν
j )∥2

]
)1/2

+ 4Lf

√
Cg(

t−1∑
j=0

η2j )
1/2 +

(4L2
fL

2
g

n

t−1∑
j=0

η2j
)1/2

+
4LfLg

n

t−1∑
j=0

ηj , (38)

where the second inequality uses the fact that (
∑4

i=1 ai)
1/2 ≤

∑4
i=1(ai)

1/2 and the last inequality holds by the fact that

(
4C2

fL
2
g

t−1∑
j=0

η2jEA

[
∥yj+1 − gS (xj)∥2

])1/2 ≤ 2CfLg

t−1∑
j=0

ηj(EA

[
∥yj+1 − gS(xj)∥2

]
)1/2,

(
4C2

fL
2
g

t−1∑
j=0

η2jEA

[
∥yk,νj+1 − gS(x

k,ν
j )∥2

])1/2 ≤ 2CfLg

t−1∑
j=0

ηj(EA

[
∥yk,νj+1 − gS(x

k,ν
j )∥2

]
)1/2.

Furthermore, if ηt = η, it is easy to see that
∑T−1

j=0 (EA[∥yj+1−gS(xj)∥2])1/2 ≤ supS η
∑T−1

j=0 (EA[∥yj+1−gS(xj)∥2])1/2

and
∑T−1

j=0 (EA[∥yk,νj+1 − gS(x
k,ν
j )∥2])1/2 ≤ supS η

∑T−1
j=0 (EA[∥yj+1 − gS(xj)∥2])1/2. Consequently, with T iterations,

we obtain that

uT ≤8CfLg sup
S

η

T−1∑
j=0

(EA[∥yj+1 − gS(xj)∥2])1/2 + 4Lf

√
Cg(

T−1∑
j=0

η2)1/2 +
(4L2

fL
2
g

n

T−1∑
j=0

η2
)1/2

+
4LgLf

n

T−1∑
j=0

η

≤8CfLg sup
S

η
T−1∑
j=0

(EA[∥yj+1 − gS(xj)∥2])1/2 + 4Lf

√
Cgη

√
T +

6LgLf

n
ηT,

where the last inequality holds by the fact that
( 4L2

fL
2
g

n

∑T−1
j=0 η2

)1/2
=

2LgLf√
n

η
√
T ≤ 2LfLg

n ηT because often we have
T ≥ n.
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Since EA

[
∥xT − xk,ν

T ∥
]
≤ uT = (EA

[
∥xT − xk,ν

T ∥2
]
)1/2, we further get

EA

[
∥xT − xk,ν

T ∥
]
≤ 8CfLg sup

S
η

T−1∑
j=0

(EA[∥yj+1 − gS(xj)∥2])1/2 + 4Lf

√
Cgη

√
T +

6LfLg

n
ηT. (39)

We got the following desired result for Case 1:

EA

[
∥xT − xk,ν

T ∥
]
= O

(
LfLg

Tη

n
+ Lf

√
Cgη

√
T + CfLg sup

S

T−1∑
j=0

η
(
EA[∥yj+1 − gS(xj)∥2]

) 1
2

)
.

Next we move on to the estimation of EA[∥xt+1 − xl,ω
t+1∥].

Estimation of EA[∥xt+1 − xl,ω
t+1∥]. We will estimate it by considering two cases, i.e., jt ̸= l and jt = l.

Case 1 (jt ̸= l). If jt ̸= l, we have

∥xt+1 − xl,ω
t+1∥2 ≤ ∥xt − ηt∇gωjt

(xt)∇fνit
(yt+1)− xl,ω

t + ηt∇gωjt
(xl,ω

t )∇fνit
(yl,ωt+1)∥2

= ∥xt − xl,ω
t ∥2 − 2ηt⟨∇gωjt

(xt)∇fνit
(yt+1)−∇gωjt

(xl,ω
t )∇fνit

(yl,ωt+1), xt − xl,ω
t ⟩

+ η2t ∥∇gωjt
(xt)∇fνit

(yt+1)−∇gωjt
(xl,ω

t )∇fνit
(yl,ωt+1)∥2. (40)

We will estimate the second term and the third one on the right hand side of (40) as follows. First, we estimate the second
term. To this end, using similar arguments in (26), it can be decomposed as

−2ηt⟨∇gωjt
(xt)∇fνit

(yt+1)−∇gωjt
(xl,ω

t )∇fνit
(yl,ωt+1), xt − xl,ω

t ⟩

=− 2ηt⟨∇gωjt
(xt)(∇fνit

(yt+1)−∇fνit
(gS(xt))), xt − xl,ω

t ⟩

− 2ηt⟨∇gωjt
(xt)∇fνit

(gS(xt))−∇gS(xt)∇fνit
(gS(xt)), xt − xl,ω

t ⟩

− 2ηt⟨∇gS(xt)∇fνit
(gS(xt))−∇gS(x

l,ω
t )∇fνit

(gS(x
l,ω
t )), xt − xl,ω

t ⟩

− 2ηt⟨∇gS(x
l,ω
t )∇fνit

(gS(x
l,ω
t ))−∇gωjt

(xl,ω
t )∇fνit

(gS(x
l,ω
t )), xt − xl,ω

t ⟩

− 2ηt⟨∇gωjt
(xl,ω

t )(∇fνit
(gS(x

l,ω
t ))−∇fνit

(yl,ωt+1)), xt − xl,ω
t ⟩. (41)

Using the convexity of fν(gS(·)), part (iv) of Assumption 3.1 and inequality (5), we have

⟨∇gS
(
xt

)
∇fνit

(gS(xt))−∇gS(x
l,ω
t )∇fνit

(gS(x
l,ω
t )), xt − xl,ω

t ⟩

≥ 1

L
∥∇gS(xt)∇fνit

(gS(xt))−∇gS(x
l,ω
t )∇fνit

(gS(x
l,ω
t ))∥2. (42)

Furthermore, using part (ii) of Assumption 2.2 and part (iii) of Assumption 3.1, we get

− 2ηt⟨∇gωjt
(xt)(∇fνit

(yt+1)−∇fνit
(gS(xt))), xt − xl,ω

t ⟩

≤ 2ηt∥∇gωjt
(xt)

(
∇fνit

(yt+1)−∇fνit

(
gS(xt)

)
∥∥xt − xl,ω

t ∥

≤ 2ηt∥∇gωjt
(xt)∥∥∇fνit

(yt+1)−∇fνit

(
gS(xt)

)
∥∥xt − xl,ω

t ∥

≤ 2ηtCfLg∥yt+1 − gS(xt)∥∥xt − xl,ω
t ∥. (43)

Likewise,

− 2ηt⟨∇gωjt
(xl,ω

t )(∇fνit
(gS(x

l,ω
t ))−∇fνit

(yl,ωt+1)), xt − xl,ω
t ⟩

≤ 2ηtCfLg∥yl,ωt+1 − gS(x
l,ω
t )∥∥xt − xl,ω

t ∥. (44)
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Putting (42), (43) and (44) into (41) yields that

−2ηt⟨∇gωjt
(xt)∇fνit

(yt+1)−∇gωjt
(xl,ω

t )∇fνit
(yl,ωt+1), xt − xl,ω

t ⟩

≤ 2ηtCfLg∥yt+1 − gS(xt)∥∥xt − xl,ω
t ∥+ 2ηtCfLg∥yl,ωt+1 − gS(x

l,ω
t )∥∥xt − xl,ω

t ∥

− 2ηt⟨∇gωjt
(xt)∇fνit

(gS(xt))−∇gS(xt)∇fνit
(gS(xt)), xt − xl,ω

t ⟩

− 2ηt
1

L
∥∇gS(xt)∇fνit

(gS(xt))−∇gS(x
l,ω
t )∇fνit

(gS(x
l,ω
t ))∥2

− 2ηt⟨∇gS(x
l,ω
t )∇fνit

(gS(x
l,ω
t ))−∇gωjt

(xl,ω
t )∇fνit

(gS(x
l,ω
t )), xt − xl,ω

t ⟩. (45)

Next we will estimate the third term on the right hand side of (40). In analogy to the argument in (32), one can show that

η2t ∥∇gωjt
(xt)∇fνit

(yt+1)−∇gωjt
(xl,ω

t )∇fνit
(yl,ωt+1)∥2

≤ 4η2tC
2
f∥∇gωjt

(xt)(yt+1 − gS(xt))∥2 + 4η2tC
2
f∥∇gωjt

(xt)(gS(x
l,ω
t )− yl,ωt+1)∥2

+ 8η2t ∥(∇gωjt
(xt)−∇gS(xt))∇fνit

(gS(xt))∥2

+ 8η2t ∥(∇gωjt
(xl,ω

t )−∇gS(x
l,ω
t ))∇fνit

(gS(x
l,ω
t ))∥2

+ 4η2t ∥∇gS(xt)∇fνit
(gS(xt))−∇gS(x

l,ω
t )∇fνit

(gS(x
l,ω
t ))∥2

≤ 4η2tC
2
fL

2
g∥yt+1 − gS(xt)∥2 + 4η2tC

2
fL

2
g∥∇gS(x

l,ω
t )− yl,ωt+1∥2

+ 8L2
fη

2
t ∥∇gωjt

(xt)−∇gS(xt)∥2 + 8L2
fη

2
t ∥∇gωjt

(xl,ω
t )−∇gS(x

l,ω
t )∥2

+ 4η2t ∥∇gS(xt)∇fνit
(gS(xt))−∇gS(x

l,ω
t )∇fνit

(gS(x
l,ω
t ))∥2, (46)

where, in the second inequality, we have used Assumption 2.2.

Putting the results (45) and (46) into (40) implies that

∥xt+1 − xl,ω
t+1∥2

≤ ∥xt − xl,ω
t ∥2 + 2ηtCfLg∥yt+1 − gS(xt)∥∥xt − xl,ω

t ∥+ 2ηtCfLg∥yl,ωt+1 − gS(x
l,ω
t )∥∥xt − xl,ω

t ∥

− 2ηt⟨∇gωjt
(xt)∇fνit

(gS(xt))−∇gS(xt)∇fνit
(gS(xt)), xt − xl,ω

t ⟩

− 2ηt⟨∇gS(x
l,ω
t )∇fνit

(gS(x
l,ω
t ))−∇gωjt

(xl,ω
t )∇fνit

(gS(x
l,ω
t )), xt − xl,ω

t ⟩

+ (4η2t − 2ηt
1

L
)∥∇gS(xt)∇fνit

(gS(xt))−∇gS(x
l,ω
t )∇fνit

(gS(x
l,ω
t ))∥2

+ 4η2tC
2
fL

2
g∥yt+1 − gS(xt)∥2 + 4η2tC

2
fL

2
g∥gS(x

l,ω
t )− yl,ωt+1∥2

+ 8L2
fη

2
t ∥∇gωjt

(xt)−∇gS(xt)∥2 + 8L2
fη

2
t ∥∇gωjt

(xl,ω
t )−∇gS(x

l,ω
t )∥2

≤ ∥xt − xl,ω
t ∥2 + 2ηtCfLg∥yt+1 − gS(xt)∥∥xt − xl,ω

t ∥+ 2ηtCfLg∥yl,ωt+1 − gS(x
l,ω
t )∥∥xt − xl,ω

t ∥

− 2ηt⟨∇gωjt
(xt)∇fνit

(gS(xt))−∇gS(xt)∇fνit
(gS(xt)), xt − xl,ω

t ⟩

− 2ηt⟨∇gS(x
l,ω
t )∇fνit

(gS(x
l,ω
t ))−∇gωjt

(xl,ω
t )∇fνit

(gS(x
l,ω
t )), xt − xl,ω

t ⟩

+ 4η2tC
2
fL

2
g∥yt+1 − gS(xt)∥2 + 4η2tC

2
fL

2
g∥gS(x

l,ω
t )− yl,ωt+1∥2

+ 8L2
fη

2
t ∥∇gωjt

(xt)−∇gS(xt)∥2 + 8L2
fη

2
t ∥∇gωjt

(xl,ω
t )−∇gS(x

l,ω
t )∥2, (47)

where we have used the fact that ηt ≤ 1
2L in the second inequality.

Case 2 (jt = l). If jt = l, from Assumption 2.2 we have that

∥xt+1 − xl,ω
t+1∥ = ∥xt − ηt∇gωjt

(xt)∇fνit
(yt+1)− xl,ω

t + ηt∇gω′
jt
(xl,ω

t )∇fνit
(yl,ωt+1)∥

≤ ∥xt − xl,ω
t ∥+ ∥∇gωjt

(xt)∇fνit
(yt+1) +∇gω′

jt
(xl,ω

t )∇fνit
(yl,ωt+1)∥

≤ ∥xt − xl,ω
t ∥+ ηt∥∇gωjt

(xt)∥∥∇fνit
(yt+1)∥+ ηt∥∇gω′

jt
(xl,ω

t )∥∥∇fνit
(gS(x

l,ω
t ))∥

≤ ∥xt − xl,ω
t ∥+ 2ηtLgLf .
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Therefore,

∥xt+1 − xl,ω
t+1∥2 ≤ ∥xt − xl,ω

t ∥2 + 4LgLfηt∥xt − xl,ω
t ∥+ 4η2tL

2
gL

2
f . (48)

Combining Case 1 and Case 2 together, we obtain

∥xt+1 − xl,ω
t+1∥2

≤ ∥xt − xl,ω
t ∥2 + 2CfLgηt ∥yt+1 − gS (xt)∥ ∥xt − xl,ω

t ∥+ 2CfLgηt∥yl,ωt+1 − gS(x
l,ω
t )∥∥xt − xl,ω

t ∥

− 2ηt⟨∇gωjt
(xt)∇fνit

(gS (xt))−∇gS (xt)∇fνit
(gS (xt)) , xt − xl,ω

t ⟩I[jt ̸=l]

− 2ηt⟨∇gS(x
l,ω
t )∇fνit

(gS(x
l,ω
t ))−∇gωjt

(xl,ω
t )∇fνit

(gS(x
l,ω
t )), xt − xl,ω

t ⟩I[jt ̸=l]

+ 8L2
fη

2
t

∥∥∇gωjt
(xt)−∇gS (xt)

∥∥2 + 8L2
fη

2
t ∥∇gωjt

(xl,ω
t )−∇gS(x

l,ω
t )∥2

+ 4η2tC
2
fL

2
g∥yt+1 − gS(xt)∥2 + 4η2tC

2
fL

2
g∥gS(x

l,ω
t )− yl,ωt+1∥2

+ 4ηtLgLf∥xt − xl,ω
t ∥I[jt=l] + 4η2tL

2
gL

2
f I[jt=l]. (49)

Taking the expectation w.r.t. A on both sides of (49) yields that

EA

[
∥xt+1 − xl,ω

t+1∥2
]

≤ EA

[
∥xt − xl,ω

t ∥2
]
+ 2CfLgηtEA

[
∥yt+1 − gS(xt)∥∥xt − xl,ω

t ∥
]

+ 2CfLgηtEA

[
∥yl,ωt+1 − gS(x

l,ω
t )∥∥xt − xl,ω

t ∥
]

− 2ηtEA

[
⟨∇gωjt

(xt)∇fνit
(gS (xt))−∇gS (xt)∇fνit

(gS (xt)) , xt − xl,ω
t ⟩I[jt ̸=l]

]
− 2ηtEA

[
⟨∇gS(x

l,ω
t )∇fνit

(gS(x
l,ω
t ))−∇gωjt

(xl,ω
t )∇fνit

(gS(x
l,ω
t )), xt − xl,ω

t ⟩I[jt ̸=l]

]
+ 8L2

fη
2
tEA

[
∥∇gωjt

(xt)−∇gS(xt)∥2] + 8L2
fη

2
tEA

[
∥∇gωjt

(xl,ω
t )−∇gS(x

l,ω
t )∥2]

+ 4η2tC
2
fL

2
gEA

[
∥yt+1 − gS(xt)∥2

]
+ 4η2tC

2
fL

2
gEA

[
∥gS(xl,ω

t )− yl,ωt+1∥2
]

+ 4ηtLfLgEA

[
∥xt − xl,ω

t ∥I[jt=l]

]
+ 4η2tL

2
gL

2
fEA

[
I[jt=l]

]
. (50)

We will estimate the terms on the right hand side of the above inequality. To this end, denote

T1 : = ⟨∇gωjt
(xt)∇fνit

(gS (xt))−∇gS (xt)∇fνit
(gS (xt)) , xt − xl,ω

t ⟩,

T2 : = ⟨∇gS(x
l,ω
t )∇fνit

(gS(x
l,ω
t ))−∇gωjt

(xl,ω
t )∇fνit

(gS(x
l,ω
t )), xt − xl,ω

t ⟩.

Taking the expectation w.r.t. A on both sides of the above identity, we have

EA[T1] = EA[⟨∇gωjt
(xt)∇fνit

(gS (xt))−∇gS (xt)∇fνit
(gS (xt)) , xt − xl,ω

t ⟩]

= EA[⟨Ejt [∇gωjt
(xt)∇fνit

(gS (xt))]−∇gS (xt)∇fνit
(gS (xt)) , xt − xl,ω

t ⟩]

= EA[⟨∇gS (xt)∇fνit
(gS (xt))−∇gS (xt)∇fνit

(gS (xt)) , xt − xl,ω
t ⟩]

= 0, (51)

where the second identity holds true since jt is independent of it and xt. Therefore,

−2ηtEA[T1I[jt ̸=l]] = −2ηtEA[T1I[jt ̸=l]] + 2ηtEA[T1I[jt=l]]− 2ηtEA[T1I[jt=l]]

= (−2ηtEA[T1I[jt ̸=l]]− 2ηtEA[T1I[jt=l]]) + 2ηtEA[T1I[jt=l]]

= −2ηtEA[T1] + 2ηtEA[T1I[jt=l]]

= 2ηtEA[T1I[jt=l]]. (52)
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We further get the following estimation

− 2ηtEA

[
⟨∇gωjt

(xt)∇fνit
(gS (xt))−∇gS (xt)∇fνit

(gS (xt)) , xt − xl,ω
t ⟩I[jt ̸=l]

]
= 2ηtEA

[
⟨∇gωjt

(xt)∇fνit
(gS (xt))−∇gS (xt)∇fνit

(gS (xt)) , xt − xl,ω
t ⟩I[jt=l]

]
≤ 2ηtEA

[
∥∇gωjt

(xt)∇fνit
(gS (xt))−∇gS (xt)∇fνit

(gS (xt)) ∥∥xt − xl,ω
t ∥I[jt=l]

]
≤ 2ηtEA

[
(∥∇gωjt

(xt) ∥∥∇fνit
(gS (xt)) ∥+ ∥∇gS (xt) ∥∥∇fνit

(gS (xt)) ∥)∥xt − xl,ω
t ∥I[jt=l]

]
≤ 4ηtLgLfEA

[
∥xt − xl,ω

t ∥I[jt=l]

]
, (53)

where the last inequality holds true due to Assumption 2.2. Similar to estimations of (51) , (52) and (53), one can show that

− 2ηtEA[T2I[jt ̸=l]]

= −2ηtEA[⟨∇gS(x
l,ω
t )∇fνit

(gS(x
l,ω
t ))−∇gωjt

(xl,ω
t )∇fνit

(gS(x
l,ω
t )), xt − xl,ω

t ⟩I[jt ̸=l]]

= 2ηtEA

[
⟨∇gS(x

l,ω
t )∇fνit

(gS(x
l,ω
t ))−∇gωjt

(xl,ω
t )∇fνit

(gS(x
l,ω
t )), xt − xl,ω

t ⟩I[jt=l]

]
≤ 4ηtLgLfEA

[
∥xt − xl,ω

t ∥I[jt=l]

]
. (54)

Substituting (53) and (54) into (50) and noting that Cg represents the empirical variance associated with the gradient of the
inner function as given in part (ii) of Assumption 3.1, we obtain

EA

[
∥xt+1 − xl,ω

t+1∥2
]

≤EA
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]
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2
fL

2
gEA
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]
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2
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2
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[
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]
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2
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[
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]
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2
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2
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]
≤EA
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]
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[
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]
)1/2(EA

[
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)1/2
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[
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)1/2(EA

[
∥xt − xl,ω

t ∥2
]
)1/2

+ 4η2tC
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[
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]
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t )∥2

]
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[
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]
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2
gL

2
fEA

[
I[jt=l]

]
, (55)

where the second inequality holds by the Cauchy-Schwarz inequality. Observe that

EA

[
∥xt − xl,ω

t ∥I[jt=l]

]
= EA

[
∥xt − xl,ω

t ∥Ejt [I[jt=l]]
]

=
1

m
EA

[
∥xt − xl,ω

t ∥
]
≤ 1

m
(EA

[
∥xt − xl,ω

t ∥2
]
)1/2.

Note that ∥x0 − xl,ω
0 ∥2 = 0. Combining the above two estimations together implies that

EA

[
∥xt+1 − xl,ω

t+1∥2
]
≤ 2CfLg

t∑
i=1

ηi(EA

[
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]
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[
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[
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]
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[
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i ∥2
]
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+ 4

t∑
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η2iC
2
fL

2
gEA

[
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]
+ 4

t∑
i=0
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2
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2
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[
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(
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i
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[
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2
f

m
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Again, for notational convenience, let ut = (EA

[
∥xt − xl,ω

t ∥2
]
)1/2. The above estimation can be rewritten as

u2
t ≤ 2CfLg

t−1∑
i=1

ηi(EA

[
∥yi+1 − gS(xi)∥2

]
)1/2ui + 2CfLg
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i=1

ηi(EA

[
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2
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2
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We will use Lemma A.2 to get the desired estimation. For this purpose, define

St = 4
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2
fL

2
gEA
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]
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]
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m
ηi.

Now applying Lemma A.2 with ut, St and αi define as above to (56), we get
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√
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where the second inequality uses the fact that (
∑4

i=1 ai)
1/2 ≤

∑4
i=1(ai)

1/2 and the last inequality holds

by the fact that
(
4C2

fL
2
g

∑t−1
i=0 η

2
i EA

[
∥yi+1 − gS (xi)∥2

])1/2 ≤ 2CfLg
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]
)1/2 and
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2
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2
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2
gEA
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l,ω
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]
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l,ω
i )∥2

]
)1/2.

If ηi = η, note that η
∑T−1

i=0 (EA[∥yj+1 − gS(xi)∥2])1/2 ≤ supS η
∑T−1

i=0 (EA[∥yi+1 − gS(xi)∥2])1/2 and
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∑T−1
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l,ω
i )∥2])1/2 ≤ supS η

∑T−1
i=0 (EA[∥yi+1 − gS(xi)∥2])1/2. Consequently, with T iterations,
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we further obtain that

uT ≤8CfLg sup
S
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where the last inequality holds by the fact that
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=
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m ηT because often we have

T ≥ m. Noting that EA

[
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]
≤ uT = (EA
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)1/2, we further get
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Equivalently,

EA

[
∥xT − xl,ω

T ∥
]
= O

(LfLg

m
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√
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√
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Now we combine the above results for estimating EA

[
∥xT − xk,ν

T ∥
]

and EA

[
∥xT − xl,ω

T ∥
]

and conclude that

ϵν + ϵω = O
(LfLg

n
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LfLg
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) 1
2

)
. (59)

The proof is completed.

Next we move on to the proof of Corollary 3.5

Proof of Corollary 3.5. Considering the constant step size ηt = η, and with the result of the SCGD update in Lemma A.1,
we have

ϵν + ϵω = O(ηTn−1 + ηTm−1 + ηT
1
2 + η

T−1∑
j=1

(j−c/2β−c/2 + η/β + β1/2))

= O(ηTn−1 + ηTm−1 + ηT
1
2 + ηT−c/2+1β−c/2 + η2β−1T + ηβ1/2T ).

With the result of the SCSC update in Lemma A.1, we have

ϵν + ϵω = O(ηTn−1 + ηTm−1 + ηT
1
2 + η

T−1∑
j=1

(j−c/2β−c/2 + ηβ− 1
2 + β1/2))

= O(ηTn−1 + ηTm−1 + ηT
1
2 + ηT−c/2+1β−c/2 + η2β− 1

2T + ηβ1/2T ).
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C.2. Optimization

Lemma C.1. Suppose Assumptions 2.2 and 3.1 (iii) holds for the empirical risk FS , By running Algorithm 1, we have for
any γt > 0

EA[∥xt+1 − xS
∗ ∥2|Ft] ≤

(
1 +

CfL
2
gηt

γt

)
∥xt − xS

∗ ∥2 + L2
fL

2
gη

2
t − 2ηt(FS(xt)− FS(x

S
∗ ))

+ γtCfηtEA[∥gS(xt)− yt+1∥2|Ft]. (60)

where Ft is the σ-field generated by {ωj0 , . . . , ωjt−1
, νi0 , . . . , νit−1

}.

The proof of Lemma C.1 is deferred to the end of this subsection. Now we are ready to prove the convergence of Algorithm
1 for the convex case.

Proof of Theorem 3.6. We first present the proof for the SCGD update. Taking the total expectation with respect to the
internal randomness of A on both sides of (60), we get

EA[∥xt+1 − xS
∗ ∥2] ≤EA[∥xt − xS

∗ ∥2] + L2
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2
gη

2
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2
gηt

γt
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∗ ∥2]. (61)

Setting ηt = η, βt = β and γt =
βt

ηt
= β

η , plugging Lemma A.1 into (61), we have
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)
+ CfL

2
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β
.

Setting η = T−a, β = T−b, telescoping the above inequality for t = 1, · · · , T , and noting that EA[∥xt − xS
∗ ∥2] is bounded

by Dx, we get

2η
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2
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From the choice of A(S) and the convexity of FS , noting that
∑T

t=1 t
−z = O(T 1−z) for z ∈ (0, 1) ∪ (1,∞) and∑T

t=1 t
−1 = O(log T ), as long as c ̸= 1 we get
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3
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)
.

Then we get the desired result for the SCGD update. Next we present the proof for the SCSC update. Setting ηt = η, βt = β
and γt =

1√
βt

= 1√
β

, plugging Lemma A.1 into (61), we have
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Setting η = T−a, β = T−b, telescoping the above inequality for t = 1, · · · , T , and noting that EA[∥xt − xS
∗ ∥2] is bounded

by Dx, we get
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From the choice of A(S) and the convexity of FS , noting that
∑T

t=1 t
−z = O(T 1−z) for z ∈ (0, 1) ∪ (1,∞) and∑T

t=1 t
−1 = O(log T ), as long as c > 2 we get

EA[FS(A(S))− FS(x
S
∗ )]

=O
(
Dx(ηT )

−1 + L2
fL

2
gη + CfDy(βT )

−cβ− 1
2 + CfVgβ

1
2 + CfL

2
fL

3
gη

2β− 3
2 + CfL

2
gDxβ

1
2

)
.

We have completed the proof.

Proof of Lemma C.1. From Algorithm 1 we have

∥xt+1 − xS
∗ ∥2

≤∥xt − ηt∇gωjt
(xt)∇fνit

(yt+1)− xS
∗ ∥2

=∥xt − xS
∗ ∥2 + η2t ∥∇gωjt
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(yt+1)∥2 − 2ηt⟨xt − xS

∗ ,∇gωjt
(xt)∇fνit

(yt+1)⟩
=∥xt − xS

∗ ∥2 + η2t ∥∇gωjt
(xt)∇fνit

(yt+1)∥2 − 2ηt⟨xt − xS
∗ ,∇gωjt

(xt)∇fνit
(gS(xt))⟩+ ut,

where
ut := 2ηt⟨xt − xS

∗ ,∇gωjt
(xt)∇fνit

(gS(xt))−∇gωjt
(xt)∇fνit

(yt+1)⟩.
Let Ft be the σ-field generated by {ωj0 , . . . , ωjt−1 , νi0 , . . . , νit−1}. Taking the expectation with respect to the internal
randomness of the algorithm and using Assumption 2.2, we have

EA[∥xt+1 − xS
∗ ∥2|Ft]

≤∥xt − xS
∗ ∥2 + L2

fL
2
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2
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∗ ,∇gωjt
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(gS(xt))⟩|Ft] + EA[ut|Ft]

=∥xt − xS
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fL
2
gη

2
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≤∥xt − xS
∗ ∥2 + L2

fL
2
gη

2
t − 2ηt(FS(xt)− FS(x

S
∗ )) + EA[ut|Ft],

(64)

where the last inequality comes from the convexity of FS . From the Cauchy-Schwarz inequality, Young’s inequality,
Assumption 2.2 (ii) and 3.1 (iii) we have, for all γt > 0, that

2ηt⟨xt − xS
∗ ,∇gωjt

(xt)∇fνit
(gS(xt))−∇gωjt

(xt)∇fνit
(yt+1)⟩
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2
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)
≤
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2
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∗ ∥2 + γtCfηt∥gS(xt)− yt+1∥2. (65)

Substituting (65) into (64), we get

EA[∥xt+1 − xS
∗ ∥2|Ft] ≤

(
1 +

CfL
2
gηt

γt

)
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∗ ∥2 + L2
fL

2
gη

2
t − 2ηt(FS(xt)− FS(x

S
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+ γtCfηtEA[∥gS(xt)− yt+1∥2|Ft]. (66)

The proof is completed.

C.3. Excess Generalization

Proof of Theorem 3.7. We first present the proof for the SCGD update. Setting ηt = η, βt = β for η, β > 0, from (39) and
(58) we get for all t

EA[∥xt − xk,ν
t ∥] ≤ 8CfLg sup

S
η

t−1∑
j=0

(EA[∥yj+1 − gS(xj)∥2])1/2 + 4Lf

√
Cgη

√
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n
ηt. (67)
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and

EA[∥xt − xl,ω
t ∥] ≤ 8CfLg sup

S
η

t−1∑
i=0

(EA[∥yi+1 − gS(xi)∥2])1/2 + 4Lf

√
Cgη

√
t+
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m
ηt. (68)

Plugging Lemma A.1 with SCGD update into (67) and (68), then we have
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From the fact that
√
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b we get
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Thus we get
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Using Theorem 2.3, we have
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t∑
j=1

j−
c
2 + 40Cf

√
LfLfL

3
g

η2

β
t+ 40Cf

√
2VgLfL

2
gη
√
βt

+ 20
√

CgL
2
fLgη

√
t+

6LfLg

n
ηt+

56LfLg

m
ηt+ 40CfLgDyη + Lf

√
ES,A[Varω(gω(xt))]

m
. (69)

From (62) we get

T∑
t=1

ES,A[FS(xt)− FS(x
S
∗ )] ≤Dxη

−1 + LfLgηT + (
c

e
)cCfDyη

−1β1−c
T∑

t=1

t−c + 2CfVgη
−1β2T

+ CfLfL
2
gηβ

−1T + CfLgDxηβ
−1T. (70)
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Setting η = T−a and β = T−b in (69) with a, b ∈ (0, 1] and telescoping from t = 1, . . . , T , then adding the result with
(70), and using the fact FS(x

S
∗ ) ≤ FS(x∗), we get

T∑
t=1

ES,A[F (xt)− F (x∗)]

≤40CfLg

√( c
e

)c
DyLfLgT

−a+ bc
2

T∑
t=1

t∑
j=1

j−
c
2 + 40Cf

√
LfLfL

3
gT

b−2a
T∑

t=1

t

+ 40Cf

√
2VgLfL

2
gT

−a− b
2

T∑
t=1

t+ 20
√
CgL

2
fLgT

−a
T∑

t=1

√
t+

6L2
fL

2
g

n
T−a

T∑
t=1

t

+
56L2

fL
2
g

m
T−a

T∑
t=1

t+ 40CfLgDyT
1−a + Lf

T∑
t=1

√
ES,A[Varω(gω(xt))]

m

+DxT
a + LfLgT

1−a + (
c

e
)cCfDyT

−b(1−c)+a
T∑

t=1

t−c

+ 2CfVgT
1−2b+a + CfLfL

2
gT

1+b−a + CfLgDxT
1+b−a. (71)

Noting that
∑T

t=1 t
−z = O(T 1−z) for z ∈ (−1, 0) ∪ (−∞,−1) and

∑T
t=1 t

−1 = O(log T ), we have

T∑
t=1

T∑
j=1

j−
c
2 = O

(
T∑

t=1

t1−
c
2 (log t)Ic=2

)
= O

(
T 2− c

2 (log T )Ic=2
)
.

With the same derivation we can get the bounds on other terms on the right hand side of (71). Then we get

T∑
t=1

ES,A[F (xt)− F (x∗)]

=O
(
T 2−a− c(1−b)

2 (log T )Ic=2 + T 2+b−2a + T 2−a− b
2 + T

3
2−a

+n−1T 2−a +m−1T 2−a + T 1−a +m− 1
2T + T a + T 1−a + T (1−b)(1−c)+a(log T )Ic=1

+T 1−2b+a + T 1+b−a
)
.

Dividing both sides of (71) with T , then from the choice of A(S) we get

ES,A

[
F (A(S))− F (x∗)

]
=O

(
T 1−a− c(1−b)

2 (log T )Ic=2 + T 1+b−2a + T 1−a− b
2 + T

1
2−a

+n−1T 1−a +m−1T 1−a + T−a +m− 1
2 + T a−1 + T−a + T (1−b)(1−c)+a−1(log T )Ic=1

+T−2b+a + T b−a
)
.

Since a, b ∈ (0, 1], as long as we have c > 2, the dominating terms are

O(T 1−a− b
2 ), O(T 1+b−2a), O(n−1T 1−a), O(m−1T 1−a), O(T a−1), O(T a−2b).

Setting a = 6
7 and b = 4

7 yields

ES,A

[
F (A(S))− F (x∗)

]
= O(T− 1

7 +
T

1
7

n
+

T
1
7

m
+

1√
m
).

Setting T = O(max{n3.5,m3.5}) yields the following bound

ES,A

[
F (A(S))− F (x∗)

]
= O(

1√
n
+

1√
m
).
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Then we get the desired result for the SCGD update. Next we present the proof for the SCSC update. Plugging Lemma A.1
with SCSC update into (67) and (68), then we have

EA[∥xt − xk,ν
t ∥] ≤8CfLgη

t−1∑
j=1

√( c
e

)c
Dy(jβ)−c + LfL2

g

η2

β
+ 2Vgβ

+ 4Lf

√
Cgη

√
t+

6LfLg

n
ηt+ 8CfLgDyη.

and

EA[∥xt − xl,ω
t ∥] ≤8CfLgη

t−1∑
j=1

√( c
e

)c
Dy(jβ)−c + LfL2

g

η2

β
+ 2Vgβ

+ 4Lf

√
Cgη

√
t+

14LfLg

m
ηt+ 8CfLgDyη.

From the fact that
√
a+ b ≤

√
a+

√
b we get

EA[∥xt − xk,ν
t ∥] ≤8CfLg

√( c
e

)c
Dyηβ

− c
2

t−1∑
j=1

j−
c
2 + 8Cf

√
LfL

2
g

η2√
β
t+ 8CfLg

√
2Vgη

√
βt

+ 4Lf

√
Cgη

√
t+

6LfLg

n
ηt+ 8CfLgDyη.

and

EA[∥xt − xl,ω
t ∥] ≤8CfLg

√( c
e

)c
Dyηβ

− c
2

t−1∑
j=1

j−
c
2 + 8Cf

√
LfL

2
g

η2√
β
t+ 8CfLg

√
2Vgη

√
βt

+ 4Lg

√
Cgη

√
t+

14LfLg

m
ηt+ 8CfLgDyη.

Thus we get

EA[∥xt − xk,ν
t ∥] + 4EA[∥xt − xl,ω

t ∥]

≤40CfLg

√( c
e

)c
Dyηβ

− c
2

t∑
j=1

j−
c
2 + 40Cf

√
LfL

2
g

η2√
β
t+ 40CfLg

√
2Vgη

√
βt

+ 20Lf

√
Cgη

√
t+

6LfLg

n
ηt+

56LfLg

m
ηt+ 40CfLgDyη.

Using Theorem 2.3, we have

ES,A [F (xt)− FS(xt)]

≤40CfLg

√( c
e

)c
DyLfLgηβ

− c
2

t∑
j=1

j−
c
2 + 40Cf

√
LfLfL

3
g

η2√
β
t+ 40Cf

√
2VgLfL

2
gη
√
βt

+ 20
√
CgL

2
fLgη

√
t+

6LfLg

n
ηt+

56LfLg

m
ηt+ 40CfLgDyη + Lf

√
ES,A[Varω(gω(xt))]

m
. (72)

From (63) we get

T∑
t=1

ES,A[FS(xt)− FS(x
S
∗ )] ≤Dxη

−1 + LfLgηT + (
c

e
)cCfDyβ

− 1
2−c

T∑
t=1

t−c + 2CfVgβ
1
2T

+ CfLfL
2
gη

2β− 3
2T + CfLgDxβ

1
2T. (73)
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Setting η = T−a and β = T−b in (69) with a, b ∈ (0, 1] and telescoping from t = 1, . . . , T , then adding the result with
(70), and using the fact FS(x

S
∗ ) ≤ FS(x∗), we get

T∑
t=1

ES,A[F (xt)− F (x∗)] ≤ 40CfLg

√( c
e

)c
DyLfLgT

−a+ bc
2

T∑
t=1

t∑
j=1

j−
c
2

+ 40Cf

√
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3
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t+ 40Cf

√
2VgLfL

2
gT

−a− b
2

T∑
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t

+ 20
√
CgL

2
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−a
T∑
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√
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6L2
fL

2
g

n
T−a

T∑
t=1
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56L2

fL
2
g

m
T−a

T∑
t=1

t+ 40CfLgDyT
1−a

+ Lf

T∑
t=1

√
ES,A[Varω(gω(xt))]

m
+DxT

a + LfLgT
1−a + (

c

e
)cCfDyT

b( 1
2+c)

T∑
t=1

t−c

+ 2CfVgT
1− b

2 + CfLfL
2
gT

1+ 3
2 b−2a + CfLgDxT

1− b
2 . (74)

Noting that
∑T

t=1 t
−z = O(T 1−z) for z ∈ (−1, 0) ∪ (−∞,−1) and

∑T
t=1 t

−1 = O(log T ), we have

T∑
t=1

T∑
j=1

j−
c
2 = O

(
T∑

t=1

t1−
c
2 (log t)Ic=2

)
= O

(
T 2− c

2 (log T )Ic=2
)
.

With the same derivation for estimating other terms on the right hand side of (74), we get

T∑
t=1

ES,A[F (xt)− F (x∗)] = O
(
T 2−a− c(1−b)

2 (log T )Ic=2 + T 2+ b
2−2a + T 2−a− b

2 + T
3
2−a

+n−1T 2−a +m−1T 2−a + T 1−a +m− 1
2T + T a + T 1−a + T 1−(1−b)c+ b

2 (log T )Ic=1

+T 1− b
2 + T 1+ 3

2 b−2a + T 1− b
2

)
.

Dividing both sides of (74) with T , then from the choice of A(S) we get

ES,A

[
F (A(S))− F (x∗)

]
= O

(
T 1−a− c(1−b)

2 (log T )Ic=2 + T 1+ b
2−2a + T 1−a− b

2 + T
1
2−a

+n−1T 1−a +m−1T 1−a + T−a +m− 1
2 + T a−1 + T−a + T−(1−b)c+ b

2 (log T )Ic=1

+T− b
2 + T

3
2 b−2a + T− b

2

)
. (75)

Since a, b ∈ (0, 1], as long as we have c > 4, the dominating terms are
O(T 1−a− b

2 ), O(T 1+ b
2−2a), O(n−1T 1−a), O(m−1T 1−a), O(T a−1), and O(T

3
2 b−2a). Setting a = b = 4

5
yields

ES,A

[
F (A(S))− F (x∗)

]
= O(T− 1

5 +
T

1
5

n
+

T
1
5

m
+

1√
m
). (76)

Choosing T = O(max{n2.5,m2.5}) yields the following bound

ES,A

[
F (A(S))− F (x∗)

]
= O(

1√
n
+

1√
m
).

Therefore, we get the desired result for the SCSC update. The proof is complete.

D. Proof for the Strongly Convex Setting
D.1. Stability

Proof of Theorem 3.11. The proof is analogous to the convex case. For any k ∈ [n], define Sk,ν =
{ν1, ..., νk−1, ν

′
k, νk+1, ..., νn, ω1, ..., ωm} as formed from Sν by replacing the k-th element. For any l ∈ [m], define

33



Stability and Generalization of Stochastic Compositional Gradient Descent Algorithms

Sl,ω = {ν1, ..., νn, ω1, ..., ωl−1, ω
′
l, ωl+1, ..., ωm} as formed from Sω by replacing the l-th element. Let {xt+1} and {yt+1}

be produced by Algorithm 1 based on S, {xk,ν
t+1} and {yk,νt+1} be produced by Algorithm 1 based on Sk,ν , {xl,ω

t+1} and
{yl,ωt+1} be produced by Algorithm 1 based on Sl,ω. Let x0 = xk,ν

0 and x0 = xl,ω
0 be starting points in X . Since changing

one sample data can happen in either Sν or Sω , we need to consider the EA

[
∥xt+1 − xk,ν

t+1∥
]

and EA

[
∥xt+1 − xl,ω

t+1∥
]
.

Estimation of EA

[
∥xt+1 − xk,ν

t+1∥
]

We begin with the estimation of the term EA

[
∥xt+1 − xk,ν

t+1∥
]
. For this purpose, we will consider two cases, i.e., it ̸= k and

it = k.

Case 1 (it ̸= k). If it ̸= k, we have

∥xt+1 − xk,ν
t+1∥2 ≤ ∥xt − ηt∇gωjt

(xt)∇fνit
(yt+1)− xk,ν

t + ηt∇gωjt
(xk,ν

t )∇fνit
(yk,νt+1)∥2

= ∥xt − xk,ν
t ∥2 − 2ηt⟨∇gωjt

(xt)∇fνit
(yt+1)−∇gωjt

(xk,ν
t )∇fνit

(yk,νt+1), xt − xk,ν
t ⟩

+ η2t ∥∇gωjt
(xt)∇fνit

(yt+1)−∇gωjt
(xk,ν

t )∇fνit
(yk,νt+1)∥2. (77)

Taking the expectation w.r.t. jt on the both sides of (77) implies that

Ejt

[
∥xt+1 − xk,ν

t+1∥2
]

≤ Ejt

[
∥xt − xk,ν

t ∥2
]
− 2ηtEjt

[
⟨∇gωjt

(xt)∇fνit
(yt+1)−∇gωjt

(xk,ν
t )∇fνit

(yk,νt+1), xt − xk,ν
t ⟩
]

+ η2tEjt

[
∥∇gωjt

(xt)∇fνit
(yt+1)−∇gωjt

(xk,ν
t )∇fνit

(yk,νt+1)∥
]
. (78)

We first estimate the second term on the right hand side of (78). It can be decomposed as

−2ηtEjt

[
⟨∇gωjt

(xt)∇fνit
(yt+1)−∇gωjt

(xk,ν
t )∇fνit

(yk,νt+1), xt − xk,ν
t ⟩
]

=− 2ηtEjt

[
⟨∇gωjt

(xt)∇fνit
(yt+1)−∇gωjt

(xt)∇fνit
(gS(xt)), xt − xk,ν

t ⟩
]

− 2ηtEjt

[
⟨∇gωjt

(xt)∇fνit
(gS(xt))−∇gS(xt)∇fνit

(gS(xt)), xt − xk,ν
t ⟩
]

− 2ηtEjt

[
⟨∇gS(xt)∇fνit

(gS(xt))−∇gS(x
k,ν
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(gS(x
k,ν
t )), xt − xk,ν

t ⟩
]

− 2ηtEjt

[
⟨∇gS(x

k,ν
t )∇fνit

(gS(x
k,ν
t ))−∇gωjt

(xk,ν
t )∇fνit

(gS(x
k,ν
t )), xt − xk,ν

t ⟩
]

− 2ηtEjt

[
⟨∇gωjt

(xk,ν
t )∇fνit

(gS(x
k,ν
t ))−∇gωjt

(xk,ν
t )∇fνit

(yk,νt+1), xt − xk,ν
t ⟩
]
. (79)

We will estimate the terms on the right hand side of the above equality. Indeed, from part (iv) of Assumption 3.1, we know
that fν(gS(·)) is L-smooth. This combined with the strongly convexity of fν(gS(·)) and inequality (6) implied that

⟨∇gS(xt)∇fνit
(gS(xt))−∇gS(x

k,ν
t )∇fνit

(gS(x
k,ν
t ), xt − xk,ν

t ⟩

≥ Lσ

L+ σ
∥xt − xk,ν

t ∥2 + 1

L+ σ
∥∇gS(xt)∇fνit

(gS(xt))−∇gS(x
k,ν
t )∇fνit

(gS(x
k,ν
t ))∥2. (80)

Substituting (27), (29), (30) and (80) into (79), we get that

− 2ηtEjt

[
⟨∇gωjt

(xt)∇fνit
(yt+1)−∇gωjt

(xk,ν
t )∇fνit

(yk,νt+1), xt − xk,ν
t ⟩
]

≤ 2CfLgηtEjt

[
∥yt+1 − gS(xt)∥

]
∥xt − xk,ν

t ∥ − 2Lηtσ

L+ σ
∥xt − xk,ν

t ∥2

− 2ηt
1

L+ σ
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+ 2CfLgηtEjt
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∥yk,νt+1 − gS(x

k,ν
t )∥

]
∥xt − xk,ν

t ∥. (81)

Furthermore, similar to the argument for (33), we take the expectation w.r.t. jt of the third term on the right hand side of
(77) and then obtain that

Ejt [η
2
t ∥∇gωjt

(xt)∇fνit
(yt+1)−∇gωjt

(xk,ν
t )∇fνit

(yk,νt+1)∥2]

≤ 4η2tC
2
fL

2
gEjt

[
∥yt+1 − gS (xt)∥2

]
+ 4η2tC

2
fL

2
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]
+ 16η2tL

2
fCg

+ 4η2t ∥∇gS (xt)∇fνit
(gS (xt))−∇gS(x

k,ν
t )∇fνit

(gS(x
k,ν
t ))∥2. (82)
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Putting (81) and (82) back into (78) implies that

Ejt

[
∥xt+1 − xk,ν

t+1∥2
]

≤ (1− 2Lσηt
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)∥xt − xk,ν
t ∥2 + 2CfLgηtEjt
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t ∥
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1
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]
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t ∥
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]
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t ∥

+ 4η2tC
2
fL

2
gEjt

[
∥yt+1 − gS (xt)∥2

]
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2
fL

2
gEjt

[
∥yk,νt+1 − gS(x

k,ν
t )∥2

]
+ 16η2tL

2
fCg,

where in the second inequality we have used the fact that ηt ≤ 1
2(L+σ) .

Case 2 (it = k). If it = k, in analogy to the argument in (34), we have

Ejt

[
∥xt+1 − xk,ν

t+1∥2
]
≤ ∥xt − xk,ν

t ∥2 + 4LgLfηt∥xt − xk,ν
t ∥+ 4L2

gL
2
fη

2
t . (83)

Combining the results of Case 1 and Case 2 and taking the expectation w.r.t. A, we have that

EA[∥xt+1 − xk,ν
t+1∥2]

≤
(
1− 2ηt

Lσ

L+ σ
+

2ηtLσ

n(L+ σ)

)
EA

[
∥xt − xk,ν

t ∥2
]

+ 2CfLgηt(EA
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∥yt+1 − gS(xt)∥2

]
)1/2

(
EA
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t ∥2
])1/2
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(
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2
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2
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t )∥2

]
+ 16η2tL

2
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t ∥I[it=k]

]
+ 4η2tL

2
fL

2
gEA

[
I[it=k]

]
. (84)

Note that ηt Lσ
L+σ ≥ 2ηtLσ

n(L+σ) as n ≥ 2. We further get that 1− 2ηt
Lσ
L+σ + 2ηtLσ

n(L+σ) ≤ 1− ηt
Lσ
L+σ . Observe that EA

[
∥xt −
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]
= 1

nEA

[
∥xt − xk,ν

t ∥
]
≤ 1

n (EA

[
∥xt − xk,ν

t ∥2
]
)1/2. If ηt = η, combining the above observations with (84)

implies that
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)t−jη2. (85)
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Again, for notatioanl convenience, let ut = (EA[∥xt − xk,ν
t ∥2])1/2. The above estimation can be equivalently rewritten as

u2
t ≤ 2CfLg

t−1∑
j=1

(1− η
Lσ

L+ σ
)t−j−1η(EA

[
∥yj+1 − gS(xj)∥2
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)1/2uj
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[
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j )∥2

]
)1/2uj

+ 4C2
fL

2
g
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j=0

(1− η
Lσ

L+ σ
)t−j−1η2EA

[
∥yj+1 − gS(xj)∥2

]
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2
g
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Lσ
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)t−j−1η2EA

[
∥yk,νj+1 − gS(x

k,ν
j )∥2

]
+ 16L2

fCgη
2
t−1∑
j=0

(1− η
Lσ

L+ σ
)t−j−1

+
4LgLf

n
η

t−1∑
j=1

(1− η
Lσ

L+ σ
)t−j−1uj +

4L2
fL

2
g

n
η2

t−1∑
j=0

(1− η
Lσ

L+ σ
)t−j−1. (86)

Note that 16L2
fCgη

2
∑t−1

j=0(1−η Lσ
L+σ )

t−j−1 ≤ 16L2
fCgη

2 L+σ
Lησ = 16L2

fCg
L+σ
Lσ η and

4L2
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2
g

n η2
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j=0(1−η Lσ
L+σ )
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4L2

fL
2
g

n η2 L+σ
Lησ =

4L2
fL

2
g

n
L+σ
Lσ η. Furthermore, define

St = 4C2
fL

2
g
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Lσ

L+ σ
)t−j−1η2EA

[
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Lσ

L+ σ
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]
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j )∥2

]
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Lσ
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)t−jη.

Now applying Lemma A.2 with ut, St and αj defined above to (86), we get

ut ≤
√
St +

t−1∑
j=1

αj

≤ 2CfLg(
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[
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]
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√
Cg

L+ σ

Lσ

√
η

+ 2LgLf

√
L+ σ

Lσ

√
η

n
+

4LgLf (L+ σ)

nLσ

where the last inequality uses the fact that (
∑4

i=1 ai)
1/2 ≤

∑4
i=1(ai)

1/2 and we use the fact that 4LgLf

n η
∑t−1

j=1(1 −
η Lσ
L+σ )

t−j−1 ≤ 4LgLf (L+σ)
nLσ . Note that EA

[
∥yj+1 − gS(xj)∥2

]
≤ supS EA[∥yj+1 − gS(xj)∥2] and EA

[
∥yk,νj+1 −
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gS(x
k,ν
j )∥2

]
≤ supS EA[∥yj+1 − gS(xj)∥2]. Consequently, with T iterations, since EA

[
∥xT − xk,ν

T ∥
]

≤ uT =

(EA

[
∥xT − xk,ν

T ∥2
]
)1/2, we further obtain
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]
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√
L+ σ

Lσ

√
η
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+

4LgLf (L+ σ)

nLσ
. (87)

Estimation of EA[∥xt+1 − xl,ω
t+1∥]

Likewise, we will estimate EA[∥xt+1 − xl,ω
t+1∥] by considering two cases, i.e., jt ̸= l and jt = l.

Case 1 (jt ̸= l). If jt ̸= l, we have

∥xt+1 − xl,ω
t+1∥2 ≤ ∥xt − ηt∇gωjt

(xt)∇fνit
(yt+1)− xl,ω

t + ηt∇gωjt
(xl,ω

t )∇fνit
(yl,ωt+1)∥2

= ∥xt − xl,ω
t ∥2 − 2ηt⟨∇gωjt

(xt)∇fνit
(yt+1)−∇gωjt

(xl,ω
t )∇fνit

(yl,ωt+1), xt − xl,ω
t ⟩

+ η2t ∥∇gωjt
(xt)∇fνit

(yt+1)−∇gωjt
(xl,ω

t )∇fνit
(yl,ωt+1)∥2. (88)

We first estimate the second term on the right hand side of (88). It can be decomposed as

−2ηt⟨∇gωjt
(xt)∇fνit

(yt+1)−∇gωjt
(xl,ω

t )∇fνit
(yl,ωt+1), xt − xl,ω

t ⟩

=− 2ηt⟨∇gωjt
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− 2ηt⟨∇gωjt
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l,ω
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(xl,ω

t )(∇fνit
(gS(x

l,ω
t ))−∇fνit

(yl,ωt+1)), xt − xl,ω
t ⟩. (89)

From the strongly convexity of fν(gS(·)), part (iv) of Assumption 3.1 and inequality (6), we have

⟨∇gS (xt)∇fνit
(gS (xt))−∇gS(x

l,ω
t )∇fνit

(gS(x
l,ω
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∥∇gS (xt)∇fνit

(gS (xt))−∇gS(x
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t )∇fνit

(gS(x
l,ω
t ))∥2. (90)

Plugging (43), (44) and (90) into (89) implies that

−2ηt⟨∇gωjt
(xt)∇fνit
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t ∥+ 2ηtCfLg∥yl,ωt+1 − gS(x

l,ω
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(gS(xt)), xt − xl,ω

t ⟩

− 2ηt
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l,ω
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(gS(x
l,ω
t )), xt − xl,ω

t ⟩. (91)

Next we estimate the last term on the right hand side of (88). Using arguments similar to that for (46), we have

η2t ∥∇gωjt
(xt)∇fνit

(yt+1)−∇gωjt
(xl,ω

t )∇fνit
(yl,ωt+1)∥2

≤ 4η2tC
2
fL

2
g∥yt+1 − gS(xt)∥2 + 4L2

gη
2
tC

2
f∥gS(x

l,ω
t )− yl,ωt+1∥2

+ 8L2
fη

2
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fη

2
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t )−∇gS(x
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+ 4η2t ∥∇gS(xt)∇fνit
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(gS(x
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t ))∥2. (92)
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Putting (91) and (92) into (88) and noting that ηt ≤ 1
2(L+σ) , we get

∥xt+1 − xl,ω
t+1∥2 ≤ (1− 2Lσηt

L+ σ
)∥xt − xl,ω
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Case 2 (jt = l). If jt = l, using the argument similar to (48), it is easy to see that

∥xt+1 − xl,ω
t+1∥2 ≤ ∥xt − xl,ω

t ∥2 + 4LgLfηt∥xt − xl,ω
t ∥+ 4η2tL

2
gL

2
f . (94)

Combining Case 1 and Case 2 and taking the expectation w.r.t. A on both sides and together with part (ii) of Assumption
3.1 , we have

EA
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]
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Note that ηt Lσ
L+σ ≥ 2ηtLσ

m(L+σ) as m ≥ 2. We further get that 1− 2ηt
Lσ
L+σ + 2ηtLσ

m(L+σ) ≤ 1− ηt
Lσ
L+σ . Plugging (53) and (54)

into (95) implies that
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where the second inequality holds by the Cauchy-Schwarz inequality. In addition, observe that
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[
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]
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If ηt = η, using the above observations, noting ∥x0 − xl,ω
0 ∥2 = 0, we can obtain
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For notional convenience, let ut = (EA[∥xt − xl,ω
t ∥2])1/2. Therefore, (96) can be equivalently rewritten as
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We will use Lemma A.2 to get the desired result. To this end, notice that
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Moreover, we define
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Applying Lemma A.2 with ut, St and αi defined as above to (97), we get
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i=1

αi

≤ (4C2
fL

2
g

t−1∑
i=0

(1− Lση

L+ σ
)t−i−1η2EA

[
∥yi+1 − gS(xi)∥2

]
)1/2

+ (4C2
fL

2
g

t−1∑
i=0

(1− Lση

L+ σ
)t−i−1η2EA

[
∥yl,ωi+1 − gS(x

l,ω
i )∥2

]
)1/2

+ 2CfLg

t−1∑
i=1

(1− Lση

L+ σ
)t−i−1η(EA

[
∥yi+1 − gS(xi)∥2

]
)1/2

+ 2CfLg

t−1∑
i=1

(1− Lση

L+ σ
)t−i−1η(EA

[
∥yl,ωi+1 − gS(x

l,ω
i )∥2

]
)1/2

+ 4Lf

√
Cg

L+ σ

Lσ

√
η + 2LfLg

√
L+ σ

Lσ

√
η

m
+

12LgLf (L+ σ)

mLσ
,

where we have used the fact that (
∑4

i=1 ai)
1/2 ≤

∑4
i=1(ai)

1/2 and 12LgLf

m

∑t−1
i=0(1−

Lση
L+σ )

t−i−1η ≤ 12LgLf (L+σ)
mLσ .

Note that EA

[
∥yi+1 − gS(xi)∥2

]
≤ supS EA[∥yi+1 − gS(xi)∥2] and EA

[
∥yl,ωi+1 − gS(x

l,ω
i )∥2

]
≤ supS EA[∥yi+1 −

gS(xi)∥2]. Consequently, with T iterations, since EA

[
∥xT − xl,ω

T ∥
]
≤ uT = (EA

[
∥xT − xl,ω

T ∥2
]
)1/2, we further obtain

EA

[
∥xT − xl,ω

T ∥
]

≤ 4CfLgη sup
S

(

T−1∑
i=0

(1− Lση

L+ σ
)T−i−1EA

[
∥yi+1 − gS(xi)∥2

]
)1/2

+ 4CfLgη sup
S

T−1∑
i=0

(1− Lση

L+ σ
)T−i−1η(EA

[
∥yi+1 − gS(xi)∥2

]
)1/2

+ 4Lf

√
Cg

L+ σ

Lσ

√
η + 2LfLg

√
L+ σ

Lσ

√
η

m
+

12LgLf (L+ σ)

mLσ
. (98)
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Combining the estimations for EA

[
∥xT − xk,ν

T ∥
]

and EA

[
∥xT − xl,ω

T ∥
]
, we obtain

ϵν + ϵω ≤ 8CfLgη sup
S

(

T−1∑
j=0

(1− η
Lσ

L+ σ
)T−j−1EA

[
∥yj+1 − gS (xj)∥2

]
)1/2

+ 8CfLgη sup
S

T−1∑
j=0

(1− η
Lσ

L+ σ
)T−j−1

(
EA[∥yj+1 − gS(xj)∥2]

)1/2
+ 8Lf

√
Cg

L+ σ

Lσ

√
η + 2LfLg

√
L+ σ

Lσ

√
η

n
+

4LgLf (L+ σ)

nLσ

+ 2LfLg

√
L+ σ

Lσ

√
η

m
+

12LgLf (L+ σ)

mLσ

≤ 16CfLgη sup
S

T−1∑
j=0

(1− η
Lσ

L+ σ
)T−j−1

(
EA[∥yj+1 − gS(xj)∥2]

) 1
2

+ 8Lf

√
Cg

L+ σ

Lσ

√
η + 2LfLg

√
L+ σ

Lσ

√
η

n
+

4LgLf (L+ σ)

nLσ

+ 2LfLg

√
L+ σ

Lσ

√
η

m
+

12LgLf (L+ σ)

mLσ
. (99)

Next we will verify why the second inequality of (99) holds true. With the result of SCGD update in Lemma A.1, we have

η(

T−1∑
j=0

(1− η
Lσ

L+ σ
)T−j−1EA

[
∥yj+1 − gS (xj)∥2

]
)1/2

≤ η(

T−1∑
j=1

(1− η
Lσ

L+ σ
)T−j−1((

c

e
)c(jβ)−cEA[∥y1 − gS(x0)∥2] + L2

fL
3
g

η2

β2
+ 2Vgβ))

1/2

≤ η(

T−1∑
j=1

(1− η
Lσ

L+ σ
)T−j−1(L2

fL
3
g

η2

β2
+ 2Vgβ))

1/2 + η((
c

e
)cDy

T−1∑
j=0

(1− η
Lσ

L+ σ
)T−j−1(jβ)−c)1/2

≤
LfLg

√
Lg(L+ σ)

√
Lσ

η3/2

β
+

√
2Vg(L+ σ)

Lσ

√
ηβ + (

c

e
)

c
2

√
Dy

√
(L+ σ)η√

Lσ
T− c

2 β− c
2 , (100)

where the last inequality holds by the fact that
∑T−1

j=0 (1− η Lσ
L+σ )

T−j−1 ≤ L+σ
ηLσ and Lemma A.4. To see this, (

∑T−1
j=1 (1−

η Lσ
L+σ )

T−j−1(jβ)−c)1/2 ≤ (
∑T−1

j=1 (1−η Lσ
L+σ )T−j−1 ∑T−1

j=1 (jβ)−c

T )1/2 ≤ (T
−c+1β−c(L+σ)

TηLσ )1/2 = T− c
2 β− c

2
√
L+σ√

ηLσ
. And

η

T−1∑
j=0

(1− η
Lσ

L+ σ
)T−j−1

(
EA[∥yj+1 − gS(xj)∥2]

) 1
2

≤ η

T−1∑
j=1

(1− η
Lσ

L+ σ
)T−j−1((

c

e
)c(jβ)−cEA[∥y1 − gS(x0)∥2] + L2

fL
3
g

η2

β2
+ 2Vgβ)

1/2

≤ η

T−1∑
j=1

(1− η
Lσ

L+ σ
)T−j−1(

√
LgLgLf

η

β
+
√
2Vg

√
β) + (

c

e
)

c
2

√
Dyη

T−1∑
j=1

(1− ησ)T−j−1(jβ)−
c
2

≤
√

LgLgLf (L+ σ)

Lσ

η

β
+

√
2Vg(L+ σ)

Lσ

√
β + (

c

e
)

c
2

√
Dy(L+ σ)

Lσ
T− c

2 β− c
2 , (101)

where the last inequality holds by the fact that
∑T−1

j=0 (1− η Lσ
L+σ )

T−j−1 ≤ L+σ
ηLσ and Lemma A.4. To see this

∑T−1
j=1 (1−

η Lσ
L+σ )

T−j−1(jβ)−
c
2 ≤

∑T−1
j=1 (1−η Lσ

L+σ )T−j−1 ∑T−1
j=1 (jβ)−

c
2

T ≤ T− c
2 β− c

2 (L+σ)
ηLσ . Comparing the result (100) and (101), the

dominating terms are (101). We can show that with result of SCSC update in Lemma A.1, the dominating term is
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η
∑T−1

j=0 (1− η Lσ
L+σ )

T−j−1
(
EA[∥yj+1 − gS(xj)∥2]

) 1
2 .

Since often we have η ≤ min( 1n ,
1
m ), then

√
η√
n
≤ 1

n . Consequently, we get that
√

L+σ
Lσ

√
η
n ≤ (L+σ)

nLσ . And
√
η√
m

≤ 1
m ,√

L+σ
Lσ

√
η
m ≤ (L+σ)

mLσ . We further get the final stability result for σ-strongly convex setting which holds for SCGD and
SCSC in Theorem 3.11

ϵν + ϵω = O
(LgLf (L+ σ)

σLm
+
LgLf (L+ σ)

σLn
+

Lf

√
Cg(L+ σ)η
√
σL

+ CfLgη sup
S

T∑
j=1

(1− η
Lσ

L+ σ
)T−j

(
EA[∥yj+1 − gS(xj)∥2]

) 1
2

)
. (102)

This completes the proof.

Next we move on to the Corollary 3.13

Proof of Corollary 3.13. Putting the result (101) to (102), we get stability result of SCGD for strongly convex problems

ϵν + ϵω = O
(
n−1 +m−1 + η

1
2 + ηβ−1 + β

1
2 + T− c

2 β− c
2

)
.

With SCSC update in Lemma A.1, with a same progress, we have stability result of SCSC for strongly convex problems

ϵν + ϵω = O(n−1 +m−1 + η1/2 + ηβ−1/2 + β1/2 + T− c
2 β− c

2 ).

D.2. Optimization

Lemma D.1. Suppose Assumptions 2.2 (ii) and 3.1 (iii) holds and FS is σ-strongly convex. By running Algorithm 1, we
have for any x ∈ X

EA[∥xt+1 − x∥2|Ft] ≤(1− σηt
2

)∥xt − x∥2 + η2tEA[∥∇gωjt
(xt)∇fνit

(yt+1)∥2|Ft]

− 2ηt(FS(xt)− FS(x)) + 2C2
fL

2
g

ηt
σ
EA[∥gS(xt)− yt+1∥2|Ft].

(103)

where EA denotes the expectation taken with respect to the randomness of the algorithm, and Ft is the σ-field generated by
{ωj0 , . . . , ωjt−1

, νi0 , . . . , νit−1
}.

The proof of Lemma D.1 is deferred to the end of this subsection. Now we are ready to prove the convergence of Algorithm
1 for strongly convex problems.

Proof of Theorem 3.14. We first present the proof for the SCGD update. Taking full expectation over (103) with x = xS
∗

and using Assumption 2.2, we get

EA[∥xt+1 − xS
∗ ∥2] ≤(1− σηt

2
)EA[∥xt − xS

∗ ∥2] + L2
fL

2
gη

2
t − 2ηtEA[FS(xt)− FS(x

S
∗ )]

+ 2C2
fL

2
g

ηt
σ
EA[∥gS(xt)− yt+1∥2]. (104)

Setting ηt = η and βt = β, plugging Lemma A.1 into (104), and letting Dy := EA[∥y1 − gS(x0)∥2], we have

EA[∥xt+1 − xS
∗ ∥2] ≤(1− ση

2
)EA[∥xt − xS

∗ ∥2] + L2
fL

2
gη

2 − 2ηEA[FS(xt)− FS(x
S
∗ )]

+
2C2

fL
2
gη

σ

(
(
c

e
)cDy(tβ)

−c + L3
gL

2
f

η2

β2
+ 2Vgβ

)
.
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Multiplying the above inequality with
(
1− ση

2

)T−t
and telescoping for t = 1, . . . , T , we get

2η

T∑
t=1

(
1− ση

2

)T−t

EA[FS(xt)− FS(x
S
∗ )]

≤
(
1− ση

2

)T
EA[∥x1 − xS

∗ ∥2] + L2
fL

2
gη

2
T∑

t=1

(
1− ση

2

)T−t

+
2C2

fL
2
gDy

σ

( c
e

)c
ηβ−c

T∑
t=1

(
1− ση

2

)T−t

t−c

+
4C2

fL
2
gVg

σ
ηβ

T∑
t=1

(
1− ση

2

)T−t

+
2C2

fL
2
fL

5
g

σ

η3

β2

T∑
t=1

(
1− ση

2

)T−t

.

Note that we have

EA[∥x1 − xS
∗ ∥2] ≤ EA[∥x0 − xS

∗ − η∇gωj0
(x0)∇fνi0

(y1)∥2] ≤ 2EA[∥x0 − xS
∗ ∥2] + 2L2

fL
2
gη

2
t

Combining the above two inequalities yields

2η

T∑
t=1

(
1− ση

2

)T−t

EA[FS(xt)− FS(x
S
∗ )]

≤2
(
1− ση

2

)T
EA[∥x0 − xS

∗ ∥2] + 2L2
fL

2
gη

2
T∑

t=1

(
1− ση

2

)T−t

+
2C2

fL
2
gDy

σ

( c
e

)c
ηβ−c

T∑
t=1

(
1− ση

2

)T−t

t−c

+
4C2

fL
2
gVg

σ
ηβ

T∑
t=1

(
1− ση

2

)T−t

+
2C2

fL
2
fL

5
g

σ

η3

β2

T∑
t=1

(
1− ση

2

)T−t

.

From Lemma A.3 we know (1− ση
2 )T ≤ exp(−σηT

2 ) ≤ ( 2c
eσ )

c(ηT )−c. Also we have
∑T

t=1(1−
ση
2 )T−t =

1−(1−ση
2 )T−1

1−(1−ση
2 ) ≤

2
ση . Dividing both sides of the above inequality by 2η, and letting Dx := EA[∥x0 − xS

∗ ∥2], we get

T∑
t=1

(
1− ση

2

)T−t

EA[FS(xt)− FS(x
S
∗ )]

≤
(
2c

eσ

)c

Dxη
−c−1T−c +

2L2
fL

2
g

σ
+

C2
fL

2
gDy

σ

( c
e

)c
β−c

T∑
t=1

(
1− ση

2

)T−t

t−c

+
4C2

fL
2
gVg

σ2

β

η
+

2C2
fL

2
fL

5
g

σ2

η

β2
. (105)

Dividing both sides of (105) by
∑T

t=1(1 − ση
2 )T−t, noting that for (η(T − 1))−1 ≤ σ

2 we have (1 − ση
2 )T−1 ≤

exp(−ση(T−1)
2 ) ≤ 1

2 , and thus
∑T

t=1(1 − ση
2 )T−t =

1−(1−ση
2 )T−1

1−(1−ση
2 ) ≥ 1

ση , from the choice of A(S) and convexity
of FS we get

EA[FS(A(S))− FS(x
S
∗ )] ≤(

2c

eσ
)c−1Dx(ηT )

−c +
C2

fL
2
gDy

σ

( c
e

)c
β−c

∑T
t=1

(
1− ση

2

)T−t
t−c∑T

t=1

(
1− ση

2

)T−t

+ 2L2
fL

2
gη +

4C2
fL

2
gVg

σ
β +

2C2
fL

2
fL

5
g

σ

η2

β2
. (106)
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Note that
(
1− ση

2

)T−t
is non-decreasing with respect to t and for c > 0, t−c is non-increasing with respect to t. Then from

Lemma A.4 we have ∑T
t=1

(
1− ση

2

)T−t
t−c∑T

t=1

(
1− ση

2

)T−t
≤
∑T

t=1 t
−c

T

Thus (106) simplifies to

EA[FS(A(S))− FS(x
S
∗ )] ≤(

2c

eσ
)c−1Dx(ηT )

−c + 2L2
fL

2
gη +

C2
fL

2
gDy

σ

( c
e

)c
β−cT−1

T∑
t=1

t−c

+
4C2

fL
2
gVg

σ
β +

2C2
fL

2
fL

5
g

σ

η2

β2
.

Note that
∑T

t=1 t
−z = O(T 1−z) for z ∈ (0, 1) ∪ (1,∞) and

∑T
t=1 t

−1 = O(log T ). As long as c ̸= 1 we get

EA[FS(A(S))− FS(x
S
∗ )]

=O

(
Dx(ηT )

−c + 2L2
fL

2
gη +

C2
fL

2
gDy

σ
(βT )−c +

C2
fL

2
gVg

σ
β +

C2
fL

2
fL

5
g

σ
η2β−2

)
.

Then we get the desired result for the SCGD update. Next we present the proof for the SCSC update. Setting ηt = η and
βt = β. Plugging Lemma A.1 into (104), and letting Dy := EA[∥y1 − gS(x0)∥2], we have

EA[∥xt+1 − xS
∗ ∥2] ≤(1− ση

2
)EA[∥xt − xS

∗ ∥2] + L2
fL

2
gη

2 − 2ηEA[FS(xt)− FS(x
S
∗ )]

+
2C2

fL
2
gη

σ

(
(
c

e
)cDy(tβ)

−c + L3
gL

2
f

η2

β
+ 2Vgβ

)
.

Telescoping the above inequality for t = 1, · · · , T , and rearranging the terms, we get

2η

T∑
t=1

(
1− ση

2

)T−t

EA[FS(xt)− FS(x
S
∗ )]

≤
(
1− ση

2

)T
EA[∥x1 − xS

∗ ∥2] + L2
fL

2
gη

2
T∑

t=1

(
1− ση

2

)T−t

+
2C2

fL
2
gDy

σ

( c
e

)c
ηβ−c

T∑
t=1

(
1− ση

2

)T−t

t−c

+
4C2

fL
2
gVg

σ
ηβ

T∑
t=1

(
1− ση

2

)T−t

+
2C2

fL
2
fL

5
g

σ

η3

β

T∑
t=1

(
1− ση

2

)T−t

≤2
(
1− ση

2

)T
EA[∥x0 − xS

∗ ∥2] + 2L2
fL

2
gη

2
T∑
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(
1− ση

2

)T−t

+
2C2

fL
2
gDy

σ

( c
e

)c
ηβ−c

T∑
t=1

(
1− ση

2

)T−t

t−c

+
4C2

fL
2
gVg

σ
ηβ

T∑
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(
1− ση

2

)T−t

+
2C2

fL
2
fL

5
g

σ

η3

β

T∑
t=1

(
1− ση

2

)T−t

From Lemma A.3 we know (1− ση
2 )T ≤ exp(−σηT

2 ) ≤ ( 2c
eσ )

c(ηT )−c. Also we have
∑T

t=1(1−
ση
2 )T−t =

1−(1−ση
2 )T−1

1−(1−ση
2 ) ≤
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2
ση . Dividing both sides of the above inequality by 2η, and letting Dx := EA[∥x0 − xS

∗ ∥2], we get

T∑
t=1

(
1− ση

2

)T−t

EA[FS(xt)− FS(x
S
∗ )]

≤
(
2c

eσ

)c

Dxη
−c−1T−c +

2L2
fL

2
g

σ
+

C2
fL

2
gDy

σ

( c
e

)c
β−c
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2
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+
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fL
2
gVg

σ2

β

η
+
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2
fL

5
g

σ2

η

β
. (107)

Dividing both sides of (107) by
∑T

t=1(1 − ση
2 )T−t, noting that for (η(T − 1))−1 ≤ σ

2 we have (1 − ση
2 )T−1 ≤

exp(−ση(T−1)
2 ) ≤ 1

2 , and thus
∑T

t=1(1 − ση
2 )T−t =

1−(1−ση
2 )T−1

1−(1−ση
2 ) ≥ 1

ση , from the choice of A(S) and convexity
of FS we get

EA[FS(A(S))− FS(x
S
∗ )]

≤(
2c

eσ
)c−1Dx(ηT )

−c + 2L2
fL

2
gη +
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fL

2
gDy

σ

( c
e

)c
β−c
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t−c∑T
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+
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2
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σ
β +
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5
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≤(
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eσ
)c−1Dx(ηT )
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2
gη +
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2
gDy

σ

( c
e
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+
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where the last inequality comes from Lemma A.4. Noting that
∑T

t=1 t
−z = O(T 1−z) for z ∈ (0, 1) ∪ (1,∞) and∑T

t=1 t
−1 = O(log T ), as long as c ̸= 1 we get

EA[FS(A(S))− FS(x
S
∗ )]

=O

(
Dx(ηT )

−c + 2L2
fL

2
gη +

C2
fL

2
gDy

σ
(βT )−c +

C2
fL

2
gVg

σ
β +

C2
fL

2
fL

5
g

σ
η2β−1

)
.

Then we get the desired result for the SCSC update. Then we complete the proof.

Proof of Lemma D.1. From Algorithm 1 we have for any x ∈ X

∥xt+1 − x∥2

≤∥xt − ηt∇gωjt
(xt)∇fνit

(yt+1)− x∥2

=∥xt − x∥2 + η2t ∥∇gωjt
(xt)∇fνit

(yt+1)∥2 − 2ηt⟨xt − x,∇gωjt
(xt)∇fνit

(yt+1)⟩
=∥xt − x∥2 + η2t ∥∇gωjt

(xt)∇fνit
(yt+1)∥2 − 2ηt⟨xt − x,∇gωjt

(xt)∇fνit
(gS(xt))⟩+ ut,

where

ut := 2ηt⟨xt − x,∇gωjt
(xt)∇fνit

(gS(xt))−∇gωjt
(xt)∇fνit

(yt+1)⟩.

Let Ft be the σ-field generated by {ωj0 , . . . , ωjt−1 , νi0 , . . . , νit−1}. Taking expectation with respect to the randomness of
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the algorithm conditioned on Ft, we have

EA[∥xt+1 − x∥2|Ft]

≤∥xt − x∥2 + η2tEA[∥∇gωjt
(xt)∇fνit

(yt+1)∥2|Ft]

− 2ηtEA[⟨xt − x,∇gωjt
(xt)∇fνit

(gS(xt))⟩|Ft] + EA[ut|Ft]

=∥xt − x∥2 + η2tEA[∥∇gωjt
(xt)∇fνit

(yt+1)∥2|Ft]− 2ηt⟨xt − x,∇FS(xt)⟩+ EA[ut|Ft]

≤∥xt − x∥2 + η2tEA[∥∇gωjt
(xt)∇fνit

(yt+1)∥2|Ft]− 2ηt(FS(xt)− FS(x) +
σ

2
∥xt − x∥2)

+ EA[ut|Ft],

(108)

where the last inequality comes from the strong convexity of FS . Note that from Cauchy-Schwartz inequality, Young’s
inequality, Assumption 2.2 (ii) and 3.1 (iii) we have

ut ≤2ηt∥xt − x∥∥∇gωjt
(xt)∥∥∇fνit

(gS(xt))−∇fνit
(yt+1)∥

≤2Cfηt∥xt − x∥∥∇gωjt
(xt)∥∥gS(xt)− yt+1∥

≤2Cfηt

(
∥xt − x∥2∥∇gωjt

(xt)∥2

2γ
+

γ

2
∥gS(xt)− yt+1∥2

)

≤
CfL

2
gηt

γ
∥xt − x∥2 + γCfηt∥gS(xt)− yt+1∥2 (109)

for any γ > 0. Substituting (109) into (108), we get

EA[∥xt+1 − x∥2|Ft] ≤

(
1 +

CfL
2
gηt

γ
− σηt

)
∥xt − x∥2 + η2tEA[∥∇gωjt

(xt)∇fνit
(yt+1)∥2|Ft]

− 2ηt(FS(xt)− FS(x)) + γCfηtE[∥gS(xt)− yt+1∥2|Ft].

Setting γ =
2CfL

2
g

σ , we have

EA[∥xt+1 − x∥2|Ft] ≤(1− σηt
2

)∥xt − x∥2 + η2tEA[∥∇gωjt
(xt)∇fνit

(yt+1)∥2|Ft]

− 2ηt(FS(xt)− FS(x)) + 2C2
fL

2
g

ηt
σ
EA[∥gS(xt)− yt+1∥2|Ft].

Then we complete the proof.

D.3. Generalization

Proof of Theorem 3.15. We first present the proof for the SCGD update. From the stability results (87), (98) and (99) we get

EA[∥xt − xk,ν
t ∥] + 4EA[∥xt − xl,ω

t ∥]

≤40CfLgη sup
S

t−1∑
j=0

(1− η
Lσ

L+ σ
)t−j−1

(
EA[∥yj+1 − gS(xj)∥2]

) 1
2 + 20Lf

√
Cg

L+ σ

Lσ

√
η

+ 2LfLg

√
L+ σ

Lσ

√
η

n
+

4LgLf (L+ σ)

nLσ
+ 8LfLg

√
L+ σ

Lσ

√
η

m
+

48LgLf (L+ σ)

mLσ
.
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Plugging (101) into the above inequality, we get

EA[∥xt − xk,ν
t ∥] + 4EA[∥xt − xl,ω

t ∥]

≤40CfLg

√
LgLgLf (L+ σ)

Lσ

η

β
+ 40CfLg

√
2Vg(L+ σ)

Lσ

√
β

+ 40CfLg(
c

e
)

c
2
Dy(L+ σ)

Lσ
t−

c
2 β− c

2 + 20Lf

√
Cg

L+ σ

Lσ

√
η + 2LfLg

√
L+ σ

Lσ

√
η

n

+
4LgLf (L+ σ)

nLσ
+ 8LfLg

√
L+ σ

Lσ

√
η

m
+

48LgLf (L+ σ)

mLσ
.

Using Theorem 2.3, we have

ES,A [F (xt)− FS(xt)]

≤40Cf

√
LgL

3
gL

2
f (L+ σ)

Lσ

η

β
+ 40CfL

2
gLf

√
2Vg(L+ σ)

Lσ

√
β

+ 40CfL
2
gLf (

c

e
)

c
2
Dy(L+ σ)

Lσ
t−

c
2 β− c

2 + 20L2
fLg

√
Cg

L+ σ

Lσ

√
η + 2L2

fL
2
g

√
L+ σ

Lσ

√
η

n

+
4L2

gL
2
f (L+ σ)

nLσ
+ 8L2

fL
2
g

√
L+ σ

Lσ

√
η

m
+

48L2
gL

2
f (L+ σ)

mLσ
+ Lf

√
ES,A[Varω(gω(xt))]

m
. (110)

From (105) we get

T∑
t=1

(
1− ση

2

)T−t

ES,A[FS(xt)− FS(x
S
∗ )]

≤
(
2c

eσ

)c

Dxη
−c−1T−c +

2LfLg

σ
+

C2
fLgDy

σ

( c
e

)c
β−c

T∑
t=1

(
1− ση

2

)T−t

t−c

+
4C2

fLgVg

σ2

β

η
+

2C2
fLfL

3
g

σ2

η

β2
. (111)

Multiplying both sides of (110) with
(
1− ση

2

)T−t
, telescoping from t = 1, . . . , T , then adding the result with (111), and

using the fact FS(x
S
∗ ) ≤ FS(x∗), we get

T∑
t=1

(
1− ση

2

)T−t

ES,A[F (xt)− F (x∗)]

≤40Cf

√
LgL

3
gL

2
f (L+ σ)

Lσ

η

β

T∑
t=1

(
1− ση

2

)T−t

+ 40CfL
2
gLf

√
2Vg(L+ σ)

Lσ

√
β

T∑
t=1

(
1− ση

2

)T−t

+ 40CfL
2
gLf (

c

e
)

c
2
Dy(L+ σ)

Lσ
β− c

2

T∑
t=1

(
1− ση

2

)T−t

t−
c
2 +

4L2
fL

2
g(L+ σ)

Lσn

T∑
t=1

(
1− ση

2

)T−t

+ 20L2
fLg

√
Cg

L+ σ

Lσ

√
η

T∑
t=1

(
1− ση

2

)T−t

+ 2L2
fL

2
g

√
L+ σ

Lσ

√
η

n

T∑
t=1

(
1− ση

2

)T−t

+
48L2

gL
2
f (L+ σ)

Lσm

T∑
t=1

(
1− ση

2

)T−t

+ 8L2
fL

2
g

√
L+ σ

Lσ

√
η

m

T∑
t=1

(
1− ση

2

)T−t

+ Lf

T∑
t=1

(
1− ση

2

)T−t
√

ES,A[Varω(gω(xt))]

m
+

(
2c

eσ

)c

Dxη
−c−1T−c +

2LfLg

σ

+
C2

fLgDy

σ

( c
e

)c
β−c

T∑
t=1

(
1− ση

2

)T−t

t−c +
4C2

fLgVg

σ2

β

η
+

2C2
fLfL

3
g

σ2

η

β2
.
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Dividing both sides of the above inequality by
∑T

t=1

(
1− ση

2

)T−t
, and setting η = T−a and β = T−b with a, b ∈ (0, 1],

then from the choice of A(S) and convexity of F and Lemma A.4, noting that
∑T

t=1(1−
ση
2 )T−t =

1−(1−ση
2 )T−1

1−(1−ση
2 ) ≥ 1

ση

for (η(T − 1))−1 ≤ σ
2 , we get

ES,A[F (A(S))− F (x∗)]

≤40Cf

√
LgL

3
gL

2
f (L+ σ)

Lσ
T b−a + 40CfL

2
gLf

√
2Vg(L+ σ)

Lσ
T− b

2 +
4L2

gL
2
f (L+ σ)

nLσ

+ 40CfL
2
gLf (

c

e
)

c
2
Dy(L+ σ)

Lσ
T

bc
2 −1

T∑
t=1

t−
c
2 + 2L2

fL
2
g

√
L+ σ

Lσ

1√
n
T− a

2

+ 20L2
fLg

√
Cg

L+ σ

Lσ
T− a

2 + 8L2
fL

2
g

√
L+ σ

Lσ

1√
m
T− a

2 +
48L2

gL
2
f (L+ σ)

mLσ

+ Lf

(
T∑

t=1

(
1− ση

2

)T−t
√

ES,A[Varω(gω(xt))]

m

)
/

(
T∑

t=1

(
1− ση

2

)T−t
)

+ (
2c

eσ
)c−1DxT

−c(1−a) + 2LfLgT
−a +

C2
fLgDy

σ

( c
e

)c
T bc−1

T∑
t=1

t−c +
4C2

fLgVg

σ
T−b

+
2C2

fLfL
3
g

σ
T 2b−2a.

Noting that
∑T

t=1 t
−z = O(T 1−z) for z ∈ (−1, 0) ∪ (−∞,−1) and

∑T
t=1 t

−1 = O(log T ), we have

ES,A

[
F (A(S))− F (x∗)

]
=O

(
T b−a + T− b

2 + T
c
2 (b−1)(log T )Ic=2 + n−1 + n− 1

2T− a
2 + T− a

2 +m− 1
2T− a

2

+m−1 +m− 1
2 + T c(a−1) + T−a + T c(b−1)(log T )Ic=1 + T−b + T 2b−2a

)
.

Since a, b ∈ (0, 1], setting c = 3, the dominating terms are

O(
1√
m
), O(T b−a), O(T− b

2 ), O(T
3
2 (b−1)), O(T− a

2 ), O(T 3(a−1)).

Setting a = 9
10 and b = 3

5 yields

ES,A

[
F (A(S))− F (x∗)

]
= O(T− 3

10 +
1√
m
). (112)

Setting T = O(max{n 10
3 ,m

10
3 }) yields the following bound

ES,A

[
F (A(S))− F (x∗)

]
= O(

1

n
+

1√
m
).

Then we get the desired result for the SCGD update. Next we present the proof for the SCSC update. With the same
derivation as the SCGD case, we get

EA[∥xt − xk,ν
t ∥] + 4EA[∥xt − xl,ω

t ∥] ≤ 40CfLg

√
LgLgLf (L+ σ)

Lσ

η√
β

+ 40CfLg

√
2Vg(L+ σ)

Lσ

√
β + 40CfLg(

c

e
)

c
2
Dy(L+ σ)

Lσ
t−

c
2 β− c

2

+ 20Lf

√
Cg

L+ σ

Lσ

√
η + 2LfLg

√
L+ σ

Lσ

√
η

n
+

4LgLf (L+ σ)

nLσ
+ 8LfLg

√
L+ σ

Lσ

√
η

m

+
48LgLf (L+ σ)

mLσ
.
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Using Theorem 2.3, we have

ES,A [F (xt)− FS(xt)] ≤ 40Cf

√
LgL

3
gL

2
f (L+ σ)

Lσ

η√
β
+ 40CfL

2
gLf

√
2Vg(L+ σ)

Lσ

√
β

+ 40CfL
2
gLf (

c

e
)

c
2
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c
2 β− c
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√
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Lσ

√
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g

√
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√
η
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+
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2
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√
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Lσ

√
η

m
+

48L2
gL

2
f (L+ σ)

mLσ
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√
ES,A[Varω(gω(xt))]

m
. (113)

From (107) we get

T∑
t=1

(
1− ση

2

)T−t

ES,A[FS(xt)− FS(x
S
∗ )]

≤
(
2c

eσ

)c

Dxη
−c−1T−c +

2LfLg

σ
+

C2
fLgDy

σ

( c
e

)c
β−c
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1− ση

2

)T−t

t−c

+
4C2

fLgVg

σ2

β

η
+

2C2
fLfL

3
g

σ2

η

β
. (114)

Multiplying both sides of (113) with
(
1− ση

2

)T−t
, telescoping from t = 1, . . . , T , then adding the result with (114), and

using the fact FS(x
S
∗ ) ≤ FS(x∗), we get

T∑
t=1

(
1− ση

2

)T−t

ES,A[F (xt)− F (x∗)]

≤40Cf

√
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3
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2
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β
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2
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Dividing both sides of the above inequality by
∑T

t=1

(
1− ση

2

)T−t
, and setting η = T−a and β = T−b with a, b ∈ (0, 1],

then from the choice of A(S) and convexity of F and Lemma A.4, noting that
∑T

t=1(1−
ση
2 )T−t =

1−(1−ση
2 )T−1

1−(1−ση
2 ) ≥ 1

ση
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for (η(T − 1))−1 ≤ σ
2 , we get

ES,A[F (A(S))− F (x∗)]
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eσ
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−a +
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e
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4C2

fLgVg
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+
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3
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σ
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Noting that
∑T

t=1 t
−z = O(T 1−z) for z ∈ (−1, 0) ∪ (−∞,−1) and

∑T
t=1 t

−1 = O(log T ), we have

ES,A

[
F (A(S))− F (x∗)

]
=O

(
T

b
2−a + T− b

2 + T
c
2 (b−1)(log T )Ic=2 + n−1 + n− 1

2T− a
2 + T− a

2 +m− 1
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2

+m−1 +m− 1
2 + T c(a−1) + T−a + T c(b−1)(log T )Ic=1 + T−b + T b−2a

)
.

Since a, b ∈ (0, 1], setting c = 6, the dominating terms are

O(
1√
m
), O(T

b
2−a), O(T− b

2 ), O(T 3(b−1)), O(T− a
2 ), O(T 6(a−1)).

Setting a = b = 6
7 yields

ES,A

[
F (A(S))− F (x∗)

]
= O(T− 3

7 +
1√
m
). (115)

Setting T = O(max{n 7
3 ,m

7
3 }) yields the following bound

ES,A

[
F (A(S))− F (x∗)

]
= O(

1

n
+

1√
m
).

Then we get the desired result for the SCSC update. We have completed the proof.

E. Stability and Generalization of Coupled Compositional Stochastic Optimization Algorithms
This Appendix explores extensions of the dependent case, where the random variables ν and ω exhibit interdependence.
We provide an intuitive approach to achieving stability and generalization results for Coupled Compositional Stochastic
Optimization Algorithms. Detailed technical proofs are deferred to future research.

Coupled Stochastic Optimization(CSO) problems which has gained more general interest (Qi et al., 2021b; Jiang et al.,
2022a; Wang & Yang, 2022). The CSO problems can be represented as:

min
x∈X

{
F (x) = f ◦ g(x) = Eν [fν(Eω|ν [gω(x, ν)])]

}
, (116)

Similarity to the independent case, with the training data S = Sν

⋃
Sω where Sν = {νi : i = 1, . . . , i = n} and

Sω =
{
ωij : i = 1, . . . , n, j = 1, . . .m

}
, CSO problem (116) can be reduced to the following nested empirical risk for

CSO:
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min
x∈X

{
FS(x) = fS(gS(x)) =

1

n

n∑
i=1

fνi

( 1
m

m∑
j=1

gωij (x, νi)
)}

, (117)

where gS : Rp → Rd and fS : Rd → R are the empirical versions of f and g in (116) and are defined, respectively,
by gS(x) =

1
m

∑m
j=1 gωij

(x, νi) and fS(y) =
1
n

∑n
i=1 fνi

(y). We refer to F (x) and FS(x) as the (nested) true risk and
empirical risk, respectively, in this stochastic compositional setting.

To analyze the excess generalization error (that is, excess risk) of A(S) given by F (A(S))− F (x∗), we still focus on the
estimation error and the optimization error from (3).

Estimation Error. We introduce uniform stability for CSO problems to study the estimation error. Unlike the independent
case, for any k ∈ [n], let Sk = Sk

ν ∪ Sk
ω. When we replace the k-th sample νk in {νi}ni=1 to ν′k, the corresponding sample

{ωkj}mj=1 in Sω changes to {ω′
kj}mj=1. From this, we can introduce the following uniform stability concept in the following

way.

Definition E.1. We say that a randomized algorithm A is ϵ-uniformly stable for CSO problems (116) if, any k ∈ [1, n],
there holds

E[∥A(S)−A(Sk)∥] ≤ ϵ

where the expectation EA[·] is taken w.r.t. the internal randomness of A not the data points.

On the basis of our stability concept, we can build the connection between the uniform stability and the generalization error
for CSO problems. One can show that,
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[gω(A(Si), νi)])−
1

n

n∑
i=1

fνi
(
1

m

m∑
j=1

gωij
(A(Si), νi))]

+ EA,S [
1

n

n∑
i=1

fνi
(
1

m

m∑
j=1

gωij
(A(Si), νi))−

1

n

n∑
i=1

fνi
(
1

m

m∑
j=1

gωij
(A(S), νi))]. (118)

It is easy to estimate the first term on the right-hand side of (118) and the third term can be bounded using the Lipschitz
continuity of fν(·) and gω(·). The main challenge comes from the second term. We can use some ideas from (Hu et al.,
2020) to estimate this term, where the key step is to use the independence between {ωij}mj=1 being independent with A(Si)
and L smoothing of fν(·).

Optimization Error. Based on the independent case, to analyze the optimization error for CSO problems, we can extend
the SCGD update (line 5 in Algorithm 1) and the SCSC update (line 6 in Algorithm 1) to the dependent cases that were
studied in the two latest algorithms (SOX (Wang & Yang, 2022), MSVR (Jiang et al., 2022a)). We list the main updates of
these two algorithms in the following.

The update of estimator yt+1
it

which estimates the inner empirical risk of gS(xt; νit) is shown below for SOX:

yt+1
it

= (1− β)ytit + β · gωitjt
(xt; νit).

As mentioned in (Jiang et al., 2022a), with yt+1
it

, the gradient estimator computed by exponential moving average. A
useful technique for achieving a better optimization error is by using a variance reduction techniques which given as
following(MSVR):

yt+1
it

= (1− β)ytit + β · gωitjt
(xt; νit) + γ(gωitjt

(xt; νit)− gωitjt
(xt−1; νit)).
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For the update of model parameter, SOX and MSVR use ytit instead of yt+1
it

in ∇fνit
(·) to get better optimization errors due

to the independence between ytit and the random variable νit :

xt+1 = ΠX
(
xt − η∇gωitjt

(xt; νit)∇fνit
(ytit)

)
.

From the above update of the model parameter, we can use a similar technique in Appendix C to get the sta-
bility results of SOX and MSVR(without momentum update). Since we use ytit here, we will estimate the term
supS

∑T−1
j=0 (EA[

1
n

∑n
i=1 ∥y

j
i − gS(x

j ; νi)∥2])1/2 in the dependent case compared to the independent case in Theorem 3.3.
Then we can combine the estimation error and the optimization error of the existing optimization paper to get the final
excess risk.
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