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Abstract

There are an increasing number of domains in which artificial intelligence (AI)
systems both surpass human ability and accurately model human behavior. This
introduces the possibility of algorithmically-informed teaching in these domains
through more relatable AI partners and deeper insights into human decision-making.
Critical to achieving this goal, however, is coherently modeling human behavior
at various skill levels. Chess is an ideal model system for conducting research
into this kind of human-AI alignment, with its rich history as a pivotal testbed
for AI research, mature superhuman AI systems like AlphaZero, and precise
measurements of skill via chess rating systems. Previous work in modeling human
decision-making in chess uses completely independent models to capture human
style at different skill levels, meaning they lack coherence in their ability to adapt
to the full spectrum of human improvement and are ultimately limited in their
effectiveness as AI partners and teaching tools. In this work, we propose a unified
modeling approach for human-AI alignment in chess that coherently captures
human style across different skill levels and directly captures how people improve.
Recognizing the complex, non-linear nature of human learning, we introduce a
skill-aware attention mechanism to dynamically integrate players’ strengths with
encoded chess positions, enabling our model to be sensitive to evolving player skill.
Our experimental results demonstrate that this unified framework significantly
enhances the alignment between AI and human players across a diverse range of
expertise levels, paving the way for deeper insights into human decision-making
and AI-guided teaching tools. Our implementation is available here.

1 Introduction

There are an increasing number of domains in which artificial intelligence (AI) systems both surpass
human ability and accurately model human behavior. This combination of machine mastery over
a domain and computational understanding of human behavior in it introduces the possibility of
algorithmically-informed teaching and learning. AI-powered aids could guide people along reliable
and efficient improvement paths, synthesized from their knowledge of both human trajectories and
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objective performance. Relatable AI partners, on the other hand, could learn to act alongside human
counterparts in synergistic and complementary ways.

Researchers have begun to tackle this challenge in the model system of chess. Once held to be an
ideal testbed for developing artificial intelligence, it is now the perfect domain to pursue human-AI
alignment. The AI community finally surpassed all human ability in chess approximately 20 years
ago, a milestone achievement and watershed cultural moment. Now, superhuman AI chess engines
are ubiquitous and widely used. Despite this transformation, chess has never been more popular,
becoming a mainstream activity in many countries during the last few years. There is now both
unprecedented demand for chess education, as well as mature superhuman AI that could in principle
help meet it.

However, existing models fall short of being effective learning tools and relatable partners. Traditional
chess engines such as Stockfish and AlphaZero are unimaginably strong, but they don’t play in ways
that humans can easily understand or learn from. Comparing one’s own decisions with those of
traditional engines, it is easy to see how near-perfect AI would have improved upon your play but
hard to see how you could realistically do the same. Recent work has resulted in the development of
Maia, a suite of models that aim to mimic human behavior in chess at various skill levels by learning
to predict actual human moves from a wealth of online gameplay data [1]. While substantially more
human-like, these models still cannot power effective algorithmic teaching tools because of several
limitations.

First and foremost, Maia models players at different skill levels completely independently; games by
players at one skill level and those by an adjacent skill level are fed into separate instances of the
same architecture and result in separate models. This has the downside that predictions from one
model are independently made of predictions from any other. Viewed as a whole, they are volatile:
the Maia models might predict that at one level players will approach a position correctly, then at the
next level they will make a horrible mistake, then at the next level they will do fine again, and so on.
In a word, they fail to cohere. People don’t improve along volatile paths, they steadily get better. The
unrealistically incoherent predictions made by separate models don’t suggest realistic pathways that
people can take in order to get better. In order to serve as algorithmic teachers or learning aids, our
models of human behavior must be coherent.

Building a coherent model of human skill in chess is difficult, because the breadth of skill in chess is
almost incomprehensibly large. Decisions made by beginners bear only the faintest of relations to
those made by masters. A difference of 200 points in chess rating systems roughly equates to a 75%
win rate for the higher-rated player—typically higher than the best record of any team in the entire
National Basketball Association. On the online chess platform we study, there are players who are
2600 rating points apart—or 13 successive steps of 75%-vs.-25% dominance apart from each other.
Capturing this breadth of skill in a single model, in a coherent, smooth fashion, is a challenge.

We contribute a unified modeling approach for human-AI alignment in chess that coherently captures
human style across different skill levels and directly captures how people improve. Since our model
builds directly on original Maia, we call it Maia-2. Maia-2 consists of a standard residual network
tower that processes chess positions into features, and our novel contribution of a skill-aware attention
module with channel-wise patching. This innovation takes the position representation outputted
by the residual network tower and simple player skill encodings and learns how player skill levels
interact with chess positions to produce the moves humans make. Unlike previous models, Maia-2
only requires the current board position as input (as opposed to six), which dramatically reduces
training time and increases flexibility (e.g. for applying the model in non-game contexts where there
may be no 6-board history). In addition to policy and value heads like in previous work, we also add
an additional auxiliary information head that helps the model learn a deeper understanding of human
chess moves.

We evaluate Maia-2 along two key dimensions: move prediction accuracy and coherence. Testing it
against the original Maia models, Stockfish, and AlphaZero, Maia-2 emerges as the most accurate
human move predictor by far, surpassing original Maia by almost 2 full percentage points. Analyzing
move prediction accuracy by skill level, Maia-2 matches and surpasses all other models on all
skill levels. Furthermore, Maia-2’s gains in perplexity are similarly striking, reducing average
perplexity from a previous record of 4.67 bits down to 4.07 bits. Maia-2 achieves these accuracy
gains while being substantially more coherent than the original Maia models. For example, call a
model’s treatment of a position monotonic if it assigns a monotonically increasing probability to the
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correct move as we increase skill. While original Maia treats 1% of a random sample of positions
monotonically, Maia-2 treats a remarkable 27% of the same positions monotonically. This is in
keeping with our intuitive understanding of how chess players steadily and smoothly improve across
the skill range. Finally, we conduct an investigation of the human chess concepts Maia-2 learns
and varies with skill via linear probes, and find that skill-dependent concepts like overall board
evaluation indeed vary with skill, but skill-independent concepts do not, which also accords with our
understanding of how human players make decisions.

2 Related Work

Chess and AI. This paper draws on the long history of chess at the forefront of AI research [2, 3, 4, 5].
We engage with 3 distinct approaches to building chess AI: heuristic [6], learned [7], and textual [8].
Heuristic search: The original approach to computer chess was heuristics-based [4, 9]. This method
was famously used by IBM’s Deep Blue to defeat Garry Kasparov [2] and is currently used by
Stockfish [6], one of the strongest chess engines in the world. Learned search: Alpha(Zero) Go [7, 10]
is a set of neural networks that learn to play Go with methods that generalized to other games,
including chess, with AlphaZero [10]. Chess AI with learned search is also extended to multi-agent
systems [11], where diverse AI systems can outperform a single AI in challenging tasks such as
chess. Chess as text: Large language models [12, 13, 14] have recently been found to perform
well on tasks that the models were not explicitly trained on [15], including playing chess without
fine-tuning [16, 17, 18]. This has lead to chess knowledge being one of the tested features in BIG-
Bench [19], a popular LLM evaluation suite. Additionally, fine-tuning a language model can lead
to systems that not only play chess, but can also generate comments, describe positions, and create
other simple analyses of a game [20, 21, 8].

Human-AI Alignment in Chess. Building a chess engine that can defeat any human has been
a solved problem for over 20 years. This has led to a new research agenda in extracting useful
knowledge from these superhuman systems. A direct way of doing this is to probe an AI chess engine
in a human representation space. Without any prior human knowledge or guidance, evidence of
human chess concepts learned by AlphaZero is found and measured by linear probes [22]. Going
further, AlphaZero also encodes knowledge that extends beyond existing human knowledge but is
ultimately learnable by humans [23].Another direction was the creation of a ‘behavioral stylometry’
model that can identify chess players from the moves they play [24]. An alternative approach to
creating systems that can act as guides to humans is demonstrated by Maia [1, 25], in which a model
is trained to predict the next move a human will play, instead of optimizing for winning the game.
In addition to predicting human actions the models have been fine-tuned to predict a given player’s
actions [25]. The prediction accuracy can be improved via a reinforcement learning-style search [26].

3 Methodology

We propose a unified model architecture to capture human decision-making in chess across a broad
spectrum of skill levels. Since this model builds upon the previous Maia move-matching models,
we call it Maia-2. As shown in Figure 1, Maia-2 first encodes active and opponent skill levels and
the chess positions, respectively. Then the encoded skill levels and positions are fused using our
skill-aware attention with channel-wise patching architecture. The fused representations are then
used for move prediction (policy head), auxiliary information prediction (auxiliary head), and game
outcome prediction (value head). We now discuss each of these components in detail.

3.1 Skill Level Encoder

Instead of directly incorporating player ratings as numerical inputs, we use categorical skill level
embeddings for two reasons. First, player behavior and decision-making in chess are not linearly
related to their rating. Categorical embeddings allow for capturing complex, non-linear relationships
between player strength and their moves. They can encode nuanced differences in play style and
strategy that are not directly proportional to player ratings. Second, Generalization across similar
skill levels: Players within a certain skill level may exhibit similar playing styles, strategies, and
common mistakes. Categorical embeddings group players into these ranges, helping the model
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Figure 1: Overview of the Maia-2 model architecture.

to better generalize across players with similar strengths, as opposed to treating each rating as a
numerical input.

Let E ∈ R|E|×ds be the matrix of player rating embeddings, where each row corresponds to the
embedding of a skill level with dimension ds: E = [e(0,1000], e(1000,1100], ..., e(2000,+∞)]

⊤. Given
the skill levels a and o of an active player (i.e. the player to move) and the opponent player, we look
up the embedding matrix E by rows to map the skill levels to active and opponent skill embeddings:
ea = E[a], eo = E[o].

Note that previous work [1, 26] uses completely independent models for human-AI alignment at
different skill levels—e.g. decisions by 1100-rated chess players are encoded in one model and
decisions by 1500-rated players are encoded in a separate model. Further, these models ignore
opponent skill level, meaning that predictions cannot vary as a function of opponent strength.
However, the active player’s decisions may be significantly affected by the opponent’s skill level
in certain types of situations, or even in general. Players may adjust their strategy based on their
perception of the opponent’s skill, e.g. a higher-skill opponent might prompt more (or less) cautious
play, while against a lower-skill opponent a player may pursue more aggressive tactics. Thus, the
interaction between the skill levels of both players is an important component of matching human
moves. Unlike existing models that ignore opponent skill level (and actually only consider games in
which both players are at the same skill level), we explicitly model not only opponent skill but also the
complex interplay between the two players’ skill levels, and how it affects human decision-making.

3.2 Position Encoder

Position representation. We use a well-established method [10, 1] to represent each chess position
as a multi-channel tensor Pinput ∈ RCboard×8×8, which includes channels for each type of chess
piece, which color is to move, and states of the position that are not derivable from the position
alone (castling rights and en passant), where Cboard denotes the number of channels. One important
departure from previous work is that we only use the current chess position, and not the last few chess
positions that occurred in the game (models have typically incorporated the six most recent positions
in the game). Many games with perfect information, including chess, can be modeled as alternating
Markov games [27, 7], where future states are independent of past states given the current game
state. Therefore, the current chess position theoretically encapsulates all the information necessary to
make future decisions. Although human decision-making in chess may sometimes subtly depend
on the historical lead-up to the current position, these effects are anecdotally small. In exchange,
we gain two large practical benefits. First, modeling AI-human move matching in a Markovian way
vastly improves training efficiency by reducing the computational load via significantly smaller data
usage for each decision. Second, it also enhances flexibility, enabling our resulting model to make
predictions even without historical data, which is particularly advantageous in situations where only
the current position is available, like chess training puzzles or any position that didn’t necessarily
occur in a full game.

Position encoding. To process the position representation Pinput, we encode Pinput with the well-
established ResNet-based [28] backbone architecture for chess position modeling with KConv sequen-
tially connected blocks [1]: Pencoded = Backbone×KConv(Pinput) ∈ RCpatch×8×8, where Pencoded denotes
the encoded position representation of Cpatch channels. More details about position representation
and the backbone architecture can be found in Appendix Section B.
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3.3 Bridging Skill Levels and Positions

A central challenge we face is learning how players at different skill levels interact with chess
positions differently. How does an expert player evaluate and process a chess position to come up
with a move, and how does this differ from a novice? The relationship between positions and skill
levels is complicated by the non-linearity in how players of various skill levels interpret and react to
chess positions. This complexity presents a significant challenge in human move prediction using
a unified model for diverse skill levels. To bridge skill levels and positions—decision-makers and
decisions—we propose skill-aware attention with channel-wise patching.

Channel-wise patching. In contrast to the area-wise patching approach in Vision Transform-
ers (ViTs) [29], we employ channel-wise patching. Each channel is flattened and linearly
transformed, regarding the number of channels in Pencoded, i.e., Cpatch, as the sequence length:
Ppatched = Patching(Pencoded) ∈ RCpatch×64, P = PpatchedW + b ∈ RCpatch×datt , where W ∈ R64×datt

and b ∈ Rdatt denote the parameters of the linear projection from the patching dimension to the
hidden dimension of the skill-aware attention blocks datt. This is particularly suitable for patching
encoded chess positions as inputs to Transformer-like architectures, where channels are essentially
feature maps that represent different learned latent concepts. These concepts in feature maps are then
interactively selected and aggregated considering skill levels via skill-aware attention.

Skill-aware Attention. Given position representations Ppatched and skill level representations ea and
eo, our proposed skill-aware multi-head self-attention is computed as follows. For each head k, we
learn weight matrices WQ

k ∈ Rdatt×dh , WK
k ∈ Rdatt×dh , and WV

k ∈ Rdatt×dh , where dh denote the
dimension of each head. The queries Qk, keys Kk, and values Vk for each head are computed as:
Qk = PpatchedW

Q
k , Kk = PpatchedW

K
k , Vk = PpatchedW

V
k . In order to fuse player skill levels and

chess positions progressively and interactively, we inject skill level embeddings into queries within
the multi-head self-attention: Q∗

k = Qk + (ea ⊕ eo)W
∗, where W∗ ∈ R2ds×dh denotes the weight

matrix for feature transformation to the query space, and ⊕ is the concatenation operator. We choose
to incorporate skill levels in queries because queries directly influence how attention is distributed
across patched channels. Using skill-aware queries Q∗

k, the attention mechanism can adjust its focus to
reflect the strategic considerations and positional understanding of players at different skill levels. This
adjustment allows Maia-2 to adaptively prioritize features of the positions that are more relevant to the
skill levels involved, enhancing the model’s contextual sensitivity. The skill-aware scaled dot-product
attention for each head is thus defined as: hk = softmax

(
Q∗

kK
T
k√

dk

)
Vk. The outputs of all heads

h1, h2, . . . , hh are concatenated and then linearly transformed: Patt = σ((h1 ⊕ h2 ⊕ . . .⊕ hh)W
O),

where WO ∈ Rhdh×datt denote the weight matrix for multi-head attention and σ(·) denotes the
activation function. We apply the vanilla ViT’s feed-forward network and add & norm components
upon Patt to obtain the output of each skill-aware attention block Pout. In Maia-2, we employ a
sequence of skill-aware attention blocks to progressively fuse skill levels and positions. Specifically,
the output Pout for the previous block is fed into the next block as the input. We denote the final
output after KAtt blocks as P . This procedure enables the model to refine its understanding and
interpretation of the positions with each successive block.

3.4 Model Training

Infusing auxiliary information. To enhance the model’s understanding of the game state, we inject
auxiliary information as labels, including legal moves represented by multi-hot vectors and human
move information: one-hot vectors of which piece is moved, which piece is captured (if any), the
move’s originating square, the move’s destination square, and whether or not the move will deliver
a check. These segments are used as labels for classification, serving a dual purpose: 1) It offers a
more granular understanding of human moves by providing detailed context beyond just the move
indices produced by the policy head labels, enriching the model’s insight of player decisions; and 2) It
ensures the model also learns about objective (i.e. chess-specific as opposed to behavioral) knowledge
in chess, which is essential for developing a comprehensive understanding of both human moves and
the fundamental mechanics of the game.
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Table 1: Move prediction accuracy on the Maia-2 Testset. Skilled, Advanced, and Master are grouped
according to Section 4 and Avg denotes macro-averaged results.

Stockfish Leela Maia
Maia-2subset Maia-2

3 9 15 1500 2200 3200 1100 1500 1900

Skilled 36.22 36.00 36.86 40.46 39.79 39.97 51.48 50.79 48.51 51.51 51.72
Advanced 38.25 38.78 39.83 44.45 43.97 44.29 49.13 52.61 52.26 53.54 54.15
Master 40.71 43.26 44.61 48.69 47.11 47.75 45.85 50.76 53.20 53.16 53.87
Avg 38.39 39.35 40.43 44.53 43.62 44.00 48.82 51.39 51.32 52.74 53.25

Data balancing and filtering. Chess games between players of significantly different skill levels
are relatively rare but help us understand how players of lower skill levels approach games against
far stronger opponents and vice versa. While previous work has ignored these games completely,
they play a central role in our approach. Since games between players of similar skill levels vastly
outnumber more uneven matchups, we use a data balancing strategy to effectively train our unified
model for aligning players across all skill levels, in which games between players of different skill
levels are over-sampled. Online chess platforms feature a variety of game types, including blitz, rapid,
and classical, each representing games played at different time controls (amount of time given to
each player for the whole game). We focus on Rapid games, which are medium-length games that lie
between the fast-paced decisions of “Blitz” games and the slower, more strategic considerations of
“Classical” games. In addition, we follow the procedures in [1] to filter valid positions within each
game. More details about data balancing and filtering are available in Appendix B.

Training objectives. With the fused skill level and position representation P as input, we construct
the policy head on top to predict human moves, which is optimized using cross-entropy loss with
one-hot labels representing the recorded human move. We also build the auxiliary information head
to infuse additional knowledge into Maia-2 as introduced in Section 3.4. This head is trained using
bit-wise binary cross-entropy loss with multi-hot labels. Finally, following previous work [1, 25] we
include a value head to predict the game outcome as a regression task, where the labels 1, 0, -1 denote
winning, drawing, and losing, respectively. The training objectives of these heads are balanced to
contribute equally to Maia-2 model optimization. Hyperparameter settings used for Maia-2 training
can be found in Appendix Table 5.

4 Results

We empirically evaluate Maia-2 along two key dimensions: move prediction accuracy, how well
it can predict human moves at varying skill levels, and move prediction coherence, how aligned
its predictions are across skill levels. We train Maia-2 on Lichess games played between Jan 2013
and Nov 2023, with the exception of December 2019, since that is the month used for testing in the
original Maia paper (and we also test on this month for consistency) [1]. After game filtering and
balancing, we end up with a training set of 169M games (9.1B positions). We also train Maia-2subset
with identical model architecture and training configurations as Maia-2, except it only has access to
the same training data that Maia had for fair comparisons. Dataset statistics are reported in Appendix
Tables 7, 9, and 10. We compare Maia-2 with Stockfish [6], the strongest chess engine, Leela, an
open-source counterpart to AlphaZero [10]. and Maia [1], the state-of-the-art model for human-like
chess play. Maia is actually a set of 9 separate models, each trained on a different set of players at
different skill levels from 1100 to 1900. We use the benchmarking Maia Testset [1] for performance
comparisons where both players have identical skill levels. We report the results on Maia Testset by
grouping players into three categories: Skilled (Rapid rating up to 1600, which slightly exceeds the
initial rating of 1500), Advanced (Rapid rating between 1600 and 2000), and Master (Rapid rating
over 2000). In addition, we aim to evaluate move prediction across diverse skill combinations with
the Cross-skill Testset constructed from Dec 2023 games. Finally, we construct Grounded Testset
with 450,000 positions that has recorded Stockfish evaluations, which can serve as grounded facts to
measure move quality. Statistics of datasets are summarized in Appendix Table 8.
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Figure 2: Move prediction accuracy across diverse skill levels. Colors represent performance, with
warmer tones indicating higher accuracy.

4.1 Move Prediction Accuracy

Maia-2. In Table 1, we show the top-1 move prediction accuracy of all models across all groups of
players on the Maia-1 Testset. Maia-2 demonstrates strong and consistent performance across all
skill levels, surpassing all baselines. Specifically, despite Maia-1 models being specifically trained to
mimic chess moves by players at specific skill levels, Maia-2 emerges as a unified one-for-all model
that is consistently effective across the entire spectrum of chess skills. The largest improvement is
on Advanced players, where Maia-2 gains 1.5 percentage points over the nearest competitor (Maia
1500). When averaging across skill levels, Maia-2 outperforms all other models by almost 2 full
percentage points in overall accuracy. Note that the ceiling accuracy of human move prediction is far
below 100% given the randomness and diversity of human decisions—even the same player won’t
always make the same decision when faced with the same position. Our 2 percentage point gain is
substantial considering that the difference between Maia-1 and Leela, the previous state-of-the-art
model for this task and a traditional chess engine not trained for this task at all, is only 6 percentage
points. Furthermore, Maia-1 is essentially a mixture of 9 experts targeting the specific players’
skill level, where each expert has 10.3M parameters. Regarding the routing function to select the
best-performing expert as a nonparameterized function, Maia-1 has 92M parameters in total. Maia-2,
on the other hand, is a one-for-all model with 23.3M parameters under our default settings. Therefore,
Maia-2 achieves better human move prediction accuracy with even much fewer trainable parameters.

Baseline models. Both Maia-2 and Maia-1 significantly outperform Stockfish and Leela, typically by
5–15 percentage points. Note that Stockfish and Leela aim to play optimal chess (as most humans do
too), and only “predict” human moves when their approximations to optimality happen to overlap
with those of human players. However, we compare to these traditional chess engines because besides
Maia-1, there are still the default method of creating “human-like” AI agents. The accuracy gap
between Maia-1 architectures and traditional chess engines demonstrates the necessity of developing
specialized models to mimic human chess moves.

Maia-2subset. Maia-2 differs from Maia-1 in two main ways: it has a different architecture and it
has access to more training data. To control for the difference in training data and isolate the effects
of our architecture, we create Maia-2subset which has access to the exact same training data that
Maia-1 was developed with. Comparing the two, we see that Maia-2subset matches or outperforms
all baselines and alternate models. Recall that Maia-2 and Maia-2subset don’t have the recent history
passed as input to them, yet still achieve state-of-the-art results. It is important to note that each
Maia-1 model is specifically trained for its respective skill level, relying solely on games where the
active and opponent skill levels match for its training data. On the contrary, the unified modeling
approach with skill-aware attention of Maia-2subset allows it to utilize a broader spectrum of games,
featuring a variety of skill-level pairings, for training purposes. Consequently, while both Maia-1 and
Maia-2subset draw from the same source dataset, Maia-2subset can leverage a significantly larger portion
of this data for its training, improving its learning and predictive capabilities. The improvement from
Maia-2subset to Maia-2 underscores the importance of extensive training with vast datasets. A broader
range of games provides Maia-2 with access to more comprehensive and nuanced patterns in human
chess moves. Using Maia-2subset as a comparison, we can determine the relative contributions of
model architecture and training data to Maia-2’s 1.9 percentage point gap over its nearest rival (Maia
1500). This calculation suggests that 73% of the increase in performance is due to the architecture
improvements and 27% is due to increased training data.
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Table 2: Move prediction perplexity on the
Grounded Testset.

Skilled Advanced Master Avg

Maia 1100 5.05 5.56 6.01 5.54
Maia 1500 4.98 5.31 5.50 5.26
Maia 1900 4.44 4.71 4.86 4.67

Maia-2 4.30 3.90 4.02 4.07

Table 3: Ablation study results, where Maia-
2subset is compared with versions without skill-
aware attention (“w/o Att”) and without infusing
auxiliary information (“w/o Aux”).

Skilled Advanced Master Avg

w/o Att 50.63 52.89 51.73 51.75
w/o Aux 50.96 52.98 52.34 52.09

Maia-2subset 51.51 53.54 53.16 52.74

Move prediction perplexity. While top-1 accuracy gains are important, they may overshadow larger
improvements in prediction quality. To account for this, we also measure the perplexity of move
predictions , which reflects the model’s confidence in its predictions. A lower perplexity indicates
the model is more confident and accurate in human move prediction, as it corresponds to a higher
likelihood of the correct human move. As shown in Table 2, Maia-2 consistently yields substantially
lower perplexity in all groups of skill levels compared to Maia-1. In particular, Maia-2 significantly
outperforms Maia-1 in Advanced and Master moves with relatively large margins, demonstrating the
effectiveness of our unified modeling approach across diverse skill levels.

Adaptive move predictions. We now evaluate Maia-2’s ability to predict compare across diverse skill
combinations using the Cross-skill Testset. As shown in Figure 2, Maia-2 consistently outperforms
both Maia 1100 and Maia 1900 in almost all combinations of active player and opponent player skill
levels. In particular, although Maia 1100 and Maia 1900 demonstrate competent performance within
their respective domains of expertise, their predictive accuracy decreases substantially outside of
these targeted skill levels. This is because Maia-1 models are static and cannot respond to varied skill
levels and adjust their predictions accordingly. In contrast, our proposed unified modeling approach
with skill-aware attention enables Maia-2 to adapt its predictions to account for the skill levels of both
the active player and the opponent player, so that varying skill level configurations correspondingly
can result in better aligned human move predictions. More results on comparisons with other Maia-1
versions can be found in Figure 6 in the Appendix.

Move quality. One of our key motivations for creating a unified model of human chess behavior is to
guide the development of future algorithmic learning tools. As such, understanding the mistakes that
people make is of fundamental interest. Can Maia-2 predict mistakes better than Maia-1? Figure 10
in the Appendix shows the move prediction accuracy on the Grounded Testset as a function of
move quality, measured by win-rate loss, which is calculated following the same procedures as prior
studies [1, 25]. All models generally decrease in their ability to predict worse moves, since humans
are generally trying to avoid mistakes, and high-quality moves are more certain whereas lower-quality
moves can be more random and thus hard to predict. Nevertheless, Maia-2 outperforms all versions
of Maia-1 across most of the move quality range, demonstrating the effectiveness of our unified
modeling approach for human move prediction.

We are also interested in how certain the models are about their predictions of various move qualities.
Figure 3.(A)(top) shows the probabilities that Maia-2 (x-axis) and Maia-1 (y-axis) attribute to the
moves people actually played in Grounded Testset. The concentration of points in the lower right
quadrant (closer to P(Maia-2) = 1 and P(Maia 1900) = 0) suggests that Maia-2 assigns a higher
probability to the true move than Maia-1 does, indicating superior predictive performance. Conversely,
the less dense upper left quadrant indicates fewer instances where Maia 1900 outperforms Maia-
2. Remarkably, while this consistently occurs across all move qualities, the distinction is more
pronounced for Blunders and Errors compared to Optimal moves. Additionally, the bottom row of
Figure 3.(A) shows the log odds ratio between P (x, y) and P (y, x) in the top row. The abundance of
blue points below the diagonal indicates that Maia-2 is almost always more confident in the correct
move than Maia-1 is, indicating an across-the-board improvement in move prediction. Maia-2 offers
superior and more confident prediction across diverse move qualities. We also conduct an ablation
study as shown in Table 3, we point the readers to Appendix A for more information.

4.2 Move Prediction Coherence

Maia-2’s accuracy across the spectrum of human skill is certainly desirable, but perhaps an even more
important dimension is prediction coherence as skill varies. A central drawback of Maia-1 is that it
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Figure 3: (A). (Top) Joint probability assigned to human moves played by Maia-2 (x) and Maia 1900
(y), split by move quality. Blunders (left) reduce the expected win-rate by ≥ 10%, Errors (middle) by
5–10%, and Optimal (right) by ≤ 0%. (Bottom) Log odds ratio of p(x, y) and p(y, x) from top. (B).
Move prediction agreement as (left) active player and (right) opponent player skill are varied. All
cells are evaluated on the same set of positions but with altered skill level configurations.

Table 4: Percentage of monotonic and transitional positions.
%Monotonic %Transitional

Skilled Advanced Master Skilled Advanced Master
Maia-1 1.61 1.42 1.14 13.34 18.14 20.48
Maia-2 27.61 28.51 26.38 22.59 23.39 21.72

models players at different skill levels independently from each other, which results in particularly
volatile predictions: the same position might elicit very different predicted behavior from models
of adjacent skill levels. This is problematic because we know from personal experience that this
type of volatility is rare: players don’t change that much as they improve. This limits Maia’s ability
to perform well in downstream tasks such as serving as a teaching aid, as its understanding of one
skill level bears little resemblance to its understanding of the next. In reality, players move from one
skill level to another by making small, consistent adjustments. Does Maia-2 reflect this behavioral
coherence?

Prediction smoothness. We measure the coherence of Maia-2’s predictions by testing for smoothness
features in its entire set of predictions. Call a model’s treatment of a position monotonic if the predicted
probability of the correct move increases with skill monotonically. In the Grounded Testset of 100K
positions, we find that Maia-1 only treats 1% of them monotonically. In stark contrast, however,
Maia-2 treats 27% of them monotonically, clearly demonstrating that Maia-2 is much more coherent.
Similarly, call a model’s treatment of a position transitional if it predicts a suboptimal move for some
prefix of skills and then transitions to an optimal move for all subsequent skill levels. Again, Maia-2
treats substantially more positions transitionally—around 22% of them compared with 17% for Maia.

It’s important to note that Maia-2 is deliberately designed to encourage coherence across skill levels
without rigidly enforcing it. Our objective is not to impose coherence as a hard constraint, which
might obscure legitimate differences in player behavior between skill levels, but to create a model
architecture that naturally encourages coherence where the data supports it.

Move prediction agreement. As a first test, we measure move prediction coherence as we vary
active player skill and opponent player skill in Maia-2. The results shown in Figure 3.(B) reveal
several trends. First, increasingly varying either the active or opponent rating results in lower
agreement, suggesting that Maia-2 smoothly varies its predictions with skill. Second, comparing the
two heatmaps reveals that Maia-2 has clearly learned that varying one’s own skill has much larger
effects than varying the opponent’s—changing one’s own skill against a fixed opponent can change
the decision up to 22% of the time, but changing the opponent’s skill while fixing our own skill
will only change the decision up to 6% of the time. This is intuitive, as players must change their
decisions in order to play at a higher level, while in theory one’s opponent shouldn’t affect one’s
decision. Of course, humans are not optimal agents and sometimes take their opponent’s skill level
into account when deciding on a move—willfully or not—which is reflected in our results.

Chess concept understanding. Human chess players of varying strengths differ in their ability to
recognize important features and patterns on the board, e.g., stronger players are adept at discerning
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Figure 4: Maia-2’s chess concept recognition as a function of skill level, as measured by linear
activation probes right before (blue) and after (orange) skill-aware attention. (a) Stockfish overall
board evaluation for middle-game positions. (b) Stockfish evaluation of middle-game bonuses and
penalties to pieces for white. (c) Does the active player own two bishops? (d) Can the active player
capture the opponent’s queen?

subtle nuances. We now turn our focus to a critical question: does Maia-2 vary in its ability to capture
human chess concepts when given different skill levels? Following the chess concepts probing
strategy for AlphaZero [22], we show how Maia-2’s grasp of various concepts varies with skill. The
left two plots in Figure 4 show concepts for which Maia-2 clearly distinguishes between skill levels,
with higher-skill players paying more attention to them than lower-skill players. These are general
board evaluations as given by Stockfish [6], or aggregate piece values. Note that pre-skill-aware
attention is always flat because by construction it cannot vary with skill, since skill-aware attention has
not been applied yet. The two plots on the right depict concepts that live closer to fundamental chess
rules, and as such are less dependent on player skill. For skill-dependent concepts, the figures reveal
an increasing trend in mastery level after skill-aware attention, aligning with the increase in dedicated
skill levels. Meanwhile, the model’s mastery level decreases after passing through the skill-aware
attention modules, potentially adjusting for the imperfections of human players. Conversely, the
skill-aware attention blocks are not responsive to skill-independent concepts.

5 Discussion

Human Study. In addition to human move matching, we also consider engagement, another
dimension of human study. In particular, we implement a randomized experiment on Lichess:
human players challenge our bots, and we randomize whether players play against Maia-1 or Maia-2.
Our result is that our higher move-matching and our vastly improved coherence, across all skill
levels, come at no cost to human subject engagement, and in fact slightly increase engagement:
players rematch Maia-2 almost 1 percentage point more than Maia-1 (41.2% vs. 40.3%). Although
engagement is not our main objective, this is further promising evidence that we have achieved a
more human-aligned model that coherently captures human style across different skill levels.

Ethical Considerations. We believe Maia-2 poses limited risk while offering large potential benefits.
Our data is highly aggregated, with almost 1 billion games being used for training, and chess as a
domain is generally low-risk. Meanwhile, helping people improve in chess could lead to increased
cognitive skills, confidence boosts, and help with general life satisfaction. Our vision is for Maia-2 to
power AI partners and training aids; it cannot currently replace skilled human tutors and coaches.

Limitation. Our work has limitations. First, we are excited by the applications that Maia-2 will
enable, such as more relatable AI partners and AI-powered learning aids, the development of which is
out of scope for the current work. Maia-2 does not yet incorporate search, although previous work has
demonstrated that with proper regularization it can help improve move prediction performance [26].
Relatedly, we group the strongest players in a single bucket, although modeling the very best players
in the world remains difficult due to the complexity and depth of their moves.
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Figure 6: Move prediction accuracy across diverse skill levels. Colors represent performance, with
warmer tones indicating higher accuracy. Missing skill combinations were too rare to be statistically
reliable.

A More Experimental Results

Case study: Smoothness. We evaluate the smoothness of Maia-1 and Maia-2 by a case study in
puzzle solving: a Mate-in-1 puzzle of 1500 skill level is presented to both Maia-1 and Maia-2, where
smoothness can be evaluated by checking whether the predictions are monotonic and transitional as
skill level increases. Call a model’s treatment of a position as monotonic if the predicted probability
of the correct move increases with skill monotonically, we can observe from Figure 5 that the Maia-2
predicted probabilities of the best move (in green arrows) increase monotonically from 0.22 to 0.45
as the skill levels rise from 1100 to 1900, while Maia-1 predictions are rather turbulent. Similarly, we
call a model’s treatment of a position transitional if it predicts a suboptimal move for some prefix of
skills and then transitions to an optimal move for all subsequent skill levels. As shown in Figure 5,
Maia-2 can mimic weaker players to whom the puzzle is hard to solve, while stronger Maia-2 with
skill level configured above or equal to 1500 can successfully solve the puzzle. However, Maia 1100
surprisingly solved the puzzle, while the stronger Maia-1 models, e.g., Maia 1700 failed to make
the optimal move. Therefore, in the considered case, as opposed to Maia-1, Maia-2 yields smooth
predictions provided that its treatment of this position is monotonic and transitional.
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Figure 7: Quality of predicted moves quantified by blunder rate and centipawn Loss.

Quality of predicted moves. Given the same chess position but increasing skill levels, a coherent,
skill-aware human move prediction model should make progressively higher-quality moves. We
measure the average centipawn loss (a standard move quality metric, the lower the better) and the
average blunder rate (fraction of times an egregious mistake is predicted) in positions randomly
sampled from December 2023 games. The centipawn loss is determined by comparing the moves
predicted by Maia-2 against the top move as evaluated by Stockfish at depth 20 (human grandmaster-
level play), while blunders are classified as moves resulting in a win-rate loss of 10% or more. As
shown in Figure 7, both the centipawn loss and the blunder rate exhibit a smooth, monotonic decrease
as player skill rises, demonstrating Maia-2’s capability of adjusting its predictions coherently to align
with the increasingly skilled players.

Value head. As a proxy of model evaluation given a board position, we train the model value head
which is potentially significant for a wide variety of downstream tasks. The value head is trained as a
regression task from -1 to 1 indicating from losing to winning positions, and finally normalized to a
continuous value between 0 and 1 similar to AlphaZero. The correct label for value head is the actual
game results. To check the evaluation quality of our model value head, we calibrate the value head
results with actual game outcomes, and generate a quantile-quantile plot in Figure 8 where the win
probability is discretized uniformly into 100 bins from 0 to 1.
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Figure 8: Value head Q-Q plot.
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Ablation study. To understand which components of our architecture are most responsible for
the performance gains, we conduct an ablation study on the Maia Testset. We train a version
of Maia-2subset using a naive method of incorporating encoded skill levels without the proposed
skill-aware attention module (“w/o Att”). In this model, the skill level encodings ea and eo are
directly concatenated with flattened Pencoded, without bridging them with the skill-aware attention
(skipping Section 3.3), and directly connected to prediction heads. As shown in Table 3, Maia-2subset
consistently performs better with skill-aware attention, demonstrating the necessity of modeling the
complexity and non-linearity in player’s skill development in sophisticated ways and the effectiveness
of our proposed unified modeling approach with skill-aware attention to model such nuances. We
also train a version of Maia-2subset without the auxiliary information head (“w/o Aux”). These results
show that infusing auxiliary information as labels during model training also results in a significant
performance improvement, although not as dramatically as skill-aware attention.

Figure 9: Maia-2’s chess concept recognition as a function of skill level, as measured by linear
activation probes right before (blue) and after (orange) skill-aware attention. (a) Stockfish overall
board evaluation for end-game positions. (b) Stockfish evaluation of end-game bonuses and penalties
to pieces for white. (c) Does the opponent player own two bishops? (d) Is capture possible on square
d3 for the active player?

0.00 0.05 0.10 0.15 0.20 0.25
Win-rate Loss

10

20

30

40

50

60

70

M
ov

e 
Pr

ed
ict

io
n 

Ac
cu

ra
cy

Maia 1900
Maia 1500
Maia 1100
Maia-2

Figure 10: Move prediction accuracy as a function of move quality, quantified by win-rate loss.

Accuracy as a function of move quality. Figure 10 shows the move prediction accuracy on the
Grounded Testset as a function of move quality, measured by win-rate loss, which is calculated
following the same procedures as prior studies [1, 25]. All models generally decrease in their
ability to predict worse moves, since humans are generally trying to avoid mistakes, and high-
quality moves are more certain whereas lower-quality moves can be more random and thus hard
to predict. Nevertheless, Maia-2 outperforms all versions of Maia across most of the move quality
range, demonstrating the effectiveness of our unified modeling approach for human move prediction.
Maia-2’s overall gains are not constrained to any specific move quality type, but are spread across the
entire range.
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Table 5: Hyperparameter Settings.

#Games per chunk Nchunk 20000
#Maximum games per skill level Nrange 20
Initial learning rate 1e−4

Weight decay 1e−5

Batch size (positions) 8192
Minimum move ply 10
Maximum move ply 300
Remaining seconds threshold 30
#Backbone blocks KConv 12
#Attention block KAtt 2
#Input channels Cinput 18
#Intermediate channels Cmid 256
#Encoded channels Cpatch 8
Skill level embedding dimension ds 128
Attention head dimension dh 64
Attention intermediate dimension datt 1024
#Attention heads h 16

Table 6: Statistics of the Maia-1 Testset.

#Positions Rating Range

Total 106,740 -

Skilled 56,812 < 1599
Advanced 41,747 1600 - 1999

Master 8,181 ≥ 2000

B Reproductibility

Implementation details. To maintain a consistent perspective from both sides of players, we
implemented board flipping to train and test Maia-2; that is, positions with black to move were
mirrored such that all analyses could be conducted from the white side’s viewpoint. We further
refined our dataset through game and position filtering, selecting only rapid games from Lichess with
available clock information and disregarding the initial 10 plys of each game as well as positions where
either player had less than thirty seconds remaining. The filtration is significant for eliminating the
noise introduced by rushed decisions under time constraints, which could skew the true representation
of a player’s skill. The choice of exclusive rapid games is also informed by the distinct rating systems
across different game types, which necessitates the separation of data to maintain rating consistency.
We report all hyperparameters involved in training Maia-2 in Table 5. It took approximately 13 days
to train Maia-2 with 2×A100 (80G) GPUs under our default settings.

Data Balancing. Chess games between players of significantly different skill levels are relatively
rare but help us understand how players of lower skill levels approach games against far stronger
opponents and vice versa. While previous work has ignored these games completely, they play a
central role in our approach. Since games between players of similar skill levels vastly outnumber
more uneven matchups, we use a data balancing strategy to effectively train our unified model for
aligning players across all skill levels, in which games between players of different skill levels are

Table 7: Statistics of training datasets.

Maia-2subset Maia-2

#Games Consumed 930.19M 5.14B
#Games Trained 21.31M 168.93M
#Positions Trained 1.18B 9.15B
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over-sampled. To be precise, we pre-process the data in chunks of Nchunk games each. We then scan
each data chunk to find games satisfying various (active player skill, opponent skill) combinations.
Each skill combination can include at most Nrange games. We continue scanning the data chunk
until all the skill combinations have Nrange games or the data chunk is fully consumed. Note that
the higher the balancing factor Nrange

Nchunk
, the less likely it is that rare skill combinations will fully reach

Nrange, which will lead to less balanced data overall. On the other hand, if the balancing factor is too
small, fewer games will be selected from each data chunk, which is data-inefficient. We choose a
fair compromise between data efficiency and balanced data so that our training data encompasses
a broad spectrum of skill levels without biasing excessively towards the more frequently-occurring
equal-skill matchups.

Data Filtering. Online chess platforms feature a variety of game types, including blitz, rapid, and
classical, each representing games played at different time controls (amount of time given to each
player for the whole game). We use data from Lichess, a well-known large open-source chess
platform, and its open database. In Lichess, since each game type is given a separate rating, ratings
across different game types are not comparable (e.g. a rating of 1800 in “Rapid” is significantly
weaker than a rating of 1800 in “Blitz” on Lichess). Previous work [1, 25] mixes player ratings across
these game types together for training and evaluation. Instead of mixing data across game types,
we focus on Rapid games only, which are medium-length games that lie between the fast-paced
decisions of “Blitz” games and the slower, more strategic considerations of “Classical” games. “Blitz”
and “Bullet” games, characterized by their quick pace, are composed of many decisions made under
time pressure, introducing randomness that may not accurately reflect player intentions and skills.
In contrast, Classical games are played less frequently, leading to data scarcity. Rapid chess is an
ideal compromise between quality of play and quantity of data. In addition, we follow the procedures
in [1] to filter valid positions within each game.

Chess position representation. We follow the well-established prior works [10, 1] to represent chess
positions as multi-channel 8× 8 matrices, including:

• Piece Representation: The first 12 channels categorize the board’s pieces by type and color,
with one channel each for white and black Pawns, Knights, Bishops, Rooks, Queens, and
Kings. A cell is marked 1 to denote the presence of a piece in the corresponding location,
and 0 otherwise.

• Player’s Turn: A single channel (the 13th) indicates the current player’s turn, filled entirely
with 1s for white and 0s for black, providing the model with context on whose move is being
evaluated.

• Castling Rights: Four channels (14th to 17th) encode the castling rights for both players,
with the entire channel set to 1 if the right is available or 0 otherwise.

• En Passant Target: The final channel (18th) marks the square available for en passant capture,
if any, with 1 and 0s elsewhere.

Chess concepts probing. Given a board position, we vary the skill level injected to Maia-2 to
extract the Pencoded ∈ RCpatch×8×8 as the learned respresentation of the ResNet-based backbone served
as the control group which remain constant to varying skill ratings, and the output hidden states
P ∈ RCpatch×datt after skill-aware attention directly connected to model heads. We randomly pick
500,000 positions from Lichess December 2023 database and calculate Stockfish built-in or custom
implemented concepts using the Forsyth-Edwards Notation of the positions.

We carefully choose Pencoded and P as internal representations for the reason that Pencoded is the
comprehensive understanding of chess board for the backbone network right before skill-aware
attention, and P is the final hidden states that directly influence model decision and evaluation.
Following the work of Alphazero concept probing [22], for chess concepts with continuous values
we train Lasso regressors with coefficient for L1-regularization selected by 5-fold cross-validation,
and for binary concepts we train logistic regressors with downsampling. During evaluation on
unbalanced test set, we measure the performance of continuous-valued probes with the coefficient of
determination r2, and score the binary-valued probes with the Macro F1.
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Table 8: Statistics of the Cross-skill Testset.

Opponent

Active

1100 - 1199 1200 - 1299 1300 - 1399 1400 - 1499 1500 - 1599 1600 - 1699 1700 - 1799 1800 - 1899 ≥2000

≥2000 - - - - - 91,264 100,000 100,000 100,000
1800 - 1899 - - - - 83,337 99,931 100,000 100,000 100,000
1700 - 1799 - - - 91,054 100,000 100,000 100,000 100,000 100,000
1600 - 1699 - - 81,386 99,998 100,000 100,000 100,000 99,933 91,610
1500 - 1599 - 82,059 99,500 100,000 100,000 100,000 99,974 83,650 -
1400 - 1499 89,666 100,000 100,000 100,000 100,000 100,000 91,291 - -
1300 - 1399 97,602 100,000 100,000 100,000 99,544 81,692 - - -
1200 - 1299 100,000 100,000 100,000 100,000 82,230 - - - -
1100 - 1199 100,000 100,000 97,635 89,643 - - - - -

Table 9: Number of games in the balanced dataset used for training Maia-2subset.

Black

White

<1100 1100 - 1199 1200 - 1299 1300 - 1399 1400 - 1499 1500 - 1599 1600 - 1699 1700 - 1799 1800 - 1899 1900 - 1999 >=2000

<1100 583,437 - - - - - - - - - -
1100 - 1199 583,403 583,433 - - - - - - - - -
1200 - 1299 427,160 583,402 583,443 - - - - - - - -
1300 - 1399 176,930 408,819 583,421 583,443 - - - - - - -
1400 - 1499 113,683 204,425 499,185 583,433 583,445 - - - - - -
1500 - 1599 101,756 139,741 307,446 559,722 583,440 583,439 - - - - -
1600 - 1699 57,381 85,483 174,417 384,670 566,851 583,436 583,435 - - - -
1700 - 1799 32,621 47,671 100,841 188,967 359,056 571,666 583,421 583,428 - - -
1800 - 1899 16,656 26,195 52,043 105,095 178,957 348,979 557,921 583,415 583,422 - -
1900 - 1999 8,032 11,736 23,800 48,965 84,808 150,182 272,451 529,071 583,388 582,715 -

>2000 5,927 7,953 14,825 28,929 49,237 88,317 134,432 280,452 531,162 582,993 582,542

Table 10: Number of games in the balanced dataset used for training Maia-2.

Black

White

<1100 1100 - 1199 1200 - 1299 1300 - 1399 1400 - 1499 1500 - 1599 1600 - 1699 1700 - 1799 1800 - 1899 1900 - 1999 >=2000

<1100 4,698,087 - - - - - - - - - -
1100 - 1199 4,697,937 4,697,979 - - - - - - - - -
1200 - 1299 3,165,114 4,697,972 4,698,076 - - - - - - - -
1300 - 1399 2,015,110 2,561,344 4,698,015 4,698,073 - - - - - - -
1400 - 1499 1,509,456 1,549,218 3,008,520 4,698,033 4,698,093 - - - - - -
1500 - 1599 1,259,824 1,402,474 2,348,863 3,895,270 4,698,047 4,698,106 - - - - -
1600 - 1699 627,583 780,364 1,415,147 2,257,063 3,514,829 4,698,065 4,698,092 - - - -
1700 - 1799 419,889 408,444 891,818 1,499,773 2,228,952 3,999,818 4,698,035 4,698,088 - - -
1800 - 1899 281,902 286,769 447,341 893,978 1,468,987 2,439,832 3,665,572 4,698,000 4,698,059 - -
1900 - 1999 190,385 171,133 272,258 448,351 818,918 1,452,505 1,940,287 3,486,275 4,697,958 4,697,311 -

>2000 228,477 186,001 277,431 423,692 651,232 1,206,468 1,718,683 2,587,573 3,967,891 4,697,533 4,697,178
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly outline the main contributions and scope
of the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss the limitations of our work in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include details of model design and model training in Section 3, experi-
mental setup in Section 4, as well as hyperparameter settings and implementation details in
Appendix B.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include the link to our code including the data processing pipeline in the
abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We include dataset details and hyperparameter settings in Section 4 and
Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We train Maia-2 with a huge amount (9.1B) of chess positions. Therefore, it is
hard to evaluate Maia-2 multiple times with different train/test splits.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the required computational resources in Appendix B.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conduct our work under the guidance of NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential social impacts of our work in Section 1 and Section 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
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Justification: We discuss the limited risks of our work as a human-like model in Section 5.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We include all assets used in our paper in main texts and references.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release our code with documentations and comments.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: Our work does not involve crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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