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Abstract. Quantum neural networks (QNNs) employ parameterized
quantum circuits (PQCs) to map data inputs to desired predictions. Sim-
ilar to classical supervised learning, PQCs are often treated as black-box
function mappers. Recent analytical research demonstrates that PQCs
consisting of data reuploading structure are naturally expressed as par-
tial Fourier series and that a single qubit circuit can serve as a universal
approximator for univariate functions. However, this prior work largely
focuses on representational capacity and does not provide intuitive or
structural explanations of how the individual circuit components gov-
ern the resulting Fourier coefficients. In this paper, we peel back the
black-box and analyze the intrinsic structure of PQCs. In particular, we
investigate how data encoding, repeated reuploading, and trainable uni-
tary operators combine to represent function classes characterized by a
Fourier expansion with specific accessible frequency components. Our key
contribution is to show, both mathematically and empirically, that the
configuration of trainable parameters creates an output qubit trajectory
that is critical for the representation of Fourier coefficients.

Keywords: Quantum Neural Networks - Parameterized Quantum Cir-
cuits.

1 Introduction

Background and Motivation. Quantum computing sits at the intersection
between physics and computation. By leveraging the principles of quantum
mechanics, such as superposition and entanglement, quantum computers can
solve certain highly complex problems that are otherwise intractable to solve
with classical computer, achieving what is known as a quantum supremacy
[Deutsch and Jozsa(1992),Grover(1996),Shor(1999),Arute et al.(2019)]. Although
the general notion of quantum supremacy evokes the ideas that quantum com-
puters inherently outperform classical computers due to their quantum nature,
such benefit does not arise automatically. Rather, it arises from the careful design
of quantum algorithms that exploit specific quantum properties tailored to the
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given problem. Thus, to fully realize the quantum advantage in any scientific do-
main, it is essential to deeply understand how quantum systems behave under the
specific problem conditions so that it can be meaningfully incorporated into the
problem’s algorithmic designs [Li et al.(2022)]. Quantum computing is increas-
ingly being applied across many scientific disciplines, notably through quantum
neural network (QNN) [Schuld et al.(2014),Biamonte et al.(2017)]. Parameter-
ized quantum circuits (PQCs) have emerged as a central component of QNNs
[Benedetti et al.(2019)], which are often trained similarly to classical deep neu-
ral networks (DNNs) to approximate functions that map input features to out-
put values. Recent studies have exploited PQCs to tasks traditionally performed
by classical DNNs [Hur et al.(2022),Bausch(2020),Chen et al.(2020)]. While this
line of research is valuable, it is equally important to uncover the intrinsic charac-
teristics of PQCs. As argued by [Schuld and Killoran(2022)], with the discovery
of the unique capabilities of PQCs, we can move towards realizing a genuine
quantum supremacy for QNN by applying PQCs to tasks that are naturally
suited to their quantum nature.

Related Work. PQCs typically consist of a sequence of quantum gates, which
are elementary unitary operations acting on quantum states. Despite recent ad-
vancements in QNN, the design principle of PQC remains more of an art than a
mathematically grounded discipline, as the sequence of quantum gates are often
chosen arbitrarily. Recent research has begun addressing this by developing the-
oretical foundations for principled design [Nguyen et al.(2024),Yu et al.(2024)].
For example, [Pérez-Salinas et al.(2020)] introduced a data reuploading design
and rigorously establish an analogy between classical DNNs and PQCs. Expand-
ing on this, [Schuld et al.(2021)] showed that PQCs with the data reuploading
structure enables the resulting quantum model’s output to be represented as
partial Fourier series. More recently, [Yu et al.(2022)] proved the universal ex-
pressivity of single-qubit QNN for approximating bounded univariate functions.
However, there remains a fundamental gap in understanding the variational
power of PQCs, especially when the target function is purely a black-box in-
put. [Yu et al.(2022)] assumed prior knowledge of the target function’s Fourier
coefficients when constructing PQC to demonstrate its universal approximation
capability. However, this limits the model’s applicability in practical learning
scenarios. As a result, a key open question is to understand how PQCs learn
directly through training, without any prior knowledge of the target function’s
Fourier coefficients.

Overview. This paper presents both theoretical and empirical analysis to ex-
plain how the design of PQCs influence the Fourier coefficients of the quantum
model’s output. By viewing the state evolution of a qubit under a PQC as a
trajectory on the Bloch sphere, we establish a formal mathematical connec-
tion between this trajectory and the Fourier coefficients of the target function.
Specifically, we show that different PQC configurations shape distinct qubit tra-
jectories, which directly determine the resulting Fourier coefficients. Leveraging
this interpretation, we propose insights to systematically design PQC architec-
tures for enhancing the model’s learning ability. Furthermore, to extend this
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understanding into actionable design, we further introduce a principled method
for constructing sophisticated data-encoding Hamiltonian with tunable scalers.
This allows us to select spectra aligned with desired frequencies and enable a
more deliberate control over the frequency content of the model’s output.
Contributions. The main contributions of this research are two-fold as follows.
First, we provide empirical and mathematical evidence that a single-layer PQC
learns a target function by modulating the radius of a circular trajectory traced
by the qubit on the Bloch sphere. Furthermore, using a Lie algebraic approach
[Kharchenko(2015)], we establish a theorem that formally connects the trajectory
radius, the corresponding Fourier coefficient, and the measurement axis.

2 Quantum Model and Preliminaries

Qubit. A quantum bit, short for qubit, is a fundamental unit of quantum
information. Mathematically, a qubit is described by a unit vector in a two-
dimensional Hilbert space, written as |1)) = a'|0) + 3 [1), where |0) = [1,0]T and
[1) =[0,1]" are the computational basis states and a, 3 € C are complex-valued
probability amplitudes that satisfy |a|? + |3|> = 1. A qubit state is visualized
in the Bloch sphere, where a single-qubit is represented as a point on the sur-
face of a unit sphere in three-dimensional space. Therefore, any qubit state can
be parameterized as |¢p) = cos(0/2) |0) + €' sin(6/2) 1), where 6 € [0,7] and
¢ €10,2m).

Parameterized Quantum Circuit. QNNs are quantum analog of classical
neural networks, designed to leverage quantum principles such as superposition
to learn patterns and representations from data [Gawron and Lewinski(2020)].
A widely adopted model for constructing QNNs is the PQC. PQC is composed of
sequence of quantum gates whose rotation angles depend on classical input data
or tunable parameters that are optimized during training. Mathematically, PQC
implements unitary transformation U (z, @) acting on an initial state [0)*", where
r€RY O =(0,..., 0,) € RP and n is the input data, the trainable parameters,
and number of qubits, respectively. We consider a PQC architecture consisting of
alternating sequences of data-encoding gates S(z) and parameterized trainable
block W (@) [Pérez-Salinas et al.(2020)], such that the total unitary operator is
described as, U(z,0) = WEL(0)S(z)WE(0)...S(z)W(0), where L denotes
the number of reuploading gates. Each trainable block W' typically consists of
cascaded parameterized Pauli rotation gates, i.e., Rx(6) = e‘ig"x, Ry (0) =

e=59v and Rz(0) = e 572, where ox = ﬁ) (1)], oy = [(Z) 617 and o7 =

B _OJ respectively, are Pauli-X, Pauli-Y, and Pauli-Z operators.

Measurement and Projection. When a qubit is measured in the computa-
tional basis, it collapses to either |0) or |1) with probabilities |«|? and |3|2. This
process is probabilistic and irreversibly alters the superposition state of the qubit.
The measurement takes place via an observable, typically selected as oz, whose
eigenvectors are |0) and |1) with corresponding eigenvalues of +1. The output of
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a quantum model is the expectation value of this observable M with respect to
the quantum state processed by a PQC, i.e., fo(x) = (0| U (x,0)MU(z,0)|0) .
For the observable oz, this expectation value evaluates to fo(z) = |a|? — |B|?.
Geometrically, this expectation value corresponds to the projection of the qubit’s
state onto the measurement axis 2. Hence, observable oz confines the model’s
output within the range [—1, 1], defining a bounded, real-valued function: fo(z) :
R — [-1,1].

Partial Fourier Series Analysis. Consider a unitary operator that adopts a
data reuploading structure [Pérez-Salinas et al.(2020)|. Each data-encoding step
is performed by a Pauli gate-based encoder, given by S(z) = e~ **H  where H is
the Hamiltonian that governs the encoded data’s evolution. The spectral decom-
position of this Hamiltonian determines the accessible frequency spectrum of the
quantum model’s output. As shown by [Schuld et al.(2021)], the resulting out-
put of such PQCs naturally can be expressed as partial Fourier series described
as f(z) = 3, co Cwe™”, where the set of accessible frequencies 2 arises from
differences between eigenvalues of the Hamiltonian and the Fourier coefficients
¢, depends on the circuit parameters and measurement choices. [Yu et al.(2022)]
proved that a single qubit quantum circuit can act as a universal approxima-
tor for bounded univariate functions. However, they are limited for providing
intuitive or structural explanations of how individual PQCs affect the resulting
Fourier coefficients.

3 Designing the PQC

3.1 Projected Circle Theorem

To gain a more general understanding, we now present a theorem that formalizes
this learning behavior. This offers guidance for designing PQC to approximate
arbitrary target functions. As first step, we base our analysis towards three-
dimensional geometric perspective, since every qubit state can be represented
as a point on the Bloch sphere. In particular, we invoke Rodrigues’ formula
[[Dai(2015)]].

Lemma 1. (Rodrigues’ Formula) Let n € R® be a unit azis, i.e., ||n|| = 1,
and let Rn(a) € SO(3) be the rotation by angle o around the azis n. Then for
any vector u € R?, Ry(a)u =ucosa+ (n x u)sina + (n-u)n(l — cosa).

Proof. Consider an arbitrary rotation about axis w = [wy, wy, w,]" when |Jw|* =
Then, set of all possible rotations satisfying aforementioned condition is SO(3)
group. Consider a Lie algebra of SO(3), s0(3). w € s0(3), which is a correspond-
ing element of w, can be expressed as follows,

0 —w, wy
W= |—wy 0 wyl. (1)
—w; w, 0
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Rotating a vector v € R? about @ around the axis of w can be expressed as
6w. Corresponding rotation R € SO(3) of 0w € s0(3) is defined as follows,

1 1
exp(O) = T + 6w + 59%2 + 59%3 e (2)

Using the identity w? = —I + w7,

. 6 6° . 6> o 6° .
exp(9w):I+(1—§+§+)w+(—§+ﬁ—a+)w2 (3)
=T +sin 6 + (1 — cos §)i?. (4)

When applied R = exp(#) on vector u, rotated vector uye; is defined as,
Uror = Ru = u + sin Gbu + (1 — cos 0)*u. (5)

Note that wu = w X u. Also, by formula a x (b x ¢) =b(a - c¢) — ¢(a - b),

?u = w(w x u) =w x (wxu) =ww-u) —ulw-w)=ww-u) —u. (6)

Replacing 1wu and w?u in (5) using (6) completes the proof.

In general, a rotation about an arbitrary unit axis vector n € R? by an
angle x is represented by the rotation operator Ry (). Specifically, the action of
Ry () on a vector u describes rotating u around the axis n. However, Lemma 1
only applies to rotations acting on vectors in R3. To justify its relevance in our
setting, we note that every Pauli-gate belongs to the SU(2) group, which is a set
of all the spatial rotations of a vector on the Bloch sphere [Hall(2013)]. Since this
vector evolves within R3, the qubit state evolution under a single qubit unitary
can be entirely captured using SO(3) rotations. The following lemma formalizes
this connection.

Lemma 2. (Adjoint Homomorphism) Assume a mapping f:C**? — R3
such that, f : p — tr(pox), tr(poy, tr(poz)),where tr(-) denotes the trace
operator. Then, for VR € SU(2), 3R’ € SO(3) such that f(RpR") = R’ f(p).

Proof. Consider an arbitrary density matrix p. Then, it can be analyzed as
follows, p = %(I—I—r-o)7 where r = [r1,79,73]T and r- 0 = riox + 120y +1307.
Note that tr(c,op) = dap for a,b € {x,y, 2} and J,;, denotes Kronecker delta
function. Then,

f(p) = (tr(pox),tr(poy), tr(poz)) = (ri,r2,73) = 1. (7)

Thus function f maps arbitrary density matrix to a vector on three-dimensional
ball. Consider an arbitrary rotation R € SU(2) acts on the density matrix. Then,

RpR' = %(1 + R(r-o)R). (8)

Here, note that r - o is also an element of su(2) group, since every density matrix
can be expressed as linear combination of Pauli matrices and Identity matrix.



6 Seungcheol Oh et al.

Thus, R(r - ¢)R' in above equation can be interpreted as an adjoint representa-
tion of SU(2). Due to the property of su(2), VRo; RT € su(2), there exist rotation
in 7" € R3 such that,

Ro;RT =1 - 0. (9)
Thus, below equation holds,
F(RpRY) = (3 (1+ R(r-o)RY) (10)
= f(%l +rRoxR' +ryRoy R' + r3RozRT) (11)
= FGLAn0 - ox) 4l -ov) 4 rs(rh-02)  (12)
= ST+ (R7) o) = Rf(p) (13)

where R’ is 3 x 3 matrix whose column vectors are r, 75, r5. This completes the
proof.

Consider a single-qubit unitary operator of U(x,0,¢) = Vi (0)Rx(x)Vr(®),
where Rx () is the Pauli-X gate. The operators V1, (0) and Vi (¢) are products
of Pauli gates, Rg(n) = exp(—inQ/2), where @ = {ox, 0y, 0z}, with trainable
parameters collected in vectors @ € RY and ¢ € RM. Here, N and M, respec-
tively, are the numbers of trainable parameters in V;, and Vi. By Lemma 2,
Vi, Vr € SU(2) induce transformation in R? as Ry, , Ry,, € SO(3), respectively.

Theorem 1. (Projected Circle) Letn € R? be a unit vector (the data-encoding
avis), 2 = [0,0,1]T be the initial point of qubit state, and Ry,2 = u € R? be a
rotated initial vector for qubit in R3. By Lemma 1, consider the rotation of u by
angle x about n as r(x) = Ry(x)u. Let Ry, € SO(3) be another rotation. Then,
the output of the quantum model is described as,

f(z) =2 (Ry,Ra(z)u) =c, +v,cosz+ w,sinz, (14)

where the model spans {1,cosx,sinx} via coefficients c,,v,,w, € R that depend
onu,n and Ry, . The function is constant if v, = w, = 0; otherwise, both cosx
and sin appear.

Proof. By Lemma 1, as x varies, u rotates around n as

r(z) = Ra(x)u=ucosz+ (n x u)sinz + (n - u)n(l — cosz), (15)
tracing out a circle in R3. Applying the fixed rotation Ry, to r(x) and projecting
it onto 2 yields f(z) = 2- Ry, ucosz+2- Ry, (n x u)sinz+2 - Ry, n(n-u)(1l—

—— —_— ——

cs wy d.
cosz). If v, = d (n-u) — c,, f(z) matches (14). Then, coefficients of cosz and
sinz vanish if Z is orthogonal to both Ry, u and Ry, (n x u). This completes
the proof.

Corollary 1. The radius of the circle is determined by ||u x n||.
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Proof. The unit vector u can be decomposed to u = u +u,, where uj and u,
are parallel and orthogonal components of u. If u || n, then u = u;. Now, uj is
n

projection of u onto n. Then, u = (n - U)W = ||u|| n. Further, (n- u)n = ||u||n

since n is a unit vector. We apply these in (15) and then,
r(z) = ||u||n(cosx + 1 — cosx) = ||u||n. (16)

Therefore, (15) collapses to ||u||n, which is a single vector independent to z.
This completes the proof.

From Corollary 1, we note that the radius is fully determined by the vector
u, which makes it our primary design choice. Therefore, to effectively control the
radius of the trajectory, it is essential to have flexible and unrestricted control
over the selection of u.

Corollary 2. If u and n are parallel, i.e., u || n, r(x) degenerates to a single
point.

Proof. Decompose u into its parallel and orthogonal components, u = uj+u, =
(n - u)n+[u—(n - u)n]. Because the rotation axis is n, the orthogonal component
u, is exactly what sweeps out a circle when u is rotated. Equivalently, u x n
is a vector orthogonal to n whose magnitude is equal to magnitude of u, as
[lu x n|| = ||u]| ||n||sin(7/2) = ||ur||. Therefore, the circle is traced out by
u, cosz + (n X u, )sinz whose magnitude is exactly ||u X n||. This completes
the proof.

Corollary 3. (L-Layer PQC) Consider L consecutive sequence of PQC lay-
ers: U(x,0) = WEHL(0)S(x)WE(O)...S(z)W(0), which is equivalent to se-
quence of single-qubit rotations HiL:1 Z"/LRm (x)’R,%/R, each by same angle x
about some different unit azis n; € R3. Let 7(x) = Ry, (z)[ri—1(7)] and ro(z) =
n. Then, r(z) € span{1,sinz,cosx,...,sin(Lz), cos(Lx)}.

Proof. We prove Corollary 3 by mathematical induction on layer [.
Base case: When [ = 1, the analysis is equivalent to Theorem 1 itself.
Inductive step: Assume for [ — 1 layers we already have

ri—1(z) € span {1,sin z, cos z, sin(2z), cos(2z), ..., sin((l — 1)z),cos((I — 1)x)}.

(17)
Now we apply the next rotation for I-th rotation: r;(x) = Ry, (z)r;—1(x). This,
by Rodrigues’ formula is just another rotation of r;_; with respect to data-
encoder rotation axis n. Thus, r;(z) = r;_1(z) cosz + [n X r;_1(z)]sinz + n -
ri—1(z)]n(1l —cosx). Since each term r;_1(z) is a sum of harmonics up to (I —1)
in sin z, cos x, multiplying one more by {sinz, cos z, (1 — cosz)} can produce up
to [-th order harmonic terms. Specifically,

sin(({ — 1)x) cosz = 1/2 [sin(lx) + sin((l — 2)x)], (18)
cos((l — 1)x) cosz = 1/2 [cos(lx) + cos((l — 2)x)], (19)
sin((l — 1)x)sinx = 1/2[cos((! — 2)z) — cos(lx)]. (20)



8 Seungcheol Oh et al.

Thus, r(x) € span{l,sin(kz),cos(kx)|k < I}. This completes the inductive
proof.

From Corollary 3, we remark that the final qubit trajectory induces complicated
multi-loop trajectory because each layer pushes the rotation to different axis
while sharing the same x.

PQC Designing Insight. Building on the Theorem 1, we highlight key design
insights. i) Choose a non-collinear u to n: To avoid Corollary 2, u must be
designed such that it must not be collinear with the data-encoding axis n. ii)
Awoid Degenerate Projections: As the remark notes, if the final rotation leaves
the Bloch vector primarily parallel to the zz-plane, then projecting onto the y2-
plane degenerates the circle to a line, which loses the trajectory’s expressivity.
These insights emphasize flexible design of rotation axes, which allows robust
tilting of the rotating vector the circuit’s expressiveness is well preserved. This
intuition extends naturally to L-layer circuits: introducing flexible and indepen-
dent rotation axes at each layer enhances the model’s ability to produce richer
trajectories, enabling effective representation of higher harmonics and more com-
plex target functions.

4 Conclusion

In this paper, we investigated the intrinsic structure and behavior of PQCs from
the perspective of output qubit trajectories. Through theoretical and empirical
analyses, we demonstrated that the configuration of trainable parameters di-
rectly govern the radius and orientation of the output trajectory on the Bloch
sphere. We formally established a rigorous mathematical connection between the
qubit trajectory, measurement axis, and the resulting Fourier coefficients. These
results significantly bridge the gap between quantum circuit structure, geometric
insights from trajectory analysis, and the practical design considerations neces-
sary for PQC’s full expressive potential.
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