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Abstract

We address the problem of generalized category discovery
(GCD) that aims to partition a partially labeled collection
of images; only a small part of the collection is labeled and
the total number of target classes is unknown. To address
this generalized image clustering problem, we revisit the
mean-shift algorithm, i.e., a classic, powerful technique for
mode seeking, and incorporate it into a contrastive learn-
ing framework. The proposed method, dubbed Contrastive
Mean-Shift (CMS) learning, trains an image encoder to pro-
duce representations with better clustering properties by
an iterative process of mean shift and contrastive update.
Experiments demonstrate that our method, both in settings
with and without the total number of clusters being known,
achieves state-of-the-art performance on six public GCD
benchmarks without bells and whistles.

1. Introduction
Clustering is one of the most fundamental problems in un-
supervised learning, which aims to partition instances of a
data collection into different groups [1, 10, 19, 23]. Unlike
the classification problem, it does not assume either prede-
fined target classes or labeled instances in its standard setup.
However, in a practical scenario, some data instances may
be labeled for a subset of target classes so that we can lever-
age them to cluster all the data instances while also discov-
ering the remaining unknown classes. The goal of Gen-
eralized Category Discovery (GCD) [25] is to tackle such
a semi-supervised image clustering problem given a small
amount of incomplete supervision.

Viewing GCD as a transductive learning problem for
semi-supervised clustering, we revisit the mean shift [5, 7,
12], i.e., a classic, powerful technique for mode seeking and
clustering analysis. The mean-shift algorithm assigns each
data point a corresponding mode through iterative shifts by
kernel-weighted aggregation of neighboring points so as to
cluster the data points according to their modes; this pro-
cess is non-parametric and does not require any information
about the target clusters, e.g., the number of clusters.

By incorporating the mean shift into a contrastive learn-
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Figure 1. Contrastive Mean-Shift (CMS) learning. By inte-
grating mean shift [7, 12] into contrastive learning [4, 32], the
proposed method learns an embedding space such that the mean-
shifted embeddings of identical images xi and x+

i draw together
and those of distinct images xi and xj push apart from each other.

ing framework [4, 15, 32], we introduce contrastive mean-
shift learning that induces an embedding space with better
clustering properties for GCD.

Prior arts for GCD [6, 21, 25, 28, 30] typically employ k-
means clustering [1, 19] in validation and testing where the
ground-truth number of target classes K is often required
for stable performance, which is undesirable in practical
scenarios. In contrast, our method jointly estimates K dur-
ing training so that it achieves robust performance without
using the ground-truth K in clustering.

The proposed method is extensively evaluated on the
six public GCD datasets [13, 16, 17, 20, 24, 26], includ-
ing coarse-grained and fine-grained classification problems,
and achieves the state-of-the-art performance on the public
GCD benchmarks [25, 30]. Notably, even when the ground-
truth number of target classes K is not used, it shows com-
parable performance to the state-of-the-art methods that ex-
ploit the ground-truth K.

Our contribution can be summarized as follows:
• We introduce contrastive mean-shift learning for GCD by

incorporating the mean-shift algorithm in a contrastive
learning framework.



Figure 2. Contrastive Mean-Shift Learning. Given a collection
of images, each initial image embedding vi from an image en-
coder takes a single step of mean shift to be zi by aggregating its
k nearest neighbors with a weight kernel φ(·). The encoder net-
work is then updated by contrastive learning with the mean-shifted
embeddings, which draws a mean-shifted embedding of image xi

and that of its augmented image x+
i closer and pushes those of

distinct images apart from each other.

• The proposed method jointly estimates the number of tar-
get classes in training and thus achieves robust discovery
without using the ground-truth number of target classes.

• Extensive experiments and analyses demonstrate that our
method outperforms the state-of-the-art methods on sev-
eral standard GCD benchmarks.

2. Preliminary: mean-shift algorithm
Given a collection of data points V in a feature space, the
weighted mean m(vi) of each data point vi is calculated
over its neighborhood N (vi) ⊆ V as:

m(vi) =

∑
vj∈N (vi)

φ(vj − vi)vj∑
vj∈N (vi)

φ(vj − vi)
, (1)

where a kernel function φ(·) determines weights for neigh-
bors in estimating the mean. The mode of vi is sought by
iteratively shifting to its weighted mean until convergence.
The set of data points that converge to the same mode de-
fines the basin of attraction of that mode, and this naturally
relates to clustering: the points in the same basin of attrac-
tion are associated with the same cluster [7].

The mean shift is characterized by the set of neighbors
N (vi) and the kernel function φ(·). In typical setups [5, 7,
8, 29], N (vi) is defined by a certain radius and φ(·) is set
to a uniform, Gaussian, or Epanechnikov kernel [22].

3. Contrastive Mean-Shift
We propose contrastive mean-shift learning for GCD by in-
tegrating the mean shift in the contrastive learning frame-
work. Figure 2 illustrates the overall procedure.

Given a collection of images with partial labels, we ob-
tain initial image embeddings from a self-supervised en-

coder network [3], perform a single-step mean shift on each
of them using its k nearest neighbors (kNNs) (Sec. 3.1),
and then update the last layer of the encoder through con-
trastive learning [4, 15, 32] across the mean-shifted embed-
dings (Sec. 3.2). After each epoch of training, the number
of classes K is estimated by agglomerative clustering [27]
and used to measure the clustering accuracy of the snap-shot
model on the validation set (Sec. 3.3). This update proce-
dure is performed for a sufficient number of epochs, and the
best model is selected according to the validation accuracy.

After training the encoder, we apply multi-step mean
shifts on the final embedding space and the final cluster as-
signment is performed using the number of clusters K esti-
mated in training (Sec. 3.4).

3.1. Mean-shifted embedding
Given a collection of images X = {x1, x2, · · · , xN}, the
images are fed to an image encoder f to generate the corre-
sponding set of d-dimensional l2-normalized embeddings:
V = {vi}Ni=1, where vi = f(xi). To obtain discrimi-
native initial embeddings without supervision, we use the
self-supervised pre-trained encoder, DINO [3]; our method
is not restricted to a specific encoder.

The mean-shifted embedding zi is obtained from the ini-
tial embedding vi using a single-step mean shift similar to
Eq. (1). The conventional mean shift typically defines the
neighborhood for each data point based on a distance, i.e.,
radius. We find that the number of neighbors within a fixed
radius varies significantly during the update of the encoder,
causing the training phase to be unstable. To address the is-
sue, we replace the distance-based NNs with kNNs, which
greatly improves the stability and is also suitable for parallel
computation with GPUs. The neighborhood N (vi) is thus
defined with input vi and its kNNs:

N (vi) = {vi} ∪ argmaxkvj∈Vvi · vj , (2)

where argmaxks∈S(·) returns a subset of the top-k items that
maximizes a target function.

Along with the neighborhood, we design the weight ker-
nel φ(·) to put a higher weight on the center, i.e., the query
position vi, compared to its kNNs in aggregation:

φ(v) =

{
1− α if ||v|| = 0
α
k otherwise,

(3)

where α denotes a scaling hyperparameter (α = 0.5 in our
experiment). This kernel can be interpreted as a simple ap-
proximation of a Gaussian kernel with adaptive bandwidth.

The mean-shifted embedding zi is obtained by aggre-
gating the neighbor embeddings with the kernel and then
l2-normalizing it, ensuring that the shifted embedding re-
mains on a unit hypersphere. We use these mean-shifted
embeddings in contrastive learning to update the encoder,
which is described next.



Method
CIFAR100 ImageNet100 CUB Stanford Cars FGVC Aircraft Herbarium 19

All Old Novel All Old Novel All Old Novel All Old Novel All Old Novel All Old Novel

(a) Clustering with the ground-truth number of classes K given

Agglomerative [27]† 56.9 56.6 57.5 73.1 77.9 70.6 37.0 36.2 37.3 12.5 14.1 11.7 15.5 12.9 16.9 14.4 14.6 14.4
RankStats+ [14] 58.2 77.6 19.3 37.1 61.6 24.8 33.3 51.6 24.2 28.3 61.8 12.1 26.9 36.4 22.2 27.9 55.8 12.8
UNO+ [11] 69.5 80.6 47.2 70.3 95.0 57.9 35.1 49.0 28.1 35.5 70.5 18.6 40.3 56.4 32.2 28.3 53.7 14.7
ORCA [2] 69.0 77.4 52.0 73.5 92.6 63.9 35.3 45.6 30.2 23.5 50.1 10.7 22.0 31.8 17.1 20.9 30.9 15.5
GCD [25] 73.0 76.2 66.5 74.1 89.8 66.3 51.3 56.6 48.7 39.0 57.6 29.9 45.0 41.1 46.9 35.4 51.0 27.0
DCCL [21] 75.3 76.8 70.2 80.5 90.5 76.2 63.5 60.8 64.9 43.1 55.7 36.2 - - - - - -
PromptCAL [30] 81.2 84.2 75.3 83.1 92.7 78.3 62.9 64.4 62.1 50.2 70.1 40.6 52.2 52.2 52.3 37.0 52.0 28.9
GPC [31] 77.9 85.0 63.0 76.9 94.3 71.0 55.4 58.2 53.1 42.8 59.2 32.8 46.3 42.5 47.9 - - -
SimGCD [28] 80.1 81.2 77.8 83.0 93.1 77.9 60.3 65.6 57.7 53.8 71.9 45.0 54.2 59.1 51.8 44.0 58.0 36.4
PIM [6] 78.3 84.2 66.5 83.1 95.3 77.0 62.7 75.7 56.2 43.1 66.9 31.6 - - - 42.3 56.1 34.8
Ours 82.3 85.7 75.5 84.7 95.6 79.2 68.2 76.5 64.0 56.9 76.1 47.6 56.0 63.4 52.3 36.4 54.9 26.4

(b) Clustering without the ground-truth number of classes K given

Agglomerative [27]† 56.9 56.6 57.5 72.2 77.8 69.4 35.7 33.3 36.9 10.8 10.6 10.9 14.1 10.3 16.0 13.9 13.6 14.1
GCD [25] 70.8 77.6 57.0 77.9 91.1 71.3 51.1 56.4 48.4 39.1 58.6 29.7 - - - 37.2 51.7 29.4
GPC [31] 75.4 84.6 60.1 75.3 93.4 66.7 52.0 55.5 47.5 38.2 58.9 27.4 43.3 40.7 44.8 36.5 51.7 27.9
PIM [6] 75.6 81.6 63.6 83.0 95.3 76.9 62.0 75.7 55.1 42.4 65.3 31.3 - - - 42.0 55.5 34.7
Ours 79.6 83.2 72.3 81.3 95.6 74.2 64.4 68.2 62.4 51.7 68.9 43.4 55.2 60.6 52.4 37.4 56.5 27.1

Table 1. Comparison with the state of the arts on GCD, evaluated with or without the GT K for clustering. † denotes reproduced results.
training inference CIFAR100 ImageNet100 CUB Stanford Cars

CMS SSK IMS All Old Novel All Old Novel All Old Novel All Old Novel

(1) ✓ 71.5 77.3 60.1 74.1 89.8 66.3 51.2 49.2 52.2 37.9 57.8 28.3
(2) ✓ 71.6 77.3 60.0 80.3 91.7 74.6 58.7 62.0 57.1 40.8 54.5 34.2
(3) ✓ ✓ 81.1 85.6 72.1 83.4 95.8 77.2 66.7 75.3 62.5 54.5 76.4 43.9
(4) ✓ ⋄ (1-step) 80.1 86.0 68.4 84.1 95.6 78.3 68.2 76.4 64.1 56.1 74.6 47.1
(5) ✓ ✓ 82.3 85.7 75.5 84.7 95.6 79.2 68.2 76.5 64.0 56.9 76.1 47.6

Table 2. Effectiveness of each component of our method. SSK denotes semi-supervised k-means clustering and IMS iterative mean-shift.

3.2. Contrastive mean-shift learning
The objective of contrastive mean-shift learning is to en-
courage the model to improve its clustering properties in the
mean-shifted embedding space, bringing closer the mean-
shifted embeddings of an identical image while pushing
apart those of distinct images. The learning objective con-
sists of two types of terms: (1) the unsupervised contrastive
mean-shift loss LCMS for all images DL ∪ DUL and (2) the
supervised contrastive loss LSC for the labeled set DL.

We apply random image augmentation with cropping,
flipping and color jittering [25] to all images in a batch and
create positive pairs, xi and its augmented version x+

i while
considering pairs of two distinct images, xi and xj , as neg-
ative pairs. The unsupervised contrastive mean-shift loss is
designed to decrease the distance between the mean-shifted
embeddings of the positive pair and increase the distance
between those of the negative pair. The individual loss term
for the mean-shifted embedding zi is formulated as:

L(i)
CMS = − log

exp(zi · z+
i /τu)∑

j ̸=i exp(zi · zj/τu)
, (4)

where τu is a hyperparameter for adjusting the temperature.
Similarly, the supervised contrastive learning loss [15,

25] is formed with the labeled images only, which decreases
the distance between the features of the same class and in-

creases the distance between the others according to the
given ground-truth class labels:

L(i)
SC = − 1

|P(i)|
∑

p∈P(i)

log
exp(vi · vp/τs)∑

j /∈P(i) exp(vi · vj/τs)
, (5)

where P(i) represents the set of image indices for the same
class with image xi in a batch.

Denoting by B the set of image indices in a batch and by
BL its subset for labeled images, the overall learning objec-
tive combines the two types of individual losses:

L = λ
1

|BL|
∑
i∈BL

L(i)
SC + (1− λ)

1

|B|
∑
i∈B

L(i)
CMS, (6)

where λ represents the hyperparameter balancing between
two types of losses.

3.3. Estimating the number of clusters
During training, we also estimate the number of clusters
K by measuring the clustering accuracy on the validation
set DV. For actual clustering, we use the agglomerative
clustering algorithm with the ward linkage criterion [27],
which iteratively merges the closest pair of clusters until it
reaches a certain distance threshold or a target number of
clusters. At the end of each training epoch, we apply the



algorithm to DV and obtain clustering results for different
numbers of clusters. Among them, the highest clustering
accuracy, which is measured using the labeled images in
DV, is recorded as the validation performance at the epoch
and the corresponding number of clusters is determined as
the estimated number of clusters K at the epoch. Once the
training process is over, the snapshot model at the epoch
with the best validation performance is selected as the fi-
nal model, and the estimated K at the epoch is determined
as the final estimation of the number of clusters. This ap-
proach allows us to avoid accessing the ground-truth num-
ber of classes during both training and validation, in con-
trast to previous work [6, 21, 25, 28, 30].

3.4. Final clustering inference
The encoder learned by contrastive mean-shift learning is
used for the final cluster assignment; we extract embeddings
of images using the encoder and partition them into K clus-
ters using agglomerative clustering with the estimated K.
To improve the clustering property of the embeddings, we
perform multi-step mean shift on the embeddings before ag-
glomerative clustering. Starting from the initial embeddings
V(0) from the learned encoder, we update them to t-step
mean-shifted embeddings V(t) until the clustering accuracy
on DL does not increase for two consecutive iterations. The
final cluster assignment is obtained by agglomerative clus-
tering on the multi-step mean-shifted embeddings.

4. Experiments
4.1. Experimental setup
Training details. We follow the standard training datasets,
evaluation benchmark, and protocols of the existing work
on GCD [21, 25, 30]. We use the pre-trained DINO ViT-
B/16 [3, 9] with a projection head as our image encoder.
We used a single RTX-3090 for all experiments.

Evaluation. The accuracy is measured by matching the as-
signments with ground-truth labels by the Hungarian opti-
mal matching [18], based on the number of intersected in-
stances between each pair of classes. The unpaired classes
are considered incorrect predictions, while the instances of
the most dominant class within each ground-truth cluster
are considered correct when calculating the accuracy. The
accuracy is reported on “All” unlabeled data as well as the
accuracy on those of known and unknown classes, denoted
by “Old” and “Novel” in tables, respectively.

4.2. Main results
Evaluation on GCD. Table 1 presents a comparison on
the GCD setup in both coarse-grained and fine-grained
benchmarks with or without the ground-truth (GT) num-
ber of classes K. In Table 1 (a), we compare our method
with the state-of-the-art methods, all evaluated with GT K.

Note that the GT K is only used for evaluation purpose
in our case, and not for model selection during training.
The other state-of-the-art methods adopt semi-supervised
k-means clustering, where the K centroids are initialized
by the labeled data with the GT K. Our method achieves
state-of-the-art performance on five out of six datasets.

In Table 1 (b), we present the comparison of ours and
the state of the arts on the same setup with Table 1 (a) but
without having the GT number of classes K known for clus-
tering. For Vaze et al. [25], we borrow the results from the
work of PIM [6]. Our method shows outstanding perfor-
mance in most scenarios even though it does not access to
the GT K in both training and testing. Our method is even
superior to the state-of-the-art methods measured with the
known value of K on CUB and FGVC Aircraft. The re-
sults show that our K-estimation process incorporated in
the training phase performs effectively with no significant
performance drop compared to the known-K counterparts.

Effect of each proposed component. Table 2 shows the ab-
lation of CMS learning (Sec. 3.2) and Iterative Mean Shift
(IMS, Sec. 3.4) for final clustering inteference. For train-
ing, we examine the effect of the embedding without mean
shift, i.e., equivalent to the embedding in Vaze et al. [25]. At
inference, semi-supervised k-means clustering (SSK) [25],
single-step mean shift, and IMS are compared. Compar-
ing (1) vs (3) and (2) vs (5), we observe that CMS learn-
ing boosts performance significantly. After training, IMS
brings additional gains at inference when comparing (1) vs
(2) and (3) vs (5), plus recursive iterations: (4) vs (5). The
final model (5) outperforms others with the combined gain
of each proposed component.

5. Conclusion
We have proposed to revisit the mean-shift algorithm and
incorporated it with contrastive representation learning for
generalized category discovery. While the previous work
on GCD often exploits the ground-truth number of classes
for clustering, we avoid using the oracle information and
instead estimate the number of clusters using agglomera-
tive clustering. Our method achieves state-of-the-art perfor-
mance on public GCD benchmarks without bells and whis-
tles. We believe that the proposed contrastive mean-shift
learning will benefit representation learning for other di-
verse tasks beyond category discovery.
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