
SWE-InfraBench: Evaluating Language Models on
Cloud Infrastructure Code

Natalia Tarasova Enrique Balp-Straffon Aleksei Iancheruk Yevhenii Sielskyi
Nikita Kozodoi Liam H. Byrne Jack Butler Dayuan Jiang Marcin Czelej

Andrew Ang Yash Shah Roi Blanco Sergei Ivanov

Amazon Web Services

Abstract

Building infrastructure-as-code (IaC) in cloud computing is a critical task, underpin-
ning the reliability, scalability, and security of modern software systems. Despite
the remarkable progress of large language models (LLMs) in software engineering –
demonstrated across many dedicated benchmarks – their capabilities in developing
IaC remain underexplored. Unlike existing IaC benchmarks that predominantly
center on declarative paradigms such as Terraform and involve generating entire
codebases from scratch, our benchmark reflects the incremental code edits common
in enterprise development with imperative tools like the AWS CDK. We present
SWE-InfraBench, a diverse evaluation dataset sourced from dozens of real-world
IaC codebases that challenge LLMs to perform realistic code modifications in
AWS CDK repositories. Each example requires models to implement changes to
existing codebases based on natural language instructions, with success determined
by passing provided test cases. These tasks demand sophisticated reasoning about
cloud resource dependencies and implementation patterns beyond conventional
code generation challenges. Our evaluation results reveal significant limitations in
current LLMs showing that even state-of-the-art systems struggle with many tasks
– the best model, Sonnet 3.7, succeeds in only 34% of cases, while specialized
reasoning models like DeepSeek R1 achieve just 24% success.

1 Introduction

Modern cloud computing platforms enable unprecedented scalability and automation, but realizing
its potential requires managing highly complex infrastructure configurations [8; 12]. Infrastructure as
Code (IaC) has emerged as a DevOps practice to meet this need, treating the specification of cloud
resources as software artifacts [32; 27; 25]. With IaC, cloud environments (servers, networks, etc.)
are defined and provisioned using code, bringing software engineering rigor (version control, code
review, continuous integration) to infrastructure management. In broad terms, IaC approaches fall
into two paradigms: declarative and imperative. A declarative IaC tool describes the desired end state
of the infrastructure, leaving it to the system to “figure out” the necessary actions. An imperative IaC
tool, in contrast, specifies the exact sequence of commands to reach that end state [6; 23; 36].

Two dominant frameworks exemplify these paradigms in today’s cloud IaC landscape: Terraform and
AWS Cloud Development Kit (CDK). Terraform is a widely-adopted declarative IaC tool that uses a
domain-specific language (HCL) to let operators specify the final state of infrastructure resources [7].
While this approach has strengths (platform-agnostic abstractions, a robust planning mechanism),
it also has notable limitations for complex, evolving systems. Purely declarative configurations
can become brittle – small changes may require non-intuitive refactoring or state file surgery – and

39th Conference on Neural Information Processing Systems (NeurIPS 2025). Workshop: Evaluating the
Evolving LLM Lifecycle

Prompt InstructionsPrompt Instructions

IaC Repo

Prompt Instructions

Instructions

Generate CDK code to create

Lambda functions that

integrates with API Gateway

for all provided layers using

…

❓

Prompt Instructions

Infrastructure Tests

❓

❓

❓

❓

test_kinesis_firehose

test_event_bridge

test_s3_bucket

test_cognito_construct

📄 ☁️

app.py

cdk.json

README.md

requirements.txt

images

scripts

constructs

properties.yaml

Figure 1: Each SWE-InfraBench task includes an IaC repository, natural language modification
instructions, and automated tests verifying the correctness and integration of the generated solution.

inflexible, as HCL lacks the expressive power of general-purpose languages for handling conditional
logic, loops, or abstractions.

The AWS CDK directly addresses these pain points by taking an imperative developer-friendly
approach [3; 1; 17]. CDK allows developers to define cloud infrastructure using familiar program-
ming languages (TypeScript, Python, etc.), leveraging the full power of those languages to encode
loops, reuse components, and incorporate conditionals. This means infrastructure definitions can be
developed in the same codebase and environment as the application code, with complete IDE support
and testing frameworks [29; 37; 29]. The two philosophies yield different developer experiences:
Terraform favors stability but limits agility, while CDK supports incremental change and continuous
delivery. Since industrial software development often demands iterative experimentation and close
coupling with application logic, we adopt AWS CDK for this benchmark, which enables incremental
and testable infrastructure.

Surprisingly despite widespread industrial adoption of IaC frameworks, most of the coding evaluation
benchmarks for LLMs focused on programming tasks such as code completion and translation
[20; 11; 35; 15; 28], debugging and unit test synthesis [30; 33; 19; 16; 34], but not on IaC genera-
tion. Evaluation of LLMs specifically for imperative infrastructure-as-code editing tasks remains a
substantially underexplored research area due to unique challenges associated with interpreting and
maintaining consistency across large stateful codebases, as well as the inherent difficulty of curating
relevant examples that require specialized in-domain knowledge.

To address the gap in IaC evaluation, we introduce SWE-InfraBench, a benchmark dataset designed to
assess language models’ capabilities on IaC tasks within the AWS CDK framework. SWE-InfraBench
comprises 100 diverse examples, each containing complete CDK repositories, modification instruc-
tions reflecting real-world development scenarios, and multiple unit tests verifying the correctness
of LLM-generated implementations. To the best of our knowledge, SWE-InfraBench is the first
specialized benchmark for evaluating language models on CDK editing tasks, distinguishing itself
from existing IaC benchmarks [22; 38] in two critical dimensions. First, previous benchmarks pri-
marily target Terraform and its declarative syntax, whereas our benchmark leverages the imperative
programming languages used by CDK, a framework widely adopted in industry for infrastructure
development. Second, SWE-InfraBench emphasizes incremental codebase modifications rather than
complete application synthesis, reflecting the iterative development patterns predominant among
cloud practitioners in enterprise environments.

Our work makes the following contributions:

1. We provide a new collection of a hundred instruction-based tasks for modification of IaC
codebases that are challenging to modern LLMs, collected from 34 real-world assets. Each
task includes a full AWS CDK project with a specific modification instruction and a suite of
unit tests that must pass after the change.

2. We introduce a systematic LLM-driven pipeline for generating and validating new benchmark
examples from arbitrary CDK repositories. This approach enables anyone to create realistic
tasks from any IaC project and ensures each example is valid by verifying that the modified
code passes all tests after synthesis.

3. We conduct a comprehensive experimental analysis across diverse LLM architectures,
including both proprietary and open-source models with varying parameter scales and
architectural designs, establishing baseline performance metrics for this domain. Going

2

beyond individual LLM models, we evaluate performance of multi-turned agents enhanced
with error messages, test results, and RAG on IaC documentation.

2 Related Work

LLMs for Infrastructure-as-Code Generation

IaC has become crucial for modern DevOps and MLOps, enabling programmatic management
of cloud resources. Research has explored using LLMs to automate IaC generation. Early work
investigated generating Ansible YAML from natural language [21; 31]. However, recent evaluations
reveal LLMs perform significantly worse on IaC tasks compared to general Python generation [22],
highlighting limitations in domain-specific configuration automation. Benchmarks like CloudEval-
YAML [38] and IaC-Eval [22] address this gap, with IaC-Eval showing GPT-4 achieving only 19.36%
pass@1 accuracy on human-curated IaC scenarios, despite scoring 86.6% on EvalPlus. These
benchmarks focus on declarative frameworks such as Terraform and ask to generate entire codebase
from prompt instructions, which is different from our SWE-InfraBench that targets imperative
infrastructure code modifications within AWS CDK repositories. Finally, the dataset LIG-MM [24]
explores symbolic and neural methods to address the formal reasoning challenges in IaC tasks.

Code Generation and Editing Benchmarks Advancements in LLM code generation evaluation
have created more comprehensive benchmarks spanning from single functions to multi-file problems.
Meanwhile, research has expanded code editing benchmarks beyond traditional bug fixing to address
additional tasks like code completion. HumanEval [10] remains a popular benchmark for evaluating
code generation, with recent extensions targeting multilingual [5], editing [39], and reasoning
variants [26]. However, these tasks often focus on short, self-contained functions. CrossCodeEval [13]
addresses this limitation by introducing multi-file completion problems that require reasoning across
files and navigating real codebases – bringing code benchmarks closer to industrial development
settings. In order to better simulate real world engineering tasks on identifying location where the
code editing is required, SWE-PolyBench, [35] was introduced as an incremental development to the
SWE-bench [20] as the first dataset that mirrors real-world software engineering specifically covering
over 2000 curated coding challenges across Java, JavaScript, TypeScript and Python along with
evaluation metrics like live level localization and concrete Syntax Tree node level retrieval. Similarly,
Mercury [14] evaluates models not only on correctness but also on runtime performance, highlighting
inefficiencies in LLM-generated code limiting real-world utility. In code editing, the focus has largely
been on bug fixing, with fewer benchmarks addressing tasks like code completion. Initiatives like
CodeEditorBench [18]and CanItEdit [9] have aimed to fill this gap. CodeEditorBench tried to address
this gap, by creating a dataset of tasks to help assess the performance of LLMs in tasks like code
debugging, code translation, code requirement switching and even code polishing. But the use of
competitive programing problems meant that the real-world replicability of the performance was not
tenable. CanItEdit, introduces a dataset of instructional editing problems with a novel ExcessCode
metric [18; 9].

3 SWE-InfraBench

SWE-InfraBench consists of a collection of IaC codebases implemented using AWS CDK. Each
codebase is paired with a prompt that contains a natural language instruction to generate new code
blocks extending the existing infrastructure. For each codebase, we also provide multiple unit tests
that enable verification of potential solutions. The task for an LLM is to produce a code change that
satisfies the requirements outlined in the prompt and passes the associated tests. On average, one
codebase includes 10 files spanning 30 thousand characters that are provided to the LLM as context.
Further statistics of the dataset tasks can be found in Appendix A and B.

CDK code is synthesized into AWS CloudFormation [2] templates – JSON or YAML files that
describe the desired AWS resources and their relationships. This process enables automated testing of
infrastructure definitions without actual deployment, which is particularly valuable since deploying
cloud infrastructure can be time-consuming and resource-intensive. This makes CDK a good
candidate for benchmarking LLMs on cloud infrastructure generation tasks.

3

Donor  
Repo Selection

Candidates
Generation

Donor
Repo

Task Candidate 1-10 per  
donor repo

Task Review & Modification

SWE-InfraBench Task 100 
Tasks

Auto Critique & Refinement

Validate Critique Improve

 - performed by human

 - generated by LLM

 - executed automatically

- or -

Figure 2: SWE-InfraBench task instances are created from open-source and custom developed IaC
repositories in a semi-automated manner with a rigorous human engineers oversight.

3.1 Benchmark Construction

Creating a high-quality IaC dataset requires identifying precise, robust examples with clear objectives
and verifiable outcomes. To achieve this at scale and with consistent quality, we developed a
multi-stage pipeline combining human expertise with LLMs assistance, which is shown in Figure 2.

Stage I: Donor Repository Selection and Task Generation. We begin by identifying high-quality
source repositories implementing IaC. Our benchmark draws from both open-source repositories and
custom-developed sources, with licensing details provided in Appendix C. Using these repositories, an
LLM (typically Claude Sonnet 3.5 or 3.7) analyzes the codebase and generates initial task suggestions.
Each task includes a code block that should be masked (also referred to as the canonical solution),
a prompt with functional requirements, and unit tests to verify correctness of generated solutions.
Human domain experts then review these suggested tasks and select the most promising candidates.

Stage II: Critique and Refinement. Each task candidate undergoes either manual refinement or an
automated improvement process. For automated refinement, we use a critic-based approach:

1. Validate: The system validates the tests by running them on the canonical solution (masked code)
to ensure they are passed by a correct implementation of the required functionality.

2. Critique: Two different critic models (Sonnet 3.7, o3, or o4-mini), which are distinct from the
generator, perform a comprehensive evaluation of the task suggestion across four key dimensions:

• Prompt vs. Functional Requirements Alignment: Evaluates whether the prompt accurately
describes all necessary functional aspects of the masked code, is sufficiently detailed for
correct implementation, avoids ambiguities, and balances completeness with avoiding
implementation details.

• Implementation Generality: Assesses whether the tests allow for multiple valid implemen-
tation approaches that satisfy the functional requirements, rather than enforcing a specific
implementation pattern.

• Test Quality: Analyzes each individual test to determine its purpose, how it relates to prompt
requirements, and whether it is appropriately written to verify the requirement without being
overly restrictive.

• Test Completeness: Verifies that the tests collectively cover all requirements mentioned in
the prompt, including edge cases and error conditions.

4

The second critic model is only evaluated if the first one was satisfied. Critics provide detailed
feedback with specific corrections and code improvements. Both critics must approve all four
dimensions for the suggestion to pass. The full critic prompt template used for evaluation is provided
in Appendix E.1.

3. Improve: Based on validation results and critics’ feedback, the generator LLM refines the suggested
task, addressing any identified issues in the prompt or tests. The prompt for the generator model is
provided in Appendix E.2.

Throughout this process, human experts can guide the refinement by providing specific instructions
to both the generator and critics, allowing for targeted improvements while maintaining the benefits
of automated evaluation.

Stage III: Expert Review and Finalization. Human experts review and perform optional final
modifications in each task to ensure:

• Fairness: The prompt and tests are properly aligned so any valid solution following the
prompt will pass the tests;

• Test coverage: Tests adequately verify the prompt requirements;
• Challenge level: The task presents an appropriate difficulty for state-of-the-art models;
• Automatic validation: The canonical solution passes all tests.

This multi-faceted approach ensures that our benchmark contains systematically vetted and validated
infrastructure-as-code tasks that provide a rigorous evaluation framework for LLMs.

The final benchmark tasks are stored as JSON files containing the context files (with masking
tags), natural-language prompts, canonical solutions, tests, and CDK version information. See
Appendix D.2 for a task format preview and D.1 for example prompts.

3.2 Dataset Collection Challenges

Building a high-quality IaC benchmark required substantial engineering expertise. Each task needed
rigorous human oversight to ensure it was challenging, objective and fair, with aligned prompts, tests,
and solutions. This process demanded experienced IaC developers with deep cloud knowledge. On
average, an engineer could produce five high-quality dataset items per day, which required us to
employ tens of cloud practitioners collaborating on building the dataset.

As outlined in Section 3.1, we developed a semi-automated pipeline using LLMs to jumpstart
creation, provide refinement, and offer critique. While this helped to derive examples from existing
repositories, human oversight remained essential for the final validation and quality control. A major
obstacle was the lack of test coverage in open-source IaC repositories. Most open-source IaC projects
lack comprehensive tests for CloudFormation templates, requiring us to develop tests for each task
ourselves.

By releasing our task generation pipeline alongside the benchmark, we aim to establish a scalable
process that directs the focus of the human expertise on the area where it matters most: refining and
validating machine-generated tasks rather than creating new items from scratch.

3.3 Problem Definition

Model Input. Given a textual instruction describing a desired functionality within the IaC codebase, a
language model is tasked with generating appropriate code modifications that fulfill the described ob-
jective. Specifically, the model receives a detailed prompt outlining the components, their interactions,
and constraints. For example, a prompt might instruct the model to set up an event-driven pipeline
involving components such as a message broker, data delivery stream, object storage bucket, access
control policies, and event routing rules. Examples of the prompts can be found in Appendix D.1.
The entire codebase is provided to the LLM as additional context. The resulting generated solution is
represented as structured code edits that can be directly integrated into the existing codebase.

Evaluation Metrics. To objectively evaluate the correctness of the generated solutions, we integrate
generated code modifications into the target codebase and subsequently execute predefined unit tests
designed to validate the implemented functionality. These tests check for the presence and correctness

5

Table 1: Performance metrics for proprietary and open-source LLMs on IaC generation tasks. Models
are grouped by source type and provider, and sorted from the most recent to the oldest variant within
each group. † indicates LLMs executed with reasoning capabilities. ✝ Claude 3.7 was executed
without extended reasoning. Top results are in bold.

Source Company Model Correctness Generation Success Passed Tests Share
Pr

op
ri

et
ar

y

Anthropic Claude 3.7 Sonnet ✝ 34% 100% 53.1%
Claude 3.5 Sonnet V2 32% 100% 47%
Claude 3.5 Sonnet 29% 100% 47.9%
Claude 3 Haiku 8% 88% 10.7%

Google Gemini 2.5 Pro (03-25 Preview) † 29% 97% 42.5%
Gemini 2.5 Pro (05-06 I/O Edition Preview) † 29% 95% 41.1%
Gemini 2.0 Flash Lite 5% 79% 11.5%
Gemini 2.0 Flash 4% 43% 6.9%

OpenAI OpenAI o3 † 23% 100% 30.8%
OpenAI o4-mini † 23% 99% 32.1%
GPT-4.1 18% 100% 26.4%
GPT-4o Mini 4% 84% 7%

O
pe

n-
So

ur
ce

DeepSeek DeepSeek R1 † 24% 100% 34.9%

Mistral Mistral Large 14% 89% 20.3%
Codestral 9% 96% 15%

Meta LLaMA 3.1 405B Instruct 9% 97% 13%
LLaMA 3.1 70B Instruct 3% 97% 7.7%
LLaMA 4 Maverick 17B Instruct 8% 94% 13%
LLaMA 4 Scout 17B Instruct 2% 76% 2.4%

Alibaba Qwen2.5 72B Instruct Turbo 0% 94% 2.7%

of the infrastructure components described by the prompt, verifying criteria such as resource creation,
correct permissions and configurations, and successful integration between components. A solution is
considered correct if it integrates into the codebase without errors and passes all associated unit tests.

The key evaluation metrics for our benchmark vary according to the number of trials for each model
on each task. The considered metrics are:

• pass@k as defined in [10]: Probability that LLM completes a task at least once in k trials.
• Correctness: Average number of tasks completed (equals to pass@1 for one-trial experi-

ments). A task is completed if all of its tests are passed.
• Generation Success: Proportion of generated solutions that follow the required format and

could be integrated within existing codebase.
• Passed Tests Share: Proportion of tests across all examples that are passed.

4 Experimental Results

We evaluate 20 state-of-the-art language models on 100 SWE-InfraBench tasks. Each model is given
a single attempt to generate a solution for each task. The solutions are integrated into the task context
repository, and tests are run on the resulting CloudFormation output to assess correctness.

SWE-InfraBench proves to be challenging, with even the top-performing models solving less than
35% of the tasks completely. This highlights the complexity of IaC generation, which requires both
domain knowledge, precise syntax adherence as well as deep prompt and context understanding.

Table 1 shows the results for 20 models on the metrics defined in Section 3.3, averaged over all
code generation tasks. The best performance is achieved by the Claude Sonnet family of models
(3.7, 3.5 V2 and 3.5). While these models reportedly excel in code generation benchmarks [4], such
as SWE-bench [20], it is also worth noting that the input prompt format used for all the Anthropic
models incorporates additional XML tags, unlike the default prompt template for other LLMs (see
Appendix E.3). Notably, reasoning models such as Gemini 2.5 Pro, DeepSeek R1, OpenAI o3, and
o4-mini demonstrate stronger capabilities than non-reasoning models such as GPT-4.1, Claude 3
Haiku, and Gemini 2.0 Flash. This aligns with our expectations, as IaC generation requires substantial
reasoning to understand the requirements, determine appropriate resources, and establish correct
relationships between components. Nevertheless, as shown in Appendix F, reasoning models require
an increased token budget.

6

Models generally achieve high generation success rates (over 94%), indicating they could follow the
output format, but their ability to produce fully correct solutions varies significantly. This suggests
the challenge is not understanding the requirements but implementing the correct functionality. The
"Passed Tests Share" metric shows that even when models do not solve tasks completely, they often
implement substantial portions of the code correctly.

Since a substantial share of the tasks are created from open-source data, we separately confirm that
tasks originating from open-source repositories are not less challenging than custom-developed ones.
The details of this analysis are provided in Appendix H.

4.1 Consistency Analysis

To evaluate models reliability, we conduct a separate multi-trial analysis on a selected subset of
models. For each task, we execute five independent solution attempts (trials) per model, allowing us
to measure both peak performance and consistency. This approach addresses two critical questions:
(1) can a model solve a given task at least once in K attempts (pass@K), and (2) how consistently
does the model produce the same outcome across attempts?

As shown in Table 2, higher pass@k values indicate that models can solve more tasks given multiple
attempts, which is valuable for iterative development scenarios. At the same time, average correctness
across five generations for the best-performing models falls below 30%, indicating that it is challeng-
ing to achieve consistently accurate generations. These results indicate that in practical applications,
multiple generation attempts can increase success rates, particularly for complex IaC tasks where
small syntax variations can determine the successful infrastructure creation. We provide further
analysis of the relationship between the average correctness and success consistency in Appendix I.

Table 2: Model Performance with Multiple Independent Trials

Model Average Correctness pass@1 pass@2 pass@5
Claude 3.7 Sonnet 28.8% 34% 36% 41%
Gemini 2.5 Pro (03-25 Preview) 26.4% 28% 38% 47%
DeepSeek R1 24.6% 24% 33% 46%
OpenAI o3 22.8% 23% 30% 45%
LLaMA 3.1 405B Instruct 6.8% 8% 11% 13%

Average Correctness: Average success rate across all trials (all tests passed)
pass@1: Probability of solving the task in a single attempt
pass@2: Probability of solving the task in at least one of two attempts
pass@5: Probability of solving the task in at least one of five attempts

4.2 Error Type Distribution

Our analysis of error types across 20 LLMs reveals distinct patterns in their ability to generate
IaC solutions, as shown in Figure 3. Incorrect property usage in CDK constructs and other syntax
errors make a considerable part of all failures. Such issues can be caused both by models lacking
information about particular components syntax as well as models having a knowledge cutoff that is
earlier than more recent CDK versions.

These findings suggest that agent-like approaches that allow models to make an attempt to generate
the code, analyze the errors, access recent documentation and refine solutions could substantially
improve performance, particularly for syntax-related issues. This would better mirror the iterative
development process that human developers use when working with IaC problems.

4.3 Multi-Turn Agent Performance

To investigate the potential benefits of iterative approaches, we implement a two-turn agent that
provides models with feedback from their initial attempts. When a model fails to solve a task on the
first try, error messages and test results are fed back to the model for a second attempt. The feedback
mechanism is implemented with two distinct verbosity configurations: low-verbosity (VL), which
provides basic error messages and test pass/fail counts, and high-verbosity (VH), which includes

7

0 20 40 60 80 100
Percentage of Trials

Qwen2.5 72B Instruct Turbo
Llama 4 Scout 17B Instruct

LLaMA 3.1 70B Instruct
Gemini 2.0 Flash

GPT-4o Mini
Gemini 2.0 Flash Lite

Claude 3 Haiku
Llama 4 Maverick 17B Instruct

Codestral
LLaMA 3.1 405B Instruct

Mistral Large
GPT-4.1

OpenAI o3
OpenAI o4-mini

DeepSeek R1
Gemini 2.5 Pro (05-06 I/O Edition Preview)

Gemini 2.5 Pro (03-25 Preview)
Claude 3.5 Sonnet

Claude 3.5 Sonnet V2
Claude 3.7 Sonnet

6% 86% 8%
24% 72%

87% 7%
57% 34%

16% 73% 7%
21% 61% 13%

12% 74% 6% 8%
6% 78% 8% 8%

77% 10% 9%
78% 10% 9%

11% 64% 11% 14%
69% 13% 18%

64% 13% 23%
60% 16% 23%

59% 17% 24%
47% 19% 29%

45% 23% 29%
44% 27% 29%
44% 24% 32%

38% 28% 34%

Distribution of Error Types by Model (%)

Response Format Error: Solution does not follow the required output format.
Syntax Error: Incorrect object properties or syntax errors that cause all tests to fail.
Logical Error: Solution passes some tests but does not solve the task completely.
No Error: Solution passes all tests and solves the task correctly.

Figure 3: Distribution of error types across trials. Syntax errors are the dominant failure type (40–85%
of errors), primarily stemming from incorrect property usage in CDK constructs. Logical errors
(5–30%) occur when models produce syntactically valid code that fails to meet task requirements
or capture context. Response format errors are relatively rare, with Claude and OpenAI models
demonstrating particular strength in format adherence.

comprehensive output from tests with full tracebacks and detailed diagnostic information (see Table 6
for a complete specification).

Additionally, we enhance this approach with a Retrieval-Augmented Generation (RAG) system that
operates in a two-phase process. In the first phase, along with generating the initial solution, models
produce relevant keywords for documentation retrieval. These keywords are used to fetch the top-k
most relevant documentation pages from AWS documentation. If the initial solution fails, the second
phase incorporates both the error feedback and the retrieved documentation into the context for the
model’s second attempt.

Our results demonstrate that multi-turn interaction substantially improves performance across all
models, as shown in Table 3. Claude 3.7 Sonnet achieves the highest correctness score of 64% with
the high-verbosity configuration (among standard two-turn configurations), representing a significant
absolute improvement of 30 percentage points over its one-turn baseline. Additional details on error
distribution changes for multi-turn approach can be found in Appendix J.

The interaction between model scale and verbosity reveals other interesting patterns. While larger
models demonstrate substantial improvements with increased verbosity, smaller models like Mistral
Large show more modest gains (two percentage points gain in correctness score for standard con-
figuration when going from VL to VH). This pattern indicates that the ability to effectively utilize
detailed error information may be contingent on model capacity.

The verbosity effect proves particularly noteworthy, with VH configurations consistently outper-
forming VL across LLMs, suggesting that detailed diagnostic information enables more effective
error correction. RAG configurations add further complexity to the performance landscape, with
Claude 3.5 Sonnet V2 achieving the highest correctness score of 65% – a substantial 33 percentage
points improvement over its one-turn performance. The effectiveness of RAG varies significantly
across model architectures. Smaller models like LLaMA 4 Maverick show modest but consistent
improvements with RAG, while some high-performing models like GPT-4.1 demonstrate reduced
effectiveness (26%) compared to their standard two-turn performance (48%). This heterogeneity
suggests that RAG implementation may require model-specific optimization strategies.

8

Table 3: Comparison of One-Turn vs. Two-Turn LLM Performance (with and without RAG).

Model
Correctness (↑) Passed Tests Share (↑)

One-Turn Two-Turn Two-Turn + RAG Best One-Turn Two-Turn Two-Turn + RAG Best
VL VH VL VH VL VH VL VH

Claude 3.7 Sonnet 34.0% 44.0% 64.0% 51.0% 60.0% 64.0% 53.1% 49.5% 71.6% 60.6% 66.1% 71.6%
Claude 3.5 Sonnet V2 32.0% 52.0% 56.0% 52.0% 65.0% 65.0% 47.0% 60.9% 66.1% 65.5% 74.2% 74.2%
Gemini 2.5 Pro (03-25 Preview) 29.0% 41.0% 40.0% 41.0% 33.0% 41.0% 42.5% 41.5% 41.4% 41.3% 33.0% 42.5%
DeepSeek R1 24.0% 40.0% 43.0% 45.0% 39.0% 45.0% 34.9% 49.0% 51.7% 51.9% 49.5% 51.9%
GPT-4.1 (2025-04-14) 18.0% 40.0% 48.0% 46.0% 26.0% 48.0% 26.4% 48.0% 55.9% 56.7% 30.9% 55.9%
Mistral Large 14.0% 21.0% 23.0% 14.0% 17.0% 23.0% 20.3% 24.2% 28.6% 17.9% 23.7% 28.6%
LLaMA 4 Maverick 17B Instruct 8.0% 15.0% 18.0% 21.0% 21.0% 21.0% 13.0% 20.5% 23.7% 25.6% 27.3% 27.3%

Correctness: Percentage of completions where the solution passed all test cases.
Passed Tests Share: Average percentage of unit tests passed, including partial completions.
Two-Turn + RAG: Two-step prompting approach with retrieval-augmented generation support.
VL/VH : Low/High verbosity configurations.

These results warrant several important considerations. First, full test failure tracebacks may reveal
details that might inadvertently help models correct their solutions without genuine understanding
of the underlying problems. The error messages often contain specific values expected for Cloud-
Formation properties, potentially allowing models to pattern-match rather than reason about the
proper solution. This may make the observed performance gains overoptimistic with regards to
real-world use cases, where the true CloudFormation templates are unknown. Second, we observe
that DeepSeek R1 allocates a substantial number of tokens to reasoning during its second attempt,
which requires the raise of maximum output token parameter to prevent it from exhausting the token
limit before generating a complete solution. Finally, the multi-turn approach, while effective, comes
with increased computational costs, both in terms of token consumption and inference time.

Our results suggest that enabling iterative refinement with detailed feedback is a promising direction
for enhancing model capabilities. The consistent advantage of high-verbosity configurations high-
lights the importance of detailed diagnostic information in enabling successful iterative refinement,
particularly for more sophisticated model architectures. However, the effectiveness of enhancement
strategies like RAG is not uniform across model architectures.

5 Conclusion

This work introduces SWE-InfraBench, the first benchmark designed to evaluate language models in
modifying imperative infrastructure-as-code frameworks, specifically AWS CDK, on realistic cloud
development tasks. SWE-InfraBench presents challenging IaC instances, each requiring LLMs to
understand modification instructions, reason about cloud resource dependencies, and generate precise
code changes within existing CDK repositories, verified automatically via unit tests. Our analysis
reveals that these tasks, mirroring iterative enterprise workflows, pose significant difficulties for
current models; our extensive experiments show that the best performing LLM Claude 3.7 struggles,
with the top single-attempt success rate reaching only 34%, although multi-turn agentic approaches
show promise, boosting performance up to 65%. Other strong LLMs, including reasoning models
such as DeepSeek r1, falls short with only 24% pass rate.

SWE-InfraBench currently centers on AWS CDK (Python), which is a popular way of building
IaC applications in the cloud. We hope in the future to broaden the benchmark to encompass
additional cloud services and IaC frameworks. Similarly, while not a focus of the present work, a
natural extension is to enable agents with various tools such as search engine, bash script, python
environment and others that could facilitate development of IaC code modifications. Our results
with two-turn LLMs show that this is a promising direction. Finally, although we employ execution-
based testing for model evaluation, this method alone cannot fully assess the quality of generated
infrastructure code. Automatically generated solutions may be syntactically correct and pass unit
tests, yet still suffer from inefficiencies, misconfigurations, or security risks when deployed. Future
evaluation strategies could incorporate static analysis tools, cost simulation, or LLM-as-a-Judge
review to address these gaps.

9

References
[1] Amazon Web Services: Increasing developer velocity using aws cloud development kit with

godaddy (2025), https://aws.amazon.com/solutions/case-studies/godad
dy-cdk-case-study/, accessed: 2025-05-05

[2] Amazon Web Services: What is aws cloudformation? - aws cloudformation (2025), https:
//docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welco
me.html, accessed: 2025-05-05

[3] Amazon Web Services: What is the aws cdk? - aws cloud development kit (aws cdk) v2
(2025), https://docs.aws.amazon.com/cdk/v2/guide/home.html, accessed:
2025-05-05

[4] Anthropic: Claude 3.7 sonnet system card (February 2025), https://www.anthropi
c.com/claude-3-7-sonnet-system-card, technical report detailing Claude 3.7
Sonnet, a hybrid reasoning model

[5] Athiwaratkun, B., Gouda, S.K., Wang, Z., Li, X., Tian, Y., Tan, M., Ahmad, W.U., Wang, S.,
Sun, Q., Shang, M., et al.: Multi-lingual evaluation of code generation models. arXiv preprint
arXiv:2210.14868 (2022)

[6] Ava: Terraform vs AWS CloudFormation vs AWS CDK. https://kudulab.io/posts
/2023-2-terraform-vs-cdk-vs-cloudformation/ (2023), accessed: 2025-05-
09

[7] Buchh, I.: Two billion downloads of the terraform aws provider shows value of iac for infrastruc-
ture management. https://aws.amazon.com/blogs/aws-insights/two-bil
lion-downloads-of-the-terraform-aws-provider-shows-value-of-i
ac-for-infrastructure-management/ (2023), aWS Insights Blog, 11 Oct 2023

[8] Canalys: Worldwide cloud infrastructure services expenditure increased 20% year on year in q4
2024 to us$86 billion (2025), https://www.canalys.com/newsroom/worldwide
-cloud-service-q4-2024, accessed: 2025-05-05

[9] Cassano, F., Li, L., Sethi, A., Shinn, N., Brennan-Jones, A., Ginesin, J., Berman, E.,
Chakhnashvili, G., Lozhkov, A., Anderson, C.J., et al.: Can it edit? evaluating the ability
of large language models to follow code editing instructions. arXiv preprint arXiv:2312.12450
(2023)

[10] Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto, H.P., et. al, J.K.: Evaluating large
language models trained on code (2021)

[11] Chowdhury, N., Aung, J., Shern, C.J., Jaffe, O., Sherburn, D., Starace, G., Mays, E., Dias, R.,
Aljubeh, M., Glaese, M., Jimenez, C.E., Yang, J., Ho, L., Patwardhan, T., Liu, K., Madry, A.:
Introducing swe-bench verified (2024), https://openai.com/index/introducing
-swe-bench-verified/, accessed: 2025-03-02

[12] Delta, E.: How many companies use cloud computing in 2024? [10 statistics] (2025), https:
//edgedelta.com/company/blog/how-many-companies-use-cloud-com
puting, accessed: 2025-05-05

[13] Ding, Y., Wang, Z., Ahmad, W., Ding, H., Tan, M., Jain, N., Ramanathan, M.K., Nallapati, R.,
Bhatia, P., Roth, D., et al.: Crosscodeeval: A diverse and multilingual benchmark for cross-file
code completion. Advances in Neural Information Processing Systems 36, 46701–46723 (2023)

[14] Du, M., Luu, A.T., Ji, B., Liu, Q., Ng, S.K.: Mercury: A code efficiency benchmark for code
large language models. arXiv preprint arXiv:2402.07844 (2024)

[15] Du, X., Liu, Y., Wang, Y., Zhang, W., Li, X.: Classeval-t: A class-level code translation
benchmark. arXiv preprint arXiv:2411.06145 (2024)

[16] Etsenake, D., Nagappan, M.: Understanding the human-llm dynamic: A literature survey of llm
use in programming tasks. arXiv preprint arXiv:2410.01026 (2024)

10

https://aws.amazon.com/solutions/case-studies/godaddy-cdk-case-study/
https://aws.amazon.com/solutions/case-studies/godaddy-cdk-case-study/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://www.anthropic.com/claude-3-7-sonnet-system-card
https://www.anthropic.com/claude-3-7-sonnet-system-card
https://kudulab.io/posts/2023-2-terraform-vs-cdk-vs-cloudformation/
https://kudulab.io/posts/2023-2-terraform-vs-cdk-vs-cloudformation/
https://aws.amazon.com/blogs/aws-insights/two-billion-downloads-of-the-terraform-aws-provider-shows-value-of-iac-for-infrastructure-management/
https://aws.amazon.com/blogs/aws-insights/two-billion-downloads-of-the-terraform-aws-provider-shows-value-of-iac-for-infrastructure-management/
https://aws.amazon.com/blogs/aws-insights/two-billion-downloads-of-the-terraform-aws-provider-shows-value-of-iac-for-infrastructure-management/
https://www.canalys.com/newsroom/worldwide-cloud-service-q4-2024
https://www.canalys.com/newsroom/worldwide-cloud-service-q4-2024
https://openai.com/index/introducing-swe-bench-verified/
https://openai.com/index/introducing-swe-bench-verified/
https://edgedelta.com/company/blog/how-many-companies-use-cloud-computing
https://edgedelta.com/company/blog/how-many-companies-use-cloud-computing
https://edgedelta.com/company/blog/how-many-companies-use-cloud-computing

[17] Frois, J., Padrão, L., Oliveira, J., Xavier, L., Tavares, C.: Terraform and aws cdk: A
comparative analysis of infrastructure management tools. In: Anais do XXXVIII Simpósio
Brasileiro de Engenharia de Software. pp. 623–629. SBC, Porto Alegre, RS, Brasil (2024).
https://doi.org/10.5753/sbes.2024.3577, https://sol.sbc.org.br/index.php/sbe
s/article/view/30404

[18] Guo, J., Li, Z., Liu, X., Ma, K., Zheng, T., Yu, Z., Pan, D., Li, Y., Liu, R., Wang, Y., et al.:
Codeeditorbench: Evaluating code editing capability of large language models. arXiv preprint
arXiv:2404.03543 (2024)

[19] Jiang, J., Wang, F., Shen, J., Kim, S., Kim, S.: A survey on large language models for code
generation. arXiv preprint arXiv:2406.00515 (2024)

[20] Jimenez, C.E., Yang, J., Wettig, A., Yao, S., Pei, K., Press, O., Narasimhan, K.: Swe-bench:
Can language models resolve real-world github issues? arXiv preprint arXiv:2310.06770 (2023)

[21] Kawaguchi, M., Mizutani, K., Iguchi, N.: An implementation of misconfiguration prevention
system using language model for a network automation tool. IEICE Proceedings Series 72(S5-8)
(2022)

[22] Kon, P.T., Liu, J., Qiu, Y., Fan, W., He, T., Lin, L., Zhang, H., Park, O.M., Elengikal, G.S., Kang,
Y., et al.: Iac-eval: A code generation benchmark for cloud infrastructure-as-code programs.
Advances in Neural Information Processing Systems 37, 134488–134506 (2024)

[23] Larssen, E.: It’s time to retire terraform. https://blog.realkinetic.com/its-tim
e-to-retire-terraform-30545fd5f186 (2024), real Kinetic Blog, Apr 23, 2024

[24] Liu, C., Wu, X., Feng, Y., Cao, Q., Yan, J.: Towards general loop invariant generation: A
benchmark of programs with memory manipulation. Advances in Neural Information Processing
Systems 37, 129120–129145 (2024)

[25] Morris, K.: Infrastructure as Code: Managing Servers in the Cloud (2nd Edition). O’Reilly
Media (2020)

[26] Muennighoff, N., Liu, Q., Zebaze, A., Zheng, Q., Hui, B., Zhuo, T.Y., Singh, S., Tang, X., von
Werra, L., Longpre, S.: Octopack: Instruction tuning code large language models (2023)

[27] Pahl, C., Gunduz, N.G., Sezen, O.C., Ghamgosar, A., El Ioini, N.: Infrastructure as code:
Technology review and research challenges. In: Proc. of the 15th Int. Conf. on Cloud Computing
and Services Science (CLOSER) (2025)

[28] Pan, R., Ibrahimzada, A.R., Krishna, R., Sankar, D., Wassi, L.P., Merler, M., Sobolev, B.,
Pavuluri, R., Sinha, S., Jabbarvand, R.: Lost in translation: A study of bugs introduced by large
language models while translating code. In: Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering. pp. 1–13 (2024)

[29] Poccia, D.: AWS Cloud Development Kit (CDK) – TypeScript and Python are Now Generally
Available. https://aws.amazon.com/blogs/aws/aws-cloud-developme
nt-kit-cdk-typescript-and-python-are-now-generally-available/
(2019), aWS News Blog, 11 Jul 2019

[30] Prasad, A., Stengel-Eskin, E., Chen, J.C.Y., Khan, Z., Bansal, M.: Learning to generate unit
tests for automated debugging. arXiv preprint arXiv:2502.01619 (2025)

[31] Pujar, S., Buratti, L., Guo, X., Dupuis, N., Lewis, B., Suneja, S., Sood, A., Nalawade, G., Jones,
M., Morari, A., et al.: Automated code generation for information technology tasks in yaml
through large language models. In: 2023 60th ACM/IEEE Design Automation Conference
(DAC). pp. 1–4. IEEE (2023)

[32] Quattrocchi, G., Tamburri, D.A.: Infrastructure as code. IEEE Software 40(1), 37–40 (2023).
https://doi.org/10.1109/MS.2022.3212034

[33] Rahman, S., Kuhar, S., Cirisci, B., Garg, P., Wang, S., Ma, X., Deoras, A., Ray, B.: Utfix:
Change aware unit test repairing using llm. Proceedings of the ACM on Programming Languages
9(OOPSLA1), 143–168 (2025)

11

https://sol.sbc.org.br/index.php/sbes/article/view/30404
https://sol.sbc.org.br/index.php/sbes/article/view/30404
https://blog.realkinetic.com/its-time-to-retire-terraform-30545fd5f186
https://blog.realkinetic.com/its-time-to-retire-terraform-30545fd5f186
https://aws.amazon.com/blogs/aws/aws-cloud-development-kit-cdk-typescript-and-python-are-now-generally-available/
https://aws.amazon.com/blogs/aws/aws-cloud-development-kit-cdk-typescript-and-python-are-now-generally-available/

[34] Raihan, N., Newman, C., Zampieri, M.: Code llms: A taxonomy-based survey. In: 2024 IEEE
International Conference on Big Data (BigData). pp. 5402–5411. IEEE (2024)

[35] Rashid, M.S., Bock, C., Zhuang, Y., Buccholz, A., Esler, T., Valentin, S., Franceschi, L.,
Wistuba, M., Sivaprasad, P.T., Kim, W.J., et al.: Swe-polybench: A multi-language benchmark
for repository level evaluation of coding agents. arXiv preprint arXiv:2504.08703 (2025)

[36] Wicher, F.: Why we chose cloud development kit for terraform over hashicorp configuration
language for our infrastructure. https://andamp.io/blog/why-we-chose-cloud
-development-kit-for-terraform-over-hashicorp-configuration-l
anguage-for-our-infrastructure (2025), andamp Engineering Blog, Mar 19, 2025

[37] Wiggers, S.J.: AWS Cloud Development Kit (CDK) Is Generally Available, Enhancing Coding
Cloud Infrastructure. InfoQ News, July 2019 (2019), https://www.infoq.com/news
/2019/07/amazon-aws-cdk-ga/

[38] Xu, Y., Chen, Y., Zhang, X., Lin, X., Hu, P., Ma, Y., Lu, S., Du, W., Mao, Z.M., Cai, D., et al.:
Cloudeval-yaml: A practical benchmark for cloud configuration generation. Proceedings of
Machine Learning and Systems 6, 173–195 (2024)

[39] Yu, H., Shen, B., Ran, D., Zhang, J., Zhang, Q., Ma, Y., Liang, G., Li, Y., Wang, Q., Xie, T.:
Codereval: A benchmark of pragmatic code generation with generative pre-trained models. In:
Proceedings of the 46th IEEE/ACM International Conference on Software Engineering. pp.
1–12 (2024)

12

https://andamp.io/blog/why-we-chose-cloud-development-kit-for-terraform-over-hashicorp-configuration-language-for-our-infrastructure
https://andamp.io/blog/why-we-chose-cloud-development-kit-for-terraform-over-hashicorp-configuration-language-for-our-infrastructure
https://andamp.io/blog/why-we-chose-cloud-development-kit-for-terraform-over-hashicorp-configuration-language-for-our-infrastructure
https://www.infoq.com/news/2019/07/amazon-aws-cdk-ga/
https://www.infoq.com/news/2019/07/amazon-aws-cdk-ga/

Appendix

A SWE-InfraBench Characteristics

SWE-InfraBench tasks contain examples for multiple CDK versions ranging from 2.0.0 to more
recent version like 2.189.1, with the majority of tasks suitable for 2.178.2 and newer (see Figure 5).
The tasks also vary in number and length of context files, prompt length and canonical solution length.
The key dataset statistics are illustarted in Figure 4.

0 10 20 30 40 50
Number of Context Files

0

10

20

30

40

Fr
eq

ue
nc

y

Distribution of Number of Context Files

Mean: 10.0
Median: 6.0

0 500 1000 1500 2000
Prompt Length (chars)

0

5

10

15

20

Fr
eq

ue
nc

y

Distribution of Prompt Length (chars)

Mean: 574.0
Median: 479.0

0 50k 100k 150k 200k
Context Files Total Length (chars)

0

10

20

30

40

Fr
eq

ue
nc

y

Distribution of Context Files Total Length (chars)

Mean: 31445.9
Median: 25977.5

0 2k 4k 6k 8k 10k 12k
Canonical Solution Total Length (chars)

0

5

10

15

20

25

Fr
eq

ue
nc

y

Distribution of Canonical Solution Total Length (chars)

Mean: 1789.2
Median: 1403.5

Figure 4: SWE-InfraBench Statistics on Context Size and Solution Length

B CDK Versions Distribution

2.0
.0

2.1
0.0

2.3
5.0

2.5
9.0

2.8
1.0

2.1
15

.0

2.1
27

.0

2.1
53

.0

2.1
75

.0

2.1
77

.0

2.1
78

.2

2.1
84

.1

2.1
85

.0

2.1
89

.1

CDK Version

0

10

20

30

40

50

N
um

be
r o

f T
as

ks

5
2 3 2 3

6
4

2 1

14

51

2 1
4

Distribution of CDK Versions

Figure 5: Distribution of AWS CDK Versions Across SWE-InfraBench Tasks

13

Figure 5 shows the distribution of AWS CDK versions across the SWE-InfraBench tasks. The
benchmark predominantly utilizes version 2.178.2, highlighting a concentration on recent library
versions, while also including several earlier versions to ensure diversity and represent real-world
variability in CDK projects.

C Source Repositories Licences

SWE-InfraBench tasks are derived from open-source repositories and custom-developed sources.
Note that original code snippets were substantially modified to create the tasks. See Table 4 for
details on open-source repositories.

Table 4: Open-source repositories used as sources for SWE-InfraBench tasks
Repository Name Source License
aws-cdk-examples aws-samples/aws-cdk-examples Apache-2.0
generative-ai-cdk-constructs-samples aws-samples/generative-ai-cdk-constructs-samples Apache-2.0
generative-ai-ml-latam-samples aws-samples/generative-ai-ml-latam-samples MIT-0
aws-cdk-lambda-import-export-redshift-ddl aws-samples/aws-cdk-lambda-import-export-redshift-ddl MIT-0
amazon-elasticache-demo-using-aws-cdk aws-samples/amazon-elasticache-demo-using-aws-cdk MIT-0
deploy-langfuse-on-ecs-with-fargate aws-samples/deploy-langfuse-on-ecs-with-fargate MIT-0

All repository URLs are prefixed with https://github.com/

D Tasks Preview

D.1 Prompt Examples

SWE-InfraBench includes a diverse set of prompts that test various aspects of infrastructure-as-code
generation. See examples of such prompts below:

API Gateway Integration

Generate code to create an API Gateway SampleAPI-EventBridge-Multi-Consumer that
integrates with the event producer with proxy integration. Do not add a catch-all route in api
routing (use proxy=False). Add a resource named ’items’ to the root of the API and create a
POST method for this resource.

Bedrock Agent Setup

Create a Bedrock agent using CDK with the following requirements in the CfnAgent
construct.
Set the agent name, description, model and instruction from the class attributes.
Also, set the agent resource role ARN from the previously created role and add idle session
time of 600 seconds.
We want the draft version to be always in sync via auto preparation and add test alias tags.
Finally include action groups and collaboration if provided and ensure the removal policy
destroys the agent when the stack is deleted

WhatsApp IAM Policy

Create CDK code to add IAM policies to a Lambda function, granting permissions for
social-messaging, transcribe, and bedrock services.
The policies should have separate policies for
1) allow sending whatsapp messages and getting media from them for all cell numbers in all
regions and accounts
2) access to any transcribe action on all resources
3) and access to invoke* all agents, inference profiles and models in oregon

14

https://github.com/

D.2 Task Example

Figure 6 illustrates the structure of a task from SWE-InfraBench. Each task is stored as a JSON file
containing the prompt, context files, canonical solution, and tests.

Example Task: API Gateway Integration with EventBridge

{

"task_id": "67ad6ef1-fb3e-45e6-b5e1-83ae385528b5",

"entry_point": "api-eventbridge-lambda+api_gateway_integration",

"prompt": "Generate code to create an API Gateway

SampleAPI-EventBridge-Multi-Consumer↪→

that integrates with the event producer with proxy

integration.↪→

Do not add a catch-all route in api routing (use

proxy=False).↪→

Add a resource named 'items' to the root of the API and

create a↪→

POST method for this resource.",

"cdk_version": "2.178.2",

"context": {

"app.py": "#!/usr/bin/env python3\n\nfrom aws_cdk import

App\n\nfrom api_eventbridge_lambda.api_eventbridge_lambda

import ApiEventBridgeLambdaStack...",

↪→

↪→

"api_eventbridge_lambda/api_eventbridge_lambda.py": "from

constructs import Construct\nfrom aws_cdk import...",↪→

"lambda/event_consumer_lambda.py": "import json\nimport

logging\n\nlogger = logging.getLogger()...",↪→

"lambda/event_producer_lambda.py": "import json\nimport

boto3\nimport datetime..."↪→

},

"canonical_solution": {

"api_eventbridge_lambda/api_eventbridge_lambda.py": [

"--- without_solution\n\n+++ with_solution\n\n@@ -102,0 +103,7

@@\n\n+ # defines an API Gateway REST API resource

backed by our \"atm_producer_lambda\" function.\n\n+

api = api_gw.LambdaRestApi(self,

'SampleAPI-EventBridge-Multi-Consumer',\n\n+

handler=event_producer_lambda,\n\n+

proxy=False\n\n+)\n\n+

items = api.root.add_resource(\"items\")\n\n+

items.add_method(\"POST\") # POST /items\n"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

]

},

"tests": {

"test_api_gateway_integration.py": "import aws_cdk as cdk\nfrom

aws_cdk.assertions import Template, Match..."↪→

}

}

Figure 6: Example task from InfraBench showing the JSON structure. Context and test files are
truncated for brevity.

15

E Prompt Templates

E.1 Critic Prompt Template

The following is the template used for the critic in the InfraBench dataset construction process:

Critic Prompt Template

As an AI assistant specialized in Infrastructure as Code, your task is to critique a dataset item
created for an LLM code generation challenge.
You will be given:
1. A repository description
2. The full repository code
3. A pre-suggestion with a specific code section to mask
4. The actual code that was masked
5. The generated human language prompt
6. The generated test file
Your job is to critically evaluate:
1. Whether the prompt accurately describes what needs to be implemented
2. Whether the tests effectively validate all requirements stated in the prompt
3. Whether the prompt and tests are general enough to allow various valid solutions that
preserve the functionality of the masked code while remaining compatible with the overall
repository structure
REPOSITORY DESCRIPTION

[Repository description is provided here]

REPOSITORY CONTENT

[Repository files are provided here]

PRE-SUGGESTION

Item Name: [Item name]
File Path: [File path]
Start Line: [Start line]
End Line: [End line]
Complexity: [Complexity]
Rationale: [Rationale]

ACTUAL CODE TO BE MASKED

[Masked code is provided here]

GENERATED PROMPT

[Generated prompt is provided here]

GENERATED TEST FILE
Path: [Test file path]

[Test file content is provided here]

GENERATOR NOTES

[Generator notes are provided here]

CRITIQUE GUIDELINES
Prompt vs Functional Requirements Evaluation
1. Does the prompt clearly describe ALL the necessary functional aspects needed for the
masked code?
2. Is it sufficiently detailed for someone to implement the solution correctly without seeing
the masked code?

16

3. Are there any ambiguities or missing requirements that would prevent a correct implemen-
tation?
4. Does it avoid revealing the actual implementation details while still being complete?
5. If something can be inferred unequivocally from the repository code, it does not need to be
specified in the prompt.
Generality of Tests Evaluation
1. Tests should be general enough so that they pass if a developer or LLM follows the prompt
accurately, regardless of the specific implementation details.
2. The prompt should give only the minimum necessary instructions needed to explain the
functional requirements, while considering how the tests are built.
3. Tests should verify functionality rather than specific implementation approaches - they
should allow for multiple valid solution patterns that fulfill the prompt.
4. Evaluate if tests are overly restrictive by enforcing a particular implementation approach
when other valid approaches could fulfill the same requirements.
5. Tests won’t be accepted if they don’t pass with the original masked code (tested elsewhere)
but consider as well if other reasonable implementations would pass.
Test Evaluation
For each test in the test file:
1. What is this test specifically checking for?
2. Is this test testing for something that’s explicitly stated in the prompt?
3. A test is valid if it tests integration with functionality that exists elsewhere in the code base
(not just the masked section).
4. Is the test appropriately written to verify the requirement?
5. If the test might fail with some valid implementations (including the original masked code),
should the prompt be more explicit or should the test be less restrictive?
Test Completeness Evaluation
1. Do the tests collectively verify ALL requirements mentioned in the prompt?
2. Are there any requirements in the prompt that aren’t tested?
3. Are there any tests for requirements not mentioned in the prompt?
4. Are all edge cases and error conditions properly tested?
Return the response in this JSON format:

{
"prompt_vs_functional": {

"explanation": "Detailed explanation of whether the prompt
accurately describes all necessary functional aspects of the
masked code",

"corrections": "Specific corrections with concrete
implementation suggestions - provide exact wording changes or
additions to the prompt", // Only include if there are issues

"example_improvements": "Suggested rewrites of problematic
sections with specific language", // Only include if there are
issues

"accept": true|false // Conclusion based on the
explanation
},
"generality": {

"explanation": "Analysis of whether the tests allow for
multiple valid implementations that satisfy the requirements in
the prompt",

"issues": "Identification of any tests that could fail
with valid implementations that follow the prompt", // Only
include if there are issues

"suggested_improvements": "Concrete suggestions for making
tests more general while still validating functionality", //
Only include if needed

"accept": true|false // Whether the tests are
sufficiently general
},
"tests": {

17

"test_name_1": {
"purpose": "What this test is checking for",
"coverage": "Explanation of how this relates to prompt

requirements",
"suggested_improvements": {

"explanation": "Why the test needs improvement",
// Only include if needed

"code_snippet": "Complete improved version of the
test with code fixes", // Provide actual code implementation

"rationale": "Explanation of why this
implementation is better"

}, // Only include if needed
"accept": true|false // Conclusion based on the

critic's analysis of the test quality
},
"test_name_2": {

"purpose": "What this test is checking for",
"coverage": "Explanation of how this relates to prompt

requirements",
"suggested_improvements": {

"explanation": "Why the test needs improvement",
// Only include if needed

"code_snippet": "Complete improved version of the
test with code fixes", // Provide actual code implementation

"rationale": "Explanation of why this
implementation is better"

}, // Only include if needed
"accept": true|false // Conclusion based on the

critic's analysis of the test quality
}
// Add entries for each test in the test file

},
"tests_completeness": {

"explanation": "Analysis of whether the tests completely
cover all prompt requirements",

"missing_tests": ["list", "of", "requirements", "that",
"should", "be", "tested", "but", "aren't"],

"corrections": "Specific additional tests needed if the
evaluation fails", // Only include if there are issues

"accept": true|false // Conclusion based on the analysis
},
"feedback": "Detailed feedback explaining all issues and
providing clear guidance for improvements"

}

Be rigorous in your evaluation. The goal is to ensure high-quality dataset items that will
effectively test LLM code generation capabilities. Only provide the JSON response, no
additional explanation. The response will be parsed with json.loads(response) so be sure json
format is correct. Instead of triple-quotes use characters.
IMPORTANT CUSTOM INSTRUCTIONS

[Custom instructions from human reviewers are provided here when
available. These instructions provide special guidance in the
evaluation process.]

E.2 Generator Prompt Template

The following is the template used for the generator in the InfraBench dataset construction process:

18

Generator Prompt Template

As an AI assistant specialized in Infrastructure as Code, your task is to create a high-quality
dataset item for an LLM code generation challenge.
You will be given:
1. A repository description
2. A pre-suggestion with a specific code section to mask
3. The full repository content
Based on this information, you need to:
1. Create a clear, detailed human language prompt describing what code needs to be generated
2. Develop comprehensive pytest tests that validate the generated code meets all requirements
REPOSITORY DESCRIPTION

[Repository description is provided here]

PRE-SUGGESTION

Item Name: [Item name]
File Path: [File path]
Start Line: [Start line]
End Line: [End line]
Complexity: [Complexity]
Rationale: [Rationale]

PREVIOUS FEEDBACK
When available, this section may include:
PREVIOUS TASK SUGGESTION

{
"item_name": "example_item",
"file_path": "path/to/file",
"insert_points": {
"start_line": 10,
"end_line": 20

},
"prompt": "previous prompt text",
"test_file": {
"path": "tests/test_example.py",
"content": "previous test file content"

},
"generator_notes": "previous notes"

}

IF THERE ARE VALIDATION ERRORS
The tests failed when run against the original masked code. Here are the errors:

Error details from validation step

Make sure the original code will pass the tests, and write them correctly according to what
you see in these error logs.
CRITIQUE FEEDBACK

[Detailed feedback from the critique step explaining issues with
the previous suggestion.]

GUIDELINES FOR CREATING A QUALITY DATASET ITEM
For the human language prompt:
1. COMPLETENESS: Describe ALL functional aspects needed for the code.
2. GENERALITY: Allow for multiple possible valid solutions that fulfill the requirements.
3. CLARITY: Be specific about requirements but avoid dictating implementation specifics.
4. PRECISION: Include all requirements that would allow someone to implement the solution
correctly.
5. CONTEXT: Describe the functionality, purpose, and integration with other components.

19

6. ESSENTIAL DETAILS ONLY: Specify necessary parameters and behaviors, but avoid
over-constraining the solution.
7. NO SPOILERS: DO NOT include the actual implementation details or code snippets.
8. IMPLEMENTATION FREEDOM: Focus on "what" needs to be achieved, not "how" it
must be done.
9. NO HINTS: If something can be inferred unequivocally from the repository code, it does
not need to be specified in the prompt.
For the test file: 1. COMPREHENSIVE COVERAGE: Tests must verify ALL aspects
mentioned in the prompt
2. EXPLICIT PURPOSE: Each test should clearly indicate what requirement it’s checking
3. APPROPRIATE VERIFICATION: Tests must use assertions that correctly validate the
implementation
4. PRACTICALITY: Tests MUST pass when run against the original code that will be masked
5. ROBUSTNESS: Tests should fail if important requirements are not met
6. COMPLETENESS: No requirement from the prompt should be left untested
7. STRUCTURE: Use appropriate fixtures and mocks, follow pytest best practices
REPOSITORY CONTENT File to be masked: [File path]

[File content is provided here]

[All other relevant context files are provided here]

Return the response in this JSON format:

{
"item_name": "SAME_AS_PRE_SUGGESTION",
"file_path": "path/to/file",
"insert_points": {

"start_line": number,
"end_line": number

},
"prompt": "detailed description of what needs to be generated",
"test_file": {

"path": "tests/test_something.py",
"content": "complete content of the test file including

imports, fixtures, and test cases"
},
"generator_notes": "You don't need to accept all the
suggestions from the feedback, but give an explanation of your
approach, learnings regarding test syntax for the cannonical
solution to pass, detailed design decisions, rationale for
implementation choices, and how you've ensured generality in
the prompt and tests. There will be a new critic, so explain
your decisions without assuming the critic understands the
current feedback. IMPORTANT: give an analysis of possible flaws
in the generated prompt and tests focusing on its generality
(if various valid solutions would be accepted), coverage and
alignment between prompt and tests, etc."

}

Ensure that:
1. The insert_points are within the pre-suggestion range
2. The prompt is comprehensive and covers ALL requirements
3. The test_file content is complete and will validate ALL requirements
4. The tests MUST pass when run against the original masked code
Only provide the JSON response, no additional explanation.
IMPORTANT CUSTOM INSTRUCTIONS

[Custom instructions from human reviewers are provided here when
available. These instructions provide special guidance in the
generation process.]

20

E.3 Zero-shot Direct Solver

Anthropic template

You are tasked with implementing a solution based on the following prompt:

<example_prompt>
{example_prompt}
</example_prompt>

Ensure the solution is compatible with AWS Python CDK version aws-cdk-lib =
{cdk_version}.
You have access to the following context files:
<context_files>
{context_files}
</context_files>

Your task is to provide git-style unified diffs that show the changes needed to implement the
solution. For each file that needs changes, provide a unified diff. Only add content, do not
remove any lines
Provide your response as a JSON object where: - Keys are the file paths - Values are arrays
containing the unified diffs for each change section
The diff format should be:
<output_format>
--- without_solution
+++ with_solution
@@ -line,count +line,count @@

context lines
+added lines

context lines
</output_format>

Example response format:
<example_response>
{

"path/to/file1.py": [
"--- without_solution\\n+++ with_solution\\n
@@ -10,3 +10,5
@@\\n existing_line\+
new_line1\\n+ new_line2\\n
existing_line"

]
}
</example_response>

Only provide the JSON response, no additional explanation. The response will be parsed
with json.loads(response_text) so make sure the string is correct JSON. Do NOT
include ```json
Ensure the diffs include proper line numbers and context.

Default template

You are tasked with implementing a solution based on the following prompt:

{example_prompt}

Ensure the solution is compatible with AWS Python CDK version aws-cdk-lib =
{cdk_version}.
You have access to the following context files:
{context_files}

21

Your task is to provide git-style unified diffs that show the changes needed to implement the
solution. For each file that needs changes, provide a unified diff. Only add content, do not
remove any lines
Provide your response as a JSON object where: - Keys are the file paths - Values are arrays
containing the unified diffs for each change section
The diff format should be:
--- without_solution
+++ with_solution
@@ -line,count +line,count @@

context lines
+added lines

context lines

Example response format:
{

"path/to/file1.py": [
"--- without_solution\\n+++ with_solution\\n
@@ -10,3 +10,5
@@\\n existing_line\+ new_line1
\\n+ new_line2\\n
existing_line"

]
}

Only provide the JSON response, no additional explanation. The response will be parsed
with json.loads(response_text) so make sure the string is correct JSON. Do NOT
include ```json
Ensure the diffs include proper line numbers and context.

E.4 Zero-shot Two-Turn Solver

First Turn Prompt

Task overview
You are tasked with implementing a solution
based on the following prompt:
{example_prompt}

Steps
- Have a look at the version of aws-cdk-lib

- Current version is {cdk_version}
- Read each all of the context files ("# Context files" section)
- Try to understand what should be done
- Read task overview
("# Task overview" section)
- If provided, read related AWS documentation
("# Related documentation" section)
- Provide solution with a specified format
("# Response format" section)

Response format
General guidelines
Provide your solution as a JSON object with:
1. File paths as keys
2. Arrays of unified diffs as values

Diff format specification

22

Each diff must follow this structure:
```
--- without_solution
+++ with_solution
@@ -line,count +line,count @@
context lines

+added lines
context lines

```

Important rules:
- Only ADD content, do not remove any lines
- Include proper line numbers and context
- Ensure diffs are properly formatted

Example JSON response:
```json
{{

"path/to/file1.py": [
"--- without_solution\n+++ with_solution\n
@@ -10,3 +10,5 @@\n
existing_line\n+ new_line1\n+ new_line2\n
existing_line"

]
}}
```

Additional guidelines
- Provide ONLY the JSON response
- No additional explanation
- Response must be valid JSON (will be parsed with json.loads())
- If you want to think before returning response,
be short and concise

Context files
Here are the context files to analyze:
{context_files}

Second Turn Prompt

Task overview
You are tasked with fixing errors in an LLM-generated solution
based on the following initial prompt:
{example_prompt}

Steps
- Have a look at the version of aws-cdk-lib

- Current version is {cdk_version}
- Read each all of the context files ("# Context files" section)
- Try to understand what should be done
- Read task overview ("# Task overview" section)

- This is an initial formulation of the task
that LLM have used to generate its solution

- Read previous attempt solution code
("# Previous attempt" section)

- This is the solution generated by LLM which fails checks
- Read error traceback ("# Error message" section)

23

- Interpret error message
- Identify specific error type (syntax, type, logic, etc.)

- If provided, read related AWS documentation
("# Related documentation" section)
- Provide error analysis

- Put it in "error_analysis"
- Provide a working solution with a specified format

- Put it in "regenerated_solution"

Response format
General guidelines
Provide your solution as a JSON object with:
1. "error_analysis": Your complete error analysis
2. "regenerated_solution": Object containing file paths and
their diffs

Diff format specification
Each diff must follow this structure:
```
--- without_solution
+++ with_solution
@@ -line,count +line,count @@
context lines

+added lines
context lines

```

Important rules:
- Only ADD content, do not remove any lines
- Include proper line numbers and context
- Ensure diffs are properly formatted

Example JSON response:
```json
{{

"error_analysis": "The error occurred because...",
"regenerated_solution": {{

"path/to/file1.py": [
"--- without_solution\n+++ with_solution\n
@@ -10,3 +10,5
@@\n existing_line\n+ new_line1\n
+ new_line2\n
existing_line"

]
}}

}}
```

Additional guidelines
- Provide ONLY the JSON response
- No additional explanation
- Response must be valid JSON (will be parsed with json.loads())
- If you want to think before returning response,
be short and concise

Related documentation
Here are supporting documentation pieces:
```markdown

24



{documentation}
```

Context files
Here are the context files to analyze:
{context_files}

Previous attempt
Previous solution, which needs fixing:
{solution_code}

Error message
Error message of the previous solution:
{error_message}

E.5 Zero-shot Two-Turn Solver (RAG)

For this configuration, same prompt template from previous configuration is used for second turn.
First turn template is different from the default two-turn solver configuration and allows in the same
time to generate solution and keywords to search for in the documentation:

First Turn Prompt

Task overview
You are tasked with implementing a solution
based on the following prompt:
{example_prompt}

Context files
Here are the context files to analyze:
{context_files}

Steps
- Have a look at the version of aws-cdk-lib

- Current version is {cdk_version}
- Read task overview ("# Task overview" section)
- Read each all of the context files ("# Context files" section)
- Try to understand what should be done
- If provided, read related AWS documentation
("# Related documentation" section)
- Provide solution with a specified format
("# Response format" section)
- Provide documentation support keywords

Documentation Support
To confirm your implementation you should provide keywords in
"search"
in key:
- Include a "search" key in your JSON response
- Provide up to 5 specific keywords
related to the AWS services
and features you need help with
- Example: "search": "data access policies opensearch"

- Avoid using underscores or other similar
special characters, query should be human-readable
- Keywords should reflect the resources used in the stack

25

or errors seen during execution,
i.e. 'opensearch' or 'appsync'
- Avoid too generic keywords like 'aws' or 'cloudformation'

- Keywords you provide will be used in the next interaction
in case solution does not pass the tests

Response format
General guidelines
Provide your solution as a JSON object with:
1. File paths as keys
2. Arrays of unified diffs as values

Diff format specification
Each diff must follow this structure:
```
--- without_solution
+++ with_solution
@@ -line,count +line,count @@
context lines

+added lines
context lines

```

Important rules:
- Only ADD content, do not remove any lines
- Include proper line numbers and context
- Ensure diffs are properly formatted

Example JSON response:
```json

{{
"path/to/file1.py": [

"--- without_solution\n+++ with_solution\n
@@ -10,3 +10,5
@@\n existing_line\n+ new_line1\n
+ new_line2\n
existing_line"

],
"search": "..."

}}
```

Additional guidelines
- Provide ONLY the JSON response
- No additional explanation
- Response must be valid JSON (will be parsed with json.loads())

Your JSON response (start with ```json):

26

F Model Configurations

Table 5 overviews the models used in our experiments and provides their invocation parameters.
Some reasoning models (DeepSeek R1, OpenAI o3, OpenAI o4-mini) have 4 times bigger token
budget, Gemini 2.5 models require 5 times more, reaching more than 20K maximum tokens per
task. This was done to allow for longer outputs for reasoning models to avoid result truncation.

Table 5: Models Invocation Parameters
Model Model ID Invocation Parameters
Claude 3 Haiku anthropic.claude-3-haiku-20240307-v1:0 max_tokens=4096; temperature=0.25; top_p=0.9

Claude 3.5 Sonnet anthropic.claude-3-5-sonnet-20240620-v1:0 max_tokens=4096; temperature=0.25; top_p=0.9

Claude 3.5 Sonnet V2 anthropic.claude-3-5-sonnet-20241022-v2:0 max_tokens=4096; temperature=0.25; top_p=0.9

Claude 3.7 Sonnet claude-3-7-sonnet-latest max_tokens=4096; temperature=0.25

Codestral codestral-latest max_tokens=4096; temperature=0.25

DeepSeek R1 deepseek-ai/DeepSeek-R1 max_tokens=16384; temperature=0.25

GPT-4.1 gpt-4.1 max_output_tokens=4096; temperature=0.25

GPT-4o Mini gpt-4o-mini max_output_tokens=4096; temperature=0.25

Gemini 2.0 Flash gemini-2.0-flash max_output_tokens=4096; temperature=0.25

Gemini 2.0 Flash Lite gemini-2.0-flash-lite max_output_tokens=4096; temperature=0.25

Gemini 2.5 Pro (03-25 Preview) gemini-2.5-pro-preview-03-25 max_output_tokens=20480; temperature=0.25

Gemini 2.5 Pro (05-06 I/O Edition Preview) gemini-2.5-pro-preview-05-06 max_output_tokens=20480; temperature=0.25

LLaMA 3.1 405B Instruct meta.llama3-1-405b-instruct-v1:0 max_tokens=4096; temperature=0.25; top_p=0.9

LLaMA 3.1 70B Instruct us.meta.llama3-3-70b-instruct-v1:0 max_tokens=4096; temperature=0.25; top_p=0.9

LLaMA 4 Maverick 17B Instruct meta.llama4-maverick-17b-instruct-v1:0 max_tokens=4096; temperature=0.25

LLaMA 4 Scout 17B Instruct meta.llama4-scout-17b-instruct-v1:0 max_tokens=4096; temperature=0.25

Mistral Large mistral-large-latest max_tokens=4096; temperature=0.25

OpenAI o3 o3 max_output_tokens=16384

OpenAI o4-mini o4-mini max_output_tokens=16384

Qwen2.5 72B Instruct Turbo Qwen/Qwen2.5-72B-Instruct-Turbo max_tokens=4096; temperature=0.25

G Verbosity Configurations for Two-Turn Solvers

Our experimental framework uses pytest as the testing library, with two distinct verbosity configura-
tions designed to evaluate how different levels of feedback detail affect model performance. Here are
the details on each of the configurations:

Table 6: Verbosity Parameters
Low-verbosity (VL) High-verbosity (VH)

Configuration
Flags -q -tb=no -no-summary ∅
Output Features
Pass/fail counter ✓ ✓
Exception ✓ ✓
Traceback × ✓
Test files names × ✓
Test functions names × ✓

H Models Performance by Donor Repository Type

We analyzed the performance of models across different repository sources to investigate potential
biases in our benchmark. The SWE-InfraBench dataset comprises 100 tasks derived from 34 distinct
base repositories, with 66 examples originating from open-source repositories and 34 from custom-
developed sources. While each task underwent substantial engineering modifications regardless of
its origin, we sought to determine whether tasks derived from open-source repositories might be

27

less difficult compared to custom-developed ones due to models being potentially trained on the
open-source data.

As shown in Table 7 for the majority of models the tasks derived from open-source repositories are
equally or even more challenging. One important consideration is that randomness in the generation
process and limited group sizes (34 tasks in the smallest group) suggest caution in the results
interpretation.

Table 7: Correctness of proprietary and open-source LLMs on the whole benchmark and separately
for tasks created from open-source and from custom created repositories. Models are grouped by
source type and provider, and sorted from most recent to oldest variant within each group. † indicates
LLMs executed with reasoning capabilities. ✝ Claude 3.7 was executed without extended reasoning.
Top results are in bold.

Source Company Model Correctness
All Tasks Custom Derived Tasks Open-Source Derived Tasks

Pr
op

ri
et

ar
y

Anthropic Claude 3.7 Sonnet ✝ 34% 35% 33%
Claude 3.5 Sonnet V2 32% 32% 32%
Claude 3.5 Sonnet 29% 32% 27%
Claude 3 Haiku 8% 12% 6%

Google Gemini 2.5 Pro (03-25 Preview) † 29% 44% 21%
Gemini 2.5 Pro (05-06 I/O Edition Preview) † 29% 38% 24%
Gemini 2.0 Flash Lite 5% 6% 5%
Gemini 2.0 Flash 4% 0% 6%

OpenAI OpenAI o3 † 23% 29% 20%
OpenAI o4-mini † 23% 26% 21%
GPT-4.1 18% 18% 18%
GPT-4o Mini 4% 9% 2%

O
pe

n-
So

ur
ce

DeepSeek DeepSeek R1 † 24% 26% 23%

Mistral Mistral Large 14% 12% 15%
Codestral 9% 15% 6%

Meta LLaMA 3.1 405B Instruct 9% 12% 8%
LLaMA 3.1 70B Instruct 3% 6% 2%
LLaMA 4 Maverick 17B Instruct 8% 9% 8%
LLaMA 4 Scout 17B Instruct 2% 3% 2%

Alibaba Qwen2.5 72B Instruct Turbo 0% 0% 0%

I Consistency Analysis

We quantified consistency using a "Success Consistency" metric. For each model and example, the
"Task Success Consistency Gap" was calculated as the difference between the best and worst attempt
correctness:

Task Success Consistency Gap = max
i∈attempts

(correctnessi)− min
i∈attempts

(correctnessi) (1)

Success Consistency is then defined as:

Success Consistency = 1− Task Success Consistency Gap (2)

This value is averaged over all examples for each model. A value of 1 means perfectly consistent
performance across attempts (either always failing or always succeeding). A value of 0 indicates
maximum inconsistency (some attempts succeed while others fail).

As indicated in Section 4 all LLMs demonstrate substantial improvement when given multiple
opportunities to solve a task. Gemini 2.5 Pro achieves the highest pass@5 rate, indicating that
for 47% of tasks, at least one of five attempts produces a fully correct solution. This represents a
considerable improvement over its single-attempt performance. DeepSeek R1 and OpenAI o3 show
similar patterns, with pass@5 rates consistently higher than pass@1. Claude 3.7 Sonnet, however,
shows higher average correctness of the results. It explains how Claude 3.7 Sonnet with its slightly
lower pass@5 of 41% achieves the top position in one-trial benchmarking.

28

0.05 0.10 0.15 0.20 0.25 0.30
Average Correctness

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Su
cc

es
s C

on
sis

te
nc

y

Claude 3.7 Sonnet

Gemini 2.5 Pro (03-25 Preview)

DeepSeek R1OpenAI o3

LLaMA 3.1 405B Instruct

Model Performance: Average Correctness vs. Success Consistency

Figure 7: Average Correctness vs Consistency. Models positioned higher on average correctness,
notably Claude 3.7 Sonnet, tend to demonstrate greater consistency, providing similar outcomes
across repeated attempts. In contrast, models such as Gemini 2.5 Pro, DeepSeek R1, and OpenAI o3,
despite achieving significant improvements when allowed multiple attempts, exhibit less consistency,
indicating more variability in their success across trials.

Figure 7 illustrates the relationship between average correctness across trials and success consistency
for tested models. We observed that higher-performing on average Claude 3.7 Sonnet demonstrated
better consistency, while Gemini 2.5 Pro, DeepSeek R1 and OpenAI o3 are not as consistent in
providing correct results on this dataset.

J Error Type Distribution

Figure 8 illustrates how error distributions change when models are given a second attempt with
feedback (high verbosity configuration) from their first attempt. All models benefit from the second
attempt, improving both on syntax and logical errors. However, a subset of LLMs without reasoning,
namely GPT-4.1, Mistral Large and Llama 4 Maverick 17B Instruct, retain the same percentage of
logical errors, mostly correcting the syntax ones. Such a behavior indicates that even high verbosity
level is insufficient to address these more complex, implementation-specific failures. On the other
hand, Claude Sonnet models, as well as Gemini 2.5 and DeepSeek R1, that further leverage their
reasoning capabilities, showcase the considerable improvement on this matter as a prove of better
analysis of underlying infrastructure dependencies and relationships.

29

Clau
de

 3.
7 S

on
ne

t

Clau
de

 3.
5 S

on
ne

t V
2

Gem
ini

2.5
 Pr

o (
03

-25
 Pr

ev
iew

)

Dee
pS

ee
k R

1

GPT-
4.1

Mistr
al

Lar
ge

Lla
ma 4

 Mav
eri

ck
17

B In
str

uct
0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

38%

28%

34%

25%

11%

64%

One-
Turn

Two-
Turn

44%

24%

32%

24%

16%

56%

One-
Turn

Two-
Turn

45%

23%

29%

58%

40%

One-
Turn

Two-
Turn

59%

17%

24%

41%

14%

43%

One-
Turn

Two-
Turn

69%

13%

18%

40%

12%

48%

One-
Turn

Two-
Turn

11%

64%

11%

14%

8%

60%

9%

23%

One-
Turn

Two-
Turn

6%

78%

8%

8%

71%

9%

18%

One-
Turn

Two-
Turn

Error Type Distribution: One-Turn vs. Two-Turn

Response Format Error: Solution does not follow the required output format
Syntax Error: Incorrect object properties or syntax errors that cause all tests to fail
Logical Error: Solution passes some tests but does not solve the task completely
No Error: Solution passes all tests and solves the task correctly

Figure 8: Error type distribution comparison between one-turn and two-turn (without RAG, high
verbosity) approaches. All models show improved performance in the two-turn approach. The
Claude family models demonstrate balanced improvement by reducing both syntax and logical errors.
Gemini model primarily addresses logical errors in its second attempt, while GPT-4.1 and DeepSeek
R1 shows substantial reduction in syntax errors. While most examples benefit from the two-turn
approach, a small percentage show regression due to the inherent randomness in the generation
process.

30

	Introduction
	Related Work
	SWE-InfraBench
	Benchmark Construction
	Dataset Collection Challenges
	Problem Definition

	Experimental Results
	Consistency Analysis
	Error Type Distribution
	Multi-Turn Agent Performance

	Conclusion
	SWE-InfraBench Characteristics
	CDK Versions Distribution
	Source Repositories Licences
	Tasks Preview
	Prompt Examples
	Task Example

	Prompt Templates
	Critic Prompt Template
	Generator Prompt Template
	Zero-shot Direct Solver
	Zero-shot Two-Turn Solver
	Zero-shot Two-Turn Solver (RAG)

	Model Configurations
	Verbosity Configurations for Two-Turn Solvers
	Models Performance by Donor Repository Type
	Consistency Analysis
	Error Type Distribution

