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Abstract

Infrastructure-as-code (IaC) is critical for cloud reliability and scalability, yet LLM1

capabilities in this domain remain underexplored. Existing benchmarks focus on2

declarative tools like Terraform and full-code generation. We introduce SWE-3

InfraBench, a dataset of realistic incremental edits to AWS CDK repositories from4

real-world codebases. Each task requires modifying existing IaC based on natural5

language instructions, with correctness verified by passed tests. Results show6

current LLMs struggle: the best model (Sonnet 3.7) solves 34% of tasks, while7

reasoning models like DeepSeek R1 reach only 24%.8

1 Introduction9

Infrastructure as Code (IaC) enables scalable cloud management by treating infrastructure as software10

[18; 15; 14]. Declarative tools like Terraform specify end states, while imperative ones like AWS CDK11

use general-purpose languages to support logic and incremental change [2; 3]. Because enterprise12

workflows are iterative and closely tied to application code, we focus on CDK.13

Existing LLM benchmarks emphasize code completion or debugging [10; 6; 16], leaving IaC editing14

largely unexplored. Imperative IaC tasks are especially challenging due to stateful codebases and the15

need for domain expertise.16

We present SWE-InfraBench, a benchmark of 100 tasks from 34 real AWS CDK projects. Each task17

includes a repository, a natural-language modification instruction, and unit tests. Unlike prior IaC18

datasets [12; 20], SWE-InfraBench targets imperative CDK and emphasizes incremental modifications19

over full synthesis.20

Our contributions are:21

1. A dataset of 100 IaC editing tasks with instructions and unit tests.22

2. A pipeline for generating and validating new tasks from arbitrary CDK repositories.23

3. Baseline evaluations of diverse LLMs, including multi-turn agents with error feedback and24

RAG.25

2 Related Work26

LLMs for Infrastructure-as-Code Early studies applied LLMs to IaC generation (e.g., Ansible27

YAML [11; 17]) and recent benchmarks such as CloudEval-YAML [20] and IaC-Eval [12]. Results28

show LLMs perform far worse on IaC than on general programming (e.g., GPT-4 at 19.4% on29

IaC-Eval vs. 86.6% on EvalPlus). These datasets, however, emphasize declarative frameworks and30

full code generation. Our SWE-InfraBench instead targets incremental edits in imperative AWS CDK31

projects. LIG-MM [13] explores symbolic reasoning but not codebase-level modification.32
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Code Generation and Editing Benchmarks General code benchmarks have evolved from single33

functions (HumanEval [5]) to multi-file reasoning (CrossCodeEval [7]) and incremental tasks (SWE-34

bench, SWE-PolyBench [10; 19]). Others address efficiency (Mercury [8]) or instructional editing35

(CodeEditorBench [9], CanItEdit [4]). Our work is the first to focus specifically on IaC editing in36

enterprise-scale AWS CDK repositories.37

3 SWE-InfraBench38

SWE-InfraBench is a collection of AWS CDK codebases paired with natural-language modification39

instructions and unit tests. The task for an LLM is to update the codebase so the new functionality40

passes all tests. On average, each task includes 10 context files (30k characters). Further dataset41

statistics are in Appendix A and B. CDK compiles to CloudFormation templates [1], enabling42

automated validation without deployment, making it a practical basis for benchmarking IaC.43

3.1 Benchmark Construction44

We built the dataset via a three-stage pipeline (see Appendix D). Stage I: Repository Selection. We45

curated IaC repositories (open-source and custom; licensing in Appendix C). An LLM generated46

candidate tasks (prompt, canonical solution, tests), which were then reviewed. Stage II: Critique and47

Refinement. Candidates were validated on their canonical solution and refined with critic LLMs that48

assessed alignment, generality, and test quality. Feedback guided automatic or manual improvements.49

Stage III: Expert Review. Human experts finalized tasks, ensuring fairness, coverage, and challenge50

level.51

The final dataset stores each task as JSON with context files (masked), prompt, canonical solution,52

tests, and CDK version. Task format and example prompts appear in Appendix E.2, E.1.53

3.2 Dataset Collection Challenges54

Most open-source IaC projects lacked tests, which we had to design manually. LLM assistance55

accelerated generation, but expert oversight was crucial. Engineers averaged five validated tasks/day.56

By releasing both the benchmark and pipeline, we enable scalable extension with human effort57

concentrated on validation.58

3.3 Problem Definition59

A model receives the full CDK codebase and a natural-language modification instruction (e.g., add an60

event-driven pipeline). Its output is integrated into the codebase and evaluated by the provided tests.61

We report pass@k [5], task correctness (equivalent to pass@1 for single-trial), generation success62

(valid, integrable outputs), and the proportion of passed tests across all tasks.63

4 Experimental Results64

We evaluate 20 state-of-the-art models on 100 SWE-InfraBench tasks. Each model gets a single65

attempt per task; solutions are integrated into the repository and validated by tests on the resulting66

CloudFormation output.67

SWE-InfraBench is challenging: even top models solve under 35% of tasks, reflecting the domain68

knowledge, syntax precision, and context reasoning required.69

Table 1 reports results for the metrics in Section 3.3. The Claude Sonnet family performs best.70

Reasoning models (e.g., Gemini 2.5 Pro, DeepSeek R1, OpenAI o3, o4-mini) generally outperform71

non-reasoning models (e.g., GPT-4.1, Claude 3 Haiku, Gemini 2.0 Flash). Generation success is high72

(>94%), but full correctness varies widely, indicating challenges in implementing functionality rather73

than following format. Tasks from open-source donors are not easier than custom-developed ones74

(Appendix I).75
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Table 1: Performance metrics for proprietary and open-source LLMs on IaC generation tasks. Models
are grouped by source type and provider, and sorted from the most recent to the oldest variant within
each group. † indicates LLMs executed with reasoning capabilities. ✝ Claude 3.7 was executed
without extended reasoning. Top results are in bold.

Source Company Model Correctness Generation Success Passed Tests Share
Pr

op
ri

et
ar

y

Anthropic Claude 3.7 Sonnet ✝ 34% 100% 53.1%
Claude 3.5 Sonnet V2 32% 100% 47%
Claude 3.5 Sonnet 29% 100% 47.9%
Claude 3 Haiku 8% 88% 10.7%

Google Gemini 2.5 Pro (03-25 Preview) † 29% 97% 42.5%
Gemini 2.5 Pro (05-06 I/O Edition Preview) † 29% 95% 41.1%
Gemini 2.0 Flash Lite 5% 79% 11.5%
Gemini 2.0 Flash 4% 43% 6.9%

OpenAI OpenAI o3 † 23% 100% 30.8%
OpenAI o4-mini † 23% 99% 32.1%
GPT-4.1 18% 100% 26.4%
GPT-4o Mini 4% 84% 7%

O
pe

n-
So

ur
ce

DeepSeek DeepSeek R1 † 24% 100% 34.9%

Mistral Mistral Large 14% 89% 20.3%
Codestral 9% 96% 15%

Meta LLaMA 3.1 405B Instruct 9% 97% 13%
LLaMA 3.1 70B Instruct 3% 97% 7.7%
LLaMA 4 Maverick 17B Instruct 8% 94% 13%
LLaMA 4 Scout 17B Instruct 2% 76% 2.4%

Alibaba Qwen2.5 72B Instruct Turbo 0% 94% 2.7%

Table 2: Model performance with multiple independent trials. Average Correctness = average success
across all trials (all tests passed). pass@k = probability of solving the task in at least one of k
attempts.

Model Average Correctness pass@1 pass@2 pass@5

Claude 3.7 Sonnet 28.8% 34% 36% 41%
Gemini 2.5 Pro (03-25 Preview) 26.4% 28% 38% 47%
DeepSeek R1 24.6% 24% 33% 46%
OpenAI o3 22.8% 23% 30% 45%
LLaMA 3.1 405B Instruct 6.8% 8% 11% 13%

4.1 Consistency Analysis76

We run five independent trials on a subset of models to assess reliability. Higher pass@k increases77

the chance of solving a task at least once, but average correctness across attempts remains below78

30%, indicating limited consistency (Table 2; Appendix J).79

4.2 Error Type Distribution80

Across 20 LLMs, common failures include incorrect CDK construct properties and other syntax81

issues, sometimes due to outdated knowledge of newer CDK versions (Figure 1; Appendix K). These82

patterns suggest that iterative, agent-like workflows with error feedback and documentation access83

can help.84

4.3 Multi-Turn Agent Performance85

We implement a two-turn agent: after an initial failure, models receive error messages and test results;86

we compare low-verbosity (VL) and high-verbosity (VH ) feedback, and a RAG variant using retrieved87

AWS docs (see Table 6 for specification). Results (Table 3) show substantial gains: Claude 3.7 Sonnet88

reaches 64% with VH (+30 points over one-turn). RAG can further help (Claude 3.5 Sonnet V2 up to89

65%), though effects vary by model (e.g., GPT-4.1 at 26% with RAG vs. 48% standard two-turn).90

Improvements with VH are consistent; model capacity modulates gains (e.g., modest improvements91

for smaller models like Mistral Large).92
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Response Format Error: Solution does not follow the required output format.
Syntax Error: Incorrect object properties or syntax errors that cause all tests to fail.
Logical Error: Solution passes some tests but does not solve the task completely.
No Error: Solution passes all tests and solves the task correctly.

Figure 1: Error type distribution across trials. Syntax errors dominate (40–85%), often from incorrect CDK
property usage. Logical errors (5–30%) occur when code is valid but fails requirements or doesn’t capture
context correctly. Response format errors are rare, with Claude and OpenAI models showing strong format
adherence.

Table 3: Comparison of One-Turn vs. Two-Turn LLM Performance (with and without RAG).

Model
Correctness (↑) Passed Tests Share (↑)

One-Turn Two-Turn Two-Turn + RAG Best One-Turn Two-Turn Two-Turn + RAG Best
VL VH VL VH VL VH VL VH

Claude 3.7 Sonnet 34.0% 44.0% 64.0% 51.0% 60.0% 64.0% 53.1% 49.5% 71.6% 60.6% 66.1% 71.6%
Claude 3.5 Sonnet V2 32.0% 52.0% 56.0% 52.0% 65.0% 65.0% 47.0% 60.9% 66.1% 65.5% 74.2% 74.2%
Gemini 2.5 Pro (03-25 Preview) 29.0% 41.0% 40.0% 41.0% 33.0% 41.0% 42.5% 41.5% 41.4% 41.3% 33.0% 42.5%
DeepSeek R1 24.0% 40.0% 43.0% 45.0% 39.0% 45.0% 34.9% 49.0% 51.7% 51.9% 49.5% 51.9%
GPT-4.1 (2025-04-14) 18.0% 40.0% 48.0% 46.0% 26.0% 48.0% 26.4% 48.0% 55.9% 56.7% 30.9% 55.9%
Mistral Large 14.0% 21.0% 23.0% 14.0% 17.0% 23.0% 20.3% 24.2% 28.6% 17.9% 23.7% 28.6%
LLaMA 4 Maverick 17B Instruct 8.0% 15.0% 18.0% 21.0% 21.0% 21.0% 13.0% 20.5% 23.7% 25.6% 27.3% 27.3%

Correctness: Percentage of completions where the solution passed all test cases.
Passed Tests Share: Average percentage of unit tests passed, including partial completions.
Two-Turn + RAG: Two-step prompting approach with retrieval-augmented generation support.
VL/VH : Low/High verbosity configurations.

Caveats: detailed test tracebacks may leak property values, making VH results an optimistic upper93

bound, since such detailed tests are mostly unavailable in practice. DeepSeek R1 also consumes many94

tokens for reasoning, requiring higher output limits, and multi-turn or RAG approaches increase both95

token usage and latency. Overall, detailed feedback improves refinement, though RAG effectiveness96

remains model-dependent.97

5 Conclusion98

We introduced SWE-InfraBench, the first benchmark for evaluating LLMs on imperative IaC modifi-99

cation in AWS CDK. Tasks require natural-language interpretation, cloud resource reasoning, and100

code changes validated by tests. Current models perform poorly (best single-attempt 34% with101

Claude 3.7), though multi-turn approaches improve results. Future work includes extending beyond102

Python CDK and incorporating richer evaluation methods such as static analysis, cost modeling, or103

LLM-as-a-Judge to capture efficiency and security aspects.104
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Appendix163

A SWE-InfraBench Characteristics164

SWE-InfraBench tasks contain examples for multiple CDK versions ranging from 2.0.0 to more165

recent version like 2.189.1, with the majority of tasks suitable for 2.178.2 and newer (see Figure 3).166

The tasks also vary in number and length of context files, prompt length and canonical solution length.167

The key dataset statistics are illustarted in Figure 2.168
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Figure 2: SWE-InfraBench Statistics on Context Size and Solution Length
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Figure 3: Distribution of AWS CDK Versions Across SWE-InfraBench Tasks
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Figure 3 shows the distribution of AWS CDK versions across the SWE-InfraBench tasks. The170

benchmark predominantly utilizes version 2.178.2, highlighting a concentration on recent library171

versions, while also including several earlier versions to ensure diversity and represent real-world172

variability in CDK projects.173

C Source Repositories Licences174

SWE-InfraBench tasks are derived from open-source repositories and custom-developed sources.175

Note that original code snippets were substantially modified to create the tasks. See Table 4 for176

details on open-source repositories.177

Table 4: Open-source repositories used as sources for SWE-InfraBench tasks
Repository Name Source License
aws-cdk-examples aws-samples/aws-cdk-examples Apache-2.0
generative-ai-cdk-constructs-samples aws-samples/generative-ai-cdk-constructs-samples Apache-2.0
generative-ai-ml-latam-samples aws-samples/generative-ai-ml-latam-samples MIT-0
aws-cdk-lambda-import-export-redshift-ddl aws-samples/aws-cdk-lambda-import-export-redshift-ddl MIT-0
amazon-elasticache-demo-using-aws-cdk aws-samples/amazon-elasticache-demo-using-aws-cdk MIT-0
deploy-langfuse-on-ecs-with-fargate aws-samples/deploy-langfuse-on-ecs-with-fargate MIT-0

All repository URLs are prefixed with https://github.com/

D Dataset Construction Pipeline178

Donor  
Repo Selection

Candidates 
Generation

Donor 
Repo

Task Candidate 1-10 per  
donor repo

Task Review & Modification

SWE-InfraBench Task 100 
Tasks

Auto Critique & Refinement




Validate Critique Improve

 - performed by human 

 - generated by LLM
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Figure 4: SWE-InfraBench task instances are created from open-source and custom developed IaC
repositories in a semi-automated manner with a rigorous human engineers oversight.

The three-stage pipeline used to construct SWE-InfraBench is shown in Figure 4.179

E Tasks Preview180

E.1 Prompt Examples181

SWE-InfraBench includes a diverse set of prompts that test various aspects of infrastructure-as-code182

generation. See examples of such prompts below:183
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API Gateway Integration

Generate code to create an API Gateway SampleAPI-EventBridge-Multi-Consumer that
integrates with the event producer with proxy integration. Do not add a catch-all route in api
routing (use proxy=False). Add a resource named ’items’ to the root of the API and create a
POST method for this resource.

184

Bedrock Agent Setup

Create a Bedrock agent using CDK with the following requirements in the CfnAgent
construct.
Set the agent name, description, model and instruction from the class attributes.
Also, set the agent resource role ARN from the previously created role and add idle session
time of 600 seconds.
We want the draft version to be always in sync via auto preparation and add test alias tags.
Finally include action groups and collaboration if provided and ensure the removal policy
destroys the agent when the stack is deleted

185

WhatsApp IAM Policy

Create CDK code to add IAM policies to a Lambda function, granting permissions for
social-messaging, transcribe, and bedrock services.
The policies should have separate policies for
1) allow sending whatsapp messages and getting media from them for all cell numbers in all
regions and accounts
2) access to any transcribe action on all resources
3) and access to invoke* all agents, inference profiles and models in oregon

186

E.2 Task Example187

Figure 5 illustrates the structure of a task from SWE-InfraBench. Each task is stored as a JSON file188

containing the prompt, context files, canonical solution, and tests.189
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Example Task: API Gateway Integration with EventBridge

{

"task_id": "67ad6ef1-fb3e-45e6-b5e1-83ae385528b5",

"entry_point": "api-eventbridge-lambda+api_gateway_integration",

"prompt": "Generate code to create an API Gateway

SampleAPI-EventBridge-Multi-Consumer↪→

that integrates with the event producer with proxy

integration.↪→

Do not add a catch-all route in api routing (use

proxy=False).↪→

Add a resource named 'items' to the root of the API and

create a↪→

POST method for this resource.",

"cdk_version": "2.178.2",

"context": {

"app.py": "#!/usr/bin/env python3\n\nfrom aws_cdk import

App\n\nfrom api_eventbridge_lambda.api_eventbridge_lambda

import ApiEventBridgeLambdaStack...",

↪→

↪→

"api_eventbridge_lambda/api_eventbridge_lambda.py": "from

constructs import Construct\nfrom aws_cdk import...",↪→

"lambda/event_consumer_lambda.py": "import json\nimport

logging\n\nlogger = logging.getLogger()...",↪→

"lambda/event_producer_lambda.py": "import json\nimport

boto3\nimport datetime..."↪→

},

"canonical_solution": {

"api_eventbridge_lambda/api_eventbridge_lambda.py": [

"--- without_solution\n\n+++ with_solution\n\n@@ -102,0 +103,7

@@\n\n+ # defines an API Gateway REST API resource

backed by our \"atm_producer_lambda\" function.\n\n+

api = api_gw.LambdaRestApi(self,

'SampleAPI-EventBridge-Multi-Consumer',\n\n+

handler=event_producer_lambda,\n\n+

proxy=False\n\n+ )\n\n+

items = api.root.add_resource(\"items\")\n\n+

items.add_method(\"POST\") # POST /items\n"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

]

},

"tests": {

"test_api_gateway_integration.py": "import aws_cdk as cdk\nfrom

aws_cdk.assertions import Template, Match..."↪→

}

}

Figure 5: Example task from InfraBench showing the JSON structure. Context and test files are
truncated for brevity.

F Prompt Templates190

F.1 Critic Prompt Template191

The following is the template used for the critic in the InfraBench dataset construction process:192
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Critic Prompt Template

As an AI assistant specialized in Infrastructure as Code, your task is to critique a dataset item
created for an LLM code generation challenge.
You will be given:
1. A repository description
2. The full repository code
3. A pre-suggestion with a specific code section to mask
4. The actual code that was masked
5. The generated human language prompt
6. The generated test file
Your job is to critically evaluate:
1. Whether the prompt accurately describes what needs to be implemented
2. Whether the tests effectively validate all requirements stated in the prompt
3. Whether the prompt and tests are general enough to allow various valid solutions that
preserve the functionality of the masked code while remaining compatible with the overall
repository structure
# REPOSITORY DESCRIPTION

[Repository description is provided here]

# REPOSITORY CONTENT

[Repository files are provided here]

# PRE-SUGGESTION

Item Name: [Item name]
File Path: [File path]
Start Line: [Start line]
End Line: [End line]
Complexity: [Complexity]
Rationale: [Rationale]

# ACTUAL CODE TO BE MASKED

[Masked code is provided here]

# GENERATED PROMPT

[Generated prompt is provided here]

# GENERATED TEST FILE
Path: [Test file path]

[Test file content is provided here]

# GENERATOR NOTES

[Generator notes are provided here]

# CRITIQUE GUIDELINES
## Prompt vs Functional Requirements Evaluation
1. Does the prompt clearly describe ALL the necessary functional aspects needed for the
masked code?
2. Is it sufficiently detailed for someone to implement the solution correctly without seeing
the masked code?
3. Are there any ambiguities or missing requirements that would prevent a correct implemen-
tation?
4. Does it avoid revealing the actual implementation details while still being complete?
5. If something can be inferred unequivocally from the repository code, it does not need to be
specified in the prompt.

193
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## Generality of Tests Evaluation
1. Tests should be general enough so that they pass if a developer or LLM follows the prompt
accurately, regardless of the specific implementation details.
2. The prompt should give only the minimum necessary instructions needed to explain the
functional requirements, while considering how the tests are built.
3. Tests should verify functionality rather than specific implementation approaches - they
should allow for multiple valid solution patterns that fulfill the prompt.
4. Evaluate if tests are overly restrictive by enforcing a particular implementation approach
when other valid approaches could fulfill the same requirements.
5. Tests won’t be accepted if they don’t pass with the original masked code (tested elsewhere)
but consider as well if other reasonable implementations would pass.
## Test Evaluation
For each test in the test file:
1. What is this test specifically checking for?
2. Is this test testing for something that’s explicitly stated in the prompt?
3. A test is valid if it tests integration with functionality that exists elsewhere in the code base
(not just the masked section).
4. Is the test appropriately written to verify the requirement?
5. If the test might fail with some valid implementations (including the original masked code),
should the prompt be more explicit or should the test be less restrictive?
## Test Completeness Evaluation
1. Do the tests collectively verify ALL requirements mentioned in the prompt?
2. Are there any requirements in the prompt that aren’t tested?
3. Are there any tests for requirements not mentioned in the prompt?
4. Are all edge cases and error conditions properly tested?
Return the response in this JSON format:

{
"prompt_vs_functional": {

"explanation": "Detailed explanation of whether the prompt
accurately describes all necessary functional aspects of the
masked code",

"corrections": "Specific corrections with concrete
implementation suggestions - provide exact wording changes or
additions to the prompt", // Only include if there are issues

"example_improvements": "Suggested rewrites of problematic
sections with specific language", // Only include if there are
issues

"accept": true|false // Conclusion based on the
explanation
},
"generality": {

"explanation": "Analysis of whether the tests allow for
multiple valid implementations that satisfy the requirements in
the prompt",

"issues": "Identification of any tests that could fail
with valid implementations that follow the prompt", // Only
include if there are issues

"suggested_improvements": "Concrete suggestions for making
tests more general while still validating functionality", //
Only include if needed

"accept": true|false // Whether the tests are
sufficiently general
},
"tests": {

"test_name_1": {
"purpose": "What this test is checking for",
"coverage": "Explanation of how this relates to prompt

requirements",
"suggested_improvements": {
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"explanation": "Why the test needs improvement",
// Only include if needed

"code_snippet": "Complete improved version of the
test with code fixes", // Provide actual code implementation

"rationale": "Explanation of why this
implementation is better"

}, // Only include if needed
"accept": true|false // Conclusion based on the

critic's analysis of the test quality
},
"test_name_2": {

"purpose": "What this test is checking for",
"coverage": "Explanation of how this relates to prompt

requirements",
"suggested_improvements": {

"explanation": "Why the test needs improvement",
// Only include if needed

"code_snippet": "Complete improved version of the
test with code fixes", // Provide actual code implementation

"rationale": "Explanation of why this
implementation is better"

}, // Only include if needed
"accept": true|false // Conclusion based on the

critic's analysis of the test quality
}
// Add entries for each test in the test file

},
"tests_completeness": {

"explanation": "Analysis of whether the tests completely
cover all prompt requirements",

"missing_tests": ["list", "of", "requirements", "that",
"should", "be", "tested", "but", "aren't"],

"corrections": "Specific additional tests needed if the
evaluation fails", // Only include if there are issues

"accept": true|false // Conclusion based on the analysis
},
"feedback": "Detailed feedback explaining all issues and
providing clear guidance for improvements"

}

Be rigorous in your evaluation. The goal is to ensure high-quality dataset items that will
effectively test LLM code generation capabilities. Only provide the JSON response, no
additional explanation. The response will be parsed with json.loads(response) so be sure json
format is correct. Instead of triple-quotes use characters.
# IMPORTANT CUSTOM INSTRUCTIONS

[Custom instructions from human reviewers are provided here when
available. These instructions provide special guidance in the
evaluation process.]

195

F.2 Generator Prompt Template196

The following is the template used for the generator in the InfraBench dataset construction process:197

Generator Prompt Template

As an AI assistant specialized in Infrastructure as Code, your task is to create a high-quality
dataset item for an LLM code generation challenge.
You will be given:
1. A repository description

198
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2. A pre-suggestion with a specific code section to mask
3. The full repository content
Based on this information, you need to:
1. Create a clear, detailed human language prompt describing what code needs to be generated
2. Develop comprehensive pytest tests that validate the generated code meets all requirements
# REPOSITORY DESCRIPTION

[Repository description is provided here]

# PRE-SUGGESTION

Item Name: [Item name]
File Path: [File path]
Start Line: [Start line]
End Line: [End line]
Complexity: [Complexity]
Rationale: [Rationale]

# PREVIOUS FEEDBACK
When available, this section may include:
## PREVIOUS TASK SUGGESTION

{
"item_name": "example_item",
"file_path": "path/to/file",
"insert_points": {
"start_line": 10,
"end_line": 20

},
"prompt": "previous prompt text",
"test_file": {
"path": "tests/test_example.py",
"content": "previous test file content"

},
"generator_notes": "previous notes"

}

## IF THERE ARE VALIDATION ERRORS
The tests failed when run against the original masked code. Here are the errors:

Error details from validation step

Make sure the original code will pass the tests, and write them correctly according to what
you see in these error logs.
## CRITIQUE FEEDBACK

[Detailed feedback from the critique step explaining issues with
the previous suggestion.]

# GUIDELINES FOR CREATING A QUALITY DATASET ITEM
## For the human language prompt:
1. COMPLETENESS: Describe ALL functional aspects needed for the code.
2. GENERALITY: Allow for multiple possible valid solutions that fulfill the requirements.
3. CLARITY: Be specific about requirements but avoid dictating implementation specifics.
4. PRECISION: Include all requirements that would allow someone to implement the solution
correctly.
5. CONTEXT: Describe the functionality, purpose, and integration with other components.
6. ESSENTIAL DETAILS ONLY: Specify necessary parameters and behaviors, but avoid
over-constraining the solution.
7. NO SPOILERS: DO NOT include the actual implementation details or code snippets.
8. IMPLEMENTATION FREEDOM: Focus on "what" needs to be achieved, not "how" it
must be done.
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9. NO HINTS: If something can be inferred unequivocally from the repository code, it does
not need to be specified in the prompt.
## For the test file: 1. COMPREHENSIVE COVERAGE: Tests must verify ALL aspects
mentioned in the prompt
2. EXPLICIT PURPOSE: Each test should clearly indicate what requirement it’s checking
3. APPROPRIATE VERIFICATION: Tests must use assertions that correctly validate the
implementation
4. PRACTICALITY: Tests MUST pass when run against the original code that will be masked
5. ROBUSTNESS: Tests should fail if important requirements are not met
6. COMPLETENESS: No requirement from the prompt should be left untested
7. STRUCTURE: Use appropriate fixtures and mocks, follow pytest best practices
# REPOSITORY CONTENT File to be masked: [File path]

[File content is provided here]

[All other relevant context files are provided here]

Return the response in this JSON format:

{
"item_name": "SAME_AS_PRE_SUGGESTION",
"file_path": "path/to/file",
"insert_points": {

"start_line": number,
"end_line": number

},
"prompt": "detailed description of what needs to be generated",
"test_file": {

"path": "tests/test_something.py",
"content": "complete content of the test file including

imports, fixtures, and test cases"
},
"generator_notes": "You don't need to accept all the
suggestions from the feedback, but give an explanation of your
approach, learnings regarding test syntax for the cannonical
solution to pass, detailed design decisions, rationale for
implementation choices, and how you've ensured generality in
the prompt and tests. There will be a new critic, so explain
your decisions without assuming the critic understands the
current feedback. IMPORTANT: give an analysis of possible flaws
in the generated prompt and tests focusing on its generality
(if various valid solutions would be accepted), coverage and
alignment between prompt and tests, etc."

}

Ensure that:
1. The insert_points are within the pre-suggestion range
2. The prompt is comprehensive and covers ALL requirements
3. The test_file content is complete and will validate ALL requirements
4. The tests MUST pass when run against the original masked code
Only provide the JSON response, no additional explanation.
# IMPORTANT CUSTOM INSTRUCTIONS

[Custom instructions from human reviewers are provided here when
available. These instructions provide special guidance in the
generation process.]
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F.3 Zero-shot Direct Solver201

202

Anthropic template

You are tasked with implementing a solution based on the following prompt:

<example_prompt>
{example_prompt}
</example_prompt>

Ensure the solution is compatible with AWS Python CDK version aws-cdk-lib =
{cdk_version}.
You have access to the following context files:
<context_files>
{context_files}
</context_files>

Your task is to provide git-style unified diffs that show the changes needed to implement the
solution. For each file that needs changes, provide a unified diff. Only add content, do not
remove any lines
Provide your response as a JSON object where: - Keys are the file paths - Values are arrays
containing the unified diffs for each change section
The diff format should be:
<output_format>
--- without_solution
+++ with_solution
@@ -line,count +line,count @@

context lines
+added lines

context lines
</output_format>

Example response format:
<example_response>
{

"path/to/file1.py": [
"--- without_solution\\n+++ with_solution\\n
@@ -10,3 +10,5
@@\\n existing_line\+
new_line1\\n+ new_line2\\n
existing_line"

]
}
</example_response>

Only provide the JSON response, no additional explanation. The response will be parsed
with json.loads(response_text) so make sure the string is correct JSON. Do NOT
include ```json
Ensure the diffs include proper line numbers and context.

203

Default template

You are tasked with implementing a solution based on the following prompt:

{example_prompt}

Ensure the solution is compatible with AWS Python CDK version aws-cdk-lib =
{cdk_version}.
You have access to the following context files:
{context_files}

204
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Your task is to provide git-style unified diffs that show the changes needed to implement the
solution. For each file that needs changes, provide a unified diff. Only add content, do not
remove any lines
Provide your response as a JSON object where: - Keys are the file paths - Values are arrays
containing the unified diffs for each change section
The diff format should be:
--- without_solution
+++ with_solution
@@ -line,count +line,count @@

context lines
+added lines

context lines

Example response format:
{

"path/to/file1.py": [
"--- without_solution\\n+++ with_solution\\n
@@ -10,3 +10,5
@@\\n existing_line\+ new_line1
\\n+ new_line2\\n
existing_line"

]
}

Only provide the JSON response, no additional explanation. The response will be parsed
with json.loads(response_text) so make sure the string is correct JSON. Do NOT
include ```json
Ensure the diffs include proper line numbers and context.

205

F.4 Zero-shot Two-Turn Solver206

First Turn Prompt

# Task overview
You are tasked with implementing a solution
based on the following prompt:
{example_prompt}

# Steps
- Have a look at the version of aws-cdk-lib

- Current version is {cdk_version}
- Read each all of the context files ("# Context files" section)
- Try to understand what should be done
- Read task overview
("# Task overview" section)
- If provided, read related AWS documentation
("# Related documentation" section)
- Provide solution with a specified format
("# Response format" section)

# Response format
## General guidelines
Provide your solution as a JSON object with:
1. File paths as keys
2. Arrays of unified diffs as values

## Diff format specification
207
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Each diff must follow this structure:
```
--- without_solution
+++ with_solution
@@ -line,count +line,count @@
context lines

+added lines
context lines

```

## Important rules:
- Only ADD content, do not remove any lines
- Include proper line numbers and context
- Ensure diffs are properly formatted

## Example JSON response:
```json
{{

"path/to/file1.py": [
"--- without_solution\n+++ with_solution\n
@@ -10,3 +10,5 @@\n
existing_line\n+ new_line1\n+ new_line2\n
existing_line"

]
}}
```

## Additional guidelines
- Provide ONLY the JSON response
- No additional explanation
- Response must be valid JSON (will be parsed with json.loads())
- If you want to think before returning response,
be short and concise

# Context files
Here are the context files to analyze:
{context_files}

208

Second Turn Prompt

# Task overview
You are tasked with fixing errors in an LLM-generated solution
based on the following initial prompt:
{example_prompt}

# Steps
- Have a look at the version of aws-cdk-lib

- Current version is {cdk_version}
- Read each all of the context files ("# Context files" section)
- Try to understand what should be done
- Read task overview ("# Task overview" section)

- This is an initial formulation of the task
that LLM have used to generate its solution

- Read previous attempt solution code
("# Previous attempt" section)

- This is the solution generated by LLM which fails checks
- Read error traceback ("# Error message" section)
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- Interpret error message
- Identify specific error type (syntax, type, logic, etc.)

- If provided, read related AWS documentation
("# Related documentation" section)
- Provide error analysis

- Put it in "error_analysis"
- Provide a working solution with a specified format

- Put it in "regenerated_solution"

# Response format
## General guidelines
Provide your solution as a JSON object with:
1. "error_analysis": Your complete error analysis
2. "regenerated_solution": Object containing file paths and
their diffs

## Diff format specification
Each diff must follow this structure:
```
--- without_solution
+++ with_solution
@@ -line,count +line,count @@
context lines

+added lines
context lines

```

## Important rules:
- Only ADD content, do not remove any lines
- Include proper line numbers and context
- Ensure diffs are properly formatted

## Example JSON response:
```json
{{

"error_analysis": "The error occurred because...",
"regenerated_solution": {{

"path/to/file1.py": [
"--- without_solution\n+++ with_solution\n
@@ -10,3 +10,5
@@\n existing_line\n+ new_line1\n
+ new_line2\n
existing_line"

]
}}

}}
```

## Additional guidelines
- Provide ONLY the JSON response
- No additional explanation
- Response must be valid JSON (will be parsed with json.loads())
- If you want to think before returning response,
be short and concise

# Related documentation
Here are supporting documentation pieces:
```markdown
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{documentation}
```

# Context files
Here are the context files to analyze:
{context_files}

# Previous attempt
Previous solution, which needs fixing:
{solution_code}

# Error message
Error message of the previous solution:
{error_message}

211

F.5 Zero-shot Two-Turn Solver (RAG)212

For this configuration, same prompt template from previous configuration is used for second turn.213

First turn template is different from the default two-turn solver configuration and allows in the same214

time to generate solution and keywords to search for in the documentation:215

First Turn Prompt

# Task overview
You are tasked with implementing a solution
based on the following prompt:
{example_prompt}

# Context files
Here are the context files to analyze:
{context_files}

# Steps
- Have a look at the version of aws-cdk-lib

- Current version is {cdk_version}
- Read task overview ("# Task overview" section)
- Read each all of the context files ("# Context files" section)
- Try to understand what should be done
- If provided, read related AWS documentation
("# Related documentation" section)
- Provide solution with a specified format
("# Response format" section)
- Provide documentation support keywords

# Documentation Support
To confirm your implementation you should provide keywords in
"search"
in key:
- Include a "search" key in your JSON response
- Provide up to 5 specific keywords
related to the AWS services
and features you need help with
- Example: "search": "data access policies opensearch"

- Avoid using underscores or other similar
special characters, query should be human-readable
- Keywords should reflect the resources used in the stack
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or errors seen during execution,
i.e. 'opensearch' or 'appsync'
- Avoid too generic keywords like 'aws' or 'cloudformation'

- Keywords you provide will be used in the next interaction
in case solution does not pass the tests

# Response format
## General guidelines
Provide your solution as a JSON object with:
1. File paths as keys
2. Arrays of unified diffs as values

## Diff format specification
Each diff must follow this structure:
```
--- without_solution
+++ with_solution
@@ -line,count +line,count @@
context lines

+added lines
context lines

```

## Important rules:
- Only ADD content, do not remove any lines
- Include proper line numbers and context
- Ensure diffs are properly formatted

## Example JSON response:
```json

{{
"path/to/file1.py": [

"--- without_solution\n+++ with_solution\n
@@ -10,3 +10,5
@@\n existing_line\n+ new_line1\n
+ new_line2\n
existing_line"

],
"search": "..."

}}
```

## Additional guidelines
- Provide ONLY the JSON response
- No additional explanation
- Response must be valid JSON (will be parsed with json.loads())

------

Your JSON response (start with ```json):
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G Model Configurations218

Table 5 overviews the models used in our experiments and provides their invocation parameters.219

Some reasoning models (DeepSeek R1, OpenAI o3, OpenAI o4-mini) have 4 times bigger token220

budget, Gemini 2.5 models require 5 times more, reaching more than 20K maximum tokens per221

task. This was done to allow for longer outputs for reasoning models to avoid result truncation.222

Table 5: Models Invocation Parameters
Model Model ID Invocation Parameters
Claude 3 Haiku anthropic.claude-3-haiku-20240307-v1:0 max_tokens=4096; temperature=0.25; top_p=0.9

Claude 3.5 Sonnet anthropic.claude-3-5-sonnet-20240620-v1:0 max_tokens=4096; temperature=0.25; top_p=0.9

Claude 3.5 Sonnet V2 anthropic.claude-3-5-sonnet-20241022-v2:0 max_tokens=4096; temperature=0.25; top_p=0.9

Claude 3.7 Sonnet claude-3-7-sonnet-latest max_tokens=4096; temperature=0.25

Codestral codestral-latest max_tokens=4096; temperature=0.25

DeepSeek R1 deepseek-ai/DeepSeek-R1 max_tokens=16384; temperature=0.25

GPT-4.1 gpt-4.1 max_output_tokens=4096; temperature=0.25

GPT-4o Mini gpt-4o-mini max_output_tokens=4096; temperature=0.25

Gemini 2.0 Flash gemini-2.0-flash max_output_tokens=4096; temperature=0.25

Gemini 2.0 Flash Lite gemini-2.0-flash-lite max_output_tokens=4096; temperature=0.25

Gemini 2.5 Pro (03-25 Preview) gemini-2.5-pro-preview-03-25 max_output_tokens=20480; temperature=0.25

Gemini 2.5 Pro (05-06 I/O Edition Preview) gemini-2.5-pro-preview-05-06 max_output_tokens=20480; temperature=0.25

LLaMA 3.1 405B Instruct meta.llama3-1-405b-instruct-v1:0 max_tokens=4096; temperature=0.25; top_p=0.9

LLaMA 3.1 70B Instruct us.meta.llama3-3-70b-instruct-v1:0 max_tokens=4096; temperature=0.25; top_p=0.9

LLaMA 4 Maverick 17B Instruct meta.llama4-maverick-17b-instruct-v1:0 max_tokens=4096; temperature=0.25

LLaMA 4 Scout 17B Instruct meta.llama4-scout-17b-instruct-v1:0 max_tokens=4096; temperature=0.25

Mistral Large mistral-large-latest max_tokens=4096; temperature=0.25

OpenAI o3 o3 max_output_tokens=16384

OpenAI o4-mini o4-mini max_output_tokens=16384

Qwen2.5 72B Instruct Turbo Qwen/Qwen2.5-72B-Instruct-Turbo max_tokens=4096; temperature=0.25

H Verbosity Configurations for Two-Turn Solvers223

Our experimental framework uses pytest as the testing library, with two distinct verbosity configura-224

tions designed to evaluate how different levels of feedback detail affect model performance. Here are225

the details on each of the configurations:226

Table 6: Verbosity Parameters
Low-verbosity (VL) High-verbosity (VH )

Configuration
Flags -q -tb=no -no-summary ∅
Output Features
Pass/fail counter ✓ ✓
Exception ✓ ✓
Traceback × ✓
Test files names × ✓
Test functions names × ✓

I Models Performance by Donor Repository Type227

We analyzed the performance of models across different repository sources to investigate potential228

biases in our benchmark. The SWE-InfraBench dataset comprises 100 tasks derived from 34 distinct229

base repositories, with 66 examples originating from open-source repositories and 34 from custom-230

developed sources. While each task underwent substantial engineering modifications regardless of231

its origin, we sought to determine whether tasks derived from open-source repositories might be232
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less difficult compared to custom-developed ones due to models being potentially trained on the233

open-source data.234

As shown in Table 7 for the majority of models the tasks derived from open-source repositories are235

equally or even more challenging. One important consideration is that randomness in the generation236

process and limited group sizes (34 tasks in the smallest group) suggest caution in the results237

interpretation.238

Table 7: Correctness of proprietary and open-source LLMs on the whole benchmark and separately
for tasks created from open-source and from custom created repositories. Models are grouped by
source type and provider, and sorted from most recent to oldest variant within each group. † indicates
LLMs executed with reasoning capabilities. ✝ Claude 3.7 was executed without extended reasoning.
Top results are in bold.

Source Company Model Correctness
All Tasks Custom Derived Tasks Open-Source Derived Tasks

Pr
op

ri
et

ar
y

Anthropic Claude 3.7 Sonnet ✝ 34% 35% 33%
Claude 3.5 Sonnet V2 32% 32% 32%
Claude 3.5 Sonnet 29% 32% 27%
Claude 3 Haiku 8% 12% 6%

Google Gemini 2.5 Pro (03-25 Preview) † 29% 44% 21%
Gemini 2.5 Pro (05-06 I/O Edition Preview) † 29% 38% 24%
Gemini 2.0 Flash Lite 5% 6% 5%
Gemini 2.0 Flash 4% 0% 6%

OpenAI OpenAI o3 † 23% 29% 20%
OpenAI o4-mini † 23% 26% 21%
GPT-4.1 18% 18% 18%
GPT-4o Mini 4% 9% 2%

O
pe

n-
So

ur
ce

DeepSeek DeepSeek R1 † 24% 26% 23%

Mistral Mistral Large 14% 12% 15%
Codestral 9% 15% 6%

Meta LLaMA 3.1 405B Instruct 9% 12% 8%
LLaMA 3.1 70B Instruct 3% 6% 2%
LLaMA 4 Maverick 17B Instruct 8% 9% 8%
LLaMA 4 Scout 17B Instruct 2% 3% 2%

Alibaba Qwen2.5 72B Instruct Turbo 0% 0% 0%

J Consistency Analysis239

We quantified consistency using a "Success Consistency" metric. For each model and example, the240

"Task Success Consistency Gap" was calculated as the difference between the best and worst attempt241

correctness:242

Task Success Consistency Gap = max
i∈attempts

(correctnessi)− min
i∈attempts

(correctnessi) (1)

Success Consistency is then defined as:243

Success Consistency = 1− Task Success Consistency Gap (2)

This value is averaged over all examples for each model. A value of 1 means perfectly consistent244

performance across attempts (either always failing or always succeeding). A value of 0 indicates245

maximum inconsistency (some attempts succeed while others fail).246

As indicated in Section 4 all LLMs demonstrate substantial improvement when given multiple247

opportunities to solve a task. Gemini 2.5 Pro achieves the highest pass@5 rate, indicating that248

for 47% of tasks, at least one of five attempts produces a fully correct solution. This represents a249

considerable improvement over its single-attempt performance. DeepSeek R1 and OpenAI o3 show250

similar patterns, with pass@5 rates consistently higher than pass@1. Claude 3.7 Sonnet, however,251

shows higher average correctness of the results. It explains how Claude 3.7 Sonnet with its slightly252

lower pass@5 of 41% achieves the top position in one-trial benchmarking.253
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Model Performance: Average Correctness vs. Success Consistency

Figure 6: Average Correctness vs Consistency. Models positioned higher on average correctness,
notably Claude 3.7 Sonnet, tend to demonstrate greater consistency, providing similar outcomes
across repeated attempts. In contrast, models such as Gemini 2.5 Pro, DeepSeek R1, and OpenAI o3,
despite achieving significant improvements when allowed multiple attempts, exhibit less consistency,
indicating more variability in their success across trials.

Figure 6 illustrates the relationship between average correctness across trials and success consistency254

for tested models. We observed that higher-performing on average Claude 3.7 Sonnet demonstrated255

better consistency, while Gemini 2.5 Pro, DeepSeek R1 and OpenAI o3 are not as consistent in256

providing correct results on this dataset.257

K Error Type Distribution258

Figure 7 illustrates how error distributions change when models are given a second attempt with259

feedback (high verbosity configuration) from their first attempt. All models benefit from the second260

attempt, improving both on syntax and logical errors. However, a subset of LLMs without reasoning,261

namely GPT-4.1, Mistral Large and Llama 4 Maverick 17B Instruct, retain the same percentage of262

logical errors, mostly correcting the syntax ones. Such a behavior indicates that even high verbosity263

level is insufficient to address these more complex, implementation-specific failures. On the other264

hand, Claude Sonnet models, as well as Gemini 2.5 and DeepSeek R1, that further leverage their265

reasoning capabilities, showcase the considerable improvement on this matter as a prove of better266

analysis of underlying infrastructure dependencies and relationships.267
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Response Format Error: Solution does not follow the required output format
Syntax Error: Incorrect object properties or syntax errors that cause all tests to fail
Logical Error: Solution passes some tests but does not solve the task completely
No Error: Solution passes all tests and solves the task correctly

Figure 7: Error type distribution comparison between one-turn and two-turn (without RAG, high
verbosity) approaches. All models show improved performance in the two-turn approach. The
Claude family models demonstrate balanced improvement by reducing both syntax and logical errors.
Gemini model primarily addresses logical errors in its second attempt, while GPT-4.1 and DeepSeek
R1 shows substantial reduction in syntax errors. While most examples benefit from the two-turn
approach, a small percentage show regression due to the inherent randomness in the generation
process.
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NeurIPS Paper Checklist268

1. Claims269

Question: Do the main claims made in the abstract and introduction accurately reflect the270

paper’s contributions and scope? [Yes] The claims in the abstract and introduction are271

accurately aligned with the actual scope of the paper, which introduces a novel infrastructure-272

as-code benchmark.273

2. Limitations274

Question: Does the paper discuss the limitations of the work performed by the authors?275

[Yes] The Conclusion section discusses some limitations and possible future extensions of276

the introduced benchmark and empirical experiments conducted in the paper.277

3. Theory assumptions and proofs278

Question: For each theoretical result, does the paper provide the full set of assumptions and279

a complete (and correct) proof? [NA] The paper does not include any theoretical results.280

4. Experimental result reproducibility281

Question: Does the paper fully disclose all the information needed to reproduce the main282

experimental results of the paper to the extent that it affects the main claims and/or conclu-283

sions of the paper (regardless of whether the code and data are provided or not)? [Yes] The284

paper provides a description of the benchmark construction as well as empirical experiments285

conducted on it. We publish the complete dataset, disclose the links and licenses of the286

donor repositories, and the code implementing the benchmark construction pipeline and the287

evaluation experiments for different models and approaches tested in the paper. This allows288

reproducing our results, or extending the analysis by evaluating techniques not considered289

in this paper.290

5. Open access to data and code291

Question: Does the paper provide open access to the data and code, with sufficient instruc-292

tions to faithfully reproduce the main experimental results, as described in supplemental293

material? [Yes] The paper provides access to the data and code, with instructions to294

reproduce the main experimental results and analyze the dataset entries.295

6. Experimental setting/details296

Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-297

rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?298

[Yes] The paper provides the prompt templates, LLM inference parameters, and evaluation299

metrics definitions for the provided evaluation experiments.300

7. Experiment statistical significance301

Question: Does the paper report error bars suitably and correctly defined or other appropriate302

information about the statistical significance of the experiments? [No] We do not perform303

statistical significant tests of the overall model performance due to high costs of repeated304

LLM calls. At the same time, we provide additional analysis, including error distribution305

analysis and investigate performance of selected LLMs in a setting with multiple independent306

generations, presented in the main paper and in the Appendix. This provides insights on the307

consistency of the observed results.308

8. Experiments compute resources309

Question: For each experiment, does the paper provide sufficient information on the com-310

puter resources (type of compute workers, memory, time of execution) needed to reproduce311

the experiments? [No] The paper focuses on benchmarking LLMs available via API calls312

by different model providers, which does not create any non-standard computer resources to313

reproduce the experiments.314

9. Code of ethics315

Question: Does the research conducted in the paper conform, in every respect, with the316

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?317

[Yes] Justification: The research conforms with the NeurIPS Code of Ethics.318

10. Broader impacts319

26

https://neurips.cc/public/EthicsGuidelines


Question: Does the paper discuss both potential positive societal impacts and negative soci-320

etal impacts of the work performed? [NA] The benchmark targets low-level infrastructure321

code modifications without direct interaction with end users or social systems, and thus does322

not raise immediate concerns around fairness, privacy, or misuse.323

11. Safeguards324

Question: Does the paper describe safeguards that have been put in place for responsible325

release of data or models that have a high risk for misuse (e.g., pretrained language models,326

image generators, or scraped datasets)? [NA] The paper poses no substantial risks of327

misuse.328

12. Licenses for existing assets329

Question: Are the creators or original owners of assets (e.g., code, data, models), used in330

the paper, properly credited and are the license and terms of use explicitly mentioned and331

properly respected? [Yes] The paper provides a list of licenses for the donor repositories332

that were used to construct the benchmark.333

13. New assets334

Question: Are new assets introduced in the paper well documented and is the documentation335

provided alongside the assets? [Yes] The paper provides documentation of the introduced336

asset – a new benchmark dataset for infrastructure-as-code generation.337

14. Crowdsourcing and research with human subjects338

Question: For crowdsourcing experiments and research with human subjects, does the paper339

include the full text of instructions given to participants and screenshots, if applicable, as340

well as details about compensation (if any)? [NA] The paper does not involve crowdsourcing341

nor research with human subjects.342

15. Institutional review board (IRB) approvals or equivalent for research with human343

subjects344

Question: Does the paper describe potential risks incurred by study participants, whether345

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)346

approvals (or an equivalent approval/review based on the requirements of your country or347

institution) were obtained? [NA] The paper does not involve crowdsourcing nor research348

with human subjects.349

16. Declaration of LLM usage350

Question: Does the paper describe the usage of LLMs if it is an important, original, or351

non-standard component of the core methods in this research? Note that if the LLM is used352

only for writing, editing, or formatting purposes and does not impact the core methodology,353

scientific rigorousness, or originality of the research, declaration is not required. [Yes] As354

described in the paper, we use a semi-automated pipeline for generating dataset examples355

using LLMs. The process is documented in detail in Section 2, and prompt examples are356

provided in the Appendix.357
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