
PromptIntern: Saving Inference Costs by Internalizing Recurrent Prompt
during Large Language Model Fine-tuning

Anonymous ACL submission

Abstract

Large language models (LLMs) have played a001
fundamental role in various natural language002
processing tasks with powerful prompt tech-003
niques. However, in real-world applications,004
there are often similar prompt components for005
repeated queries, which causes significant com-006
putational burdens during inference. Exist-007
ing prompt compression and direct fine-tuning008
methods aim to tackle these challenges, yet they009
frequently struggle to strike an optimal balance010
between cost-efficiency and performance effec-011
tiveness, especially in complex tasks such as012
NL2Code. In this paper, we propose a novel013
method namely PromptIntern to internalize the014
prompt knowledge into model parameters via015
progressive fine-tuning. Our method enables016
LLMs to emulate the human learning process017
for a new task, where detailed templates and018
examples in a prompt are gradually internal-019
ized and phased out progressively as the model020
grows accustomed to the task. Extensive exper-021
iments demonstrate that our method can reduce022
the inference tokens by 67-90%, saves 39-90%023
cost, and speedups inference by 1.1-5.1x.024

1 Introduction025

Large language models (LLMs) have become026

pivotal in numerous natural language process-027

ing (NLP) applications, such as natural language028

generation (Dong et al., 2019), reasoning (Zhu029

et al., 2023; Sui et al., 2023), and code genera-030

tion (Luo et al., 2023; Li et al., 2023a; Rozière031

et al., 2024). In practical deployments, crafting032

suitable prompts is of great importance as it can033

substantially improve the prediction performance.034

Advanced prompt engineering techniques, such035

as chain-of-thought prompting (Wei et al., 2022),036

self-consistency (Wang et al., 2022), and retrieval-037

augmented generation (Lewis et al., 2020), have038

significantly advanced the capabilities of LLMs.039

However, these techniques often involve in much040

longer prompts, which substantially increases the041

Question

Template

Examples

......

Question

The answer is...

Learning …

!

"!

Cost Heavy

High Latency
......

......

! → #!
Examples

Template

Cost Saving

Inference Speedup

High Accuracy

Figure 1: An illustration of PromptIntern.

computational cost during inference. Such an in- 042

crease in inference cost can preclude the appli- 043

cation of LLMs in many cost-sensitive scenarios 044

where computational resources are constrained. 045

To mitigate the substantial inference cost in- 046

curred by advanced prompt engineering techniques, 047

numerous methods (Jiang et al., 2023a,b; Pan et al., 048

2024) have been proposed to compress prompts 049

while minimizing performance degradation. How- 050

ever, existing compression methods have primarily 051

focused on relatively straightforward tasks, such 052

as text summarization (Zhang et al., 2019), where 053

significant neural language redundancy exists. For 054

more challenging tasks, especially those involving 055

knowledge contained within examples, the corre- 056

sponding tokens are inherently more difficult to 057

compress. Naively applying compression tech- 058

niques to these knowledge-intensive prompts can 059

lead to significant performance drops, as the rele- 060

vant information may be inadvertently removed or 061

distorted during the compression process. On the 062

other hand, fine-tuning provides a straightforward 063

1

way to enhance the model’s performance for a spe-064

cific task. However, direct fine-tuning without the065

guidance of prompt instruction or examples often066

suffers from significant performance degradation,067

posing a serve challenge to the training process.068

In this paper, we propose a novel paradigm to069

internalize the prompt input and enable efficient070

inference. Instead of directly removing prompt to-071

kens based on their perplexity or compressing them072

into smaller tokens, we aim to transfer the prompt073

knowledge into model parameters. Our idea is mo-074

tivated by the human learning process as illustrated075

in Figure 1: When a human intern is first exposed076

to a new task, they typically require detailed instruc-077

tions, demonstrative examples, and relevant docu-078

ments to effectively understand and internalize the079

task knowledge. However, as the intern becomes080

accustomed to the task, such guidance is no longer081

needed, as he has mastered the required knowledge.082

Similarly, for LLMs, when similar knowledge is083

repeatedly exposed to the model, the LLM should084

gradually learn and internalize it into its parame-085

ters. This means that when faced with new, similar086

tasks, the model should be able to predict accu-087

rately without the need for extensive prompting as088

initially.089

To achieve this goal, we delineate the prompt090

into three distinct components: the template, ex-091

amples, and query, and propose a progressive fine-092

tuning strategy that involves gradually compressing093

the prompt template and reducing the number of094

retrieved examples, enabling the model to incre-095

mentally absorb the prompt knowledge into its pa-096

rameters. We further design tailored compression097

strategies for different components. We dub our ap-098

proach “PromptIntern” as it internalizes prompt099

knowledge into LLM models, viewing the LLM as100

a human intern learning tasks progressively.101

PromptIntern can been conceptually connected102

to curriculum learning, where the model is initially103

presented with relatively straightforward samples104

accompanied by complete prompt contexts. Subse-105

quently, the prompt instructions and examples are106

progressively compressed, gradually increasing the107

task difficulty. Through this progressive exposure108

and fine-tuning process, we are able to foster better109

model learning capabilities, resulting in improved110

zero-shot performance. As a result, we are able111

to maximize prompt compression while preserv-112

ing satisfactory performance, striking an optimal113

balance between inference efficiency and accuracy.114

We conduct extensive experiments on challenging115

code generation tasks to demonstrate the efficiency 116

and effectiveness of our approach. Our main con- 117

tributions can be summarized as follows: 118

• We propose PromptIntern, a novel prompt com- 119

pression method that aims to internalize repeti- 120

tive prompt knowledge into the model’s parame- 121

ters, achieving extreme inference efficiency while 122

maintaining high performance. 123

• We devise detailed prompt internalization strate- 124

gies for different prompt components along with 125

a tailored progressive fine-tuning pipeline. 126

• We conduct extensive experiments with detailed 127

analysis on challenging NL2Code tasks. The ex- 128

perimental results demonstrate that our approach 129

reduces the tokens usage by 67-90%, achieves 130

39-90% cost savings, and speedups inference by 131

1.1-5.1x. 132

2 Related Work 133

Prompt compression aims to rephrase the 134

original prompts into condense ones. Depend- 135

ing on whether targeting on specific tasks, it 136

can be categorized into task-aware and task- 137

agnostic compression approaches. Task-aware 138

approaches compress the context based on the 139

downstream tasks or current query. For example, 140

LongLLMLingua (Jiang et al., 2023b) adopts a 141

question-aware coarse-to-fine approach based on 142

the information entropy of the tokens and adapts 143

the information according to the question. Soft 144

prompt methods (Wingate et al., 2022; Liu et al., 145

2022; Mu et al., 2024) condense the input prompt 146

with learnable tokens. Task-agnostic approaches 147

typically involve using information entropy-based 148

metrics to remove redundant information in the 149

prompt (Li et al., 2023b; Jiang et al., 2023a). For 150

example, LLMLingua (Jiang et al., 2023a) uses 151

a small language model to estimate token impor- 152

tance. Despite their demonstrated effectiveness, 153

producing compressed text that can generalize 154

across different tasks remains a challenge (Pan 155

et al., 2024). Different from existing prompt 156

compression methods, we propose internalizing 157

the prompt knowledge into model parameters to 158

handle repetitive queries, thereby enabling a higher 159

degree of inference efficiency. 160

161

Model fine-tuning aims to adapt the pretrained 162

LLM model to specific downstream tasks by modi- 163

fying the model parameters. Based on the assump- 164

tion that fine-tuning adds less new information to 165

2

the model pretrained on large Inernet-scale datasets,166

Parameter-Efficient Fine-Tuning (PEFT) methods167

are designed to reduce the high expense of fine-168

tuning large-scale models. PEFT achieves this by169

training only a small subset of the model’s total170

parameters to adapt to the new task. Existing PEFT171

methods can be broadly categorized into three main172

approaches: 1) Adapter-based methods (Houlsby173

et al., 2019; He et al., 2021): These introduce addi-174

tional trainable modules into a frozen “backbone”175

network. This offers flexibility but can increase176

the model size. 2) Prompt-based methods (Lester177

and Constant; Razdaibiedina et al., 2023; Nashid178

et al., 2023): These introduce additional trainable179

“soft tokens” at the beginning of the input sequence.180

This is simpler but might require crafting effec-181

tive prompts for each task. 3) Low-rank adaptation182

methods (Hu et al., 2021; Dettmers et al., 2024;183

Liu et al., 2024): These utilize low-rank matrices184

to approximate the weight changes needed for fine-185

tuning. This is the current mainstream approach186

because it avoids adding any burden during infer-187

ence and often exhibits strong performance.188

3 Problem Formulation189

In this paper, we define a input prompt as x =190

(xtmp, xegs, xque), where each input prompt x is191

considered as a tuple of three components: xtmp as192

the template such as fixed instructions, API docs,193

etc., xegs as the examples, and xque as the query.194

Typically, xtmp and xegs are relatively fixed and195

lengthy but essential for complex tasks. Let fθ(·)196

denotes the neural network function of a LLM197

model, typically transformer (Vaswani et al., 2017),198

parameterized by θ. The generated output by LLM199

can be represented as fθ(x).200

We then consider the following problem of201

prompt internalization. Given a training dataset202

Dtrain = {(xi, yi)}ni=1 where n is the number of203

training samples, xi is an input prompt defined204

above, and yi is the corresponding groundtruth205

output. Our goal is to internalize the knowledge206

contained in templates and examples of each in-207

put prompt i.e. {(xtmp
i , xegsi)}ni=1 into model pa-208

rameters θ during fine-tuning, enabling efficient209

inference while maintaining high prediction per-210

formance through {xquei }ni=1 only. Formally, the211

prompt internalization objective can be formulated212

as follows:213

min
θ̃

n∑
i=1

L
(
yi, fθ̃(x

que
i)

)
(1)214

where L(·) denotes the loss function and θ̃ de- 215

notes the updated weights with internalized prompt 216

knowledge. For a new incoming prompt only con- 217

taining the query, the updated LLM with fθ̃(·) can 218

internally recover the output without the assistance 219

of instruction and examples. 220

4 Methodology 221

In this section, we introduce the detailed proce- 222

dures of PromptIntern. We first discuss the tem- 223

plate compression that is designed to compress the 224

entire fixed template part inside an input prompt. 225

Then we describe the example absorption on how 226

to effectively absorb demonstration examples into 227

model parameters. Finally, we introduce a tailored 228

training strategy for PromptIntern. The overall 229

framework is shown on Figure 2. 230

4.1 Template Compression 231

We first introduce template compression, which 232

is designed to compress the common template in- 233

formation existed across training instances. The 234

motivation of the template compression stems from 235

the following aspects: 1) Redundancy. The instruc- 236

tion is repetitive across prompts for a given task, 237

often containing unnecessary tokens that do not 238

contribute to the language model’s understanding, 239

posing significant memory and computational bur- 240

dens when the instruction is lengthy; and 2) Noise. 241

Excessively long prompts may incorporate extra- 242

neous elements—either irrelevant or misleading in- 243

formation—that serves as noise and can adversely 244

affect the model’s generation. 245

To mitigate the issues stated above, we propose a 246

template compression system, which can generally 247

be expressed as: 248

x̃tmp = C(xtmp, τ tmp) (2) 249

where C is a specific template compressor, x̃tmp 250

is the compressed template, and τ tmp is the tem- 251

plate compression rate as defined in (Jiang et al., 252

2023a), varying at differnt training interations. We 253

then adopt a predetermined schedule Stmp(t) to 254

progressively reduce and internalize the prompt 255

template information during the t-th training itera- 256

tion. Specifically, for a total of T training iterations, 257

we initially set τ tmp to 1 at Stmp(0) and gradually 258

decrease the value of τ tmp at Stmp(t) to zero at 259

end to achieve fully template internalization. Note 260

that such compression system is also flexible, al- 261

lowing it to halt at a desired non-zero compression 262

3

Template
(Instructions & Doc)

10-shot examples

Question

0.3x Template

5-shot	
examples 0-shot

No Template
Template

Compression

Example
Absorption

Scheduled Epochs

Template
Compression

Example
Absorption

$!
"#
$%
	

Question QuestionPr
og

re
ss

iv
e

Fi
ne

-T
un

in
g

Pr
og

re
ss

iv
e

Fi
ne

-T
un

in
g

Preprocess

Scheduled Epochs

Scheduled Epochs

Pr
og

re
ss

iv
e

Fi
ne

-T
un

in
g

Inference

'!-.

%'

'!

Inference

…
…

…
Preprocess

Preprocess ('/ …'0	

…
…

Schedule #!"#!$%, #!"#&'(Schedule #!!$%, #!&'(Schedule #)!$%, #)&'(

Figure 2: Overview of our PromptIntern pipeline. We adopt a progressive fine-tuning approach to gradually
internalize the prompt knowledge that exists in the template and examples into the model parameters. In this way,
we can perform efficient inference without compromising performance compared to regular few-shot fine-tuning.

rate. This flexibility allows to maintain a certain263

level of compressed template, serving as a trade-off264

to preserve inference accuracy in specific scenar-265

ios, as discussed in Section 5.3. In addition of266

the progressively decreasing template schedule, we267

also specify the template compressor C for better268

utilization. we categorize it into two types which269

exactly reflects the primary components of the tem-270

plate defined in the problem formulation: the in-271

struction compressor and document compressor:272

1) Instruction Compressor targets the static ele-273

ments within prompts, specifically focusing on the274

instructional content. Instructions in training data275

often consist of repeated directives, guidelines, or276

predefined tasks which are common across multiple277

training scenarios. The primary goal of the instruc-278

tion compressor is to distill these instructions down279

to their essential components, eliminating verbosity280

and redundancy without compromising the clarity281

or intent of the instructions.282

2) Document Compressor is designed to han-283

dle the bulkier and more detailed portions of the284

prompts, such as API documentation or static285

demonstrations. These sections typically include286

extensive technical descriptions and examples287

that, while informative, often contain a significant288

amount of repetitive or non-essential information289

(Xu et al., 2023). The goal of the document com-290

pressor is to reduce the information unnecessary for291

understanding and applying the technical content,292

thereby streamlining the training process.293

4.2 Example Absorption294

Incorporating few-shot examples into fine-tuning295

not only improves information retrieval and mem-296

ory recall (Hübotter et al., 2024) but also yields sub-297

stantial benefits in handling a variety of tasks with298

minimal data input (Mosbach et al., 2023; Snell 299

et al., 2017). However, directly adding lengthy few- 300

shot examples to input prompts burdens the context 301

window and increases inference latency. Motivated 302

by this, we propose example absorption to ben- 303

efit from the enhanced performance afforded by 304

few-shot examples while prevent incurring signifi- 305

cant additional overhead. Specifically, the example 306

absorption mainly contains two stages: example 307

retrieval and example removal. 308

1) Example Retrieval is designed to identify and 309

select the most related few-shot examples from 310

the training dataset and incorporate them into each 311

training instance. The underlying rationale is to 312

choose examples that closely align with the train- 313

ing instance so as to accelerate model’s internaliza- 314

tion during training. We employ a straightforward 315

approach that utilizes a relevance scoring function 316

s(·, ·) to assess the similarity between examples 317

and the training instance. Specifically, we select 318

the top k examples, varying at different training it- 319

erations, with the highest relevance scores to serve 320

as our few-shot examples. For a training instance 321

(xi, yi) with xi being the input prompt and yi being 322

the corresponding groundtruth output, the selection 323

process can be expressed as follows: 324

xegsi = {(xj , yj) | j ̸= i, s(yi, yj) ∈ top k scores}
(3)

325

Note that the scoring function is calculated based 326

on common similarity metrics (Rubin et al., 2022; 327

Chen et al., 2022; Dai et al., 2022). In our experi- 328

ment, we use the BLEU as the scoring function. 329

2) Example Removal aims to progressively in- 330

ternalize the prompt knowledge from few-shot ex- 331

amples into model parameters. To achieve this, 332

we also adopt a predetermined schedule Segs(t) 333

4

Algorithm 1 PromptIntern Pipeline

Input: A training dataset Dtrain ={(xi, yi)}ni=1

with xi = (xtmp
i , xegsi , xquei) and correspond-

ing labels yi, A language model f with initial
parameters θ, learning rate η, training itera-
tions T , template compression schedule Stmp,
example absorption schedule Segs

Output: The inference output fθT (x
que)

1: Preprocess
2: for i = 1, 2, . . . , n do
3: Obtain each τ tmp from Stmp

4: Obtain each k from Segs

5: Compress xtmp
i w/ each τ tmp via Eq. (2)

6: Retrieve k examples xegsi via Eq. (3)
7: end for
8: Progressive Finetuning
9: for t = 0, 1, . . . , T − 1 do

10: Adjust prompts with Stmp(t) and Segs(t)
11: Update model parameters θt via Eq. (4)
12: end for
13: Inference
14: Perform inference with fθT (x

que)

to gradually decrease the number of demonstra-334

tion examples in each prompt instance during the335

t-th iteration. Specifically, for a total of T training336

iterations, we initially set k examples at Segs(0)337

and then gradually decrease the value of k at each338

Segs(t) to zero at end in order to achieve fully ex-339

ample internalization.340

4.3 PromptIntern Pipeline341

In this subsection, we describe the detailed pipeline342

of PromptIntern. As demonstrated in Algorithm 1,343

PromptIntern consists of three stages: preprocess344

(line 1-5), progressive fine-tuning (line 6-10), and345

inference (line 11-12).346

1) Preprocess. We first preprocess the input347

prompts to prepare them for the progressive train-348

ing stage. Specifically, we process the prompt tem-349

plate to different compression rates based on the350

schedule Stmp(t) and retrieve examples for each351

training instance based on the schedule Segs(t).352

For better illustration, we provide an example of a353

pre-processed prompt with respect to schedule in354

Figure 3.355

2) Progressive Fine-tuning. We then fine-tune356

the model parameters for internalizing. Given the357

training iteration t, we update the model parameters358

as follows: 359

θt+1 = θt −
η

b

b∑
i=1

∇θL
(
fθt(x

tmp
i (t),

xegsi (t), xquei), yi
) (4) 360

where η is the learning rate, L is the cross-entropy 361

loss function, b is the batch size, B = {(xi, yi)}bi=1 362

is the data batch, and y is the groundtruth label. 363

3) Inference. After the progressive fine-tuning, 364

we have trained the LLMs with updated model 365

parameters θT to perform inference without adding 366

instructions or any examples. Thus, we can predict 367

the output simply with fθT (x
que). 368

Our objective is to effectively compress and in- 369

corporate prompt knowledge into model parame- 370

ters that are specifically tailored for distinct tasks. 371

In pursuit of this goal, we have adopted PEFT dur- 372

ing the fine-tuning phase of PromptIntern. Specif- 373

ically, we apply LoRA (Hu et al., 2021) as it im- 374

poses no additional computational costs during in- 375

ference and allows for scalable deployment across 376

multiple tasks (Sheng et al., 2023). Note that our 377

outlined pipeline in Algorithm 1 is also compatible 378

with other PEFT techniques. 379

5 Experiment 380

In this section, we evaluate the performance of 381

PromptIntern across various benchmarks on the 382

NL2Code task, which is widely recognized for its 383

utility in evaluating LLMs on both fine-tuning effi- 384

cacy and cost-effectiveness in real-world applica- 385

tions (Zan et al., 2022). Our experiments primarily 386

focus on two key perspectives: 1) Effectiveness: 387

assessing the performance of textbf during infer- 388

ence phases; 2) Efficiency: quantifying the reduc- 389

tion in token usage and corresponding cost savings 390

achievable through PromptIntern. 391

5.1 Settings 392

Datasets We apply three typical NL2Code 393

datasets: MBPP (Austin et al., 2021) for NL to 394

python code generalization, NL2F (Zhao et al., 395

2024) for NL to Excel spreadsheet formulas gener- 396

ation, NL2Bash (Lin et al., 2018) for NL to Bash 397

Shell commands generation. Please refer to Ap- 398

pendix A.1 for the dataset details. 399

Evaluation Metrics We use one-shot pass accu- 400

racy Pass@1 (Austin et al., 2021) for MBPP, Ex- 401

act Match (E.M.) for NL2F , and BLEU score for 402

NL2Bash. In addition, we calculate the input token 403

usage and compression rate τ for each dataset. 404

5

Table 1: Comparison with Prompt Compression Approaches

Methods MBPP NL2F NL2Bash

(Inference on GPT-3.5) Pass@1 Tokens 1/τall E.M. Tokens 1/τall BLEU Tokens 1/τall

GPT4 Generation 61.8 128 1.8x 59.6 425 1.6x 59.5 256 1.9x
Selective Context 59.7 102 2.2x 56.4 391 1.7x 55.2 158 3.1x
LLMLingua 70.3 115 2.0x 64.2 417 1.6x 61.3 154 3.1x
LongLLMLingua 65.2 121 1.9x 67.8 425 1.6x 58.4 133 3.6x
LLMLingua-2 72.5 107 2.1x 70.4 407 1.7x 62.8 141 3.4x

PromptIntern 78.1 107 2.1x 81.4 407 1.7x 70.5 141 3.4x

Baselines We consider two types of baselines405

with setups below:406

1) Prompt Compression approaches. We em-407

ploy the latest advancements in prompt compres-408

sion techniques. Specifically, we utilize Gist To-409

kens (Mu et al., 2024), GPT-4 Generation (Jiang410

et al., 2023b), Selective Context(Li et al., 2023b),411

and LLMLingua series (Jiang et al., 2023a,b; Pan412

et al., 2024). Each prompt compression method413

is initially applied to compress the entire dataset414

to a predetermined compression rate. Then, the415

compressed dataset is utilized for both fine-tuning416

and inference evaluation.417

2) Direct Fine-tuning approaches. We use “Direct”418

as the counterpart to our progressive fine-tuning419

strategy. Specifically, we adopt several conven-420

tional direct fine-tuning configurations, including421

i) direct fine-tuning with complete template and ex-422

amples (e.g. Template with 5-shots in Table 2), ii)423

direct fine-tuning with compressed template and re-424

duced examples (e.g. Template x0.6 with 2-shots in425

Table 2), iii) direct fine-tuning with template only426

(Template only), and iv) direct fine-tuning without427

template and examples (No template).428

Models To demonstrate the broad applicability429

of PromptIntern, we utilize both closed-source and430

open-source LLMs with different parameter sizes431

for fine-tuning and inference processes.1) Closed-432

Source: We apply GPT-4-0613 (OpenAI, 2023),433

abbreviated as GPT-4, and GPT-3.5-turbo-01251,434

abbreviated as GPT-3.5. 2) Open-Source: We apply435

Mixtral-8x7B-v0.1 (Jiang et al., 2024), abbreviated436

as Mixtral-8x7B, Llama2-7B (Touvron et al., 2023),437

and Llama2-13B (Touvron et al., 2023).438

Implementation Details Please refer to Ap-439

pendix A for the additional experiments settings440

and implementation details.441

1https://platform.openai.com/docs/models/gpt-3-5-turbo

5.2 Main results 442

Prompt Compression Approaches Comparison 443

Table 1 reports the overall result of PromptIntern 444

with the prompt compression baselines inferenced 445

on GPT-3.5 across all datasets. Here we estab- 446

lish the template compression rate τtmp at 0.3 447

across all prompt compression approaches as well 448

as PromptIntern to ensure a fair comparison. And 449

τall in the table represents the overall prompt’s 450

compression rate. We observe that while utiliz- 451

ing a comparable number of tokens for inference, 452

our approach significantly outperforms all base- 453

lines, achieving improvements of 5.6% on MBPP, 454

11.0% on NL2F, and 7.7% on NL2Bash. The 455

result demonstrates that PromptIntern generally of- 456

fers the best balance of efficiency and effectiveness 457

across varied tasks. Note that since the Gist To- 458

ken(Mu et al., 2024) baseline is only applicable on 459

open-source LLMs, we separately compare it with 460

our approach which can be found at Appendix A.3. 461

Direct Fine-tuning Approaches Comparison 462

Table 2, 3, and 4 demonstrate the comparison 463

results of PromptIntern with different direct fine- 464

tuning baselines. For the MBPP dataset, our ap- 465

proach significantly outperforms No Template and 466

Template baselines by 9.6%-10.8% and 0.6-1.3%, 467

respectively, and achieve comparable performance 468

against Template x0.6 with 2-shots baseline with 469

far less token usage. In addition, our approach 470

achieves a range of 9.8x-12.2x reduction in the 471

number of input tokens required for comparable 472

performance. Note that even though the template 473

with 5-shots achieves the best performance, it re- 474

quires 22.2x-27.4x more input tokens than our ap- 475

proach. This underscores the efficiency of our 476

method in reducing the computational resources 477

required for inference, while still delivering robust 478

performance. 479

6

Table 2: Comparison with direct fine-tuning baselines on MBPP datasets.

Model Template with 5-shots Template x0.6 with 2-shots Template Only No Template PromptIntern

Pass@1 Tokens Pass@1 Tokens Pass@1 Tokens Pass@1 Tokens Pass@1 Tokens

GPT-4 91.6 1181 87.4 424 87.3 226 77.2 43 87.9 43
GPT-3.5 82.7 1181 76.2 424 75.3 226 65.8 43 76.6 43
Mixtral-8x7B 69.8 1263 65.8 453 65.7 238 56.3 54 66.3 54
Llama2-13B 39.2 1286 37.5 471 36.4 251 26.4 58 37.1 58
Llama2-7B 30.4 1286 27.7 471 27.3 251 18.3 58 27.9 58

Table 3: Comparison with direct fine-tuning baselines on NL2F datasets.

Model Template with 10-shots Template x0.6 with 5-shots Template Only No Template PromptIntern

E.M. Tokens E.M. Tokens E.M. Tokens E.M. Tokens E.M. Tokens

GPT-4 94.8 3540 92.1 1838 89.7 680 82.5 286 91.6 286
GPT-3.5 85.5 3540 78.1 1838 76.2 680 70.4 286 78.4 286
Mixtral-8x7B 69.3 4204 66.3 2191 63.8 814 54.2 339 65.2 339
Llama2-13B 59.2 4202 54.9 2183 54.1 812 32.9 339 55.3 339
Llama2-7B 45.4 4202 40.7 2183 38.5 812 21.8 339 40.8 339

Table 4: Comparison with direct fine-tuning baselines on NL2Bash datasets.

Model Template with 10-shots Template x0.6 with 5-shots Template Only No Template PromptIntern

BLEU Tokens BLEU Tokens BLEU Tokens BLEU Tokens BLEU Tokens

GPT-4 86.7 1063 81.3 810 78.6 484 71.2 52 82.5 52
GPT-3.5 74.2 1063 67.5 810 65.1 484 61.2 52 67.7 52
Mixtral-8x7B 63.8 1320 58.3 1053 54.9 603 47.6 68 57.2 68
Llama2-13B 47.1 1244 43.9 988 41.6 574 35.1 64 43.5 64
Llama2-7B 35.8 1244 32.7 988 31.4 574 22.1 64 31.6 64

For the NL2F dataset, the results in Table 3480

shows our approach greatly outperforms No Tem-481

plate baseline by 8.0%-19.0% with the same to-482

ken usage for inference. In addition, our approach483

achieves comparable performance to the Template484

x0.6 with 2-shots baseline while reducing the re-485

quired number of input tokens by 6.4x. Another486

finding from the result is that for LLMs with487

larger parameters, removing the prompt template488

causes less degradation in performance compared489

to smaller models, as seen in Template Only and No490

Template columns (-5.7% with LLama2-13B and491

-21.2% with LLama2-7B). This suggests that larger492

models have a better inherent capability to under-493

stand the input questions, even without detailed494

instructions provided by the prompt template.495

For the NL2Bash dataset, we observe that un-496

der similar input tokens required, our approach497

also outperforms No Template baselines by 7.3%-498

11.3%, showing the superiority of prompt inter-499

nalization over direct fine-tuning. Moreover, for500

reaching a similar performance as Template x0.6501

with 5-shots, our approach reduces the required to-502

kens for inference by around 15.5x. These results 503

confirms the balance of cost efficiency and perfor- 504

mance effectiveness of our PromptIntern approach 505

during inference. 506

For additional experiments, please refer to Ap- 507

pendix A.4. 508

5.3 Ablation Study 509

To effectively assess the impact of various compo- 510

nents within our, we introduce three variants of 511

PromptIntern for ablation studies: 512

• PromptIntern w/τtmp=0.3, where we set the 513

compression rate to 0.3 instead of 0 in template 514

compression. 515

• PromptIntern w/o Example Absorption, in 516

which we omit the example absorption for retriev- 517

ing and internalizing few-shot examples during 518

fine-tuning. 519

• PromptIntern w/o Template Compression, 520

where template compression is excluded for both 521

fine-tuning and inference prompt instances. 522

The overall results is shown in Table 5. 523

When comparing PromptIntern with PromptIntern 524

7

Table 5: Ablation Study of PromptIntern.

Methods MBPP NL2F NL2Bash

(Inference on GPT-3.5) Pass@1 Tokens 1/τall E.M. Tokens 1/τall BLEU Tokens 1/τall

PromptIntern 76.6 43 5.3x 78.4 286 2.4x 67.7 52 9.3x

w/ τtmp = 0.3 78.1 107 2.1x 81.4 407 1.7x 70.5 241 2.0x
w/o Example Absorption 72.9 43 5.3x 73.5 286 2.4x 64.6 52 9.3x
w/o Template Compression 80.2 226 1.0x 83.6 680 1.0x 73.5 484 1.0x

w/τtmp = 0.3, we observe an average of 2.4%525

drop on performance but a 3.7x compression on526

tokens across all three datasets. This highlights the527

balance between compression rate and accuracy528

performance. When comparing our with our w/o529

Example Absorption, we observe a significant per-530

formance drop in the latter variant, despite both531

approaches utilizing the same number of tokens532

for inference. This outcome highlights the impor-533

tance of example absorption in internalizing es-534

sential information during the fine-tuning process.535

When comparing PromptIntern with PromptIntern536

w/o Template Compression, we note that adding537

the template compression saves an average of 280538

tokens across the datasets but experiences an aver-539

age performance drop of 5%. This demonstrates540

that while totally internalizing the template into541

model parameters significantly reduces token us-542

age, it requires a trade-off in terms of inference543

performance.544

Table 6: Comparison of schedule pattern and example
retrival bank of PromptIntern. The results are infer-
enced on GPT-3.5.

PromptIntern MBPP(Pass@1) NL2F(E.M.) NL2Bash(BLEU)

Pattern of Schedule S
- exp 74.8 72.5 59.4
- exp−1 67.3 64.9 52.8
- linear (ours) 77.6 78.4 67.7

Example Retrival Bank
- 25% 75.9 77.5 66.2
- 50% 76.1 78.1 66.8
- 100% (ours) 77.6 78.4 67.7

5.4 Analysis on Schedule Pattern545

In Table 6, we test the effectiveness of different546

scheduling patterns during the progressive fine-547

tuning process, specifically focusing on how the de-548

creasing speed curve influences the compression of549

the template and absorption of few-shot examples.550

The patterns tested include exponential, inverse-551

exponential, and linear decrease.552

From the data in the table, we observe that the553

linear decreasing schedule delivers the most consis- 554

tent and highest performance across all three evalu- 555

ation metrics, indicating superior performance in 556

both parsing efficiency and language model un- 557

derstanding. Conversely, the inverse-exponential 558

schedule shows the least effectiveness, with scores 559

considerably lower in all metrics compared to the 560

linear schedule. The exponential decrease performs 561

moderately, but still falls short of the linear sched- 562

ule, suggesting that a steady, predictable reduc- 563

tion is more beneficial than more aggressive de- 564

crease. This analysis suggests that for adopting a 565

linearly decreasing schedule for progressive fine- 566

tuning may lead to better performance in terms of 567

accuracy compared to other scheduling patterns. 568

5.5 Analysis on Examples Retrieval Bank 569

Table 6 examines the impact of varying proportion 570

of the training set used for constructing relevant 571

examples in the examples retrieval bank. The op- 572

tions tested include using 25%, 50%, and 100% of 573

the training set. The results clearly show a trend 574

where increasing the percentage of the training set 575

used in the examples retrieval bank correlates with 576

improved performance. This suggests that larger 577

examples retrieval bank provides a richer set of few- 578

shots for the model to learn from, thereby enhanc- 579

ing its ability to generalize and perform accurately 580

across tasks. 581

6 Conclusion 582

In this paper, we introduce PromptIntern, a novel 583

method for prompt internalization that internalizes 584

repetitive prompt knowledge into LLMs parame- 585

ters. We develop specific compression strategies 586

for different components of the prompt, accompa- 587

nied by a tailored progressive fine-tuning pipeline. 588

Experiments demonstrates that our method not only 589

accelerates inference speed and reduces token us- 590

age but also maintains comparable performance 591

effectiveness. 592

8

7 Limitations593

While PromptIntern significantly reduces costs dur-594

ing the inference stage, the progressive fine-tuning595

approach incurs additional computational expenses596

during training. Specifically, our methodology597

demands substantial manual intervention for pre-598

processing and parameter adjustments throughout599

the fine-tuning process. Moreover, the current eval-600

uation of our method is limited to a single task,601

specifically NL2Code. This restricts our under-602

standing of its generalizability and effectiveness603

across a broader range of tasks. In future work,604

we plan to conduct extensive evaluations on more605

complex and varied tasks, such as long document606

summarization and question answering within spe-607

cialized technical domains.608

8 Ethics Statement609

This research does not raise any ethical concerns.610

We obtained data only from publicly available611

sources where users have consented to the pub-612

lic sharing of their posts. We have conducted a613

thorough assessment to ensure that our research614

does not pose any potential harm.615

References616

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten617
Bosma, Henryk Michalewski, David Dohan, Ellen618
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.619
Program synthesis with large language models. arXiv620
preprint arXiv:2108.07732.621

Xiang Chen, Lei Li, Ningyu Zhang, Xiaozhuan Liang,622
Shumin Deng, Chuanqi Tan, Fei Huang, Luo Si, and623
Huajun Chen. 2022. Decoupling knowledge from624
memorization: Retrieval-augmented prompt learn-625
ing. In Advances in Neural Information Processing626
Systems.627

Zhuyun Dai, Vincent Y Zhao, Ji Ma, Yi Luan, Jianmo628
Ni, Jing Lu, Anton Bakalov, Kelvin Guu, Keith Hall,629
and Ming-Wei Chang. 2022. Promptagator: Few-630
shot dense retrieval from 8 examples. In The Eleventh631
International Conference on Learning Representa-632
tions.633

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and634
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning635
of quantized llms. Advances in Neural Information636
Processing Systems, 36.637

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-638
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,639
and Hsiao-Wuen Hon. 2019. Unified language model640
pre-training for natural language understanding and641
generation. Advances in neural information process-642
ing systems, 32.643

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg- 644
Kirkpatrick, and Graham Neubig. 2021. Towards a 645
unified view of parameter-efficient transfer learning. 646
In International Conference on Learning Representa- 647
tions. 648

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 649
Bruna Morrone, Quentin De Laroussilhe, Andrea 650
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. 651
Parameter-efficient transfer learning for nlp. In In- 652
ternational conference on machine learning, pages 653
2790–2799. PMLR. 654

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, 655
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, 656
et al. 2021. Lora: Low-rank adaptation of large lan- 657
guage models. In International Conference on Learn- 658
ing Representations. 659

Jonas Hübotter, Bhavya Sukhija, Lenart Treven, Yarden 660
As, and Andreas Krause. 2024. Active few-shot fine- 661
tuning. arXiv preprint arXiv:2402.15441. 662

Albert Q Jiang, Alexandre Sablayrolles, Antoine 663
Roux, Arthur Mensch, Blanche Savary, Chris Bam- 664
ford, Devendra Singh Chaplot, Diego de las Casas, 665
Emma Bou Hanna, Florian Bressand, et al. 2024. 666
Mixtral of experts. arXiv preprint arXiv:2401.04088. 667

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing 668
Yang, and Lili Qiu. 2023a. Llmlingua: Compressing 669
prompts for accelerated inference of large language 670
models. arXiv preprint arXiv:2310.05736. 671

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng 672
Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2023b. 673
Longllmlingua: Accelerating and enhancing llms 674
in long context scenarios via prompt compression. 675
arXiv preprint arXiv:2310.06839. 676

Brian Lester and Rami Al-Rfou Noah Constant. The 677
power of scale for parameter-efficient prompt tuning. 678

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 679
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 680
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock- 681
täschel, et al. 2020. Retrieval-augmented generation 682
for knowledge-intensive nlp tasks. Advances in Neu- 683
ral Information Processing Systems, 33:9459–9474. 684

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 685
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc 686
Marone, Christopher Akiki, Jia Li, Jenny Chim, 687
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, 688
Thomas Wang, Olivier Dehaene, Mishig Davaadorj, 689
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, 690
Nicolas Gontier, Nicholas Meade, Armel Zebaze, 691
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, 692
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo 693
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp 694
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, 695
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, 696
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo 697
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel 698
Romero, Tony Lee, Nadav Timor, Jennifer Ding, 699
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri 700

9

Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,701
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-702
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry703
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis,704
Sean Hughes, Thomas Wolf, Arjun Guha, Lean-705
dro von Werra, and Harm de Vries. 2023a. Star-706
coder: may the source be with you! Preprint,707
arXiv:2305.06161.708

Yucheng Li, Bo Dong, Chenghua Lin, and Frank Guerin.709
2023b. Compressing context to enhance inference710
efficiency of large language models. arXiv preprint711
arXiv:2310.06201.712

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer,713
and Michael D Ernst. 2018. Nl2bash: A corpus714
and semantic parser for natural language interface715
to the linux operating system. In Proceedings of716
the Eleventh International Conference on Language717
Resources and Evaluation (LREC 2018).718

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo719
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting720
Cheng, and Min-Hung Chen. 2024. Dora: Weight-721
decomposed low-rank adaptation. arXiv preprint722
arXiv:2402.09353.723

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-724
iao Du, Zhilin Yang, and Jie Tang. 2022. P-tuning:725
Prompt tuning can be comparable to fine-tuning726
across scales and tasks. In Proceedings of the 60th727
Annual Meeting of the Association for Computational728
Linguistics (Volume 2: Short Papers), pages 61–68.729

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-730
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,731
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:732
Empowering code large language models with evol-733
instruct. Preprint, arXiv:2306.08568.734

Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Di-735
etrich Klakow, and Yanai Elazar. 2023. Few-shot736
fine-tuning vs. in-context learning: A fair comparison737
and evaluation. arXiv preprint arXiv:2305.16938.738

Jesse Mu, Xiang Li, and Noah Goodman. 2024. Learn-739
ing to compress prompts with gist tokens. Advances740
in Neural Information Processing Systems, 36.741

Noor Nashid, Mifta Sintaha, and Ali Mesbah. 2023.742
Retrieval-based prompt selection for code-related743
few-shot learning. In 2023 IEEE/ACM 45th Interna-744
tional Conference on Software Engineering (ICSE),745
pages 2450–2462. IEEE.746

R OpenAI. 2023. Gpt-4 technical report. arxiv747
2303.08774. View in Article, 2(5).748

Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin749
Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Vic-750
tor Rühle, Yuqing Yang, Chin-Yew Lin, et al. 2024.751
Llmlingua-2: Data distillation for efficient and faith-752
ful task-agnostic prompt compression. arXiv preprint753
arXiv:2403.12968.754

Anastasiia Razdaibiedina, Yuning Mao, Madian Khabsa, 755
Mike Lewis, Rui Hou, Jimmy Ba, and Amjad Alma- 756
hairi. 2023. Residual prompt tuning: improving 757
prompt tuning with residual reparameterization. In 758
Findings of the Association for Computational Lin- 759
guistics: ACL 2023, pages 6740–6757. 760

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten 761
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 762
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy 763
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna 764
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron 765
Grattafiori, Wenhan Xiong, Alexandre Défossez, 766
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar- 767
tin, Nicolas Usunier, Thomas Scialom, and Gabriel 768
Synnaeve. 2024. Code llama: Open foundation mod- 769
els for code. Preprint, arXiv:2308.12950. 770

Ohad Rubin, Jonathan Herzig, and Jonathan Berant. 771
2022. Learning to retrieve prompts for in-context 772
learning. In Proceedings of the 2022 Conference 773
of the North American Chapter of the Association 774
for Computational Linguistics: Human Language 775
Technologies, pages 2655–2671. 776

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman 777
Hooper, Nicholas Lee, Shuo Yang, Christopher Chou, 778
Banghua Zhu, Lianmin Zheng, Kurt Keutzer, et al. 779
2023. S-lora: Serving thousands of concurrent lora 780
adapters. arXiv preprint arXiv:2311.03285. 781

Jake Snell, Kevin Swersky, and Richard Zemel. 2017. 782
Prototypical networks for few-shot learning. Ad- 783
vances in neural information processing systems, 30. 784

Yuan Sui, Jiaru Zou, Mengyu Zhou, Xinyi He, Lun Du, 785
Shi Han, and Dongmei Zhang. 2023. Tap4llm: Table 786
provider on sampling, augmenting, and packing semi- 787
structured data for large language model reasoning. 788
arXiv preprint arXiv:2312.09039. 789

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 790
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 791
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 792
Bhosale, et al. 2023. Llama 2: Open founda- 793
tion and fine-tuned chat models. arXiv preprint 794
arXiv:2307.09288. 795

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 796
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 797
Kaiser, and Illia Polosukhin. 2017. Attention is all 798
you need. Advances in neural information processing 799
systems, 30. 800

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, 801
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and 802
Denny Zhou. 2022. Self-consistency improves chain 803
of thought reasoning in language models. arXiv 804
preprint arXiv:2203.11171. 805

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 806
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 807
et al. 2022. Chain-of-thought prompting elicits rea- 808
soning in large language models. Advances in neural 809
information processing systems, 35:24824–24837. 810

10

https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950

David Wingate, Mohammad Shoeybi, and Taylor811
Sorensen. 2022. Prompt compression and contrastive812
conditioning for controllability and toxicity reduction813
in language models. In Findings of the Association814
for Computational Linguistics: EMNLP 2022, pages815
5621–5634.816

Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2023. Re-817
comp: Improving retrieval-augmented lms with con-818
text compression and selective augmentation. In The819
Twelfth International Conference on Learning Repre-820
sentations.821

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie822
Lu, Bingchao Wu, Bei Guan, Yongji Wang, and823
Jian-Guang Lou. 2022. Large language mod-824
els meet nl2code: A survey. arXiv preprint825
arXiv:2212.09420.826

Haoyu Zhang, Jianjun Xu, and Ji Wang. 2019.827
Pretraining-based natural language genera-828
tion for text summarization. arXiv preprint829
arXiv:1902.09243.830

Wei Zhao, Zhitao Hou, Siyuan Wu, Yan Gao, Haoyu831
Dong, Yao Wan, Hongyu Zhang, Yulei Sui, and832
Haidong Zhang. 2024. Nl2formula: Generating833
spreadsheet formulas from natural language queries.834
arXiv preprint arXiv:2402.14853.835

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and836
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing837
vision-language understanding with advanced large838
language models. arXiv preprint arXiv:2304.10592.839

A Additional Experiments840

A.1 Dataset Details841

MBPP The MBPP dataset, as detailed by (Mos-842

bach et al., 2023), consists of Python programming843

tasks, each accompanied by a description in natu-844

ral language that has been expertly curated. The845

dataset is segmented into training and test sets, with846

974 and 102 examples, respectively.847

NL2F The NL2F dataset, as detailed by (Zhao848

et al., 2024), consists of 70,799 pairs of NL queries849

and spreadsheet formulas and covers 21,670 ta-850

bles. We follow the dataset instructions (Zhao851

et al., 2024) to randomly split data into a train-852

ing set (75%), validation set (10%), and test set853

(15%).854

NL2Bash The nl2bash dataset, as described by855

(Lin et al., 2018), comprises snippets of Bash code,856

each paired with a natural language description ex-857

pertly curated. The dataset is divided into training858

and test sets, containing 8,090 and 606 examples,859

respectively.860

A.2 Implementation Details 861

Fine-tuning Procedures For PromptIntern train- 862

ing, we adopt LoRA (Hu et al., 2021) with 863

a rank of 32. For GPT-series and open- 864

source model fine-tuning we train models for 865

MBPP/NL2F/NL2Bash with 6/12/12 epochs, 866

16/128/128 batch size, 200/200/200 checkpoint in- 867

terval, and 4096/4096/4096 context window length 868

, respectively. 869

Model Inference We provide the detailed param- 870

eters we adopted during fine-tuned LLM inference: 871

temperature equal to 0, max tokens equal to 1028, 872

top p equal to 0.95, presence penalty equal to 0, 873

and frequency penalty equal to 0 874

Baseline Settings For prompt compression base- 875

lines comparison, we set the template compression 876

ratio τtmp = 0.3. For direct fine-tuning baselines, 877

we apply LLMLingua-2 (Pan et al., 2024) as the 878

default template compressor as it performs the best 879

in Table 1. 880

PromptIntern Settings Number of top- 881

k: We set the initial k as 5/10/10 across 882

MBPP/NL2F/NL2Bash for the initial number 883

of few-shot examples for example absorption. 884

During progressive fine-tuning, we decrease k 885

linearly in the order of 5-2-0/10-5-0/10-5-0 across 886

MBPP/NL2F/NL2Bash. Number of τtmp: For the 887

prompt compression baseline experiments, we 888

set the final template rate to 0.3, which is used in 889

the last stage of fine-tuning as well as inference. 890

For the other experiments and ablation studies, 891

we set the final template rate to 0 to achieve fully 892

internalization. 893

Cost Evaluation We compute the total costs 894

based on the price shown in OpenAI Pricing2 895

Computational Resource We conduct all exper- 896

iments on one A100x1-80G computational cluster. 897

898

A.3 Comparison with Gist Tokens 899

We report the comparison result of PromptIntern 900

with Gist Tokens (Mu et al., 2024) on Table 9. Gist 901

Tokens showcases consistent performance, with 902

notable results in NL2Bash where it achieves a 903

BLEU score of 22.7, suggesting a moderate align- 904

ment with the dataset’s requirements. In contrast, 905

PromptIntern demonstrates superior performance 906

2https://openai.com/api/pricing/

11

Table 7: Speed (s/instance) Comparison of PromptIntern with Direct Fine-tuning baseline on MBPP dataset.

Model Template with 5-shots Template x0.6 with 2-shots Template No template PromptIntern

GPT-4 10.21 8.68 7.29 4.36 4.17
GPT-3.5 5.43 3.68 3.06 1.35 1.31
Mixtral-8x7B 4.84 3.23 3.14 1.76 1.62
Llama2-13B 3.17 2.54 2.19 1.08 1.13
Llama2-7B 2.95 2.27 1.95 0.84 0.76

Table 8: Speed (s/instance) Comparison of PromptIntern with Direct Fine-tuning baseline on NL2F dataset.

Model Template with 10-shots Template x0.6 with 5-shots Template No template PromptIntern

GPT-4 12.47 8.43 4.16 2.12 2.15
GPT-3.5 8.16 5.26 2.18 1.46 1.44
Mixtral-8x7B 6.27 4.71 3.17 1.19 1.2
Llama2-13B 4.15 2.95 1.25 0.63 0.63
Llama2-7B 3.83 2.03 1.24 0.41 0.39

Table 9: Comparison with Gist Tokens (Mu et al., 2024)

Methods MBPP NL2F NL2Bash

(Inference on Llama2-7B) Pass@1 Tokens 1/τall E.M. Tokens 1/τall BLEU Tokens 1/τall

Gist Tokens 10.2 61 4.1x 17.5 342 2.4x 22.7 66 8.6x

PromptIntern 27.9 58 4.3x 40.8 339 2.4x 31.6 64 9.0x

across all metrics and datasets, particularly ex-907

celling in the NL2Bash dataset with a BLEU score908

of 31.6 and maintaining similar efficiency in token909

usage. The results demonstrate the our approach910

significantly outperforms the Gist token while con-911

ducting overall the same compression rate.912

A.4 Comparison on Inference Speed913

The experimental results presented in Tables 7914

and 8 illustrate the low latency characteristics of915

PromptIntern during inference across two datasets,916

MBPP and NL2F. Specifically, for the MBPP917

dataset, PromptIntern achieves an inference speed918

of 4.17 instances per second on the GPT-4 model,919

closely aligning with the 4.36 instances/s observed920

in the no template setup and far surpassing the more921

resource-intensive template with 5-shots configu-922

ration at 10.21 instances/s. In the NL2F dataset,923

PromptIntern similarly demonstrates its efficiency924

with an inference speed of 2.15 instances/s for GPT-925

4, which is nearly equivalent to the 2.12 instances/s926

observed without any template and significantly927

outperforms the elaborate template with 10-shots928

configuration, which achieves 12.47 instances/s.929

These results highlight PromptIntern’s capability to930

maintain competitive inference speeds while mini-931

mizing latency efficienlty. 932

B Example Demonstration 933

We demonstrate an an example on how we prepro- 934

cess an input prompt through both template com- 935

pression and example absorption in Figure 3 936

C Prompts 937

Please refer to Figure 4,5, and 6 for the detailed 938

prompts. 939

12

You are an advanced data analyst and programmer. Follow the
instruction and few-shot examples to translate a user's query into
an executable excel formula based on given table.

+ Here is the API documents for excel formulas that you can refer to
for your answer:

<API Doc 1>

1. ⟨Formula⟩ ::= = ⟨Expr⟩

2. ⟨Expr⟩ ::= ⟨Term⟩ {⟨AddOp⟩ ⟨Term⟩}

...

<API Doc 2> ...

+ You are provided with two inputs. The first is a natural language
query starting with label [NL] and ending with [/NL]. The second is a
serialized representation of a table starting with label [TABLE] and
ending with [/TABLE].

+ Your output should only contain the excel formulas following the
format ```formula <code> ```

Follow the examples below to convert a user's query into a runnable
excel formula using the provided tabular data.

0.3 x Template

Example 1

[NL] What is the date of the game where the NY Islanders are the
home team? [/NL]
[Table] [["0","A","B","C","D","E", "F"], ["1",
"Date","Visitor","Score","Home","Record","Points"], ...] [/Table]

Output: ```formula
UNIQUE(CHOOSECOLS(FILTER(A2:F13,D2:D13=\"ny
islanders\"),1))```

Example 2 ...

…

Example 10 …

INPUT

[NL]Who was the home team on February 3?[/NL]

[Table]…[/Table]

10-shot Examples

Question

You are an advanced data analyst and programmer. Your
tasks is to convert a user's query into an executable excel
formula.

+ You are provided with a natural language [NL] and a
serialized table [TABLE].

+ Output should be in the format: ```formula <code> ```.

Template

Example 1 ..

Example 2 …

…
Example 5 …

5-shot Examples

INPUT

[NL]Who was the home team on February 3?[/NL]

[Table]…[/Table]

Question

INPUT

[NL]Who was the home team on February 3?[/NL]

[Table]…[/Table]

Question

Initial Input prompt Input prompt during
progressive finetuning

Input prompt for final iteration
& inference

&()* ' , &+,-(')	

&()* , , &+,-(,)	

&()* - , &+,-(-)	

Figure 3: An Example from NL2F demonstrating how an original prompt is preprocessed through template
compression and example absorption in PromptIntern for progressive finetuning and final inference.

13

MBPP Generation Prompt

[Template]
You are an advanced Python programmer.
Read the instructions claimed below and write the corresponding Python code.
You will be given a question describing the python function need to implement for.
You will also be given three corresponding test cases written in Python code. They all using
assert styles.
Read the question and test cases carefully and fulfill the requirements below:

+ Your written function's name should be the same as the function name shown in the test cases.
+ Your function should take the same number of input arguments and output values as shown in

the test cases.
+ Your function should handle same type of input and return the same type of value as shown in

the test cases.
+ Your function should pass all the three provided test cases.
+ You can use any built-in python libraries.
+ Your output should strictly follow the format of ```python <code>```.

[Example]
Example 1
…
Example 2
…

[Question]
NL Question: …
Three Test Cases: …

Figure 4: Prompts of MBPP

14

NL2F Generation Prompt

[Template]
You are an advanced data analyst and programmer. Follow the instruction, referred API documents,
and few-shot examples to translate a user’s query into an executable excel formula based on the
given table.
+ Here is the API documents for excel formulas that you can refer to for your answer:
<API Doc 1>
<API Doc 2>
<API Doc 3>
…
+ You are provided with two inputs. The first is a natural language query starting with label [NL] and
ending with [/NL]. The second is a serialized representation of a table starting with label [TABLE]
and ending with [/TABLE].
+ Your output should only contain the excel formulas following the format ```formula <code> ```
Follow the examples below to convert a user's query into a runnable excel formula using the
provided tabular data.

[Example]
Example 1
…
Example 2
…

[Question]
[NL] … [/NL]
[TABLE] … [/TABLE]

Figure 5: Prompts of NL2F

15

NL2Bash Generation Prompt

[Template]
You are an advanced shell programmer. Follow the instruction, referred API documents, and few-
shot examples to translate a user’s natural language command into an executable Bash command.

+ Here is the API documents for advanced bash shell functions and commands that you can refer
to for your answer:
<API Doc 1>
<API Doc 2>
<API Doc 3>
…
+ You are provided with one input. The first is a natural language query starting with label [NL] and
ending with [/NL].
+ Your output should only contain the excel formulas following the format ```bash <code> ```

Follow the examples below to convert a user's query into a runnable bash command.

[Example]
Example 1
…
Example 2
…

[Question]
[NL] … [/NL]

Figure 6: Prompts of NL2Bash

16

	Introduction
	Related Work
	Problem Formulation
	Methodology
	Template Compression
	Example Absorption
	PromptIntern Pipeline

	Experiment
	Settings
	Main results
	Ablation Study
	Analysis on Schedule Pattern
	Analysis on Examples Retrieval Bank

	Conclusion
	Limitations
	Ethics Statement
	Additional Experiments
	Dataset Details
	Implementation Details
	Comparison with Gist Tokens
	Comparison on Inference Speed

	Example Demonstration
	Prompts

