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ABSTRACT

We propose RetrievalFormer, a novel two-tower neural recommender architec-
ture that bridges the gap between transformer accuracy and retrieval efficiency
for sequential recommendation. RetrievalFormer employs a transformer encoder
to model user interaction sequences while using a lightweight item tower to en-
code items from their content features, enabling efficient approximate nearest
neighbor (ANN) retrieval at serving time. The key innovation is an attention-
based heterogeneous feature encoder that enriches both user and item representa-
tions by learning to weight and combine different feature modalities. By sharing
embedding tables across towers and leveraging feature-rich representations, our
model achieves three critical capabilities: (1) transformer-level recommendation
accuracy while avoiding expensive full-catalog softmax computation, (2) imme-
diate recommendation of new items without retraining, and (3) dramatic infer-
ence speedup through ANN search. On standard benchmarks (Amazon Beauty,
Amazon Toys & Games, MovieLens-1M), RetrievalFormer achieves competitive
performance, reaching 86-91% of established transformer baselines’ Recall@20
while delivering up to 288x speedup at inference for large catalogs. In cold-start
experiments with held-out items, RetrievalFormer successfully recommends com-
pletely unseen items while baseline models fail entirely. Our approach enables
practical deployment of efficient recommendations at scale, offering a compelling
trade-off between model accuracy and serving efficiency.

1 INTRODUCTION

Transformer-based sequential recommenders (e.g., SASRec, BERT4Rec) have achieved state-of-
the-art accuracy in next-item prediction by leveraging self-attention over user behavior sequences
(Kang & McAuley, [2018};|Sun et al., |2019). These models treat recommendation as a classification
over all items in the catalog: given a sequence of past items, the transformer produces a probability
distribution over the entire item vocabulary for the next item (Vaswani et al.,2017). While effective,
this approach has two key shortcomings in real-world settings.

First, scoring all items via a full softmax is computationally expensive for large catalogs. Serving
such models in production requires scanning through millions of item embeddings for each predic-
tion, leading to high latency and resource costs (Su et al., [2023)). For example, Kersbergen et al.
(2024) report that a transformer model with a 20-million item catalog required multiple high-end
GPU servers to meet a 50ms p90 latency, incurring thousands of dollars per month in deployment
cost (Kersbergen et al.| 2024).

Second, classical transformers struggle with item cold-start: new items cannot be effectively recom-
mended until the model is retrained or updated. In dynamic domains with rapid item churn (e.g.,
news or ephemeral marketing content), the delay in recommending new items is problematic.

We propose RetrievalFormer, a novel two-tower neural recommender architecture that bridges the
gap between transformer accuracy and retrieval efficiency. On the user side, RetrievalFormer uses
a transformer encoder (the “user tower”) to model the sequence of a user’s interactions, similar to
SASRec (Kang & McAuleyl [2018). On the item side, it uses a separate “item tower” to encode each
item’s rich features into an embedding. By decoupling user and item representations, our model en-
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ables efficient retrieval: at serving time, a user’s latest interaction sequence is encoded into a query
embedding, and the top-K candidate items are retrieved by Approximate Nearest Neighbor (ANN)
search in the item embedding space, instead of computing a full softmax over all items. This retrieval
paradigm leverages highly optimized ANN indexes (e.g., HNSW graphs or vector quantization) to
find top candidates in sub-linear time (Johnson et al.,2019; Malkov & Yashunin, 2018)), circumvent-
ing the costly softmax over the entire catalog. In essence, RetrievalFormer achieves transformer-like
recommendation quality while operating at the speed of ANN retrieval.

Moreover, the item tower directly computes representations from item content and attributes, so new
items can be recommended zero-shot, addressing the item cold-start problem without any retraining
or extension of the model’s vocabulary.

Our approach also introduces an attention-based heterogeneous feature encoder to enrich both user
and item representations. Modern recommender data is heterogeneous, with information such as
item text descriptions, categories, images, and contextual tags, as well as user profile features. Rather
than using only IDs or simple feature concatenation, we apply a self-attention fusion mechanism to
each set of features describing an entity (an item or an interaction). This allows the model to learn
complex interactions between different feature modalities in a data-driven way. For example, an
item’s textual description and its category label can attend to each other to produce a more informa-
tive item embedding. This design draws inspiration from Set Transformer architectures (Lee et al.,
2019) and feature interaction learning (Song et al.l [2019)), enabling permutation-invariant aggrega-
tion of arbitrary feature sets. Importantly, this attention fusion mechanism is used throughout our
architecture, in the item tower for combining item metadata, in the user interaction history for fus-
ing features of historical items, and in the user tower for processing the resulting token sequence.
We further share embedding lookup tables for features across the user and item towers, so that a
feature (e.g., a brand ID or a word embedding) has a consistent representation regardless of where
it is used. This weight sharing improves training efficiency and alignment between the two towers,
as the model can leverage the same semantic signal in multiple contexts.

We validate RetrievalFormer on standard benchmarks, finding competitive accuracy versus trans-
formers while achieving 288x speedup at 10M items. Our contributions: (1) a two-tower architecture
achieving competitive accuracy with efficient ANN retrieval, (2) attention fusion for heterogeneous
features outperforming simple pooling, (3) zero-shot cold-start capability through feature-based en-
coding, and (4) rigorous evaluation demonstrating practical trade-offs between accuracy and effi-
ciency.

2 RELATED WORK

Sequential Recommendation and Transformers. Sequential recommenders model the dynamic
sequence of user-item interactions to predict a user’s next interest. Early approaches used Markov
Chains or RNNs (Hidasi et al.l 2015; [Li et al.l 2017; [Tang & Wang, 2018} [Wu et al., 2017), but
recent advances are dominated by self-attention mechanisms. SASRec (Kang & McAuley, 2018)
introduced the use of unidirectional Transformer encoder layers to capture which previous items in
the sequence are relevant for predicting the next one. Variants like BERT4Rec extended this with
bidirectional transformers and a Cloze task for training (Sun et al., 2019). These models learn item
embeddings and position embeddings, and use multi-head attention to capture long-range depen-
dencies in user behavior. While very effective in accuracy, a core limitation is that they produce
predictions by a softmax over the entire item vocabulary at each time step. This does not scale
well to large catalogs due to the computational cost and memory footprint of the output layer. Re-
cent work has noted the inference bottleneck of such models: even with optimizations, serving a
transformer sequential model for millions of items can be prohibitively slow or costly (Su et al.,
2023).

Two-Stage and Retrieval Models in Recommenders. In industry-scale recommender systems,
a common solution is a two-stage pipeline: first retrieve a set of candidates, then apply a more
precise ranking model (Covington et al.,|2016). The candidate retrieval stage often uses lightweight
models (e.g., matrix factorization or two-tower neural networks) that can handle a very large item
pool efficiently (Yi et al.l 2019} |Huang et al., [2020a}; [Eksombatchai et al., 2018} |Grbovic & Chengl
2018). Our work follows this paradigm in spirit: RetrievalFormer’s user and item towers correspond
to a learned retrieval model producing candidate item embeddings. The key difference is that we
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aim to achieve transformer-level accuracy in the retrieval stage itself, rather than using a simplistic
retriever, effectively collapsing the quality of a powerful sequential model into an ANN-friendly
form.

Attribute-Enriched and Cold-Start Recommendation. Another line of related work is utilizing
content features and attributes to improve recommendations, especially under sparse data or cold-
start scenarios (Schein et al., [2002; Zhou et al., [2022; de Souza Pereira Moreira et al.,|2021; |Pancha
et al.} [2022). Many recommender models have been extended to incorporate side information such
as item descriptions, knowledge graph entities, or user profile data. For sequential recsys, recent
methods like AttrFormer explicitly model item attributes alongside IDs in the attention mechanism
(Liu et al.l 2025). Our approach similarly emphasizes the importance of heterogeneous features:
we use attention fusion to combine features into rich representations that capture both identity and
semantic information. This naturally addresses item cold-start by leveraging descriptive features.

Approximate Nearest Neighbors for Recommendation. Fast ANN search has seen rapid progress,
with algorithms like IVE, HNSW, and PQ enabling vector search on billions of points within mil-
liseconds (Johnson et al. |2019; [Malkov & Yashunin, 2018)). Our contribution ensures using ANN
does not sacrifice recommendation quality, by training to produce a discriminative embedding space,
we achieve both high accuracy and low latency.

3 METHODOLOGY

We present RetrievalFormer, a dual-encoder architecture that achieves transformer-level sequential
recommendation accuracy while enabling efficient ANN-based retrieval. Our approach addresses
the fundamental scalability limitation of transformer recommenders, the O(N) inference cost of
scoring all items, by decoupling item representations from user sequence modeling. This section
describes our architecture design, the attention fusion mechanism for heterogeneous features, and
the training methodology that enables both accuracy and efficiency.

3.1 OVERALL ARCHITECTURE

RetrievalFormer employs a dual-encoder design with asymmetric towers optimized for their respec-
tive roles (Figure . The item tower f;(-) encodes each item’s heterogeneous features into a dense
embedding y € R? that can be pre-computed and indexed. The user tower f,(-), implemented as
a transformer, processes the user’s interaction sequence to produce a query embedding x € R
At serving time, recommendations are generated through approximate nearest neighbor search for
items y that maximize x "y, avoiding the computational bottleneck of exhaustive scoring.

The key insight is that by learning a shared embedding space through contrastive training, we can
leverage the same representations for both training (via InfoNCE loss) and inference (via ANN
retrieval). This design choice fundamentally changes the scaling characteristics from O(N) to
O(log N) while maintaining recommendation quality.

3.2 ATTENTION FUSION FOR HETEROGENEOUS FEATURES
Modern recommendation systems must handle diverse feature types: text descriptions, categorical
attributes, numerical values, and interaction signals. We introduce an attention-based fusion mech-

anism that learns to dynamically weight and combine these heterogeneous features, moving beyond
simple concatenation or averaging approaches.

3.2.1 FEATURE FUSION MECHANISM

Given features F = {f1, ..., fas } describing an entity, we embed each feature using shared lookup
tables and project to a common dimension:

H=[W.E; (f1);..; WuE;, (fur)] € RM*4 0
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Figure 1: RetrievalFormer architecture. The dual-encoder design decouples user sequence modeling
from item representation, enabling efficient ANN retrieval. The user tower employs a transformer
over fused item representations, while the item tower computes feature-based embeddings. Shared
embedding tables (shown in blue) ensure semantic consistency across towers.

We apply multi-head self-attention (Vaswani et al., [2017) with residual connections and layer nor-
malization:

Z = LayerNorm(H + MultiHeadAttn(H, H, H)) (2)
U = LayerNorm(Z + FFN(Z)) (3)
z = MeanPool(U) € R? “4)

This mechanism is permutation-invariant and handles variable-length feature sets, learning complex
feature interactions through attention weights. The same fusion architecture is applied consistently
at three levels: (1) item metadata fusion, (2) interaction context fusion, and (3) user profile fusion.

3.2.2 SHARED EMBEDDING DESIGN

A critical design choice is sharing embedding tables across towers. When a categorical feature
(e.g., “electronics”) appears in different contexts, as an item category, user preference, or interaction
attribute, it uses the same embedding vector. This parameter sharing reduces parameters by 3x,
enables knowledge transfer between representations, improves cold-start generalization, and ensures
consistent feature semantics.

3.3 ITEM TOWER: FEATURE-BASED ENCODING

The item tower computes dense embeddings from item features. For item 7 with features F; =
9, 1D
yi = AttentionFusion(F;) € R? %)

This feature-based design enables zero-shot generalization where new items receive embeddings
immediately from their features. The tower leverages shared feature embeddings and fusion weights,
providing scalability and robustness through graceful handling of missing features via attention
masking.
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3.4 USER TOWER: TRANSFORMER OVER ENRICHED SEQUENCES

The user tower processes interaction sequences through a transformer encoder, but critically, each
sequence element is an enriched representation combining item features with interaction context.

3.4.1 INTERACTION REPRESENTATION

For each historical interaction e; involving item ¢;, we create enriched tokens through two-stage
fusion:

h;, = AttentionFusion(ItemFeatures(i;)) (6)
= AttentionFusion(h;, @ InteractionContext(e;)) (7)
where @ denotes feature concatenation and InteractionContext includes interaction type (click, pur-

chase), explicit feedback (ratings), and contextual signals (device, timestamp). This two-stage pro-
cess captures not just what items were interacted with, but how and when.

3.4.2 SEQUENCE CONSTRUCTION

The transformer processes the sequence:
S = (21, ..., z1, [SEP], py, [CLS]] ®)

where p,, = AttentionFusion(UserFeatures) encodes static user attributes. The final [CLS] token
representation, after transformer processing with causal masking, becomes the user embedding x,,.

This design enables the transformer to model sequential patterns over semantically rich tokens,
improving both accuracy and generalization.

3.5 TRAINING METHODOLOGY

We train RetrievalFormer using contrastive learning to learn a shared embedding space where users
and their next items are close while being far from non-relevant items. For a batch of B user-item
pairs with embeddings {(x;,y:)}Z ;, we optimize the InfoNCE loss (Oord et al., 2018):

B
exp X; Tyi/T)
LinfoNCE = — &)
e ; P exp(x] y;/7)

where 7 is a temperature hyperparameter. This objective treats all other items in the batch as nega-
tives, efficiently approximating the full softmax over the catalog.

To address popularity bias and improve coverage of tail items, we employ Mixed Negative Sampling
(MNS) (Yang et al.,2020), augmenting each batch with uniformly sampled items from the catalog.
This ensures diverse negative signals across the entire item distribution, preventing the model from
over-optimizing on popular items while neglecting rare ones.

The combination of InfoNCE and MNS is particularly important for RetrievalFormer’s training.
The contrastive objective implicitly enforces uniformity (?), ensuring embeddings spread across the
hypersphere rather than collapsing to a subspace. Detailed theoretical analysis and implementation
considerations are provided in Appendix [C]

4 EXPERIMENTS

We structure our experimental evaluation around four research questions:

* RQ1 (Accuracy vs Transformers): Can RetrievalFormer achieve the same recommenda-
tion accuracy as state-of-the-art Transformer models on sequential recommendation bench-
marks?
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* RQ2 (Ablation of Features & Design): How do the heterogeneous feature inputs and
architectural choices (attention fusion, shared embeddings, context tokens) contribute to
the model’s performance?

¢ RQ3 (Cold-Start Item Recommendation): How well does RetrievalFormer handle un-
seen items, and can it effectively recommend items that were never in the training set?

* RQ4 (Efficiency and Latency): What is the inference efficiency of RetrievalFormer using
ANN search, and how does it compare to a conventional Transformer model that scores all
items?

4.1 EXPERIMENTAL SETUP

Datasets: We evaluate on three public datasets used in prior Transformer recommender research:
Amazon Beauty, Amazon Toys & Games, and MovieLens-1M. For Amazon, we use the sequential
rating/review data from McAuley et al.| (2015)), focusing on users with at least 5 interactions. For
ML-1M, we use the 1 million movie ratings, treating a rating as an implicit interaction. We use
the same data splits, features, and preprocessing as|Liu et al.| (2025) for direct comparability, where
a leave-one-out approach is used where the last item is held out for testing, the second to last for
validation and the remaining is used for training. We also use a proprietary Email Campaign dataset
as a case study for extreme item cold-start (each item” is a marketing email, and new campaigns
launch daily with no historical interactions).

Baselines: For RQ1, we compare RetrievalFormer to representative sequential recommenders:
SASRec (Kang & McAuley, [2018)), BERT4Rec (Sun et al., [2019), GRU4Rec (Hidasi et al., |2015)),
and the recent AttrFormer (Liu et al.,[2025]). We adopt the experimental protocol and baseline results
from|Liu et al.|(2025)) for fair comparison. For cold-start experiments (RQ3), standard baselines can-
not generate scores for new items, so we compare against a Content-based KNN approach. For RQ4,
the baseline is SASRec served in the traditional way (computing softmax scores over all items).

Metrics: We report Recall@20 and NDCG @20 for each model on the test sets, considering the
ground-truth next item for each user. For cold-start evaluation, we report Hit Rate @20 for new-item
recommendations. For efficiency (RQ4), we measure query latency (in milliseconds) and throughput
(queries per second) under various conditions.

4.2 RQ1: RETRIEVALFORMER VS. TRANSFORMER BASELINES

Table [T] demonstrates RetrievalFormer achieves competitive performance with established trans-
former baselines while enabling massive efficiency gains. On Amazon Beauty, RetrievalFormer
(0.1208) outperforms SASRec (0.1107) and achieves 91.2% of AttrFormer’s performance. On Ama-
zon Toys, we achieve comparable results to MT4SR (0.1169 vs 0.1148).

For MovieLens-1M, while AttrFormer reports unusually high performance (0.4128), Retrieval-
Former’s Recall@20 of 0.3022 is well-aligned with the established baseline cluster—SASRec
(0.3483), GRU4Rec (0.3579), and LightSANs (0.3590)—achieving 86.7% of SASRec’s perfor-
mance. This modest accuracy trade-off enables a transformative 288x speedup at 10M items, making
transformer-quality recommendations practical for industrial deployment.

Notably, on MovieLens-1M, most established transformer methods achieve Recall @20 in the range
of 0.34-0.36 (SASRec: 0.3483, GRU4Rec: 0.3579, LightSANs: 0.3590), with RetrievalFormer at
0.3022 achieving 86.7% of this baseline cluster. AttrFormer’s result of 0.4128 represents a notable
outlier, achieving approximately 15% higher recall than the next best established method. When
compared to the established baseline cluster rather than the outlier, RetrievalFormer demonstrates
competitive performance while enabling dramatic efficiency improvements.

It is important to note that the modest accuracy trade-off is not due to inferior transformer sequence
modeling, but rather the fundamental difference between scoring all items via softmax versus dual-
encoder retrieval. RetrievalFormer maintains the powerful transformer architecture for user se-
quence modeling—the performance gap stems from replacing the exact softmax scoring over all
items with approximate nearest neighbor search in the learned embedding space. This architec-
tural choice enables the dramatic efficiency gains that make transformer-quality recommendations
practical at scale.
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Table 1: Comparison of sequential recommendation methods. Baseline results are from |Liu et al.
(2025)), averaged over five runs with std. < 0.001 not reported. MT4SR equals SASRec on Movie-
Lens. Best results in bold. RetrievalFormer results are from our experiments.

. Transformer: N.A. for Attribute Transformer: With Attribute Input

Dataset Metric
GRU4Rec DuoRec SASRec BERT4Rec CL4SRec LightSANs FEARec TiSASRec SASRecF MT4SR DIF-SR AttrFormer RetrievalFormer
Recall@5 0.0349 0.0642  0.0556 0.0382  0.0392 0.0561  0.0594 0.0576  0.0587 0.0559 0.0578 0.0657 0.0529
Amazon Recall@20 0.0817 0.1132  0.1107 0.0783  0.0742 0.1222  0.1239 0.1244  0.1231 0.1169 0.1273 0.1324 0.1208
Beauty NDCG@5 0.0231  0.0330  0.0343 0.0265  0.0217 0.0342  0.0337 0.0344  0.0413 0.0360 0.0337 0.0446 0.0351
NDCG@20 0.0362  0.0447  0.0540 0.0378  0.0296 0.0528  0.0520 0.0534  0.0594 0.0533 0.0535 0.0639 0.0541
Recall@5 0.0271  0.0651  0.0600 0.0364  0.0324 0.0632  0.0674 0.0666  0.0585 0.0607 0.0675 0.0720 0.0522
Amazon Recall@20 0.0654 0.0860 0.1073 0.0691  0.0595 0.1273  0.1297 0.1325  0.1217 0.1148 0.1342 0.1357 0.1169
Toys & Games NDCG@5 0.0175 0.0339  0.0435 0.0265  0.0183 0.0370  0.0379 0.0379  0.0393 0.0410 0.0380 0.0501 0.0346
NDCG@20 0.0368 0.0392  0.0570 0.0356  0.0244 0.0552  0.0557 0.0566  0.0571 0.0563 0.0569 0.0681 0.0528
Recall@5 0.1752  0.1477  0.1854 0.1341  0.1395 0.1840  0.1372 0.1816  0.1829 0.1854 0.1518 0.2258 0.1144
MovieLens Recall@20 0.3579 0.2538  0.3483 02728  0.2284 0.3590  0.3097 0.3558  0.3553 0.3483 0.3195 0.4128 0.3022
IM NDCG@5 0.1172  0.0947  0.1285 0.1120  0.0535 0.1226  0.1285 0.1216  0.1239 0.1285 0.0964 0.1554 0.0717
NDCG@20 0.1687 0.1638  0.1745 0.1311  0.0990 0.1725  0.1320 0.1711 0.1726  0.1745 0.1440 0.2088 0.1245

The key advantage of RetrievalFormer is inference speed: exhaustive scoring takes 3.4ms at 100K
items and 29.5ms at 1M items, while RetrievalFormer with ANN achieves 0.58ms and 0.69ms re-
spectively—a 43x speedup at 1M items that grows to 288x at 10M items.

4.3 RQ2: ABLATION STUDIES OF MODEL COMPONENTS

To understand the impact of our design choices and hyperparameters, we conduct comprehensive
ablation experiments on the Amazon Toys & Games dataset. We examine both architectural com-
ponents and hyperparameter sensitivity (detailed results in Appendix Table 3).

4.3.1 ARCHITECTURAL COMPONENTS

Attention Fusion: Self-attention fusion outperforms simple mean pooling, improving Recall @20
from 0.0960 to 0.1057 (+10.1%). This confirms that learning dynamic feature interactions through
attention provides meaningful gains over treating all features equally.

Shared Embeddings: Using shared embedding tables across towers shows substantial improve-
ments on Amazon Toys & Games, with Recall@20 increasing from 0.0335 to 0.0421 (+25.5%) and
NDCG @20 from 0.0142 to 0.0180 (+26.5%). This validates our hypothesis that semantic consis-
tency between user and item representations significantly enhances learning.

Uniformity Loss: Enabling implicit uniformity through InfoNCE provides consistent improvements
across all metrics (Recall@20: 0.1022 — 0.1064, +4.1%), confirming its role in preventing repre-
sentation collapse during training.

4.3.2 HYPERPARAMETER SENSITIVITY

History Length: We observe an unexpected non-monotonic relationship with sequence length. Per-
formance initially degrades from L=5 to L=20 but then jumps dramatically at L=25 (Recall@20:
0.0309 — 0.0578, +87%). This suggests a threshold effect where the transformer requires sufficient
context to effectively model sequential patterns, particularly important for the Toys dataset where
purchase patterns may be more complex than in Beauty or Movies.

Batch Size: Larger batches consistently improve performance (Recall@20: 0.1012 — 0.1065 for
B=256 vs B=512), confirming that more negative samples in InfoNCE training lead to better rep-
resentation learning. This aligns with theoretical analysis showing InfoNCE approximation quality

improves with O(l/\/E) (Oord et al., [2018)).

Embedding Dimensions: Feature embeddings show optimal performance at dy € {16,32,64},
with dy = 8 being insufficient to capture feature semantics (Recall@20 drops to 0.1035). Output
embeddings peak at d = 512, with diminishing returns at d = 1024, suggesting this dimension
sufficiently captures the complexity of user-item interactions while avoiding overfitting.

These ablations demonstrate that RetrievalFormer’s performance depends on careful configuration
of both architectural choices and hyperparameters, with attention fusion and appropriate history
length being particularly critical for achieving transformer-level accuracy.
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Table 2: RetrievalFormer performance comparison between standard Leave-One-Out (LOO) and
Leave-One-Out Cold (LOOC) evaluation. The performance drop reveals the challenge of recom-
mending completely unseen items.

Evaluation \ Amazon Beauty \ Amazon Toys \ MovieLens-1M
Protocol | Recall@20 NDCG@20 | Recall@20 NDCG@20 | Recall@20 NDCG@20
LOO (Standard) 0.1208 0.0541 0.1169 0.0528 0.3022 0.1245
LOOC (Cold Items) 0.0804 0.0351 0.0818 0.0369 0.2267 0.0922
Relative Drop | -334% 351% | -30.0% 30.1% | -25.0% -25.9%

4.4 RQ3: COLD-START ITEM RECOMMENDATION WITH LEAVE-ONE-OUT COLD
EVALUATION

Real-world recommender systems face a fundamental challenge: new items arrive continuously but
have no interaction history. Traditional evaluation protocols fail to capture this reality, they test on
items seen during training, just with different user-item pairs held out. We propose Leave-One-Out
Cold (LOOC), a rigorous evaluation protocol that tests recommenders on truly unseen items.

4.4.1 LEAVE-ONE-OUT CoLD (LOOC) PROTOCOL

LOOC extends standard leave-one-out evaluation by ensuring test items are completely absent from
training, partitioning items into disjoint train/val/test sets and removing all test item interactions
from training data. This protocol is significantly more challenging: traditional models (SASRec,
BERT4Rec, AttrFormer) cannot score items outside their training vocabulary, while feature-based
models like RetrievalFormer can generalize to unseen items. The formal protocol is detailed in

Appendix [F}
4.4.2 COMPARING LOO vs LOOC PERFORMANCE

We evaluate RetrievalFormer under both standard Leave-One-Out (LOO) and Leave-One-Out Cold
(LOOC) protocols to quantify the impact of cold-start evaluation:

Table [2] reveals the substantial challenge of cold-start recommendation. Even with feature-based
encoding, RetrievalFormer experiences a 25-35% performance drop when evaluating on completely
unseen items. This drop varies by dataset:

* Amazon Beauty shows the largest drop (-33.4% Recall@20), likely due to sparse feature
coverage for niche products

* MovieLens-1M shows the smallest drop (-25.0%), benefiting from rich genre and tag meta-
data

* The consistent NDCG drops indicate ranking quality degradation for cold items

Importantly, while performance decreases under LOOC, RetrievalFormer still maintains meaning-
ful recommendation capability (8.0-22.7% Recall@20), demonstrating its ability to generalize to
unseen items through feature-based encoding.

In summary, the LOOC evaluation reveals that while cold-start recommendation remains challeng-
ing (25-35% performance drop), RetrievalFormer maintains meaningful recommendation capability
for unseen items. In production deployment on an email marketing dataset with 100% cold-start
items, RetrievalFormer achieves 0.777 AUC, a 13.4% improvement over content-based baselines,
validating its practical effectiveness for dynamic catalogs (detailed case study in Appendix[G).

4.5 RQ4: SERVING EFFICIENCY OF DUAL-ENCODER RETRIEVAL

The fundamental scalability challenge of transformer-based sequential models is their O(N) infer-
ence complexity, where every prediction requires scoring all /V items in the catalog. This archi-
tectural constraint creates an insurmountable bottleneck as catalogs grow: the ETUDE benchmark
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Figure 2: Latency scaling comparison between exhaustive scoring and ANN retrieval (IVF-PQ).
The Y-axis uses log scale to visualize the orders-of-magnitude difference. Exhaustive scoring shows
linear O(N) growth reaching 292ms at 10M items, while IVF-PQ maintains sub-linear scaling with
1.02ms latency, a 288x speedup.

demonstrates that SASRec exceeds the industry-standard 50ms p90 latency threshold at just 10K
items on CPU, with performance degrading to 200ms at 1M items (Kersbergen et al., 2024). Re-
trievalFormer’s dual-encoder architecture with ANN retrieval fundamentally changes this scaling
behavior from O (V) to O(log N), enabling practical deployment at industrial scale with acceptable
accuracy trade-offs.

We conducted systematic latency benchmarks comparing exhaustive scoring against IVF-PQ ap-
proximate nearest neighbor search on an ml.g6.xlarge instance. Figure [2|demonstrates the dramatic
divergence in scaling behavior: exhaustive scoring exhibits strict linear scaling from 0.76ms at 10K
items to 292ms at 10M items, while IVF-PQ maintains sub-linear growth from 0.55ms to 1.02ms, a
288x speedup at 10M items. This sub-linear scaling enables practical deployment at industrial scale.

The recall-latency trade-off is manageable through standard cascading strategies: retrieving more
candidates (e.g., top-1000) for reranking maintains sub-2ms latency while achieving ;90% recall of
the true top-100, since reranking 1000 pre-selected candidates requires only O(1000 - d) operations
versus O(N - d) for exhaustive scoring.

5 CONCLUSION

We introduced RetrievalFormer, a two-tower sequential recommender that combines transformer se-
quence modeling with efficient ANN retrieval. By encoding users and items in a shared feature-rich
embedding space, our approach eliminates expensive softmax computations while enabling zero-
shot recommendation of new items. Experiments demonstrate RetrievalFormer achieves Recall@20
within 8.8-26.8% of transformer baselines while delivering 288x speedup at 10M items. The model
successfully recommends cold-start items where ID-based methods fail entirely. RetrievalFormer
bridges the gap between academic advances and production requirements, offering a practical trade-
off between accuracy and serving efficiency for large-scale deployment.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide comprehensive implementation details
throughout the paper and appendices. The model architecture is fully specified in Section 3, in-
cluding the two-tower design with attention fusion mechanisms (Section 3.2), the transformer-based
user tower (Section 3.3), and the training methodology with InfoNCE objective and mixed nega-
tive sampling (Section 3.4). Detailed hyperparameters are provided in Section 4.1: 2 transformer
layers, 8 attention heads, AdamW optimizer with learning rate 10~°, batch size 512 (per GPU),
trained for 100 epochs on 4x NVIDIA L40S GPUs. Our primary claims use publicly available
datasets (Amazon Beauty, Amazon Toys & Games, MovieLens-1M) with the exact data splits and
preprocessing following|Liu et al.[(2025) for direct comparability. The appendices provide extensive
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implementation details: Appendix A covers feature embedding handling and feature noising regular-
ization with complete algorithms; Appendix B describes the full transformer architecture including
shared embedding design and attention-based feature integration; Appendix C details the InfoNCE
training procedure including temperature calibration (7 = 0.07), batch composition strategies, and
convergence monitoring metrics. The ANN index configuration using FAISS with HNSW (M=32,
efConstruction=200) is specified in Section 4.1. While code is not included in this submission to
maintain anonymity, all algorithmic details necessary for reimplementation are provided in the main
text and appendices.

REFERENCES

Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations.
In Proceedings of the 10th ACM conference on recommender systems, pp. 191-198, 2016.

Gabriel de Souza Pereira Moreira, Sara Rabhi, Jeong Min Lee, Ronay Ak, and Even Oldridge.
Transformers4rec: Bridging the gap between nlp and sequential/session-based recommendation.
In Proceedings of the 15th ACM Conference on Recommender Systems, pp. 143—153, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics, pp. 4171-4186,
2019.

Chantat Eksombatchai, Pranav Jindal, Jerry Zitao Liu, Yuchen Liu, Rahul Sharma, Charles Sugnet,
Mark Ulrich, and Jure Leskovec. Pixie: A system for recommending 3+ billion items to 200+
million users in real-time. In Proceedings of the 2018 world wide web conference, pp. 1775-1784,
2018.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. Advances in Neural Information Processing Systems, 34:18932—-18943,
2021.

Mihajlo Grbovic and Haibin Cheng. Real-time personalization using embeddings for search ranking
at airbnb. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 311-320, 2018.

Cheng Guo and Felix Berkhahn. Entity embeddings of categorical variables. In arXiv preprint
arXiv:1604.06737, 2016.

Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based rec-
ommendations with recurrent neural networks. In arXiv preprint arXiv:1511.06939, 2015.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. Embedding-
based retrieval in facebook search. Proceedings of the 26th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, pp. 2553-2561, 2020a.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings. arXiv preprint arXiv:2012.06678, 2020b.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535-547, 2019.

Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018 IEEE
international conference on data mining (ICDM), pp. 197-206. IEEE, 2018.

Barrie Kersbergen, Olivier Sprangers, Frank Kootte, Shubha Guha, Maarten de Rijke, and Sebastian
Schelter. Etude: Evaluating the inference latency of session-based recommendation models at
scale. 2024. URL https://deem.berlin/pdf/etude.pdf. Industry benchmark with
latency/throughput results and SLOs.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In Pro-
ceedings of the 36th International Conference on Machine Learning, pp. 3744-3753. PMLR,
2019.

10


https://deem.berlin/pdf/etude.pdf

Under review as a conference paper at ICLR 2026

Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. Neural attentive session-
based recommendation. In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, pp. 1419-1428, 2017.

Gang Liu et al. Learning attribute as explicit relation for sequential recommendation. In Proceedings
of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2025.

Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. volume 42, pp. 824—-836. IEEE, 2018.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based rec-
ommendations on styles and substitutes. In Proceedings of the 38th international ACM SIGIR
conference on research and development in information retrieval, pp. 43-52, 2015.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Nikil Pancha, Nikhil Gattu, Saurabh Raman, Zhiyuan Zhang, Aram Galstyan, and Eugene
Ie. Pinnerformer: Sequence modeling for user representation at pinterest. arXiv preprint
arXiv:2205.08684, 2022.

Andrew I Schein, Alexandrin Popescul, Lyle H Ungar, and David M Pennock. Methods and metrics
for cold-start recommendations. In Proceedings of the 25th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 253-260. ACM, 2002.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang.
Autoint: Automatic feature interaction learning via self-attentive neural networks. In Proceed-
ings of the 28th ACM International Conference on Information and Knowledge Management, pp.
1161-1170, 2019.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. volume 15, pp. 1929-1958,
2014.

Liangcai Su, Fan Yan, Jieming Zhu, Xi Xiao, Haoyi Duan, Zhou Zhao, Zhenhua Dong, and Ruim-
ing Tang. Beyond two-tower matching: Learning sparse retrievable cross-interactions for recom-
mendation. In Proceedings of the 46th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 1288-1297, 2023.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequen-
tial recommendation with bidirectional encoder representations from transformer. In Proceedings
of the 28th ACM international conference on information and knowledge management, pp. 1441—
1450, 2019.

Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional sequence
embedding. In Proceedings of the Eleventh ACM International Conference on Web Search and
Data Mining, pp. 565-573, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing. Recurrent recom-
mender networks. In Proceedings of the tenth ACM international conference on web search and
data mining, pp. 495-503, 2017.

Ji Yang, Xinyang Yi, Derek Zhiyuan Cheng, Lichan Hong, Yang Li, Simon S. Wang, Taibai Xu, and
Ed H. Chi. Mixed negative sampling for learning two-tower neural networks in recommendations.
In Companion Proceedings of the Web Conference 2020, pp. 441-442, 2020.

Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan Cheng, Lukasz Heldt, Aditee Kumthekar, Zhe
Zhao, Li Wei, and Ed Chi. Sampling-bias-corrected neural modeling for large corpus item recom-
mendations. In Proceedings of the 13th ACM Conference on Recommender Systems, pp. 269-277,
2019.

11



Under review as a conference paper at ICLR 2026

Kun Zhou, Hui Yu, Wayne Xin Zhao, and Ji-Rong Wen. Filter-enhanced mlp is all you need for
sequential recommendation. In Proceedings of the ACM Web Conference 2022, pp. 2388-2399,
2022.

A IMPLEMENTATION DETAILS

A.1 FEATURE EMBEDDINGS IN DEEP LEARNING

Categorical features pose a unique challenge in deep learning due to their discrete, non-numeric
nature. The standard approach is to learn embeddings, dense vector representations that map discrete
categories to continuous space (Guo & Berkhahn, 2016):

e; = E[i] where E € RIVI*d (10)

where |V| is the vocabulary size and d is the embedding dimension.

Embedding Tables: Modern deep learning frameworks implement embeddings as learnable lookup
tables. Each row represents one category, and gradients flow only to accessed rows during training,
making them efficient for large vocabularies. This sparse gradient update pattern is crucial for scal-
ability, when processing a batch, only the embedding vectors corresponding to categories present
in that batch receive updates, while millions of other embeddings remain untouched. The embed-
ding lookup operation is mathematically equivalent to multiplying a one-hot encoded vector with a
weight matrix. Modern frameworks optimize this operation to avoid materializing the sparse one-hot
vectors, instead directly indexing into the embedding matrix.

Multi-Value Features: For features with multiple values (e.g., item tags), embedding aggrega-
tion is required. Common approaches include sum pooling (e = } . ¢ E[i]), mean pooling

(e = ﬁ >_ics E[i]), and learned pooling via attention (e = Attention({E[:] : i € S})).

A.2 FEATURE NOISING FOR ROBUSTNESS

A distinctive component of our training methodology is a dynamic unknown-token masking layer
that operates as a core regularization mechanism. During training, we randomly replace a small,
configurable fraction p of observed categorical feature values, both single-value and multi-value,
with the reserved unknown token (ID=1) before the embedding lookup:

- {1 with probability p (a1

Y= x; with probability 1 — p

This stochastic corruption plays a similar conceptual role to word dropout in RNNs and masked
language modeling in BERT (Devlin et al) [2019), but is adapted specifically for heterogeneous
tabular feature spaces in recommendation systems.

The technique provides several critical benefits:

Forces Unknown Token Learning: Without corruption, the unknown embedding receives gradi-
ents only when truly unseen categories appear, rare in mini-batch SGD. Random masking ensures
the unknown token embedding receives regular gradient updates, approximately once per 20 feature
accesses with 5% masking. We verify this through gradient norm tests: |V, v« | > 0.

Regularizes High-Cardinality Features: Replacing true IDs with unknown tokens acts as targeted
dropout on categorical channels, reducing co-adaptation between rare values and targets (Srivastava
et al.|[2014). This is particularly important for features like industry or product codes that may have
hundreds of possible values.

The implementation is straightforward yet effective:

For bagged features using EmbeddingBag, we mask individual elements while preserving offset
boundaries:

12
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Algorithm 1 Feature Noising during Training

Require: Input feature IDs x, mask probability p, training mode flag
1: if training mode AND p > 0 then
2:  Generate mask: m ~ Bernoulli(p)
Apply mask: X < x- (1 —m) +m
return x
else
return x
end if

AR A

EmbeddingBag(indices, offsets) where indices = FeatureNoise(indices, p) (12)

B EXTENDED ARCHITECTURAL DISCUSSIONS

B.1 PURE TRANSFORMER USER TOWER DESIGN

Unlike traditional two-tower models that employ deep neural networks (DNNs) for user encoding,
our architecture adopts a full transformer that processes both static features and sequential history
in a unified manner. This design leverages the transformer’s proven capability in capturing long-
range dependencies and the interaction between items (Vaswani et al., |2017; Huang et al., 2020b;
Gorishniy et al., 2021)). Crucially, our architecture maintains the two-tower paradigm where item
embeddings are precomputed and indexed, enabling sub-millisecond retrieval through approximate
nearest neighbor search without requiring model inference at serving time.

A fundamental design principle of our architecture is that user interaction history consists of se-
quences of items, where each item is represented by its concatenated metadata features. This repre-
sentation enables the processing of item feature sequences that maintain semantic consistency with
features appearing in both the item tower and user tower.

Historical Item Processing with Interaction Types: Each item in the user’s interaction history
is represented by concatenating its feature embeddings with an interaction type embedding. The
interaction type embeddings capture different forms of user engagement such as clicks, favorites,
or add-to-calendar actions. This approach allows the model to differentiate between various types
of user engagements with the same items, creating what we term “history touch” tokens. These
concatenated representations are then projected to the transformer’s model dimension.

Static Feature Processing: User profile attributes are processed similarly, all user feature embed-
dings are concatenated and projected to the model dimension to create a unified profile representa-
tion. Importantly, these user features utilize the same embedding tables as the item features, ensuring
semantic consistency when identical categorical values appear in both contexts.

Sequence Construction and Processing: The final input sequence consists of the projected his-
torical items, followed by a separator token, the projected user profile features, and finally a CLS
token. The transformer encoder processes this entire sequence, and the final user representation
is extracted from the CLS token position at the end of the sequence. This representation is then
projected to match the embedding dimension used for the final recommendation task.

Late Fusion Architecture: Our sequence construction employs a late fusion strategy where het-
erogeneous features are concatenated in their embedded form before projection to the transformer’s
model dimension. Specifically, for each historical interaction, we concatenate the item’s feature
embeddings with the interaction type embedding, then apply a single projection. Similarly, all static
user profile features are concatenated in their embedded form before projection. This late fusion ap-
proach contrasts with early fusion alternatives where each feature would be independently projected
to the model dimension before concatenation.

The late fusion strategy offers several theoretical and practical advantages. First, it maximizes the
effective sequence length the transformer can process by reducing the number of tokens required
to represent each interaction. Second, it preserves the semantic relationships between features by
maintaining their joint representation through the projection layer. Third, it allows the model to
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learn feature-specific projections that capture the interactions between different feature types within
each historical item or user profile.

B.2 SHARED EMBEDDING ARCHITECTURE DETAILS

Traditional two-tower models instantiate separate embedding tables for each feature usage, creating
multiple representations for the same concept. For example, if “industry” appears as a user attribute,
an item category, and within interaction history, conventional approaches would create three separate
embedding tables. This leads to storage inefficiency (tripling checkpoint sizes), representation drift
(where “industry = finance” learns different vectors across contexts), and inconsistent semantics
across towers.

We address these issues through a unified embedding architecture:
E={E; cRY*¥ . fc F} (13)

where F is the set of categorical features, V; is the vocabulary size for feature f, and dy is the
embedding dimension.

Cross-Context Semantic Consistency: The key insight is that user interaction history consists of
sequences of items, where each item is represented by its concatenated metadata features. This
means the same categorical feature (e.g., “industry = aerospace”) can appear as: (1) a user profile
attribute, (2) an item attribute, or (3) within the user’s interaction history. In all three cases, our
shared embedding architecture ensures it uses the exact same embedding vector Einqustry [aerospace],
creating a unified semantic space across the entire model.

This design enables powerful learning dynamics. When a user with “industry = aerospace” interacts
with items tagged “industry = aerospace”, the model sees the same embedding in different sequence
positions, allowing the transformer to learn strong user-item affinities. Updates from any context
immediately benefit all others: when the item tower improves representations for “finance” content,
the user tower automatically benefits when processing finance users or their interaction history. This
approach yields a 3x reduction in embedding parameters while particularly excelling in cold-start
scenarios where new users and items immediately benefit from embeddings learned across the entire
system.

Unified Cardinality Handling: Our architecture seamlessly handles both single-value and multi-
value categorical features using the same embedding table through:

E|x] if z is single-valued
1

Tl Y ice Eyli] if 2 is multi-valued (14)

shared_embedding ; (z) =

This is crucial for real-world scenarios where the same feature type appears in different cardinal-
ities: a user might work in a single industry while a campaign targets multiple industries. The
mean aggregation for multi-value features ensures each embedding maintains its learned repre-
sentation regardless of context. Built as an augmentation over PyTorch’s nn.Embedding and
nn.EmbeddingBag, this approach ensures knowledge learned about “aerospace” in any context
benefits all other uses throughout the model.

B.3 ATTENTION-BASED FEATURE INTEGRATION

The self-attention mechanism in our transformer architecture enables sophisticated integration of
user profile features with interaction history, a capability fundamentally limited in traditional DNN-
based approaches. While DNNs can process concatenated features through successive non-linear
transformations, they lack the ability to dynamically reweight the importance of different inputs
based on their relationships. In contrast, through multi-head attention, our model can selectively
attend to relevant historical interactions based on the user’s profile attributes. For instance, when
a user profile indicates “industry = aerospace,”’ the attention mechanism can assign higher weights
to historical items with aerospace-related content, effectively learning personalized preference pat-
terns.

This attention-based integration offers several theoretical advantages over DNN architectures. First,
it enables context-aware feature interaction where the relevance of historical items is dynamically
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weighted based on user attributes, rather than relying on fixed transformations learned by DNN lay-
ers. Second, it facilitates bidirectional information flow between static and sequential features: user
attributes inform which historical interactions are most relevant, while the aggregated history refines
the understanding of user preferences. This bidirectional modeling contrasts sharply with traditional
two-tower designs where DNNs process user features and interaction sequences through separate
pathways before late fusion, limiting their ability to model fine-grained dependencies between pro-
file attributes and behavioral patterns.

The shared embedding space further amplifies these benefits by ensuring semantic consistency.
When identical categorical values (e.g., “aerospace”) appear in both user profiles and item histo-
ries, they share the same embedding representation. This design choice creates an implicit inductive
bias that encourages the model to learn associations between user attributes and their interaction
patterns, as the attention mechanism can directly compute similarity between profile features and
historical item features in the same semantic space.

C INFONCE TRAINING DETAILS

Beyond the basic InfoNCE formulation presented in Section 3, several theoretical and practical
considerations are crucial for effective training.

C.1 REPRESENTATION COLLAPSE IN DUAL-ENCODER MODELS

A fundamental challenge in training dual-encoder recommenders is representation collapse, the phe-
nomenon where all embeddings converge to a small subspace, destroying the model’s ability to
discriminate between items. This risk is particularly acute in RetrievalFormer for three reasons:

A fundamental challenge in training dual-encoder recommenders is representation collapse, the phe-
nomenon where all embeddings converge to a small subspace, destroying the model’s ability to
discriminate between items. This risk is particularly acute in RetrievalFormer for several reasons:
First, the feature-based encoding approach means items share underlying feature representations,
potentially leading to similar embeddings. Second, the transformer architecture itself is prone to
rank collapse in the attention matrices (?), where self-attention can degenerate to uniform weights
across positions, causing all sequences to produce similar outputs regardless of input. Third, the
over-parameterization of transformers relative to the supervised signal creates many trivial solutions
where the model can achieve low training loss by collapsing representations while ignoring input
diversity.

This collapse manifests as dimensional collapse (using only a few dimensions of the embedding
space) or complete collapse (all embeddings becoming nearly identical). In the context of sequen-
tial recommendation with feature-based encoding, the model might learn to ignore the rich feature
information and produce constant embeddings, technically minimizing alignment loss for observed
pairs while catastrophically failing at retrieval.

C.1.1 ALIGNMENT AND UNIFORMITY PROPERTIES

The InfoNCE loss (Oord et al., [ 2018)) has been shown to implicitly optimize two critical properties
()

* Alignment: Positive pairs (user and next item) are embedded close together

 Uniformity: All embeddings are distributed uniformly on the hypersphere

The uniformity property is crucial for preventing collapse. It can be quantified as:
Euniform = log E%y"’pdma [exp(—t”f(a:) - f(y)||2)] (15)

where lower values indicate better spread across the embedding space. By minimizing this implic-
itly through InfoNCE, we ensure the model utilizes the full representational capacity rather than
collapsing to trivial solutions.

The InfoNCE objective simultaneously: (1) aligns each user with their positive item through the
numerator, and (2) repels all other pairs through the denominator, promoting uniform coverage
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of the embedding space. The temperature 7 controls the trade-off: lower values emphasize hard
negatives, while higher values promote more uniform repulsion.

C.1.2 MIXED NEGATIVE SAMPLING FOR ENHANCED UNIFORMITY

While InfoNCE provides implicit uniformity, in-batch negatives alone can lead to biased repre-
sentations. Popular items appear frequently in batches, causing the model to over-optimize their
separation while neglecting tail items. This creates “popularity clusters” in the embedding space,
undermining uniformity.

Mixed Negative Sampling (MNS) addresses this by combining in-batch negatives with uniformly
sampled items:

Lyins = 1 EB log exp(si/7) (16)
MNS = — %
B P exp(s;/T) + ZjGN w; exp(si;/T)

where N = Nyaieh U Maniform and w; are importance weights. This strategy serves three critical
purposes:

1. Prevents popularity collapse: Ensures all items contribute negative signals regardless of
frequency

2. Enhances uniformity: Diverse negatives force representations to spread across the full
hypersphere

3. Improves ANN retrieval: Better uniformity means more efficient embedding space usage

C.2 THEORETICAL FOUNDATIONS

Connection to Mutual Information: InfoNCE maximizes a lower bound on the mutual information
between user and item representations (Oord et al.l 2018)). Specifically, the bound is:

I(u;v) > log B + LinfoNcE a7

where B is the batch size and Lyytoncg s the InfoNCE loss. This connection provides theoretical
justification for why larger batch sizes improve representation quality.

Approximation Quality: The contrastive loss with in-batch negatives approximates the full soft-
max with approximation error bounded by O(1/ V/B), where B is batch size. In practice, we find
batch sizes of 512-1024 provide a good balance between approximation quality and computational
efficiency.

Connection to Ranking Losses: InfoNCE can be viewed as a generalization of pairwise ranking
losses. With temperature 7 — 0, it approaches a hard ranking loss; with 7 — oo, it becomes
uniform over all items.

C.3 IMPLEMENTATION CONSIDERATIONS

Temperature Calibration: The temperature 7 controls the smoothness of the similarity distribution.
We find 7 = 0.07 optimal, determined through grid search over {0.01,0.03,0.05,0.07,0.1,0.2}.
Lower values (7 < 0.05) caused training instability with exploding gradients, while higher values
(7 > 0.1) resulted in slower convergence.

Batch Composition: We construct batches to maximize diversity of negative samples by sam-
pling users uniformly across interaction history lengths, ensuring item category diversity within
each batch, and maintaining roughly equal representation of frequent versus rare items.

Preventing Collapse: Representation collapse is a critical failure mode where all embeddings
converge to a single point. We employ three mechanisms: an L2 penalty on embedding norms
(Anorm||u]|? + [|v]|? with Aporm = 1077), spectral regularization that penalizes low variance in em-
bedding dimensions, and feature noising (Section[A.2) that randomly masks 5% of features during
training.
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Hard Negative Sampling: We experimented with importance sampling of hard negatives, items
with high similarity but no engagement. While this improved convergence speed by 15%, the final
accuracy was comparable to random sampling, so we use random for simplicity.

C.4 TRAINING DYNAMICS AND CONVERGENCE

Learning Rate Schedule: We use a warmup-then-decay schedule with linear warmup from 10~°
to 103 over the first 5 epochs, followed by cosine decay to 10~° over remaining epochs. This
schedule is critical for stable training with large batch sizes.

Convergence Monitoring: We track three metrics during training: the InfoNCE loss (primary),
uniformity measured as log E[exp(—2||u — v||?)] which should decrease, and alignment measured
as E[||u — vT||?] for positive pairs, which should also decrease.

Computational Efficiency: Training with InfoNCE is 3.2x faster than full softmax. InfoNCE
requires O(B? - d) per batch for all-pairs similarity, while full softmax requires O(B - N - d) per
batch to score all items. For N = 100K items and B = 512, InfoNCE is much more efficient.

D ALTERNATIVE FUSION METHODS

During development, we explored three different fusion mechanisms for combining heterogeneous
features. While we ultimately adopted self-attention fusion for its superior performance and natural
integration with the transformer architecture, we document the alternatives here for completeness.

D.1 ATTENTION POOLING (WEIGHTED AGGREGATION)

The simplest fusion mechanism learns a scalar importance weight for each feature and returns a
weighted sum:

s; = w ' tanh(Wh; + b) (18)
Zj:l exp(s;)
M

7= Z a; h; (20)
=1

This mechanism is computationally efficient with O(Md) complexity and is permutation-invariant.
However, it cannot model feature interactions and treats each feature independently. In our experi-
ments, this approach achieved approximately 92% of the performance of self-attention fusion.

D.2 CROSS-ATTENTION FUSION

Cross-attention fusion designates one feature as a primary query that attends to the remaining fea-
tures:

Q = qW € R1Xd @1)

K=HWyg, V=HWy (22)
T

« = softmax (?/I;» ) (23)
h

This approach is useful when one feature naturally serves as a primary representation (e.g., text
description querying metadata). It achieved 95% of self-attention performance but required careful
selection of the query feature.

D.3 SELF-ATTENTION FUSION

We ultimately adopted self-attention fusion, which treats all features as both queries and keys,
enabling rich feature interactions. The mechanism follows the standard Transformer multi-head
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Table 3: Hyperparameter ablation study on Amazon Toys & Games. Bold values indicate best
performance for each hyperparameter group.

Configuration \ Recall@5 Recall@20 NDCG@5 NDCG@20
History Length

L=5 0.0140 0.0292 0.0096 0.0138

L=10 0.0120 0.0312 0.0077 0.0131

L=15 0.0131 0.0321 0.0084 0.0137

L=20 0.0115 0.0309 0.0074 0.0127

L=25 0.0227 0.0578 0.0143 0.0241
Fusion Mechanism

No Fusion (Mean Pool) 0.0390 0.0960 0.0244 0.0412

Self-Attention 0.0451 0.1057 0.0292 0.0462
Uniformity Loss

Disabled 0.0433 0.1022 0.0284 0.0448

Enabled 0.0450 0.1064 0.0290 0.0462
Shared Embeddings

Disabled 0.0134 0.0335 0.0086 0.0142

Enabled 0.0171 0.0421 0.0110 0.0180
Batch Size

B=256 0.0424 0.1012 0.0275 0.0440

B=512 0.0452 0.1065 0.0292 0.0464
Feature Embedding Dim

ds=8 0.0406 0.1035 0.0254 0.0432

ds=16 0.0447 0.1050 0.0290 0.0459

ds=32 0.0443 0.1066 0.0281 0.0455

dy=64 0.0448 0.1025 0.0297 0.0458
Output Embedding Dim

d=64 0.0406 0.1035 0.0254 0.0432

d=256 0.0439 0.1033 0.0282 0.0448

d=512 0.0452 0.1059 0.0295 0.0465

d=1024 0.0433 0.1049 0.0274 0.0446

attention (Vaswani et al.l |2017), allowing each feature to attend to all others and learn complex
relationships. Key advantages include capturing pairwise and higher-order feature relationships, dy-
namic weighting where importance weights depend on the entire feature set context, architectural
consistency through using the same mechanism throughout the model, and permutation invariance
providing order-agnostic aggregation of features.

While computationally more expensive at O(M?d), the performance gains justified this cost, espe-
cially given that M (number of features per item) is typically small (2-10 in our datasets).

E DETAILED ABLATION RESULTS

F LEAVE-ONE-OUT CoLD (LOOC) PROTOCOL DETAILS

The Leave-One-Out Cold protocol extends the standard leave-one-out evaluation by ensuring test
items are completely absent from training. Formally, given an item set Z and interaction data D:
1. Partition items into disjoint sets: Ziain, Zval> Ziest Where Lain N Lyl = 0 and Ziain N Ziese = @

2. Remove all interactions involving validation/test items from training: Dyin = {(u,i,t) €
D:ie Itrain}

3. For each user u with test interactions, evaluate on predicting @ € Zie

This protocol is significantly more challenging than standard evaluation. Traditional models like
SASRec, BERT4Rec, and AttrFormer struggle to score items outside their training vocabulary when
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they haven’t seen them during training. Models that compute item embeddings from features have
an advantage in LOOC evaluation.

G EMAIL MARKETING CASE STUDY: EXTREME COLD-START

Our internal email marketing dataset represents an extreme cold-start scenario where every item is
cold, marketing campaigns launch with zero historical interactions:

Table 4: Performance on Internal Email Dataset where all items are cold-start. The dataset contains
2.3M users and 45K email campaigns over 6 months.

Model Variant AUC  Relative Gain
Content-Based Baseline 0.6854 —
RetrievalFormer (w/o attention fusion) 0.7033 +2.6%
RetrievalFormer (w/o shared embeddings) 0.7412 +8.1%
RetrievalFormer (Full) 0.7770 +13.4%

RetrievalFormer achieves 0.777 AUC, a 13.4% improvement over the content-based baseline. The
attention fusion mechanism proves critical, contributing 7.4% of the gain by learning complex re-
lationships between campaign attributes. This deployment validates our approach: RetrievalFormer
has been serving production traffic for 6 months, recommending new campaigns daily without re-
training.

H PROFILE-AS-TOKEN DESIGN

In addition to using attention fusion for combining features, we explored incorporating user profile
features as a special token in the transformer sequence. This design proved competitive, achieving
97% of the full attention fusion performance on MovieLens-1M.

H.1 IMPLEMENTATION

We introduce a learnable profile token (PROF) that encodes static user attributes. For user u with
profile P(u) = {p1, ..., px} (e.g., age, gender, occupation), we:

1. Embed each attribute: e; = E,, [v;] where v; is the attribute value

2. Combine via weighted sum: p,, = Zz w;e; with learned weights w;

3. Insert into sequence: [z1, ..., T, (PROF)] where (PROF) + p,

H.2 ABLATION RESULTS

We tested three configurations: placing the profile at the end achieved best performance (Recall@20
= 0.3401 on ML-1M), placing it at the beginning resulted in 2.3% lower recall likely due to causal
masking limiting influence, and using the profile as side input concatenated to each position showed
1.8% lower recall with higher memory cost.

The profile-at-end configuration allows the token to attend to all historical items while directly in-
fluencing the final representation used for prediction.

H.3 TRADE-OFFS

While simpler conceptually than distributed attention fusion, the profile-as-token approach has draw-
backs. It increases sequence length by 1, adding O(7") computational cost. The approach is less
interpretable since profile influence is implicit through attention weights, and it is position-sensitive
with performance varying significantly based on token placement.

We ultimately chose attention fusion for its superior performance (+3% Recall@20) and its ability
to consistently handle heterogeneous features throughout the architecture.
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I USER TOWER INPUT STRUCTURE

Figure [3]illustrates the detailed input structure for our Pure Transformer User Tower, showing how
heterogeneous features are processed and combined.

Possible
Interactions

f_/%

Interaction
Type 1

Item Tokens TAfter adding an "interaction type", it becomes a history touch

History Touch
Tokens
—

A4 A

PROF CLS
SEP
AN v J
User Interaction History Profile Tokens

Figure 3: Input structure for the Pure Transformer User Tower. The sequence begins with the user’s
interaction history (where each item is represented by its concatenated metadata features), followed
by a [SEP] token, projected static user features, and finally a [CLS] token. This late fusion approach
maximizes the effective sequence length while preserving semantic relationships between features.

The key design principles illustrated in this diagram include:

Historical Item Processing: Each item in the user’s interaction history is represented by concate-
nating its feature embeddings with an interaction type embedding. The interaction type embeddings
capture different forms of user engagement (clicks, favorites, purchases, etc.), allowing the model
to differentiate between various types of user engagements with the same items.

Late Fusion Strategy: Our sequence construction employs a late fusion strategy where heteroge-
neous features are concatenated in their embedded form before projection to the transformer’s model
dimension. This approach maximizes the effective sequence length the transformer can process,
preserves semantic relationships between features, and allows the model to learn feature-specific
projections that capture interactions between different feature types.

Token Organization: The final input sequence consists of:

1. Projected historical items with their interaction types
2. A separator token [SEP]
3. Projected user profile features

4. A classification token [CLS] whose final representation becomes the user embedding

J SCALABILITY ANALYSIS AND PRODUCTION CONSIDERATIONS

J.1 INFERENCE COST DECOMPOSITION

The fundamental advantage of RetrievalFormer’s architecture becomes clear when we decompose
the inference costs. For single-tower transformer models (SASRec, BERT4Rec, AttrFormer):

trotal = fuser-encode 1 N x tper—item—score =+ toverhead (25)

where [V is the catalog size and the scoring cost grows linearly.
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For RetrievalFormer’s dual-encoder architecture:

ttolal = tuser—encode + 0(10g N) + toverhead (26)

where the ANN search has logarithmic complexity for tree-based indices.

J.2 MEMORY FOOTPRINT ANALYSIS

Traditional transformer recommenders often maintain separate embeddings for every item. With
catalogs reaching billions of items, the embedding table can dominate memory:

Memory,,iional = IV % d X sizeof(float) (27)

RetrievalFormer’s feature-based approach computes item representations from shared feature em-
beddings:
MemorYRetrievalFormer = |F| X ‘/an X d x sizeof(ﬂoat) (28)

where |F| is the number of feature types and V,y, is the average vocabulary size per feature. This
approach typically requires significantly less memory than maintaining individual item embeddings.

J.3 DyYNAMIC CATALOG UPDATES

A critical production advantage of RetrievalFormer is its ability to handle dynamic catalogs. New
items can be immediately added to the ANN index by computing their embeddings through the item
tower, items can be removed from the ANN index without model retraining, and when an item’s
features change, we simply recompute its embedding and update the index.

This feature-based approach enables seamless catalog updates without the complexity of retraining
or embedding initialization strategies.

K THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this paper, Large Language Models were utilized as research assistance tools
in limited, well-defined capacities. Their role was primarily focused on literature discovery and
background research, specifically for identifying related work in sequential recommendation and
two-tower architectures, finding relevant citations and resources for the background section, and
suggesting connections between different research areas in recommender systems. Additionally,
LLMs provided general writing assistance including improving clarity and flow of technical expla-
nations, suggesting alternative phrasings for complex concepts, and grammar and style refinement.

However, all scientific contributions are original work conceived, developed, and validated by the
authors, including the core idea of combining transformer-based sequential modeling with ANN
retrieval efficiency, the design of the RetrievalFormer architecture with attention fusion and shared
embeddings, the theoretical analysis of InfoNCE training for dual-encoder recommenders, the exper-
imental methodology, implementation, and all empirical results, and the insights regarding cold-start
resilience and production scalability.

No LLMs were used for research ideation, experimental design, result generation, or scientific anal-
ysis. All technical claims and empirical results presented in this paper were independently imple-
mented and verified through rigorous experimentation. The experimental results reported in Tables
1-4 are from actual model training and evaluation on the specified datasets, not generated or sug-
gested by any Al system.

We take full responsibility for the paper’s contents and have thoroughly validated all statements, in-
cluding those refined with LLM assistance for clarity. The use of LLMs as research assistants helped
accelerate the literature review process but did not influence the scientific direction or conclusions of
this work. The scientific novelty and intellectual contributions of this work are entirely attributable
to the human authors listed.
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