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Abstract

Semi-Infinite Programming (SIP) has emerged as a powerful framework for mod-
eling problems with infinite constraints, however, its theoretical development in
the context of nonconvex and large-scale optimization remains limited. In this
paper, we investigate a class of nonconvex min-max optimization problems with
nonconvex infinite constraints, motivated by applications such as adversarial ro-
bustness and safety-constrained learning. We propose a novel inexact dynamic
barrier primal-dual algorithm and establish its convergence properties. Specifi-
cally, under the assumption that the squared infeasibility residual function satisfies
the Łojasiewicz inequality with exponent θ ∈ (0, 1), we prove that the proposed
method achieves O(ϵ−3), O(ϵ−6θ), and O(ϵ−3θ/(1−θ)) iteration complexities to
achieve an ϵ-approximate stationarity, infeasibility, and complementarity slackness,
respectively. Numerical experiments on robust multitask learning with task priority
further illustrate the practical effectiveness of the algorithm.

1 Introduction

Recent advances in artificial intelligence (AI), particularly foundation models for language, vision,
and multimodal reasoning, have revealed impressive capabilities and critical vulnerabilities at the
same time. These models are often susceptible to adversarial perturbations, leading to concerns
about their reliability and safety in high-stakes applications [26]. Similarly, ensuring robustness in
domains such as supply chain management and autonomous control systems requires optimization
frameworks that can account for worst-case scenarios across a continuum of uncertainties. Semi-
Infinite Programming (SIP), which naturally models problems with infinite constraints, provides a
powerful tool for addressing these challenges. However, despite its rich and extensive theoretical
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and algorithmic development, comparatively less attention has been devoted to designing efficient
first-order methods for emerging applications in modern AI and Operations Research.

Motivated by this gap, in this paper, we consider the following min-max optimization with infinite
constraints:

min
x∈Rn

max
y∈Y

ϕ(x, y), s.t. ψ(x,w) ≤ 0, ∀w ∈W, (1)

where ϕ : Rn × Rm → R and ψ : Rn × Rℓ → R are continuously differentiable functions.
Moreover, Y ⊆ Rm,W ⊆ Rℓ are convex, non-empty, closed sets. Problem (1) arises in a wide
range of applications, including robust optimization [5, 7], distributionally robust learning [59], and
adversarial machine learning [50, 60]. In these settings, we aim to optimize against worst-case
scenarios while ensuring that an infinite family of constraints is satisfied. Such constraints often
encode safety, fairness, or robustness requirements that must hold uniformly over a continuous set of
parameters.

To develop efficient algorithms for solving problem (1), it is critical to recognize the distinctive
structural complexities it introduces and why existing approaches are insufficient. The problem
combines features of min-max optimization and SIP, resulting in a constrained min-max optimization
problem with an infinite set of nonlinear constraints. While min-max problems and SIPs have been
studied independently, their intersection as in (1) poses unique challenges. Standard first-order
algorithms for solving min-max problems typically assume finite-dimensional constraints without
nonlinear constraints, whereas SIP approaches often assume convexity or lack the nested max
structure in the objective. Moreover, the presence of inner maximizations in both the objective and
constraints renders traditional gradient-based methods or constraint sampling techniques inadequate,
particularly when ϕ and/or ψ are nonconvex in x. This calls for new algorithmic strategies that can
simultaneously handle the nonconvexity, the infinite constraint set, and the nested structure of the
problem.

In the following, we review relevant literature in each of these areas to highlight existing methods
and identify the challenges that arise in tackling problem (1).

1.1 Literature Review

Nonconvex constrained optimization. Consider the following constrained optimization problem

min
x∈X

f(x) s.t. g(x) ≤ 0, (2)

where f : Rn → R and g : Rn → Rm are continuously differentiable, but not necessarily convex, and
X ⊆ Rn is a closed convex set. When f(·) is nonconvex and the constraints gi’s are either linear or
convex inequalities, a range of algorithms have been proposed, including penalty methods, Lagrangian
methods, and augmented Lagrangian methods [30, 33, 28].The study of optimization algorithms for
non-convex constrained problems has a long history, including analyses of the global asymptotic
convergence of methods such as Augmented Lagrangian method [6], Augmented Lagrangian trust-
region [14], and Sequential Quadratic Programming [20], among others. However, due to the
nonconvexity of the constraints, these methods may converge to infeasible stationary points. To
ensure convergence to feasible stationary points, additional assumptions are typically required. For
instance, assuming access to a (nearly) feasible solution, several methods have been developed to
find an ϵ-KKT point within O(ϵ−4) iterations [49, 40, 66]. With further regularity conditions, the
complexity can be improved to O(ϵ−3) for these methods and others, such as [39, 47].

More recently, the dynamic barrier gradient descent (DBGD) method [25] has emerged as a principled
alternative, incorporating barrier functions that smoothly penalize the constraint violation. The
proposed algorithm has been studied in continuous time and shown to achieve anO(1/t) convergence
rate in terms of KKT residuals, assuming the dual iterates remain bounded. However, this assumption
may not hold in practice, and when λt is unbounded, the convergence slows down. In such cases,
the KKT violation decays at a rate of O(max(1/t2/τ , 1/t1−1/τ )) where τ > 1 is a user-defined
parameter controlling the dynamic barrier.

Min-max optimization. Min-max optimization, rooted in von Neumann’s foundational work
[69], has become increasingly central in modern applications such as adversarial learning, fairness,
and distributionally robust optimization [64, 22, 58]. Classical convex-concave problems have
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been well-studied using primal-dual and gradient-based algorithms [18, 16, 27]. In recent years,
nonconvex–strongly concave (NC-SC) problems have received significant attention, with algorithms
such as gradient descent ascent (GDA) and alternating GDA achieving rates ofO(κ2ε−2) [57, 73, 42],
where κ denotes the condition number. Proximal point methods combined with acceleration further
improve the rate to Õ(

√
κε−2)–a rate shown to be optimal under standard complexity assumptions

[77, 38, 43]. For the more general nonconvex–concave (NC-C) setting, the convergence rates are
typically reduced to O(ϵ−4) due to the absence of strong concavity, e.g., see [48, 71, 11] and
the references therein. Despite recent studies, existing methods assume convex and easy-to-project
constraints. To the best of our knowledge, there is no work on nonconvex-(strongly) concave min-max
problems with nonconvex nonlinear constraints.

Robust Optimization. Robust optimization (RO) provides a framework for decision making
under uncertainty by introducing an uncertainty sets Y,W and requiring any candidate solution
x remain feasible for all realizations in the uncertainty set, leading to problems of the form
minx∈X supy∈Y f(x, y) s.t. supw∈W g(x,w) ≤ 0. When suitable regularity conditions hold, the
inner supremum admits a convex dual reformulation [5, 7]. In more general cases, RO is addressed
through cutting-set methods [53, 4] or scenario-based approaches that approximate Y,W with a finite
sample [12, 13]. Building on RO, distributionally robust optimization (DRO) defines an ambiguity
set P of probability distributions and yields the formulation minx supP∈P EP [ℓ(x, ξ)] [59, 36]. In
structured convex scenarios, duality can transform the min–max problem to a single-level program
[21, 52, 54]. However, these approaches do not extend to the general setting considered in this paper.

Semi-Infinite Programming Semi-infinite programming (SIP) was introduced in the 1960s through
the foundational work of Charnes, Cooper, and Kortanek [17], and has since evolved into a versatile
framework with applications in functional approximation [65], finance [19], and multi-objective
learning [67]. For convex SIP, three main approaches have been developed: discretization [8, 61],
cutting surface methods [29, 51], and penalty methods [41, 74]. These methods often entail solving
non-trivial subproblems, which makes them computationally expensive in large-scale settings. On the
theoretical side, duality and sufficient optimality conditions have been established [62, 34]. In contrast,
the theory and algorithms for nonconvex SIP remain less developed, reflecting the greater difficulty of
the nonconvex setting [23]. Recent work has explored new discretization strategies [68] and min–max
reformulations of SIP constraints that motivate primal–dual algorithms [57, 31]. However, none of
these approaches address our setting fully, with the closest being recent work by Yao et al. [75], which
develops first-order primal–dual schemes with non-asymptotic guarantees under convex regime.

1.2 Applications

Robust Multi-Task Learning with Task Priority. Multi-task learning (MTL) is a paradigm in
machine learning that aims to simultaneously learn multiple related tasks by leveraging shared
information among them [15]. The key idea is to enhance generalization performance by enabling
tasks to learn collaboratively rather than in isolation. Specifically, let {Ti}Ti=1 represent a collection
of T tasks, each associated with its own training dataset {Dtri }Ti=1, where the feature space is shared
across tasks. Each task Ti is characterized by a loss function ℓi(x,Dtri ), where x denotes the shared
parameters learned across all tasks. In applications where one task is prioritized, the problem can be
formulated by minimizing its loss while enforcing the losses of the remaining tasks to stay below
specified thresholds ri. Most existing MTL formulations assume a uniform distribution over training
samples when computing task-specific losses; however, in real-world applications, the underlying
data distributions are often uncertain or unknown. To address this, one standard approach is to utilize
the distributionally robust optimization (DRO) [59], and define the loss function for task i as the
weighted sum over the training dataset

∑
ξj∈Dtr

i
y
(i)
j ℓi(x, ξj) where the weights {y(i)j }

mi
j=1 lies in an

uncertainty set Yi, e.g., Yi = {y ∈ ∆mi
: V (y, 1

mi
1mi

) ≤ ρ} where V (Q,P ) denotes the divergence
measure between two sets of probability measures Q and P and ∆m ≜ {y ∈ Rm+ |

∑n
i=1 yi = 1}

represents the simplex set [54]. This leads to a DRO-based MTL formulation with task prioritization:

min
x∈Rm

max
y(1)∈Y1

∑
ξj∈Dtr

1

y
(1)
j ℓ1(x, ξj)

s.t.
∑

ξj∈Dtr
i

y
(i)
j ℓi(x, ξj) ≤ ri, ∀y(i) ∈ Yi, ∀i ∈ {2, . . . , T}.
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Robust, Energy-Constrained Deep Neural Networks Training (DNN). This problem involves
optimizing model performance while limiting the total energy consumed during training [72]. This
constraint arises in resource-constrained environments such as edge devices or large-scale systems
where power efficiency is critical. In particular, the goal is to train a deep neural network that
performs reliably under worst-case distribution uncertainty, while satisfying energy and sparsity
constraints under hardware-induced uncertainty. Consider a neural network with L layers and let
W = [w(1), . . . , w(L)] denote the collection of weights of all the layers, and S = [s(1), . . . , s(L)]
represent the collection of the non-sparse weights of all the layers. The goal is to train the model by
minimizing worst-case loss under distribution uncertainty y ∈ Y , while ensuring compliance with
resource constraints described by φ2(S) ≤ Ebudget. This problem can be formulated as follows:

min
(W,S)

max
y∈Y

∑
ξi∈Dtr

yiℓ(W ; ξi) s.t. φ1(w
(u)) ≤ s(u), φ2(S) ≤ Ebudget, ∀u ∈ {1, . . . , L}.

where φ1(w
(u)) calculates the sparsity in layer with the sparsity level s(u), φ2(S) represents the

energy consumption of the DNN, which is usually a non-convex function, and the constant Ebudget is
the threshold of the maximum energy budget.

Contributions. In this paper, we study a class of semi-infinite constrained min-max optimization
problems. Unlike existing methods, our framework accommodates both nonconvex objectives and
constraints defined over infinite cardinality constraint sets, thereby significantly broadening the
scope of both min-max optimization and semi-infinite programming (SIP). We propose a novel
Inexact Dynamic Barrier Primal-Dual (iDB-PD) method, which performs gradient-based updates on
the primal variables to simultaneously reduce the objective function and the infeasibility residual,
formulated through a quadratic programming subproblem. To regulate the behavior of the search
direction near the feasible region, we introduce an indicator function that ignores the constraint when
it is satisfied and adjusts the direction to focus solely on minimizing the objective. Assuming that the
squared inexact infeasibility residual [ψ(·, w)]2+ satisfies the Łojasiewicz inequality with exponent
θ ∈ (0, 1) for any w ∈ W , we establish the first global non-asymptotic convergence guarantees
for the class of problems where the objective and constraint functions are smooth and are either
strongly concave or satisfying Polyak-Łojasiewicz (PL) in their second component. In particular,
we show that our method attains an ϵ-KKT solution within O(ϵ−3), O(ϵ−6θ), and O(ϵ−3θ/(1−θ)) in
terms of first-order stationarity, feasibility, and complementarity slackness, respectively. Finally, we
demonstrate the effectiveness of our algorithm on real-world data by applying it to robust multi-task
learning (MTL) with task priority across various datasets.

2 Preliminaries

This section introduces the notations, definitions, and assumptions used throughout the analysis.

Notation. Throughout the paper, ∥ · ∥ denotes the Euclidean norm. We use Rn+ to denote the
nonnegative orthant. For x ∈ Rn, we adopt [x]+ ∈ Rn+ to denote max{x, 0}, where the maximum
is taken componentwise. For any convex set C ⊆ Rn and point x ∈ C, the normal cone is denoted
by NC(x) ≜ {p ∈ Rn | pTx ≥ pT y, for all y ∈ C}. For a differentiable vector-valued function
f : Rn → Rm, the Jacobian is denoted by Jf : Rn → Rm×n defined as the matrix of gradients.

Next, we define the Łojasiewicz property. Intuitively, this inequality controls the behavior of the
gradient near critical points, preventing it from vanishing too quickly unless the function value is
close to its critical value.

Definition 2.1 (Łojasiewicz inequality). Let f : Rn → R be a differentiable function on an open
subset of Rn, and let x∗ ∈ Rn be a critical point of f , i.e., ∇f(x∗) = 0. We say that f satisfies the
Łojasiewicz inequality at x∗ if there exist constants θ ∈ [0, 1), c > 0, and a neighborhood U of x∗
such that for all x ∈ U ,

c |f(x)− f(x∗)|θ ≤ ∥∇f(x)∥. (3)

The constant θ ∈ [0, 1) is called the Łojasiewicz exponent.

Łojasiewicz property and its extension for nonsmooth functions [10] (also known as the Kurdyka-
Łojasiewicz (KL) property) plays a central role in non-convex optimization and has been extensively
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studied in the literature [1, 2, 70], including its special case for θ = 1/2, also known as the Polyak-
Łojasiewicz (PL) inequality [32]. The fundamental contributions to this concept are attributed to
Kurdyka [37] and Łojasiewicz [45]. A broad class of functions has been shown to satisfy Łojasiewicz
property, including real analytic functions [46], functions definable in o-minimal structures, and
differentiable subanalytic functions [37]. In the context of DNN training, networks constructed
by common components such as linear, polynomial, tangent hyperbolic, softplus, and sigmoid
activation functions; squared, logistic, Huber, cross-entropy, and exponential loss functions satisfy
the Łojasiewicz property [70, 76].

Next, we present the assumptions regarding the objective and constraint functions.
Assumption 2.1 (Objective function). (i) Function ϕ(·, ·) is continuously differentiable and there
exist constants Lϕxx, L

ϕ
yy ≥ 0 and Lϕxy > 0 such that for any x, x̄ ∈ Rn and y, ȳ ∈ Y ,

∥∇xϕ(x, y)−∇xϕ(x̄, ȳ)∥ ≤ Lϕxx∥x− x̄∥+ Lϕxy∥y − ȳ∥,
∥∇yϕ(x, y)−∇yϕ(x̄, ȳ)∥ ≤ Lϕxy∥x− x̄∥+ Lϕyy∥y − ȳ∥.

(ii)∇xϕ is bounded, i.e., there exists Cϕ > 0 such that ∥∇xϕ(x, y)∥ ≤ Cϕ for all x ∈ Rn and y ∈ Y .
(iii) For any fixed x ∈ Rn, ϕ(x, ·) is either ηϕ-strongly concave function or cϕ-PL with Y = Rm.
Assumption 2.2 (Constraint function). (i) Function ψ(·, ·) is continuously differentiable and there
exist constants Lψxx, L

ψ
ww ≥ 0 and Lψxw > 0 such that for any x, x̄ ∈ Rm and w, w̄ ∈W ,

∥∇xψ(x,w)−∇xψ(x̄, w̄)∥ ≤ Lψxx∥x− x̄∥+ Lψxw∥w − w̄∥,
∥∇wψ(x,w)−∇wψ(x̄, w̄)∥ ≤ Lψxw∥x− x̄∥+ Lψww∥w − w̄∥.

(ii) ∇xψ is bounded, i.e., there exists a constant Cψ > 0 such that ∥∇xψ(x,w)∥ ≤ Cψ for all
x ∈ Rn and w ∈W . (iii) For any fixed x ∈ Rn, ψ(x, ·) is either ηψ-strongly concave function on a
closed convex set W ⊆ Rℓ or cψ-PL over the entire space (i.e., W = Rℓ).

2.1 Regularity Assumption and Connection to Existing Literature

Finding a global/local solution of Nonlinear Programming (NLP) in (2) with nonconvex constraints
is generally intractable. As such, most existing methods aim for finding a stationary solution known
as the Krush-Kuhn-Tucker (KKT) point, i.e., finding x ∈ X such that

0 ∈ ∇f(x) + Jg(x)⊤λ+NX(x), g(x) ≤ 0, λigi(x) = 0, ∀i (4)

for some λ ∈ Rm+ . Even finding such a stationary solution is a daunting task, as one of the primary
challenges lies in identifying a feasible solution when the constraint is nonconvex. In this setting,
researchers have explored different assumptions and problem structures to ensure convergence of
optimization algorithms to a feasible stationary point. For instance, assuming that the algorithm
can start from a (nearly) feasible solution, several studies (e.g., [49, 40, 66]) have established
convergence guarantees for obtaining an approximate KKT point. Another widely adopted assumption
in the literature is a regularity condition, which posits the existence of a constant µ > 0 such that
∥[g(x)]+∥ ≤ µ

2 dist(Jg(x)⊤[g(x)]+,−NX(x)). In the special case where X = Rn, this simplifies to

∥[g(x)]+∥ ≤
µ

2
∥Jg(x)⊤[g(x)]+∥. (5)

Denoting the squared infeasibility residual function by p(x) ≜ ∥[g(x)]+∥2, this condition can be
written equivalently as p(x) ≤ µ2∥∇p(x)∥2. Assuming that a feasible solution exists, we have
minx p(x) = 0, making it clear that the above regularity condition is equivalent to p(·) satisfying the
PL condition, that is, the Łojasiewicz inequality with exponent θ = 1/2.

In this work, we consider a more general regularity condition based on the Łojasiewicz inequality
(3) with an exponent θ ∈ (0, 1) for the residual function [ψ(·, w)]2+ for any index parameter w ∈W .
Under this condition, we establish a uniform convergence guarantee for the proposed algorithm,
which depends explicitly on the parameter θ. We now formally introduce our regularity assumption.
Assumption 2.3. Consider the constraint function ψ : Rn × Rℓ → R in problem (1). We assume
that [ψ(·, w)]2+ satisfies Łojasiewicz inequality for any given w ∈ W , i.e., there exist µ > 0 and
θ ∈ (0, 1) such that for any fixed w ∈W , the following holds

[ψ(x,w)]2θ+ ≤ µ∥∇xψ(x,w)[ψ(x,w)]+∥, ∀x ∈ Rn. (6)
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Remark 2.1. We would like to highlight that this assumption generalizes existing regularity conditions
in the nonconvex constrained optimization literature for any parameter θ ∈ (0, 1). Notably, when the
index set W is a singleton and θ = 1/2, this condition reduces to the classical regularity condition (5)
for a single constraint. Furthermore, Assumption 2.3 is satisfied in a variety of practical applications,
including the DRO-MTL described in Section 1.2. In particular, using results from the calculus of
real analytical and semialgebraic functions [63, 35, 9], one can verify that Assumption 2.3 holds
for ψ(x,w) =

∑
j wjℓ(x; ξj), where ℓ(·; ξ) is a smooth loss function, such as those used in DNNs

with smooth activation functions. However, Assumption 2.3 may not hold for neural networks with
nonsmooth components such as ReLU, and one needs to use the smoothed variant, e.g., softplus, to
ensure it holds.

3 Proposed Approach

In this paper, we introduce a novel dynamic barrier method tailored for min-max problems with
semi-infinite, nonconvex constraints. Our proposed iterative scheme generates approximated gradient-
based directions to update the triplet of variables (x, y, w). Specifically, to minimize the ob-
jective function ϕ(x, y) with respect to x, we aim to follow a direction close to ∇xϕ(xk, yk).
Moreover, to encourage feasibility, this direction should either improve ψ(x,w) in x or avoid
moving far away from the feasible region, i.e., maxw∈W ψ(xk+1, w) ≤ maxw∈W ψ(xk, w) + ε
for a small and controllable error ε > 0. Indeed, we show that given a “good" estimate
wk ≈ w∗(xk) ∈ argmaxw∈W ψ(xk, w), we can satisfy this condition by imposing an affine con-
straint ∇xψ(xk, wk)⊤dk + αkρ(xk, wk) ≤ 0, where ρ(·, ·) is an inexact min-max dynamic barrier
function. Intuitively, function ρ(·, ·) encourages the search direction dk to align with −∇xψ(xk, wk).
Accordingly, we define ρ(xk, wk) := ∥∇xψ(xk, wk)∥. The direction dk is then obtained by solving
the following quadratic program (QP):

dk = argmind ∥d+∇xϕ(xk, yk)∥2 (7)

s.t. ∇xψ(xk, wk)⊤d+ αkρ(xk, wk) ≤ 0.

This QP admits a closed-form solution and can be computed efficiently at each iteration. More
specifically, dk = −∇xϕ(xk, yk)− λk∇xψ(xk, wk) where λk is the dual multiplier corresponding
to the constraint in the above QP updated as follows:

λk =
1

∥∇xψ(xk, wk)∥2
[−∇xψ(xk, wk)⊤∇xϕ(xk, yk) + αkρ(xk, wk)]+. (8)

The main issue with the update of dual multiplier λk is that its value goes to infinity as
∥∇xψ(xk, wk)∥ vanishes. To resolve this issue, our idea is to introduce an indicator function
ζ(x,w) ≜ [ψ(x,w)]+∥∇xψ(x,w)∥. Note that ζ(x,w∗(x)) = 0 indicates that the point x is feasible
or a critical point of the constraint function. However, under Assumption 2.3 and using the definition
of ζ(x,w) = ∥∇xψ(x,w)[ψ(x,w)]+∥, we can conclude that ζ(x,w∗) = 0 implies that x is feasible.
In this case, due to feasibility, we only wish to reduce the objective function and move along the
direction dk = −∇xϕ(xk, yk), hence, we would like to enforce λk = 0. However, computing the
exact value of ζ(xk, w∗(xk)) may not be possible. To resolve this issue, we use an estimated value
ζ(xk, wk) as a measure of criticality and feasibility of the constraint which indicates whether λk is
updated based on (8) or set to zero. In other words, when ζ(xk, wk) = 0 the constraints are treated
as inactive. The maximization variables y and w are subsequently updated using Nk and Mk steps of
(accelerated) gradient ascent, respectively. A full description of the algorithmic steps is presented in
Algorithm 1.
Remark 3.1. We would like to point out that the proposed approach is related to the dynamic barrier
gradient method introduced in [25]. While there are some conceptual similarities, we emphasize
that the two methods differ significantly in both algorithmic design and convergence analysis. In
particular, apart from addressing inexactness and incorporating a maximization component, two key
distinctions of our approach are: (1) Introduction of the indicator function ζ(·, ·), which serves as a
metric to regulate the behavior of the dual multiplier λk. This leads to a modified update rule that
enables convergence to a KKT point without requiring the boundedness of the dual iterates, unlike the
assumption in [25]. (2) Our choice of barrier function differs: specifically, ρ(x,w) = ∥∇xψ(x,w)∥
corresponds to τ = 1 in their framework. However, this parameter choice does not yield a convergence
rate guarantee in their method – see Proposition 3.7 in [25].
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Algorithm 1 Inexact Dynamic Barrier Primal-Dual (iDB-PD) Method for Semi-Infinite Min-Max

1: Input: x0 ∈ Rn, γk ∈ (0, 1), αk > 0, Nk,Mk ≥ 1
2: for k = 0, . . . , T − 1 do

3: λk ←

{
1

∥∇xψ(xk,wk)∥2 [−∇xψ(xk, wk)⊤∇xϕ(xk, yk) + αkρ(xk, wk)]+ if ζ(xk, wk) > 0

0 o.w.
4: dk ← −∇xϕ(xk, yk)− λk∇xψ(xk, wk)
5: xk+1 ← xk + γkdk
6: yk+1 ≈ argmaxy∈Y ϕ(xk+1, y) using Nk steps of (accelerated) gradient ascent
7: wk+1 ≈ argmaxw∈W ψ(xk+1, w) using Mk steps of (accelerated) gradient ascent
8: end for

4 Convergence Analysis

In this section, we analyze the convergence of the iDB-PD algorithm. Indeed, problem (1) can be
viewed as an implicit nonconvex constrained optimization problem min f(x) s.t. g(x) ≤ 0, where
f(x) ≜ maxy∈Y ϕ(x, y) and g(x) ≜ maxw∈W ψ(x,w). Based on Assumption 2.1-(iii) and 2.2-(iii),
we can show that f and g are continuously differentiable functions (see Section A.1 for proof); hence,
we can establish the gap function based on the KKT solution of the implicit problem. Specifically,
our goal is to find an ϵ-KKT solution, i.e., find x̄ ∈ Rn and λ ≥ 0 such that

∥∇f(x̄) + λ∇g(x̄)∥ ≤ ϵ, [g(x̄)]+ ≤ ϵ, |λg(x̄)| ≤ ϵ.

Our first step of analysis is to provide a descent-type inequality for the objective and constraint
functions. This requires first analyzing the modified dual multiplier λk. The reason why we call it a
modified dual multiplier is that λk-update is modified based on the value of the indicator function
ζ(xk, wk). In effect, this modification can be translated into how we construct the QP subproblem.
In particular, when ζ(xk, wk) > 0, dk is updated based on the QP in (7), otherwise dk is updated
based on the unconstrained variant of (7) , i.e., dk = argmind ∥d+∇xϕ(xk, yk)∥2. Nevertheless,
we can upper bound ∥dk∥ and λk. In particular, using Cauchy-Schwartz and triangle inequalities, one
can verify that λk∥∇xψ(xk, wk)∥ ≤ ∥∇xϕ(xk, yk)∥+ αk for any k ≥ 0. This relation, along with
Lipschitz continuity of∇f allows us to prove the following result regarding the objective function,

f(xk+1) ≤ f(xk) + γkαk(Cϕ + αk) +
Lϕ

xy

2 ∥yk − y
∗(xk)∥2 +

(
γ2
k(Lf+L

ϕ
xy)

2 − γk
)
∥dk∥2, (9)

where y∗(x) = PY ∗(x)(yk) and Y ∗(x) = argmaxy∈Y ϕ(x, y).

To obtain a descent-type inequality for the constraint, we define the infeasibility residual function
p(x) ≜ [g(x)]2+. Note that this function is continuously differentiable whose gradient, i.e., ∇p(x) =
2∇g(x)[g(x)]+, is locally Lipschitz continuous with constant Lp(x) ≜ 2C2

ψ + L2
g + p(x) – see

Lemma A.4 for details and proof. Although dk is not directly a feasible solution of the QP subproblem
in (7) (it is only feasible if ζ(xk, wk) > 0), we can show the following important inequality for
k ≥ 0,

[ψ(xk, wk)]+∇xψ(xk, wk)⊤dk ≤ −αk[ψ(xk, wk)]+ρ(xk, wk) = −αkζ(xk, wk).

Combining these results and conducting some extra analysis, we can show the following result
regarding the infeasibility residual function:

p(xk+1) ≤ p(xk)− 2γkαkζ(xk, wk) + 2γkCψ|g(xk)− ψ(xk, wk)|∥dk∥

+ Lψxwp(xk)∥wk − w∗(xk)∥2 +
γ2k(Lp(xk) + 2Lψxw)

2
∥dk∥2,

(10)

where w∗(x) = PW∗(x)(wk) and W ∗(x) = argmaxw∈W ψ(x,w). The detailed statements and
proof of the results in (9) and (10) are presented in Section A.3.

Although these results provide some bound on the progress of the next iterate with respect to objective
and constraint functions, (10) may not immediately lead to a convergence rate result due to the
dependencies of non-negative terms on the right-hand side to p(xk)–especially notice the effect of
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p(xk) in Lp(xk). To address this, we show that by carefully selecting the algorithm’s parameters the
sequence {γk∥dk∥2}k≥0 is summable and {p(xk)}k≥0 is a bounded sequence – see Lemma A.7. As
a side result, we can conclude that there exists a constant Lp that can upper bound the local Lipschitz
constant Lp(x) uniformly along the sequence {xk}k≥0 generated by Algorithm 1. Through this
critical result, we can show the following theorem, establishing convergence bounds on ∥dk∥2 and
[g(xk)]+.

Theorem 4.1. Suppose Assumptions 2.1, 2.2, and 2.3 hold. Let {xk, λk}k≥0 be the sequence
generated by Algorithm 1 such that {αk}k is a non-increasing sequence and γk ≤ (Lf + Lϕxy)

−1.
Then, for any T ≥ 1,

(I)
1

ΓT

T−1∑
k=0

γk∥dk∥2 ≤
2(f(x0)− f(xT ))

ΓT
+

1

ΓT

T−1∑
k=0

γkαk(Cϕ + αk) +
1

ΓT

T−1∑
k=0

Eyk , (11)

(II)
1

AT

T−1∑
k=0

αk[g(xk)]
2θ
+ ≤

µ

AT

T−1∑
k=0

(p(xk)
γk

− p(xk+1)

γk

)
+

1

AT

T−1∑
k=0

Ewk

+
µ(Lp + 2Lψxw)

2AT

T−1∑
k=0

γk∥dk∥2, (12)

for some summable sequences {Eyk , Ewk }k≥0 ⊂ R+, where ΓT ≜
∑T−1
k=0 γk and AT ≜

∑T−1
k=0 αk.

Proof. See Section A.4 in the Appendix.

Theorem 4.1 provides an upper bound on the accumulation of sequences of direction dk and infeasi-
bility measure [g(xk)]+. While these quantities are not initially expressed in terms of KKT residuals,
the following theorem establishes their connection to ϵ-KKT conditions and derives the resulting
complexity guarantees for the proposed algorithm.

Theorem 4.2. Suppose Assumptions 2.1, 2.2, and 2.3 hold. Let {xk, λk}T−1
k=0 be the se-

quence generated by Algorithm 1 such that for any k ≥ 0, αk = T 1/3

(k+2)1+ω , for some
small ω > 0, γk = γ = O(min{ 1

T 1/3 , (Lf + Lϕxy)
−1}), Nk = O(log(k + 1)), and

Mk = O(max{max{1, 1
2θ} log(T ), log(T [ψ(xk, wk)]

4θ−2
+ )}) if ζ(xk, wk) > 0, otherwise, Mk =

O(max{1, 1
2θ} log(T )). Then, for any ϵ > 0, there exists t ∈ {0, . . . , T − 1} such that

1. (Stationarity) ∥∇f(xt) + λt∇g(xt)∥ ≤ ϵ within T = O( 1
ϵ3 ) iterations;

2. (Feasibility) [g(xt)]+ ≤ ϵ within T = O( 1
ϵ6θ

) iterations;

3. (Slackness) |λtg(xt)| ≤ ϵ within T = O( 1
ϵ3θ/(1−θ) ) iterations.

Proof. See Section A.4 in the Appendix.

Remark 4.1. We would like to state some important remarks regarding the complexity result in the
above theorem.
(i) Convergence result: We highlight that the obtained complexity results are, to the best of our
knowledge, the first established non-asymptotic complexity bounds for nonconvex semi-infinite
min-max problems. Owing to modest assumptions and a simple algorithmic structure, the proposed
method is broadly applicable to problems, including those involving instances of DNNs.
(ii) Special case of θ = 1

2 : The results of Theorem 4.2 simplify significantly when θ = 1
2 , which

corresponds to the PL condition on the squared inexact infeasibility residual [ψ(x,w)]2+ for any
w ∈W–see Assumption 2.3. In this case, we haveMk = O(log(T )), and the complexity for all three
metrics improves toO(1/ϵ3), matching the best known results in [39, 47] for nonconvex optimization
problems with finitely many constraints.
(iii) Selection of Mk: The choice of Mk depends on the inexact infeasibility residual function when
θ ∈ (0, 1), arising from the infinite cardinality of constraints. Here, Mk controls the accuracy of
estimating the iterate wk from this collection. As the iterates approach the approximate feasible
region, increasingly accurate estimates are needed to ensure convergence to the true feasible region.

8



5 Numerical Experiments

In this section, we evaluate the performance of the proposed iDB-PD algorithm on the Robust Multi-
Task 2 problem with a task priority, as introduced in Section 1.2. All experiments were implemented
in PyTorch and executed on Google Colab, using a virtual machine equipped with an NVIDIA
A100-SXM4 GPU (40 GB), an Intel® Xeon® CPU @ 2.20 GHz, 87 GB of RAM, and running Ubuntu
22.04.4 LTS with Python 3.12. We consider the following robust MTL formulation, where the goal is
to learn two related tasks by optimizing a shared parameter vector. Specifically, the objective is to
minimize the worst-case loss of a prioritized task while ensuring that the loss of the remaining task
remains below a specified threshold denoted by r > 0, formulated as follows:

min
x∈Rd

max
y∈∆n

n∑
i=1

yiℓ1(x, ξ
(1)
i ) − gn(y) (13a)

s.t.
m∑
j=1

wjℓ2(x, ξ
(2)
j ) − gm(w) ≤ r, ∀w ∈ ∆m, (13b)

where ∆n and ∆m are simplex sets. Note that, gn(y) = λn
2 ∥y −

1
n1n∥

2
2 and gm(w) = λm

2 ∥w −
1
m1m∥22 are regularization terms that restrict the worst-case distributions from deviating significantly
from the uniform distribution. Here, 1 denotes the all-ones vector. We consider five different datasets
and, for each, evenly partition the labels into two disjoint subsets, and the goal of each task is to learn
the corresponding labels. We consider a fully connected neural network with one hidden layer and
tanh activation functions. The output layer is a softmax with a cross-entropy loss function ℓi(·).

Table 1: Summary of datasets used in the experi-
ments.

Dataset Instances Features Labels

Multi-MNIST 20000 1296 10
CHD49 555 49 6
Multi-Fashion MNIST 20000 1296 10
Yeast 2417 103 14
20NG 19300 1006 20

Our experiment includes five datasets as sum-
marized in Table 1. We used Multi-MNIST and
Multi-Fashion-MNIST from Lin et al. (2019)
[44]1, which were constructed from the origi-
nal MNIST dataset. For these datasets, each
data point is constructed by randomly sampling
two different images from the original MNIST
(Fashion-MNIST) dataset and combining them
into a single image, placing the two digits (or
articles of clothing) on the top left and bottom right corners, resulting in a 36 × 36 image. Yeast,
Coronary Heart Disease, and 20NewsGroup datasets were accessed via the Multi-Label Classification
Dataset Repository hosted by Universidad de Córdoba2. For each of these datasets, we evenly divide
the label set in two, with one half learned in the objective and the other half learned in the constraint.
Here, we report our results on Multi-MNIST and CHD49, while results on the remaining datasets
(Multi-Fashion MNIST, Yeast, and 20NG) are included in Appendix A.5.

Experiment 1. In this experiment, we compare iDB-PD with an adaptive discretization method,
which iteratively adds the most violated constraints to form a finite approximation of the semi-infinite
min–max problem following Blankenship and Falk [8]. The resulting discretized problem is then
solved by COOPER [24], a PyTorch library for constrained optimization that implements first-order,
Lagrangian-based update schemes. From Figure 1 we observe that our proposed method (iDB-PD)
consistently achieves convergence in infeasibility, stationarity, and slackness, whereas the adaptive
discretization fails to reduce infeasibility and diverges in stationarity. This result underscores the
advantage of iDB-PD over more classical discretization methods.

1Datasets by Lin et al. (2019): https://github.com/Xi-L/ParetoMTL/
2https://www.uco.es/kdis/mllresources/
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Figure 1: iDB-PD vs. Adaptive Discretization with COOPER on multi-MNIST (top row) and CHD49
(bottom row), evaluated in terms of stationarity, infeasibility, and slackness.

Experiment 2. In this experiment, we compare the performance of the model in (13) with an
alternative model in which the objective function is a weighted summation of loss functions with a
DRO formulation. This results in the following min-max problem formulation

min
x∈Rd

max
y∈∆n,w∈∆m

n∑
i=1

yiℓ1(x, ξ
(1)
i )− gn(y) + ρ

 m∑
j=1

wjℓ2(x, ξ
(2)
j )− gm(w)

 .

For a fair comparison, we applied the Gradient Descent Multi-Ascent (GDMA) method [31, 57] to
solve this reformulated min-max problem, testing several values ρ ∈ {1, 2, 5, 10}. We evaluated
both approaches in terms of the metrics corresponding to (13), i.e., the objective function value,
infeasibility, and stationarity. Note that the first two metrics correspond to the training losses of task 1
and task 2, respectively.

Figure 2: iDB–PD vs GDMA on multi-MNIST (top row) and CHD49 (bottom row), evaluated in
terms of stationarity, infeasibility, and objective loss.

In Figure 2, we observe that iDB-PD consistently converges in both feasibility and stationarity,
whereas GDMA with small ρ achieves low stationarity, but fails to reduce infeasibility, and GDMA
with large ρ exhibits unstable behavior. These results highlight the difficulty of selecting appropriate
loss weights (ρ) to balance the tasks and confirm the robustness of our semi-infinite constrained
min-max formulation, where such a weight is dynamically adjusted by the algorithm.
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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Justification: The compute resources are stated in Section 5.
9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms, in every respect, with the NeurIPS Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed in this paper.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
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A Technical Appendices and Supplementary Material

A.1 Analysis of the maximization variables

Consider the following parametric maximization problem

h̃∗(x) ≜ max
u∈U

h(x, u), (14)

for a given x ∈ Rn where h(·, ·) : Rn × Rm → R is a continuously differentiable function, and
U ⊆ Rm is a closed, convex set. We are interested in the conditions under which the value function
h̃∗(x) is Lipschitz differentiable and an approximate solution of the above problem can be found
using (accelerated) gradient ascent method. Indeed, using the classical result in the optimization
literature [32, 56, 55, 57], it can be deduced that both these properties are satisfied when h(x, ·) is
strongly concave or satisfies PL inequality when U = Rm. In the following, we will restate these
results in a unified statement and later specify them for our proposed algorithm. In particular, we first
state the linear convergence result under these conditions, and then state the differentiability of the
value function.
Proposition A.1 ([32, 56, 55]). Consider problem (14), and assume that h(·, ·) is a continuously
differentiable function, such that for any fixed x, h(x, ·) is either strongly concave (or satisfies PL
inequality (see Def. 3 with θ = 1

2 ) with U = Rm). Let {uk}T−1
k=0 ⊂ Rm be a sequence generated

by the (accelerated) gradient ascent method. Then, for any x ∈ Rn, there exists δ ∈ (0, 1) and
∆1,∆2 > 0 such that we have the following results for T ≥ 1,

∥uT − u∗(x)∥2 ≤ ∆1δ
T ,

h(x, uT ) ≤ h̃∗(x) ≤ h(x, uT ) + ∆2δ
T ,

where u∗(x) ≜ PU∗(x)(uT ), and U∗(x) ≜ argmaxu∈U h(x, u).

Proposition A.2 ([57] Lemma A.5). Consider problem (14), and assume that h(·, ·) is a continuously
differentiable function, such that for any fixed x, h(x, ·) is ηh-strongly concave (or ch-PL (see Def.
2.1 with θ = 1

2 ) with U = Rm), it follows that

∇h̃∗(x) = ∇xh(x, u∗) for any u∗ ∈ U∗(x).

where U∗(x) ≜ argmaxu∈U h(x, u). Moreover, h̃∗(x) has (Lhuu + (Lhxu)
2/ι)-Lipschitz gradient

where ι = ηh (or ι = c2h).

Now, we apply the above propositions to the objective and constraint functions in problem (1) to derive
the error of estimating the maximization components according to the updates of Algorithm 1, which
will be used in the analysis. Recall that f(x) = maxy∈Y ϕ(x, y) and g(x) = maxw∈W ψ(x,w).
Based on Proposition A.2 and Assumptions 2.1 and 2.2, we have the following properties:

1. f is continuously differentiable and has a Lipschitz gradient with constant Lf ≜ Lϕyy +

(Lϕxy)
2/ιf ,

2. g is continuously differentiable and has a Lipschitz gradient with constant Lg ≜ Lψww +
(Lψxw)

2/ιg ,

where ιf = ηψ when ψ(x, ·) is ηψ-strongly concave or ιf = c2ψ when ψ(x, ·) is cψ-PL (ιg is defined
similarly).

Moreover, based on Proposition A.1, there exist uniform constants ∆y
1,∆

w
1 ,∆

w
2 ∈ (0,+∞) and

δy, δw ∈ (0, 1), such that for any k ≥ 0,

∥yk − y∗(xk)∥2 ≤ ∆y
1δ
Nk
y , (15)

∥wk − w∗(xk)∥2 ≤ ∆w
1 δ

Mk
w , (16)

ψ(xk, wk) ≤ g(xk) ≤ ψ(xk, wk) + ∆w
2 δ

Mk
w , (17)

where Nk,Mk denote the number of (accelerated) gradient ascent steps to maximize the functions
ϕ(x, ·) and ψ(x, ·), respectively.
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A.2 Required Lemmas

This section states two important lemmas regarding the proposed method and the implicit constraint
function. First, we show some bounds on the modified dual multiplier λk corresponding to the
subproblem (7) based on the update of Algorithm 1. Next, we establish local Lipschitz continuity
of the infeasibility residual function p(x) ≜ [g(x)]2+. Later, we show that by carefully selecting the
stepsize, this local constant can be upper bounded by a global one.

Lemma A.3. Suppose Assumptions 2.1 and 2.2 hold, and let {xk, λk}k≥0 be the sequence generated
by Algorithm 1 such that {αk}k≥0 ⊂ R+ is non-increasing sequence. Then, for any k ≥ 0 we have
that λkρ(xk, wk) ≤ ∥∇xϕ(xk, yk)∥+ αk. Furthermore, if Assumption 2.3 hold, then for any k ≥ 0,
λk[g(xk)]+ ≤ C[g(xk)]2−2θ

+ + C∆w
2 δ

Mk
w [ψ(xk, wk)]

1−2θ
+ where C ≜ µ(Cϕ + α0).

Proof. Recall that ρ(xk, wk) = ∥∇xψ(xk, wk)∥ and ζ(xk, wk) = [ψ(xk, wk)]+∥∇xψ(xk, wk)∥.
Note that if λk = 0, the bound holds trivially. Now suppose, ζ(xk, wk) > 0, then using the update of
λk we have that

λkρ(xk, wk) =
1

∥∇xψ(xk, wk)∥
[
−∇xψ(xk, wk)⊤∇xϕ(xk, yk) + αkρ(xk, wk)

]
+
.

Taking the absolute value from both sides, using the fact that |max{a, b}| ≤ |a|+ |b| for any a, b ∈ R,
followed by the triangle and Cauchy-Schwarz inequalities, we conclude that λk∥∇xψ(xk, yk)∥ ≤
∥∇xϕ(xk, yk)∥+ αk.

Similarly, from the definition of λk and Assumption 2.3 we conclude that

λk[g(xk)]+ ≤
[g(xk)]+

∥∇xψ(xk, wk)∥
(∥∇xϕ(xk, yk)∥+ αk)

≤ µ[g(xk)]+[ψ(xk, wk)]1−2θ
+ (∥∇xϕ(xk, yk)∥+ αk)

≤ µ
(
[ψ(xk, wk)]

2−2θ
+ +∆w

2 δ
Mk
w [ψ(xk, wk)]

1−2θ
+

)
(∥∇xϕ(xk, yk)∥+ α0)

≤ µ
(
[g(xk)]

2−2θ
+ +∆w

2 δ
Mk
w [ψ(xk, wk)]

1−2θ
+

)
(∥∇xϕ(xk, yk)∥+ α0)

where in the penultimate inequality we used the second inequality in (17) and that αk is a non-
increasing sequence. The last inequality above follows from the first inequality in (17). Finally, the
result follows from the boundedness of∇xϕ(·, ·) – see Assumption 2.1.

Lemma A.4. Suppose Assumption 2.2 holds. Let g(x) ≜ maxw∈W ψ(x,w) and the infeasibility
residual by p(x) = [g(x)]2+. Then p(·) is a continuously differentiable function and ∇p(x) is locally
Lipschitz continuous with constant Lp(x) ≜ 2C2

ψ + L2
g + [g(x)]2+.

Proof. Differentiability of p(·) follows from differentiability of g as established in Property 2 and its
gradient can be calculated by the chain rule as∇p(x) = 2∇g(x)[g(x)]+. Therefore, we have that

∥∇p(x)−∇p(y)∥ = ∥2[g(x)]+∇g(x)− 2[g(y)]+∇g(y)∥
= ∥2[g(x)]+(∇g(x)−∇g(y)) + 2∇g(y)([g(x)]+ − [g(y)]+)∥
≤ 2∥∇g(x)−∇g(y)∥∥[g(x)]+∥+ 2∥∇g(y)∥∥[g(x)]+ − [g(y)]+∥,

where in the second equality we added and subtracted 2[g(x)]+∇g(y). Note that based on Assump-
tion 2.2-(ii), we have that ∇g(x) = ∇xψ(x,w∗(x)) is bounded by Cψ, hence, g is Cψ-Lipschitz
continuous. Therefore,

∥∇p(x)−∇p(y)∥ ≤
(
2Lg[g(x)]+ + 2C2

ψ

)
∥x− y∥.

From Young’s inequality, we can bound 2Lg[g(x)]+ ≤ L2
g + [g(x)]2+. Therefore, the following holds

∥∇p(x)−∇p(y)∥ ≤ (2C2
ψ + L2

g + [g(x)]2+)∥x− y∥.
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A.3 Proof of one-step analysis

In this section, we prove the one-step analysis for the objective and constraints.
Lemma A.5. Suppose Assumptions 2.1, 2.2, and 2.3 hold. Let {xk, λk}k≥0 be the sequence generated
by Algorithm 1 such that {αk}k is a non-increasing sequence and γk ≤ (Lf + Lϕxy)

−1. Then, for
any k ≥ 0

(I)
γk
2
∥dk∥2 ≤ f(xk)− f(xk+1) + γkαk(Cϕ + αk) +

Lϕxy
2

∆y
1δ
Nk
y , (18)

(II) γkαkζ(xk, wk) ≤
p(xk)

2
− p(xk+1)

2
+ γk∆

w
1 δ

Mk
w Cψ(2Cϕ + α0)

+
Lψxw
2
p(xk)∆

w
1 δ

Mk
w +

γ2k(Lp(xk) + 2Lψxw)

4
∥dk∥2. (19)

Proof. Part (I): Using Lipschitz continuity of gradient of f as established in Property 1 and update
of xk+1, we have that

f(xk+1) = f(xk) +∇f(xk)⊤(xk+1 − xk) +
Lf
2
∥xk+1 − xk∥2

= f(xk) + γk∇f(xk)⊤dk +
γ2kLf
2
∥dk∥2

= f(xk) + γk (∇xϕ(xk, yk) + dk)
⊤
dk +

(
γ2kLf
2
− γk

)
∥dk∥2

+ γk∥∇f(xk)−∇xϕ(xk, yk)∥∥dk∥

≤ f(xk)− γkλk∇xψ(xk, wk)⊤dk +
(
γ2kLf
2
− γk

)
∥dk∥2 + γkL

ϕ
xy∥yk − y∗(xk)∥∥dk∥,

where in the last inequality we used dk = −∇xϕ(xk, yk) − λk∇xψ(xk, wk), ∇f(xk) =
∇xϕ(xk, y∗(xk)), and Lipschitz continuity of the gradient of function ϕ. Moreover, from com-
plementarity slackness condition we know that λk

(
∇xψ(xk, wk)⊤dk + αkρ(xk, wk)

)
= 0, hence

we obtain
f(xk+1)− f(xk)

≤
(
γ2kLf
2
− γk

)
∥dk∥2 + γkαkλkρ(xk, wk) + γkL

ϕ
xy∥yk − y∗(xk)∥∥dk∥

≤
(
γ2kLf
2
− γk

)
∥dk∥2 + γkαk(Cϕ + αk) + γkL

ϕ
xy∥yk − y∗(xk)∥∥dk∥

≤
(
γ2kLf
2
− γk

)
∥dk∥2 + γkαk(Cϕ + αk) +

Lϕxy
2
∥yk − y∗(xk)∥2 +

γ2kL
ϕ
xy

2
∥dk∥2. (20)

where the penultimate inequality follows from the application of Lemma A.3 and ∥∇xϕ(x, y)∥ ≤ Cϕ,
moreover, the last inequality is due to Young’s inequality (where p = q = 2). Now, rearranging the
terms and selecting γk ≤ (Lf + Lϕxy)

−1 lead to the result of part (I).

Part (II): Recall that ζ(xk, wk) = [ψ(xk, wk)]+∥∇xψ(xk, wk)∥ and ρ(xk, wk) = ∥∇xψ(xk, wk)∥.
Based on Lemma A.4 and the update rule of xk+1 = xk + γkdk, we have that
p(xk+1)− p(xk)

≤ ⟨∇p(xk), xk+1 − xk⟩+
Lp(xk)

2
∥xk+1 − xk∥2

= 2γk[g(xk)]+∇g(xk)⊤dk +
γ2kLp(xk)

2
∥dk∥2

= 2γk[g(xk)]+∇xψ(xk, wk)⊤dk + 2γk[g(xk)]+(∇g(xk)−∇xψ(xk, wk))⊤dk + γ2
kLp(xk)

2 ∥dk∥2

≤ 2γk [g(xk)]+∇xψ(xk, wk)⊤dk︸ ︷︷ ︸
term (a)

+2γkL
ψ
xy[g(xk)]+∥wk − w∗(xk)∥∥dk∥+ γ2

kLp(xk)
2 ∥dk∥2.

(21)
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Considering term (a), from (17) one can observe that

[g(xk)]+∇xψ(xk, wk)⊤dk ≤ [ψ(xk, wk)]+∇xψ(xk, wk)⊤dk +∆w
1 δ

Mk
w ∥∇xψ(xk, wk)∥∥dk∥

≤ −αk[ψ(xk, wk)]+ρ(xk, wk) + ∆w
1 δ

Mk
w ∥∇xψ(xk, wk)∥∥dk∥

≤ −αkζ(xk, wk) + ∆w
1 δ

Mk
w Cψ(2Cϕ + α0), (22)

where in the second inequality we use the fact that dk is a feasible solution of the QP subprob-
lem if ζ(xk, wk) > 0, hence, [ψ(xk, wk)]+∇xψ(xk, wk)⊤dk ≤ −αk[ψ(xk, wk)]+ρ(xk, wk) =
−αkζ(xk, wk), otherwise the inequality holds trivially. Moreover, the last inequality follows from
Assumption 2.1-(ii) and Lemma A.3 and one can easily verify that ∥dk∥ ≤ 2Cϕ + α0 and from
Assumption 2.2 we have ∥∇xψ(xk, wk)∥ ≤ Cψ . Therefore, combining (22) with (21), we obtain

p(xk+1)− p(xk) ≤ −2γkαkζ(xk, wk) + 2γk∆
w
1 δ

Mk
w Cψ(2Cϕ + α0)

+ 2γkL
ψ
xy[g(xk)]+∥wk − w∗(xk)∥∥dk∥+

γ2kLp(xk)

2
∥dk∥2

≤ −2γkαkζ(xk, wk) + 2γk∆
w
1 δ

Mk
w Cψ(2Cϕ + α0)

+ Lψxwp(xk)∥wk − w∗(xk)∥2 +
γ2k(Lp(xk) + 2Lψxw)

2
∥dk∥2.

Next, rearranging the above inequality, dividing both sides by 2, lead to the desired result.

A.4 Proof of Theorems 4.1 and 4.2

Before proving Theorems 4.1 and 4.2, we present a technical lemma on the recursive relation of a
non-negative real-valued sequence that will be used in our convergence analysis.

Lemma A.6 ([3] Lemma 5.31). Let {vk}, {uk}, {αk}, {βk} be sequences of nonnegative reals with∑∞
k=0 αk <∞ and

∑∞
k=0 βk <∞ such that vk+1 ≤ (1 + αk)vk − uk + βk for all k. Then, {vk}

converges and
∑∞
k=0 uk <∞.

Using this result, we first show that the sequence {γk∥dk∥2}k is summable and {p(xk)}k is a bounded
sequence.

Lemma A.7. Let {xk}k be the sequence generated by Algorithm 1 such that
∑+∞
k=0 γkαk < +∞,∑+∞

k=0 δ
Nk
y < +∞, and

∑+∞
k=0 δ

Mk
w < +∞. Under the premises of Lemma A.5, we have that (i)∑+∞

k=0 γk∥dk∥2 < +∞; (ii) {p(xk)}k≥0 is a bounded sequence, i.e., there exists Cg > 0 such that
[g(xk)]+ ≤ Cg for any k ≥ 0.

Proof. (i) Consider Part (I) of Lemma A.5 by rearranging terms one can obtain:

f(xk+1) ≤ f(xk)−
γk
2
∥dk∥2 + γkαk(Cϕ + αk) +

Lϕxy
2

∆y
1δ
Nk
y .

Since αk is a non-increasing sequence and it is assumed that
∑+∞
k=0 γkαk < +∞, one can ver-

ify that
∑+∞
k=0 γkα

2
k ≤

∑+∞
k=0 γkαk < +∞. Moreover, since

∑+∞
k=0 δ

Nk
y < +∞, we have∑+∞

k=0

(
γkαk(Cϕ + αk) +

Lϕ
xy

2 ∆y
1δ
Nk
y

)
< +∞. Therefore, applying Lemma A.6, we conclude

that
∑+∞
k=0 γk∥dk∥2 < +∞.

(ii) Similarly, from Part (II) of Lemma A.5, multiplying both sides by 2, using Lp(x) = 2C2
ψ +L2

g +

p(x) from Lemma A.4, and rearranging terms yields:

p(xk+1) ≤ (1 + Lψxw∆
w
1 δ

Mk
w +

γ2k
2
∥dk∥2︸ ︷︷ ︸

ak

)p(xk)− 2γkαkζ(xk, wk)

+ 2γk∆
w
1 δ

Mk
w Cψ(2Cϕ + α0) +

γ2k(2C
2
ψ + L2

g + 2Lψxw)

2
∥dk∥2︸ ︷︷ ︸

bk

.
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From the assumptions in the statement of the lemma and the result of part (I) and that γk ∈ (0, 1), we
have that

∑+∞
k=0 ak < +∞ and

∑+∞
k=0 bk < +∞.Hence, the conditions of Lemma A.6 are satisfied,

and we conclude that the sequence {p(xk)}k≥0 converges. Therefore, {p(xk)}k≥0 is bounded, i.e.,
there exists Cg > 0 such that [g(xk)]+ ≤ Cg for all k ≥ 0.

Now, we are ready to prove Theorem 4.1. First, we restate the statement with full details here.
Theorem A.8 (Restatment of Theorem 4.1). Suppose Assumptions 2.1, 2.2, and 2.3 hold. Let
{xk, λk}k≥0 be the sequence generated by Algorithm 1 such that {αk}k is a non-increasing sequence
and γk ≤ (Lf + Lϕxy)

−1. Then, for any T ≥ 1 and k ≥ 1,

(I)
1

ΓT

T−1∑
k=0

γk∥dk∥2 ≤
2(f(x0)− f(xT ))

ΓT
+

1

ΓT

T−1∑
k=0

γkαk(Cϕ + αk) +
Lϕxy∆

y
1

ΓT

T−1∑
k=0

δNk
y ,

(23)

(II)
1

AT

T−1∑
k=0

αk[g(xk)]
2θ
+ ≤

µ

AT

T−1∑
k=0

(
p(xk)
γk
− p(xk+1)

γk

)
+ µ

AT

T−1∑
k=0

(
∆̄
γk
δMk
w + 2αk

µ (∆w
2 )

2θδ2θMk
w

)
+
µ(Lp + 2Lψxw)

2AT

T−1∑
k=0

γk∥dk∥2, (24)

for some ∆̄ > 0, where ΓT ≜
∑T−1
k=0 γk and AT ≜

∑T−1
k=0 αk.

Proof. Part (I) follows immediately from Lemma A.5-Part (I) by summing over k = 0 to T − 1 and
dividing both sides by Γk =

∑T−1
k=0 γk.

To prove Part (II), first note that from Lemma A.7 we have [g(xk)]+ ≤ Cg which from Lemma A.4
we conclude that there exists a constant Lp ≜ 2C2

ψ + L2
g + C2

g that upper bounds the local Lipschitz
constant Lp(x) uniformly along the sequence {xk}k≥0. Therefore, we can simplify the bound in (19)
as follows

γkαkζ(xk, wk) ≤
p(xk)

2
− p(xk+1)

2
+ γk∆

w
1 δ

Mk
w Cψ(2Cϕ + α0)

+
Lψxw
2
C2
g∆

w
1 δ

Mk
w +

γ2k(Lp + 2Lψxw)

4
∥dk∥2.

Using Assumption 2.3, we can lower bound the left-hand side of the above inequality by
γkαk

µ [ψ(xk, wk)]
2θ
+ . Moreover, from (17) and that θ ∈ (0, 1) we have that 1

2 [g(xk)]
2θ
+ ≤

[ψ(xk, wk)]
2θ
+ + (∆w

2 )
2θδ2θMk

w which leads to

γkαk
2µ

[g(xk)]
2θ
+ ≤

p(xk)

2
− p(xk+1)

2
+ γk∆

w
1 δ

Mk
w Cψ(2Cϕ + α0) +

Lψxw
2
C2
g∆

w
1 δ

Mk
w

+
γ2k(Lp + 2Lψxw)

4
∥dk∥2 +

γkαk
µ

(∆w
2 )

2θδ2θMk
w .

Finally, multiplying both sides by 2µ/γk, summing over k = 0 to T − 1, dividing by AT , and
defining ∆̄ ≜ ∆w

1 Cψ(2Cϕ + α0) lead to the desired result.

Now, we restate and prove Theorem 4.2.
Theorem A.9 (Restatment of Theorem 4.2). Suppose Assumptions 2.1, 2.2, and 2.3 hold. Let
{xk, λk}k≥0 be the sequence generated by Algorithm 1 such that for any k ≥ 0, αk =
T 1/3

(k+2)1+ω , γk = γ = min{µC
2−2θ
g

T 1/3 , (Lf + Lϕxy)
−1}, Nk = 2

1−δy log(k + 1), and Mk =
1

1−δw max{max{1, 1
2θ} log(T ), log(T [ψ(xk, wk)]

4θ−2
+ )} if [ψ(xk, wk)]+∥∇xψ(xk, wk)∥ > 0, oth-

erwise, Mk = 1
1−δw max{1, 1

2θ} log(T ). Then, for any ϵ > 0, there exists t ∈ {0, . . . , T − 1} such
that

1. (Stationarity) ∥∇f(xt) + λt∇g(xt)∥ ≤ ϵ within T = O( 1
ϵ3 ) iterations;
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2. (Feasibility) [g(xt)]+ ≤ ϵ within T = O( 1
ϵ6θ

) iterations;

3. (Slackness) |λtg(xt)| ≤ ϵ within T = O( 1
ϵ3θ/(1−θ) ) iterations.

Proof. Before starting the proof let us define t ≜ argmin0≤k≤T−1 max{∥∇f(xk) +
λk∇g(xk)∥, [g(xk)]+, |λkg(xk)|}. Moreover, the selection of parameters αk, γk, Nk, and Mk

implies that the conditions of Lemma A.7 hold, and we can invoke its result within the proof.

Part 1. First, we show the result for ϵ-stationary condition. From the definition of dk and comparing
it with ∇f(xk) + λk∇g(xk) we observe that if ζ(xk, wk) = 0 then λk = 0 and ∥∇f(xk) +
λk∇g(xk)∥2 ≤ 2∥dk∥2+2(Lϕxy∥yk−y∗(xk)∥)2 ≤ 2∥dk∥2+2(Lϕxy)

2∆y
1δ
Nk
y which by selectingNk

as in the statement of corollary, we obtain ∥∇f(xk) + λk∇g(xk)∥2 ≤ 2∥dk∥2 + 2(Lϕxy)
2∆y

1
1

(k+1)2 .
If ζ(xk, wk) > 0, then

∥∇f(xk) + λk∇g(xk)∥2

≤ 3∥dk∥2 + 3∥∇f(xk)−∇xϕ(xk, yk)∥2 + 3λ2k∥∇g(xk)−∇xψ(xk, wk)∥2

≤ 3∥dk∥2 + 3(Lϕxy)
2∆y

1δ
Nk
y + 3λ2k(L

ψ
xw)

2∆w
1 δ

Mk
w

≤ 3∥dk∥2 + 3(Lϕxy)
2∆y

1δ
Nk
y + 3µ2C2[ψ(xk, wk)]

2−4θ
+ (Lψxw)

2∆w
1 δ

Mk
w

≤ 3∥dk∥2 + 3(Lϕxy)
2∆y

1

1

(k + 1)2
+ 3µ2C2(Lψxw)

2∆w
1

1

T
, (25)

where in the second inequality we used Lipschitz continuity of∇xϕ and∇xψ as well as the relations
in (15) and (16). The third inequality follows from Lemma A.3 and Assumption 2.3 which shows
that λk ≤ C∥∇xψ(xk, wk)∥−1 ≤ Cµ[ψ(xk, wk)]

1−2θ
+ for some C > 0. The last inequality is

obtain by plugging the selection of Nk and Mk as in the statement of corollary and noting that
1

1−δ ≥ 1/ log(1/δ) for any δ ∈ (0, 1).

On the other hand, from Theorem A.8 part (I), by selecting γ = O(1/T 1/3) and αk = T 1/3

(k+2)1+ω and

noting that 1
T

∑T−1
k=0 αk = O(1/T 2/3), we conclude that 1

T

∑K−1
k=0 ∥dk∥2 ≤ O(1/T 2/3). Therefore,

combining the result with (25) we obtain

∥∇f(xt) + λt∇g(xt)∥2 ≤
1

T

K−1∑
k=0

∥∇f(xk) + λk∇g(xk)∥2 ≤ O
(

1

T 2/3
+

(Lψxw)
2∆w

1

T

)
.

By taking the square root of both sides of the above inequality, the result of part 1 follows immediately.

Part 2. From Lemma A.7, we observe that there exists D > 0 such that D =
∑T−1
k=0 γ∥dk∥2 < +∞.

Considering the result of Theorem A.8-part (II), selecting γk = γ = O( 1
T 1/3 ), and p(x) ≥ 0, we

have that

1

AT

T−1∑
k=0

αk[g(xk)]
2θ
+ ≤

µ

AT γ
p(x0) +

µ

AT

T−1∑
k=0

(∆̄
γ
δMk
w +

2αk
µ

(∆w
2 )

2θδ2θMk
w

)
+
µ(Lp + 2Lψxw)

2AT
D

≤ O
(

1

AT γ
+

D

AT

)
,

where the last inequality follows from plugging in Mk since max{δMk
w , δ2θMk

w } = O( 1
T ). Therefore,

from the above inequality, noting that AT = Ω(T 1/3), and the definition of t at the beginning of the
proof we conclude that [g(xt)]2θ+ ≤ O( 1

T 1/3 ) which completes the proof of part 2.

Part 3. Finally, to calculate the complexity of finding ϵ-complementarity slackness, recall the update
of λk in Algorithm 1. Recall that ζ(xk, wk)[ψ(xk, wk)]+∥∇xψ(xk, wk)∥. If ζ(xk, wk) = 0, then
λk = 0, hence, λkg(xk) = 0. Suppose ζ(xk, wk) > 0, then we observe that g(xk) ≥ ψ(xk, wk) >
0. Therefore, from Lemma A.3 we have that 0 ≤ λkg(xk) = λk[g(xk)]+ ≤ C[g(xk)]

2−2θ
+ +

C∆w
2 δ

Mk
w [ψ(xk, wk)]

1−2θ
+ . Combining the two scenarios, for any k ≥ 0, we have that |λkg(xk)| ≤

C[g(xk)]
2−2θ
+ + C∆w

2 δ
Mk
w [ψ(xk, wk)]

1−2θ
+ for some C > 0. Therefore, based on selection of Mk,

we obtain |λtg(xt)| ≤ O( 1
T (1−θ)/(3θ) +

1
T ) from which the result follows.
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A.5 Experiment Details and Additional Plots

Experiment Details: In all experiments, we select the regularization parameter λ = 10−3 and the
maximization variables y, w are updated by running Nk = 2⌈log(k+2)⌉ and Mk = 10⌈log(k+2)⌉
steps of the projected gradient ascent method. The stepsize γ is tuned by selecting the best per-
formance among {10−4, 2.5 × 10−4, 5 × 10−4, 10−3, 5 × 10−3, 10−2} and the parameter is set
αk = α/(k + 2)1.001 for α ∈ {0.1, 0.2, 0.5, 1}. Hyperparameter choices follow Theorem 4.2 and
tuned via targeted grid search to ensure robustness. Furthermore, to determine the threshold value r,
we solve the robust learning task in the constraint, i.e, minxmaxw∈∆m

∑m
j=1 ℓ2(x, ξ

(2)
j )− gm(w),

separately using the unconstrained variant of our method for a some iterations. The resulting objective
value is then used in the original problem as the threshold value.
The oscillations that occur in plots reflect the difficult trade-off between minimizing the objective, en-
forcing feasibility under infinitely many functional constraints, and satisfying the ϵ−KKT conditions,
a behavior common in both convex and nonconvex problems with functional constraints [27].

Figure 3: iDB-PD vs. GDMA on multi-Fashion MNIST (top row), Yeast (middle row), and 20NG
(bottom row), evaluated in terms of stationarity, infeasibility, and objective loss.
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Figure 4: iDB–PD vs. Adaptive Discretization with COOPER on multi-Fashion MNIST (top row),
Yeast (middle row), and 20NG (bottom row), evaluated in terms of stationarity, infeasibility, and
slackness.

Across the three additional datasets, iDB-PD broadly outperforms all GDMA variants and the adaptive
discretization method with COOPER. iDB-PD drives infeasibility and stationarity down quickly
while maintaining competitive objective values. In contrast, GDMA requires large penalty values
to approach feasibility, frequently at the cost of stability. Further, adaptive discretization struggles
with instability and struggles with matching iDB-PD’s stationarity and infeasibility performance.
These results confirm the robustness of our iDB-PD method which effectively balances feasibility,
optimality, and stability.
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