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Abstract

A common challenge in machine learning model development is that models perform differently
between the offline development phase and the eventual deployment phase. Fundamentally,
the goal of such a model is to maximize performance during deployment, but such performance
cannot be measured offline. As such, we propose to augment the standard offline sample
efficient hyperparameter optimization to instead search offline for a diverse set of models
which can have potentially superior online performance. To this end, we utilize Constraint
Active Search to identify such a diverse set of models, and we study their online performance
using a variant of Best Arm Identification to select the best model for deployment. The key
contribution of this article is the theoretical analysis of the two-phase development strategy,
both in analyzing the probability of improvement over the baseline as well as the number
of viable treatments for online testing. We demonstrate the viability of this strategy on
synthetic examples, as well as a recommendation system benchmark.

1 Introduction

Developing a machine learning model for production requires a series of modeling decisions, e.g., the choice of
data, loss function, model structure, and regularization. These choices may be broadly referred to as the
“hyperparameters” of an ML model, and any choice of them will yield a viable model. An appropriate or
optimal selection of them is often guided by loss or accuracy achieved on a validation set which is disjoint
from the training set. The purpose of this validation objective is to avoid overfitting to the training loss by
estimating the model performance on unseen data (Bishop, 2007).

There remains, however, a gap even between performance in an offline validation setting and online performance.
Such a gap is well-known in industrial ML settings, where deployed models often fail to live up to the
expectations set during an offline development process. Most notably, for our purposes, Krauth et al. (2020)
states, after extensive empirical testing on recommender systems, that

... offline metrics are correlated with online performance over a range of environments.
However, improvements in offline metrics lead to diminishing returns in online performance.

Radlinski et al. (2008) showed an example where the improvement of the click-through rate deteriorates the
quality of a search engine. Kato et al. (2020) calls out the need to adapt offline models to account for the
current network state as a key component in advancing wireless technology. The offline/online gap is even
more prominent in circumstances where deployed ML systems can produce unphysical outcomes which must
be avoided (Brenowitz et al., 2020).

1

https://openreview.net/forum?id=XX8CEN815d


Published in Transactions on Machine Learning Research (10/2022)

Offline
Development
Phase

Online
Development
Phase

Online
Deployment
Phase

D
ep

lo
ye

d 
Pe

rfo
rm

an
ce

Time

Online 
deployment

Online 
development

Figure 1: A graphical depiction of how our two-phase strategy precedes a deployment of a new ML model. In
the offline development phase we explore an offline metric to find viable models for subsequent testing online,
the best performing of which is deployed long-term.

In acknowledgment of these gaps, naive use of sample-efficient offline optimization tools, such as Bayesian
optimization (Jones et al., 1998; Frazier, 2018), can lead to underperformance in an online setting. To
address this issue, strategies have been developed for incorporating supplemental information (including
online information) into the model development process (Swersky et al., 2013). Special tooling has been
developed to support monitoring of deployed ML systems to utilize metrics recorded deployment (both model
performance and contextual / environmental drift) for subsequent redesign of the ML model (Banerjee et al.,
2020).

State-space models such as the Kalman filter have been developed to allow for data assimilation: models are
developed offline but later altered or updated using online (real-time) information to improve their accuracy
(Wan & Van Der Merwe, 2000; Kwiatkowski & Mandel, 2015). Chen et al. (2017) used offline data to modify
the design space (decision variables) and allow their online genetic algorithm to more efficiently maintain the
high performance of a reservoir system. These strategies, however, are in pursuit of a continually/iteratively
run online tracking/optimization process.

In this article, we consider the setting where we have only a fixed window to conduct online development. Of
course, the topic of online performance optimization has been addressed by many researchers. Multi-armed
bandits (Robbins, 1952; Lai & Robbins, 1985; Komiyama et al., 2015) provide a strategy for constantly
testing multiple treatments to minimize cumulative regret during the testing phase (which could extend
indefinitely). Best arm identification (BAI) (Audibert et al., 2010) is used to measure the performance of
multiple strategies online and choose one for eventual long-term deployment. We consider only the BAI
circumstances (ignoring cumulative regret during online development/testing), as they most closely match
our deployed circumstances.

Our proposed strategy for improving deployed performance works in two phases: an offline and an online
development phase. First, during the offline development phase, we replace the standard hyperparameter
optimization that eventually outputs a single model with Constraint Active Search (Malkomes et al., 2021)
to create a diverse set of models with high offline performance. Second, we conduct a subsequent online
development phase using a BAI-inspired algorithm (Algorithm 2 in Section 2.2) to identify the one model
which performs best in an online setting. This model is then deployed, by itself, for a long period of time,
during which the performance will ultimately be judged. This process is depicted in Figure 1.

2



Published in Transactions on Machine Learning Research (10/2022)

Algorithm 1 The two-phase development process
Run the offline development algorithm (CAS) to select K models.
Run the online development algorithm (Algorithm 2) to select one of the K models. This model will be
used during the online deployment phase.

2 Proposed two-phase development strategy for online performance optimization

This strategy is closest to that of Letham & Bakshy (2019), who built multi-task Gaussian processes to
incorporate offline (simulator) data into a sample-efficient online policy search. The authors considered a
sophisticated scenario where offline and online observations can be collected in multiple successions. In
general, we do not enjoy such luxury of successive alternating between offline/online experimentation using
simulators. In this work, we consider a different setting that captures a more standard industry scenario
where developers build offline models and, then only test these models in a short online development phase.
We assume that the cost of online experimentation is expensive, where system administrators have to redirect
the online traffic to perform experimentation. Notice that even if the operation aspect of managing online
traffic is automated, there is an important business decision of not serving users with your current production
model, which invariably comes with the risk of sacrificing performance.

In effect, this is a one-shot online optimization. See Paleyes et al. (2020) for some analysis of these
circumstances. To define our setting and notation, during the two-phase process (Algorithm 1) we search for
configurations x in a search space X ; in principle, this space could include categorical parameters, but for
ease of exposition, we assume that X ⊂ Rd. In particular, we let y(x) : X → R denote the expected deployed
performance of the model x in the testing phase and y0 be the expected baseline deployed performance; these
expectations are taken over the deployed circumstances. We use ỹ : X → R to denote the offline performance
metric.

In our analysis, we primarily assume that the online metric y(x) is the probability of a random user receiving
a successful recommendation from model x. No assumption is made regarding the structure of ỹ except that
it is somewhat correlated to y (so studying ỹ offline gives us some soft insights about y online).

Our motivation in designing our strategy is to maximize the probability of the next deployed model x(T )

improving over the baseline,
P

[
y

(
x(T )

)
> y0

]
.

Specifically, we consider a two stage-process such that: first, we use M offline rounds to select x1, x2, . . . , xK

candidate models based on the offline observations ỹ(x). In these offline settings, users may use any (or
multiple) sources of data to compute ỹ(x). Recall that we make no specific structural assumptions about
how y and ỹ are correlated, but it is easy to imagine that ỹ(x) is a corrupted observation of y(x). Then, we
promote these K candidate models (or arms) to an online development phase that will last T rounds. At each
online development iteration, we must choose which arm will receive a sample of y

(
xI(t)

)
, representing an

online feedback of a single user, and where I(t) denotes the index of the selected model at the development
online iteration t < T . At termination, we expect that the last selected model x(T ) will improve the baseline
performance, P

[
y

(
x(T )) > y0

]
, and will be used for deployment.

Maximization is used here for simplicity, and this could be easily rephrased as minimization. Here, the
probability is defined over the space of y and ỹ functions, as well as the random outcomes from the offline
and online development phases. Next, we give more details about each proposed phase.

2.1 Offline development phase

During the offline development phase, we allot a budget of M total offline model trainings in which to find K
candidates x1, x2, . . . , xK . These will subsequently be tested online to find one candidate x(T ) for long-term
deployment. Unfortunately, during the offline development phase, we lack access to y and can only evaluate ỹ.

We assume that ỹ is expensive to evaluate, and thus searching the space X for high-performing outcomes
must be done in a sample efficient fashion. For such a problem, random search (Bergstra & Bengio, 2012)
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and grid search provide simple optimization strategies, while Bayesian optimization (BO) (Mockus, 1994;
Frazier, 2018) provides significantly stronger performance (Turner et al., 2021). These optimization strategies
are powerful for optimizing ỹ, but they ignore the fact that we actually hope to optimize y. As a result, any
K candidates selected from that optimization process were found without a specific goal of producing diverse
outcomes.

The first key contribution of this work consists of proposing the use of Constraint Active Search (CAS) during
this offline development phase (Malkomes et al., 2021). Crucially, this problem formulation was developed to
find a diverse set of satisfactory outcomes rather than simply optimizing; that makes it ideal for using ỹ to
define satisfactory outcomes on which y will later be measured. We denote the performance threshold as τ ,
thus defining the satisfactory region as

S = {x | ỹ(x) ≥ τ} .

We use the Expected Coverage Increase algorithm proposed in the original paper for solving CAS and give
a more detailed description in Appendix A. After CAS has been run for M iterations on ỹ with threshold
τ , we have found some number, J , of satisfactory models: x′

1, . . . , x′
J ∈ S. If, unfortunately, J < K, then

either the τ value may be reconsidered to include more models, M could be increased to try to find more
models, or fewer than K models can be considered for the online development phase. The more likely case
is that J ≥ K, meaning that we must subselect K candidate models x1, . . . , xK ∈ S for use in the online
development phase. We use a strategy based on K-determinantal point processes (K-DPP) which uses the
learned covariance from the CAS to disperse points in S; more information is provided in Appendix B.

2.2 Online development phase

In the online development phase, we run a version of best arm identification (BAI, Audibert et al. 2010) with
T total samples provided generated during the offline development phase. Algorithm 2 describes our strategy.
For each round t = 1, 2, . . . , T , we choose an arm xI(t) and receive a corresponding reward1

X(t) ∼ Bernoulli
(
y

(
xI(t)

))
, (1)

The notation [ℓ] is used to mean [ℓ] ≡ {1, 2, . . . , ℓ}. We define the empirical mean as

ŷi(t) = 1
Ni(t)

∑
s<t:I(s)=i

X(s),

where Ni(t) is the number of draws on arm i at the beginning of round t. Although our problem is similar to
the BAI problem, a notable difference from the best arm identification problem is that the control arm (arm 0)
with performance y0 is considered deterministic; our goal is to find an arm with expected performance larger
than y0. Our algorithm is inspired by the upper confidence bound algorithm (Lai & Robbins, 1985; Auer
et al., 2002) as well as the recent good arm identification algorithm (Kano et al., 2019) and the thresholding
bandit algorithm (Locatelli et al., 2016). While good arm identification and thresholding bandit problems
are aimed at finding more than one arm that is above/below the threshold, we are interested in finding at
least one arm above the threshold. Although the general algorithm proposed by Katz-Samuels & Jamieson
(2020) can be used for this purpose, it involves phases (l = 1, 2, ...) where the early phases are not very
sample-efficient at the cost of generality. Our algorithm does not involve such a phase and is more effective
and simple for our goal.

Algorithm 2 produces Li(t) and Ui(t), which are the lower and upper confidence bounds, respectively of y(xi)
by using the samples until round t. Here, we define Ui(t) = 1 and Li(t) = 0 when Ni(t) = 0. Conceptually,
our algorithm is simple. At each round, we draw an arm based on the upper confidence bound. Using the
confidence region [Li(t), Ui(t)], we discard the arms that are unlikely to be the best. At the end of round T ,
we choose the most sampled arm x(T ) ∈ [K].

1Namely, we assume that each round gives a noisy estimator of y.
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Algorithm 2 Thresholded successive elimination
Require: Arms x1, . . . , xK , # of Rounds T , threshold y0, confidence level η ∈ (0, 1).

Initialize the upper confidence bound Ui(0) = 1 for each i ∈ [K].
Initialize the active set Ψ(1) = {x1, . . . , xK}.
for Each round t = 1, 2, . . . , T do

Draw arm xI(t) : I(t) = arg maxxi∈Ψ(t) Ui(t − 1).

Update the lower bound Li(t) = ŷi(t) −
√

log(Ni(t)2/η)
2Ni(t) , for xi ∈ Ψ(t).

Update the upper bound Ui(t) = ŷi(t) +
√

log(Ni(t)2/η)
2Ni(t) , for xi ∈ Ψ(t).

Update the active set Ψ(t + 1) =
{

i ∈ [K]|Ui(t) ≥ y0, Ui(t) ≥ maxj∈[K] Lj(t),
}

.
end for
Output x(T ) = arg maxi Ni(T ).

3 Theoretical analysis of our strategy

In this section, we provide some analysis of the components of our algorithm under reasonable assumptions
regarding the development/deployment conditions.

3.1 Theoretical analysis of subselection of models

We assume the satisfactory region S is a compact subset of X that satisfies the following assumptions.
Assumption 1. (Lipschitz continuity) There exists a constant L > 0 such that

sup
x,x′∈X

|y(x) − y(x′)|
|x − x′|

≤ L.

Assumption 2. (Existence of improvement) There exists x∗ ∈ S such that

y(x∗) > y0.

Let y∗ = y(x∗) and D = y∗ − y0.

Note that, if we assume y to be a sample path of the Gaussian process, then with a high probability, the
continuity assumption (Assumption 1) is satisfied (c.f., Theorem 2 in Srinivas et al. 2012).

Assumption 2 is very mild; it only requires at least one point of improvement in the satisfactory region. Of
course, if no such point exists, then either the modeling process must be improved (a common fear from all
modelers), a different ỹ must be defined to more strongly correspond to y, or τ must be adjusted to include
such a point.
Remark 1. (Volume of the region of improvement) Let

Simp := {x ∈ S : y(x) > y0},

and Vol(Simp) be the volume of the region of improvement.
Assumption 3. (Positive constant-ratio covering number) For any radius r > 0 there exists a covering
x1, x2, . . . , xξ(r) such that (1) any point x ∈ S is covered:

∀x∈S ∃i∈[xξ(r)] |x − xi| ≤ r,

(2) and the minimum ratio of volume is positive:

CCov(r) = min
i,j∈[ξ(r)]

Vol({x′ ∈ S : |x′ − xi| ≤ r})
Vol({x′ ∈ S : |x′ − xj | ≤ r}) > 0.
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Assumptions 1–3 imply that the volume of improvement is positive. In the proof of Theorem 1, we use these
assumptions to lower-bound Vol(Simp).
Remark 2. (Counterexample of constant-ratio covering) By the assumption of the compactness of S, the
covering number always exists. The assumption on the constant-ratio covering with a positive CCov is very
mild,2 but we can bring some counterexamples. An obvious counterexample is that the volume S involves a
single isolated point,3 which is a limit of a very sharp shape illustrated in Appendix C where CCov can be
arbitrarily small.

Given these assumptions, the quality of the best solution among the random sample from the satisfactory
region is bounded as defined in Theorem 1.
Theorem 1. (Quality of random samples from the satisfactory region) Let x1, x2, . . . , xK be i.i.d. samples
from S. Then, there exists a model-dependent constant Cmodel > 0 such that

P
[
max

i
y(xi) ≥ y0

]
≥ 1 − δ

for K ≥ Cmodel log(1/δ).

See Appendix D for the proof of this theorem.
Remark 3. (I.i.d. sampling required in Theorem 1) This proof requires that x1, x2, . . . , xK be drawn i.i.d.
from S. However, in practice, it is challenging to sample i.i.d. points from S. We adopted the K-DPP
strategy (Appendix B) that disperses points in a max-cover fashion. We consider that this is a reasonable
approximation to i.i.d. sampling.
Remark 4. (Minimum bound on K) The value K appears in Theorem 1 that guarantees the improvement
with probability 1−δ is dependent on the model. Unfortunately, knowing this bound is functionally impossible
because the full knowledge of y on S (i.e., the performance of the model in the online development phase)
is unknown in our setting. In Section 3.3, we further consider the choice of K and identify that the online
development phase places only a mild upper bound of K <

√
T . An implication of this is somewhat

counterintuitive. It suggests that bringing many models to the online development phase to choose one of
them rather than being selective in the offline development phase.

3.2 Theoretical analysis of online development phase

The following theorem analyzes the probability of improving over the deployed baseline performance y0 when
running Algorithm 2.
Theorem 2. (Bound on probability of improving over the deployed baseline) Assume that there exists at
least one point xi such that y(xi) > y0. Let ∆ = (maxi y(xi) − y0) /2. Then, for T such that4

2 ×

√
log((T/K)2/η)

2(T/K) ≤ ∆, (2)

we have
y(x(T )) > y0

with probability at least 1 − (Kπ2η)/6.

See Appendix E for a proof of Theorem 2. Here, the factor π2/6 in the probability is derived from the fact
that

∑
n 1/n2 = π2/6.

Remark 5. (Randomness in Theorem 2) The probability distribution employed in Theorem 2 is taken with
respect to the randomness of the rewards. Since Algorithm 2 is deterministic, x(T ) is deterministic when the
reward sequence is fixed.

2For example, these assumptions are satisfied in the case S is a hypersphere or a hyperrectangle.
3In this case, CCov(r) = 0 for some r > 0.
4T = Õ(K/∆2) suffices.

6



Published in Transactions on Machine Learning Research (10/2022)

Remark 6. (Exponential convergence) Theorem 2 states that the minimum value of Kπ2η/6 such that
Eq. (2) holds is

π2T 2

6K
exp

(
−2T∆2

K

)
,

which decays exponentially to T given other parameters. Additionally, if ∆ can, somehow, be estimated a
priori, we can use Eq. (2) as guidance to set a lower bound on T .
Remark 7. (Required exploration before pruning Ψ) The value η provides a direct mechanism for increas-
ing/decreasing Ui. Setting 0 < η ≪ 1 will add a large amount to Ui, which will have the effect of allowing all
arms to remain in Ψ even after some poor early performance. As Ni grows, the performance ŷi will eventually
dominate the quantity. But our Bernoulli reward structure (and the resulting bounds on ŷi that it implies)
provides an opportunity to force exploration without defining an explicit initialization phase.
Remark 8. (Uniform confidence bounds) We note that the proof of Theorem 2 is based on event B, which
implies that all the confidence region is valid consistently over all arms and rounds. While such a bound is
conservative, most of the theoretical analyses on MAB/BAI rely on such a bound (e.g., Auer et al. (2002);
Gabillon et al. (2012)). The exponential rate of concentration (Remark 6) justifies the use of such a bound.
We should also note that Algorithm 2 is free from any forced exploration/initialization phase. Early in the
BAI process, the confidence region is quite massive, meaning that the online development process likely needs
no initialization to perform effectively.
Remark 9. (Reward assumption) In Eq. (1), we assume the reward is Bernoulli and thus ŷi,n unbiased
estimator of y(xi). Namely, E[exp(t(X − y))] ≤ exp(R2t2/2) for some parameter R > 0. It is easy to create
a new algorithm by introducing the confidence bound of magnitude R

√
2 log(Ni(t)2/η)

Ni(t) . This sub-Gaussian
assumption is general enough to cover many discrete and continuous feedback, such as binary (e.g., click and
non-click), ordered multinomial (e.g., 5-star rating), and Gaussian (e.g., numeric scores). For a structural
model where single feedback X(t) does not give an unbiased estimator of y(xi), we can create a similar
algorithm if we can build an anytime confidence bound that holds consistently over any number of samples
(i.e., an equivalent to Event B in the proof of Theorem 2).

3.3 Implication of choice of K

We consider the relationship between K and the probability of improving over the baseline. A large K
increases the probability of finding at least one improvement. On the other hand, a small K increases the
probability of actually returning x(T ) = arg maxx∈{x1,...,xK} y(x). Namely, results in Section 3.1 state that

P
[
max

i
y(xi) < y0

]
=

(
1 − Vol(Simp)

Vol(S)

)K

= e−CK ,

where C = log
((

1 − Vol(Simp)
Vol(S)

)−1
)

. At the same time, Remark 6 states that

P
[

y
(

x(T )
)

≥ y0

∣∣∣ max
i

y(xi) > y0 + ∆
]

= π2T 2

6K
exp

(
−2T∆2

K

)
.

Assuming that ∆ > 0 is a positive constant, the value of K that minimizes the sum of these two terms is
derived as

arg min
K>0

(
e−CK + π2T 2

6K
exp

(
−2T∆2

K

))
,

which demonstrates K = Θ̃
(√

T
)

, where Θ̃ is Landau notation that ignores a polylogarithmic factor.

There are several practical considerations related to the choice of K. First, the optimal choice of K is model
dependent; when the satisfactory region involves a very small volume of improvement Vol(Simp), it favors a
large value of K. Meanwhile, a large value of K indicates that we test many candidate models in the testing
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phase, which not only decreases the chance of finding the best arm but also makes the online development
process more stochastic.

Additionally, one result of the online development is a confidence interval on the expected performance of
x(T ) during deployment – many industrial settings may enforce a maximum possible size of this confidence
interval before deployment. Such a requirement could encourage smaller K (assuming that T is fixed). This
is in addition to the CAS process which, because it often requires expensive training, is generally run on a
limited budget and may only produce roughly K satisfactory results (as opposed to the

√
T which might be

viable during online development).

4 Experimentation

We provide numerical experiments to demonstrate the consistency of our strategy on synthetic problems
as well as the viability of our strategy in a recommender system benchmark. We have chosen M and T
arbitrarily; in a standard industrial setting, M might be chosen based on development deadlines and T might
be chosen to generate a desired confidence interval for the eventually deployed model. We fix η = 0.01 to
require a minimum amount of exploration before eliminating arms. For CAS and BO, we fit a constant mean
with generalized least squares and use a C4 Matérn covariance kernel with process variance and length scales
learned through maximum likelihood estimation (Fasshauer & McCourt, 2015). CAS uses expected coverage
improvement (ECI) (Malkomes et al., 2021) as its acquisition function; BO uses expected improvement
(Frazier, 2018).

As a baseline, we compare our strategy involving testing K arms during the online development phase against
a more standard choice of only one arm as identified through BO. We also consider the choice of K arms,
randomly sampled from S with UCB used during the online development phase (denoted as “RS+UCB”).
The line “Best CAS” represents the arm identified during CAS which has the best online performance
(independent of whether it was part of the K subselection). The numerical results are presented in the form
“mean (standard error)”. Here, randomness is considered over the output of the full development process.

4.1 Synthetic experiments

To demonstrate the implications of our proposed strategy, we created 20 offline/online problems using
variations of objective functions parameterized like Gaussians (representative functions are depicted in
Figure 1). The online objectives vary slightly from the offline objectives.

The center of the offline Gaussian function is (0.5, 0.5) with covariance 0.05 × I. The center of the online Gaus-
sian function shifted from (0.5, 0.5) to a random direction by a predetermined size λ ∈ {0.01, 0.05, 0.1, 0.15, 0.2};
the complete definition of these objectives is shown in Appendix F. We set τ = 0.75 (the function range
is [0, 1]) and the CAS resolution parameter r = 0.08. We ran the online development phase for T = 1000
rounds.

Table 1: Demonstration of our two-phase strategy on synthetic problems with increasing levels of difference
between ỹ and y; we have fixed K = 4, y0 = 0.7, τ = 0.75, M = 25, T = 1000. As expected, our strategy has
a consistent improvement over the BO-based solution when ỹ and y are rather different and a value y(x) > y
exists for x ∈ S. The “–” results indicate that at least one replication failed to produce a successful arm
during Algorithm 2, which should be expected given the Best CAS expected value 0.69 < y0.

Magnitude shift between offline and online (λ)
Selected Model 0.01 0.05 0.10 0.15 0.20

BO 1.00 (0.00) 0.91 (0.01) 0.70 (0.02) 0.46 (0.03) 0.27 (0.04)
RS + UCB 0.74 (0.01) 0.76 (0.02) 0.75 (0.02) 0.68 (0.02) 0.59 (0.02)

Our Strategy 0.95 (0.01) 0.91 (0.02) 0.84 (0.02) 0.77 (0.03) – (–)
Best CAS 0.95 (0.01) 0.95 (0.01) 0.91 (0.02) 0.84 (0.03) 0.69 (0.04)
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Table 2: Demonstration of our two-phase strategy on synthetic problems with varying choices of K; we have
fixed λ = 0.1, y0 = 0.7, τ = 0.75, M = 25, T = 1000. The BO and Best CAS outcomes are independent of
K, as represented by “...” in the table. As expected Remark 4, increasing K has a strictly positive effect on
online development performance (up to the stated threshold).

Number of models in online development (K)
Selected Model 2 3 4 5

BO 0.70 (0.02) ... ... ...
RS + UCB 0.70 (0.02) 0.73 (0.02) 0.75 (0.02) 0.76 (0.02)

Our Strategy 0.76 (0.03) 0.78 (0.03) 0.84 (0.02) 0.86 (0.02)
Best CAS 0.91 (0.02) ... ... ...

Table 1 shows the results for the set of experiments where we subselected K = 4 candidates. In the cases where
offline and online objectives are very similar (smaller λ), the diversity provided by CAS slightly compromises
the online performance. In the case where the offline and online objectives do not match perfectly, we expect
our proposed strategies to outperform the best configuration achieved during the offline development phase.
Table 2 shows the results with K = 2, 3, 4, 5. Testing more models in the online development phase increases
the final online performance, even though we have fewer samples per arm. Additional results (varying y0 and
τ) are presented in Appendix F; those results also suggest that our hypothesis that DPP subselection favors
more diversity than ECI – we consider that diversity among the selected K models improves the quality of
the final model when the gap between the offline and online performances increases.

4.2 Recommender system experiment

Next, we consider the popular “Learning to rank” problem (Qin & Liu, 2013) as an example of recommender
systems on which we test our strategy. Our recommendation system adopts XGBoost, which learns the map
from the query-url joint features to the relevance score. Our goal is to choose hyperparameters of XGBoost to
maximize online deployment performance according to the normalized discounted cumulative gain (NDCG),
which rewards accurate rankings. In our offline development phase, we train XGBoost models using the
training set and perform hyperparameter tuning on the average NDCG of the validation set; we denote this
metric by ỹ.

During the online development phase, we ran T = 4000 queries by uniformly selecting elements (with
replacement) from the test set. For each query, we collect binary rewards corresponding to Bernoulli samples
with a probability of success (the y function) equal to the top-1 NDCG (NDCG@1) score of the candidate
model prediction vs. test ranking. A perfect ranking will have a probability 1 of receiving a positive reward.
Figure 2 provides some perspective on the relationship between ỹ and y.

Table 3: Demonstration of our two-phase strategy on the content ranking problem; we have fixed K = 4,
y0 = 0.33, M = 100, T = 4000. For MQ2008 we used τ = 0.57, and for the MSLR-WEB10K datasets we
used τ = 0.69. We show expected online deployment results for both strategies across 100 repetitions. We
highlight results that are significant with a confidence level of 0.001, according to a standard t-test.

Learning to rank dataset
Selected Model MQ2008 MSLR-WEB10K MSLR-WEB10K + noise
BO (best offline) 0.338 (0.001) 0.438 (0.001) 0.433 (0.001)

Our Strategy 0.350 (0.001) 0.438 (0.001) 0.436 (0.001)

We see in Figure 2 that there is enough correlation between ỹ and y to define a satisfactory region. There is
still some discrepancy between them within the satisfactory region of the MQ2008 dataset. However, the
MSLR-WEB10K dataset shows a very high correlation between offline and online metrics, which means that
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Figure 2: The ỹ and y values in these learning to rank problems are clearly correlated in low performance
models, but less strongly correlated in high performance models. The vertical dashed red line represents τ
and the horizontal dashed black line represents y0. left: MQ2008 dataset. right: MSLR-WEB10K dataset.

optimizing the offline metric by BO suffices for obtaining good online performance. To demonstrate our
proposed method can be advantageous when there is a gap between offline and online metrics, we have also
conducted experiments in a modified version of MSLR-WEB10K, where we add zero-mean Gaussian noise
with a standard deviation of 0.01 to the offline metric, forcing ỹ and y to be different.

Table 3 shows the performance of the selected model in the online deployment phase, where we have computed
the top-1 NDCG score averaged over the entire test set to simulate the final deployment performance. As
expected, when ỹ and y do not perfectly match (datasets MQ2008 and MSLR-WEB10K with noise), our
proposed approach provides a benefit over selecting the best offline model (chosen by using BO). Specifically,
during the offline phase, CAS finds diverse high-performing models that are not optimal according to the offline
metric, and Algorithm 2 uses the online development phase to identify which models are likely to improve
our desired performance in the online deployment. Interestingly, even when both metrics are correlated, as in
dataset MSLR-WEB10K, our proposed approach is as good as BO.

5 Conclusion

We have proposed a two-phase development strategy, depicted in Figure 1 for improving online deployed
performance: first utilizing CAS during offline model development to produce K viable options, which are
then sent to Algorithm 2 for online model development to find a single model for long-term deployment.
The theoretical analysis provides confidence about the outcome of the online development phase, and the
numerical studies show the impact of possible decisions made in the offline development phase. As expected,
our strategy provides a noticeable improvement over the previously deployed baseline in circumstances where
the offline and online metrics are not perfectly correlated.

More work must be done on this topic to understand the implications of some of the free parameters in our
implementation, among them η, y0, τ . We also would like to extend the theory to more effectively account
for the non-i.i.d. nature of our K arm selection as it affects Theorem 1. Our proposal here assumes only a
single metric in the online setting, but we would like to be able to consider online performance with multiple
metrics (CAS would naturally be able to handle this already in the offline setting). Also, Theorem 2 studies
the probability of exceeding y0 for a Bernoulli reward, but future work could extend this as described in
Remark 9 as well as consider the magnitude of improvement (rather than the existence of improvement). We
could also revisit the assumption of a fixed y0 value and allow y0 to be learned during the online development
process using some fraction of T .

10



Published in Transactions on Machine Learning Research (10/2022)

References
Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos. Best arm identification in multi-armed bandits. In

COLT 2010 - The 23rd Conference on Learning Theory, pp. 41–53. Omnipress, 2010.

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem.
Mach. Learn., 47(2-3):235–256, 2002. doi: 10.1023/A:1013689704352.

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, Andrew Gordon
Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. In
Advances in Neural Information Processing Systems 33, 2020.

Amitabha Banerjee, Chien-Chia Chen, Chien-Chun Hung, Xiaobo Huang, Yifan Wang, and Razvan
Chevesaran. Challenges and experiences with MLOps for performance diagnostics in Hybrid-Cloud
enterprise software deployments. In 2020 USENIX Conference on Operational Machine Learning (OpML
20). USENIX Association, July 2020.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. J. Mach. Learn. Res.,
13:281–305, 2012. URL http://dl.acm.org/citation.cfm?id=2188395.

Christopher M. Bishop. Pattern recognition and machine learning, 5th Edition. Information science and
statistics. Springer, 2007. ISBN 9780387310732. URL https://www.worldcat.org/oclc/71008143.

Noah D. Brenowitz, Brian Henn, Jeremy McGibbon, Spencer K. Clark, Anna Kwa, W. Andre Perkins, Oliver
Watt-Meyer, and Christopher S. Bretherton. Machine learning climate model dynamics: Offline versus
online performance, 2020.

Duan Chen, Arturo S. Leon, Samuel P. Engle, Claudio Fuentes, and Qiuwen Chen. Offline training
for improving online performance of a genetic algorithm based optimization model for hourly multi-
reservoir operation. Environmental Modelling & Software, 96:46–57, 2017. ISSN 1364-8152. doi: https:
//doi.org/10.1016/j.envsoft.2017.06.038.

Gregory E Fasshauer and Michael J McCourt. Kernel-based approximation methods using Matlab, volume 19.
World Scientific Publishing Company, 2015.

Peter I Frazier. Bayesian optimization. In Recent Advances in Optimization and Modeling of Contemporary
Problems, pp. 255–278. INFORMS, 2018.

Victor Gabillon, Mohammad Ghavamzadeh, and Alessandro Lazaric. Best arm identification: A unified
approach to fixed budget and fixed confidence. In Advances in Neural Information Processing Systems 25,
pp. 3221–3229, 2012.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of expensive
black-box functions. Journal of Global Optimization, 13(4):455–492, Dec 1998. ISSN 1573-2916. doi:
10.1023/A:1008306431147.

Hideaki Kano, Junya Honda, Kentaro Sakamaki, Kentaro Matsuura, Atsuyoshi Nakamura, and Masashi
Sugiyama. Good arm identification via bandit feedback. Mach. Learn., 108(5):721–745, 2019. doi:
10.1007/s10994-019-05784-4.

Nei Kato, Bomin Mao, Fengxiao Tang, Yuichi Kawamoto, and Jiajia Liu. Ten challenges in advancing
machine learning technologies toward 6g. IEEE Wireless Communications, 27(3):96–103, 2020. doi:
10.1109/MWC.001.1900476.

Julian Katz-Samuels and Kevin G. Jamieson. The true sample complexity of identifying good arms. In
Silvia Chiappa and Roberto Calandra (eds.), The 23rd International Conference on Artificial Intelligence
and Statistics, AISTATS 2020, volume 108 of Proceedings of Machine Learning Research, pp. 1781–1791.
PMLR, 2020.

11

http://dl.acm.org/citation.cfm?id=2188395
https://www.worldcat.org/oclc/71008143


Published in Transactions on Machine Learning Research (10/2022)

Junpei Komiyama, Junya Honda, and Hiroshi Nakagawa. Optimal regret analysis of Thompson sampling
in stochastic multi-armed bandit problem with multiple plays. In International Conference on Machine
Learning, pp. 1152–1161. PMLR, 2015.

Karl Krauth, Sarah Dean, Alex Zhao, Wenshuo Guo, Mihaela Curmei, Benjamin Recht, and Michael I.
Jordan. Do offline metrics predict online performance in recommender systems?, 2020. arXiv preprint
arXiv:2011.07931.

Alex Kulesza and Ben Taskar. k-DPPs: Fixed-size determinantal point processes. In Lise Getoor and Tobias
Scheffer (eds.), Proceedings of the 28th International Conference on Machine Learning (ICML-11), ICML
’11, pp. 1193–1200. ACM, June 2011. ISBN 978-1-4503-0619-5.

Evan Kwiatkowski and Jan Mandel. Convergence of the square root ensemble kalman filter in the large ensemble
limit. SIAM/ASA Journal on Uncertainty Quantification, 3(1):1–17, 2015. doi: 10.1137/140965363.

T.L Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances in Applied
Mathematics, 6(1):4–22, 1985. ISSN 0196-8858. doi: https://doi.org/10.1016/0196-8858(85)90002-8.

Benjamin Letham and Eytan Bakshy. Bayesian optimization for policy search via online-offline experimentation.
Journal of Machine Learning Research, 20(145):1–30, 2019.

Andrea Locatelli, Maurilio Gutzeit, and Alexandra Carpentier. An optimal algorithm for the thresholding
bandit problem. CoRR, abs/1605.08671, 2016.

Gustavo Malkomes, Bolong Cheng, Eric Hans Lee, and Mike Mccourt. Beyond the pareto efficient frontier:
Constraint active search for multiobjective experimental design. In Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 7423–7434.
PMLR, 2021.

Jonas Mockus. Application of bayesian approach to numerical methods of global and stochastic optimization.
Journal of Global Optimization, 4:347–365, 1994.

Andrei Paleyes, Raoul-Gabriel Urma, and Neil D Lawrence. Challenges in deploying machine learning: a
survey of case studies. arXiv preprint arXiv:2011.09926, 2020.

Tao Qin and Tie-Yan Liu. Introducing LETOR 4.0 datasets. CoRR, abs/1306.2597, 2013. URL http:
//arxiv.org/abs/1306.2597.

Filip Radlinski, Madhu Kurup, and Thorsten Joachims. How does clickthrough data reflect retrieval quality?
In Proceedings of the 17th ACM Conference on Information and Knowledge Management, CIKM 2008, pp.
43–52. ACM, 2008. doi: 10.1145/1458082.1458092.

Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of the American Mathematical
Society, 1952.

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger. Information-theoretic regret
bounds for gaussian process optimization in the bandit setting. IEEE Transactions on Information Theory,
58(5):3250–3265, 2012. doi: 10.1109/TIT.2011.2182033.

Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task Bayesian optimization. Advances in Neural
Information Processing Systems, 26, 2013.

Ryan Turner, David Eriksson, Michael McCourt, Juha Kiili, Eero Laaksonen, Zhen Xu, and Isabelle Guyon.
Bayesian optimization is superior to random search for machine learning hyperparameter tuning: Analysis
of the black-box optimization challenge 2020. In Proceedings of the NeurIPS 2020 Competition and
Demonstration Track, volume 133 of Proceedings of Machine Learning Research, pp. 3–26. PMLR, 06–12
Dec 2021.

E.A. Wan and R. Van Der Merwe. The unscented kalman filter for nonlinear estimation. In Proceedings of
the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat.
No.00EX373), pp. 153–158, 2000. doi: 10.1109/ASSPCC.2000.882463.

12

http://arxiv.org/abs/1306.2597
http://arxiv.org/abs/1306.2597


Published in Transactions on Machine Learning Research (10/2022)

A Constraint Active Search

During the offline phase of our approach, we solve the Constraint Active Search (CAS) problem proposed by
Malkomes et al. (2021). This formulation was developed with the goal of finding a diverse set of satisfactory
points rather than optimizing a single objective function. Let τ be our performance threshold; then our goal
is to search for the following satisfactory region

S = {x | ỹ(x) ≥ τ} .

We use the Expected Coverage Improvement (ECI) introduced in the original CAS publication Malkomes
et al. (2021), which we summarize below for completeness.

Let’s first assume we have a probabilistic model M that captures our prior belief about observations of
ỹ(x). Any observational model should work, as long as we can perform posterior updates given the data D,
P(ỹ | D), as well as the predictive distribution at any new location x ∈ X . For example, in our experiments
we place a Gaussian Process over ỹ(.) with a standard additive Gaussian noise assumption. Let Z be an
indicator variable that tells us if a point x will satisfy the thresholds, Z(x) = 1

[
ỹ(x) ≥ τ

]
. Our probabilistic

model M should let us compute the probability of any point x belonging to the satisfactory region S after
observing a dataset D, which we denote by P(Z(x) = 1 | D, M).

A key parameter of ECI is the coverage radius r, which essentially captures the notation of diversity: points
with a distance larger than r are considered to be different, whereas points within r are similar points.
Intuitively, the algorithm seeks to “cover” the volume of S using a small number of “balls” of radius r.
Definition 1 (Coverage neighborhood, Malkomes et al. (2021)). The coverage neighborhood of any x is
defined as

Nr(x) = {x′ : d(x, x′) < r},

for an a priori fixed r ∈ R+ and an appropriate distance function d : X ×X 7→ R+. The coverage neighborhood
of a set of points X is defined as

Nr(X) =
⋃

x∈X

Nr(x).

Note that, for Euclidean distance, Nr(x) is simply a ball of radius r.

Since the satisfactory region is unknown, we use a probabilistic model to compute the expected volume
increase given by our prospective point x. Letting N (x) be a finite approximation of the search space, ECI
is summarized by the following acquisition function:

α(x | D) = EZ

[ ∑
x′∈N (x)\Nr(X)

Z(x′)
]

=
∑

x′∈N (x)\Nr(X)

EZ

[
Z(x′)

]
=

∑
x′∈N (x)\Nr(X)

P(Z(x′) = 1 | D, M).

which computes the expected new volume induced by a point x given the observed data D, where X is
just the input locations of the dataset D. In practice, we approximate the expectation of EZ by uniformly
sampling points within r of x. In particular, we use BoTorch to efficiently compute ECI using Monte Carlo
sampling (Balandat et al., 2020)5.

The ECI algorithm is given by Algorithm 3. The algorithm outputs all the selected observations.

After running CAS for M iterations on ỹ with threshold τ , we have found some number, J , of satisfactory
models: x′

1, . . . , x′
J ∈ S. If, unfortunately, J < K, then either the τ value may be reconsidered to include

more models, M could be increased to try to find more models, or fewer than K models can be considered
5See this online tutorial: https://botorch.org/v/0.6.2/tutorials/constraint_active_search
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Algorithm 3 Constraint Active Search with Expected Coverage Increase
Require: Input space X , threshold τ , number of offline rounds M , diversity radius r, number of initial

points p, objective function evaluator ỹ, probabilistic model M.
Initialize the dataset D with p random observations {xi, ỹ(xi)}p

1
for Each iteration m = p + 1, p + 2, . . . , M do

Update probabilistic model M using data D
x∗ = arg maxx∈X α(x|D) : α(x|D) =

∑
x′∈N (x)\Nr(X) P(Z(x′) = 1 | D, M)

D = D ∪ {(x∗, ỹ(x∗))}
end for
Output D.

for the online development phase. The more likely case is that J ≥ K, meaning that we must subselect K
candidate models x1, . . . , xK ∈ S for use in the online development phase. Next, we discuss two strategies
for model subselection (Appendix B).

B K model subselection

During the offline development phase, K models must be chosen from the J > K models found during
the CAS process. We could, simply, randomly choose K models, but we propose two strategies that we
hypothesize will be preferable.

DPP subselection During CAS, we fit a covariance kernel K : X × X → R to the observed data as part of
the search powered by the Gaussian process. Here, we reuse the learned kernel in our subselection strategy.
In particular, we consider the K-DPP distribution (Kulesza & Taskar, 2011) defined over the Gaussian kernel
K with the fixed set of J points found during CAS. We return the mode of that distribution as our K-point
subselection, i.e., the K points for which det

((
K(x′

i, x′
j)

)
i,j∈[K]

)
is maximized, where

(
K(x′

i, x′
j)

)
i,j∈[K]

denotes a K × K kernel matrix comprised of a size K subset of points from the J points found during CAS.

This subselection strategy is partly chosen to encourage these K models to be widely spread throughout
S – this provides us some capacity to approximate i.i.d. sampling from S which we analyze in Theorem 1.
Rather than using a Euclidean metric (to spread points out in parameter space), we use the covariance kernel
to also inform this process to incorporate any anisotropy of ỹ that we learn through CAS. Assuming that
ỹ and y belong to a similar reproducing kernel Hilbert space, a lower covariance implies a lower mutual
dependence among y(x1), y(x2), . . . , y(xK), which maximizes the probability of finding at least one model
that outperforms the baseline (i.e, P[∪i∈K {y(xi) > y0]}).

ECI subselection Another alternative is to greedily maximize the Expected Coverage Increase (ECI)
(Malkomes et al., 2021). First, we add the satisfactory point with the highest ỹ, then sequentially choose the
other K − 1 candidates such that ECI is maximized. Similarly to the K-DPP strategy, we can use the Kernel
distance.

C Coverings with and without constant ratio

We used an assumption about a constant covering ratio. Figure 3 illustrates the coverings with and without
constant ratio. While it can, indeed, be the case that the satisfactory region takes such a shape, we believe
that it is acceptable, in practice, to consider only the subset of S which has a constant covering ratio. This is
a byproduct of the fact that, while such a S region may exist, we have only the ability to identify points in S
through CAS. Therefore, our knowledge of that space (and subsequent ability to approximate i.i.d. sampling
within that space) will logically also have this constant covering property.
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Covering with a constant ratio Covering without a constant ratio

Figure 3: Illustrative example of covering with a constant ratio (left) and without a constant ratio (right). In
the right figure the sharp spine has very little associated volume.

D Proof of Theorem 1

Proof of Theorem 1. First, we derive a lower bound on Vol(Simp). By Assumption 1 we have

sup
x,x′∈X

|y(x) − y(x′)|
|x − x′|

≤ L. (3)

Let Nx∗ be a ball of radius D/L centered at x∗. Then, for any point x ∈ Nx∗ , we have

y(x) ≥ y(x∗) − L × D

L
(by (3))

= y(x∗) − D

≥ y0 (by Assumption 2),

which implies Nx∗ ⊂ Simp. Let N1, N2, . . . , Nξ(D/(2L)) be the covering of S with r = D/(2L) in Assumption 3,
with their centers x1, x2, . . . , xξ(D/(2L)), respectively.6 Without loss of generality, assume that N1 includes
x∗. We have

Vol(Simp)
Vol(S) ≥ Vol(N1)

Vol(S) (by N1 ⊂ Nx∗ ⊂ Simp) (4)

≥ Vol(N1)∑ξ(D/(2L))
i=1 Vol(Ni)

≥ CCov(D/(2L))
ξ(D/(2L)) , (by Assumption 3)

where N1 ⊂ Nx∗ ⊂ Simp holds because the distance between any two points in a ball of radius D/(2L) is at
most D/L. Eq. (4) provides a lower bound on Vol(Simp).

Since we draw i.i.d. samples from S, we have

P
[
max

i
y(xi) ≥ y0

]
= 1 −

(
1 − Vol(Simp)

Vol(S)

)K

. (5)

Eq.(4) and (5) implies that, if we have

K ≥ log(δ−1)

log
((

1 − CCov(D/(2L))
ξ(D/(2L))

)−1
) , (6)

6Here, the radius of each N1, N2, . . . , Nξ(D/(2L)) is D/2L, whereas the radius of Nx∗ is D/L.
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then we have (
1 − Vol(Simp)

Vol(S)

)K

≤ δ.

In summary, with probability 1 − δ, we have the following.

P
[
max

i
y(xi) ≥ y0

]
≥ 1 − δ

for K such that Eq (6) holds.

E Proof of Theorem 2

Proof of Theorem 2. Let ŷi,n be the value of ŷi(t) when Ni(t) = n. Without a loss of generality, we
assume arm 1 is the best arm (i.e., 1 = arg maxi y(xi)). By assumption, we have y(x1) > y0. Let
Ψsub = {xi : y(xi) < y(x1) − ∆} be clearly suboptimal arms. Let

B =
⋂

i∈[K]

⋂
n∈[T ]

{
|ŷi,n − y(xi)| ≤

√
log(n2/η)

2n

}
.

We have

P[B] ≤ K
∑

n

η

n2 (by Hoeffding inequality)

≤ Kπ2η

6 .

Event B implies that ⋂
i∈[K]

⋂
t∈[T ]

{Ui(t) ≥ y(xi) ≥ Li(t)} . (7)

Eq. (7) implies
U1(t) ≥ y(x1) ≥ y(xi) ≥ Li(t)

for all t and i, and thus arm 1 is never eliminated.

Let i : xi ∈ Ψsub be arbitrary. Assume that Ni(t) ≥ T/K. Then, for any t′ > t, we have

U1(t′) ≤ y(xi) + 2

√
log((Ni(t))2/η)

2Ni(t)
(by Eq. (7) and log(n)/n is decreasing for n ≥ 3)

≤ y(x1)
(by Eq. (2))

≤ U1(t′),
(by Eq. (7)),

and thus arm i is never drawn again. Therefore, at least one arm in [K] \ Ψsub has been drawn more than
T/K times, and thus x(T ) /∈ Ψsub.

F Ablation study on synthetic tests

In Section 4.1 we presented a synthetic experimental setting and considered the implications of different ỹ
and y functions on the eventual outcome. Here we present a more comprehensive analysis of the implications
of different elements of our proposed two-phase strategy. Table 4 shows how the baseline performance which
is currently deployed affects our strategy. Table 5 shows the impact of our ỹ offline performance threshold on
the eventual online performance.
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Table 4: We consider fixed experimental circumstances (K = 4, τ = 0.75, λ = 0.1) and the impact of changing
y0, the currently deployed baseline. This has no impact on online optimization strategies like UCB, but it
could impact Algorithm 2 because y0 is incorporated into the online development process. Specifically, for
y0 = 0.9 all arms will be pruned because they do not improve the baseline. The BO and Best CAS outcomes
are independent of y0, as represented by “...” in the table.

Currently deployed baseline performance (y0)
Selected Model 0.6 0.7 0.8 0.9

BO 0.72 (0.01) ... ... ...
Our Strategy 0.85 (0.01) 0.85 (0.01) 0.85 (0.01) – (–)

Best CAS 0.92 (0.01) ... ... ...

Table 5: We consider fixed experimental circumstances (K = 4, y0 = 0.5, λ = 0.1) and the impact of
changing τ , the offline performance threshold defining S. A small value for τ produces too much diversity
and deteriorates its performance; very low values should recover random search. Large values of this quantity
(≥ 0.9) should approximate CAS to BO alternative. The BO outcome is independent of τ , as represented by
“...” in the table.

Offline performance threshold (τ)
Selected Model 0.3 0.5 0.75 0.9

BO 0.72 (0.01) ... ... ...
Our Strategy 0.68 (0.02) 0.72 (0.02) 0.85 (0.01) 0.84 (0.01)

Best CAS 0.91 (0.01) 0.94 (0.00) 0.92 (0.01) 0.85 (0.01)

G Experimental details for ranking problem

For the experiments in Section 4.2, we use the two datasets from the Microsoft "Learning to Rank" datasets:
MQ2008 and MSLR-WEB10K. We only use Fold 1 from each dataset and train XGBoost models on the training
set for the ranking task. We only preprocessed the data by removing the query IDs from the features.

G.1 Surrogate models for offline tuning

In order to reduce the computation time of repeated XGBoost training during the offline HPO process, we
created two high-quality surrogate models for the HPO task. To create surrogate models, we first perform
HPO (with random search) on XGBoost models where the hyperparameter search space presented in Table 6
and save all the corresponding XGBoost hyperparameter values (corresponding to x) and the associated
validation metric values (corresponding to ỹ). For the MSLR-WEB10K dataset, we reduce the hyperparameter
search space by removing alpha and gamma. The XGBoost models are trained to learn a relevant ranking
and we adopt averaged NDCG as a validation metric.7 We collected 1300 HPO results for each dataset.

Based on the HPO results, we fit an ExtraTreesRegressor (Scikit-learn) that models the function from the
hyperparameter values to the validation metric so that can run offline HPO/CAS on the surrogate model
very quickly. For example, training an XGBoost model on the MSLR-WEB10K takes approximately 5-10
minutes on the c5.4xlarge AWS instances8 whereas drawing the corresponding value on the surrogate model
requires less than one second.

7https://xgboost.readthedocs.io/en/stable/parameter.html#learning-task-parameters
8Hardware specifications of the C5 instances can be found at https://aws.amazon.com/ec2/instance-types/c5/
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Table 6: XGBoost hyperparameter bounds for surrogate models

Parameter Name Type Bounds Log scaled
alpha double [0, 10] None

eta double [10−3, 1] True
gamma double [0, 5] None

lambda double [0, 10] True
max_delta_step double [10−3, 10] None

max_depth int [2, 16] None
num_boost_round int [10, 500] None

G.2 Offline development phase with CAS

For the offline development phase, we created a wrapper around the BoTorch Expected Coverage Improvement
implementation9 to run constraint active search. We conduct CAS on the same hyperparameter search
space as listed in Table 6. For both datasets, we choose a budget of 100, set the punchout radius r =
0.15 ×

√
number of parameters, and use 2 × number of parameters initialization samples drawn from a Sobol

sequence. We set the threshold to 0.57 for MQ2008 dataset and 0.69 for MSLR-WEB10K respectively. These values
represent approximately the 90th percentile of the offline evaluation metric (NDCG). For all experiments, we
select four satisfactory models/arms using the K-DPP strategy outlined Section B; these models/arms will be
used for the online phase of the experimentation.

For the BO baseline, we use the BoTorch Expected Improvement implementation. We use the same budget
and initialization set up as the CAS experiments. We repeat the offline phase 100 times for CAS and BO.

G.3 Online phase simulation

For the online development phase, we use Algorithm 2 with threshold y0 = 0.33 for the MQ2008 dataset and
y0 = 0.42 for the MSLR-WEB10K dataset. We fix η = 0.5 for both datasets. We did not use any surrogate
model in this phase.

We ran T = 4000 queries by uniformly selecting elements (with replacement) from the test set. For each
query, we collect Bernoulli samples with probability of success (true y) equal to the top-1 NDCG score of
the candidate model prediction vs. test ranking. A perfect ranking will have a probability 1 of receiving a
positive reward. Figure 2 provides some perspective on the relationship between ỹ and y.

We repeat the online development phase 10 times per offline CAS replication. For the first 100 iterations of
the MAB simulation, we run a pure exploration policy before switching to Algorithm 2. Final results are
computed using the average top-1 NDCG score across the entire dataset after selecting the models using
MAB. We use the entire test set as a proxy for the online deployment performance of the system.

For the BO baselines, we take the best offline model/arm from each experiment (replication) and then
compute the online deployment metric, top-1 NDCG, averaged over the entire test set. We then compute the
mean and standard error of these metric values of online deployment.

G.4 Note on compute resources

We conduct most of this experiment on AWS, using C5.4xlarge instances. We estimate the total CPU hours
to be between 100 and 200 hours, and the most computationally intensive part is to build a surrogate model
(c.f., Section G.1).

9BoTorch tutorial on CAS: https://botorch.org/tutorials/constraint_active_search
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