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ABSTRACT

Spiking neural networks (SNNs), while energy-efficient, suffer from high latency
and computational overhead, and existing dynamic computation methods to ad-
dress this remain fragmented. While the principles of adaptive computation time
(ACT) offer a robust foundation for a unified approach, its application to SNN-
based vision Transformers (ViTs) is hindered by two core issues: the violation
of its temporal similarity prerequisite and a static architecture fundamentally un-
suited for its principles. To address these challenges, we propose STAS (Spatio-
Temporal Adaptive computation time for Spiking transformers), a framework that
co-designs the static architecture and dynamic computation policy. STAS intro-
duces an integrated spike patch splitting (I-SPS) module to establish temporal
stability by creating a unified input representation, thereby solving the architec-
tural problem of temporal dissimilarity. This stability, in turn, allows our adaptive
spiking self-attention (A-SSA) module to perform two-dimensional token prun-
ing across both spatial and temporal axes. Implemented on spiking Transformer
architectures and validated on CIFAR-10, CIFAR-100, and ImageNet, STAS re-
duces energy consumption by up to 45.9%, 43.8%, and 30.1%, respectively, while
simultaneously improving accuracy over SOTA models.

1 INTRODUCTION

Spiking neural networks (SNNs) are energy-efficient but suffer from high latency and computational
overhead due to their multi-timestep operational nature. State-of-the-art (SOTA) studies to improve
SNNs have followed two main paths: (S) static architectural enhancements (e.g., Spikformer (Zhou
et al., 2022), Spikingformer (Zhou et al., 2023)) and (D) dynamic computation methods (e.g.,
OST (Song et al., 2024), STATA (Zhuge et al., 2024)), with their performances shown in Fig. 1(a).
Dynamic methods are motivated by the observation that accuracy often saturates long before the
final block or timestep, presenting a clear opportunity for input-dependent halting (Fig. 1(b)).

The exploration of dynamic computation has fragmented into distinct approaches. One line of re-
search has refined (D1) architecture-agnostic spatial halting (e.g., SACT (Figurnov et al., 2017)).
In parallel, SNN-specific works have focused on (D2) temporal adaptivity (e.g., DT-SNN (Li et al.,
2023)). A third approach is (D3) architecture-aware halting (e.g., A-ViT (Yin et al., 2022)), which
leverages a model’s unique components, such as Transformer tokens. These strategies operate in-
dependently along a single dimension, not only due to a lack of research into their synergy, but
because of a fundamental conflict we identify (in Sec. 3.1): the direct application of a method from
one dimension can degrade performance in another. This issue becomes particularly evident when
powerful halting principles are applied to the unique temporal dynamics of SNNs.

This architectural conflict is aptly illustrated by the principles of adaptive computation time (ACT).
While ACT offers a potential foundation for a unified framework, its direct application to SNN-
based vision Transformers (ViTs) reveals a deeper, architectural obstacle. ACT’s efficacy is critically
constrained by the static architecture; it relies on high input similarity for stable refinement. While
SNN-ViTs possess spatial similarity, their design leads to critically low temporal similarity due to
varying spike inputs at each timestep. This architectural flaw makes true spatio-temporal halting
impossible with a purely dynamic approach and reveals a critical interdependence: an effective dy-
namic framework requires a new static architecture, necessitating an integrated (S with D1-D3)
paradigm.
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Figure 1: Accuracy of adaptive computation methods for Spikingformer on ImageNet. (a) Accuracy-
energy trade-off for various models (see Table 2). (b) Accuracy saturation motivating halting, shown
spatially (top) and temporally (bottom).

In this paper, we propose STAS (Spatio-Temporal Adaptive computation time for Spiking Trans-
formers), a novel framework that resolves this interdependence by co-designing the static architec-
ture and the dynamic computation method. STAS first addresses the architectural bottleneck with
an integrated spike patch splitting (I-SPS) module, providing the static solution S by creating a
temporally unified representation. This engineered stability, in turn, unlocks true two-dimensional
adaptivity, enabling our adaptive spiking self-attention (A-SSA) module to act as the unified frame-
work for D1-D3 by performing concurrent token halting across both spatial and temporal axes.

We implemented STAS on strong, directly trained spiking Transformers, including Spikformer and
Spikingformer, and validated its performance on the CIFAR-10, CIFAR-100, and ImageNet classi-
fication datasets. When applied to these architectures, STAS reduces energy consumption by up to
45.9%, 43.8%, and 30.1% on the three datasets, respectively, while simultaneously improving top-1
accuracy.

Our contribution can be summarized as follows:

• We diagnose the fundamental barrier to a unified adaptive framework in SNN-based ViTs
through a spatio-temporal similarity analysis, revealing that their architectural design in-
herently obstructs temporal halting.

• We propose I-SPS that re-engineers the SNN input stage to establish the temporal similarity
required for effective temporal adaptation.

• Building upon the stability provided by I-SPS, we introduce A-SSA, a unified mechanism
that performs concurrent spatial and temporal token halting.

• We demonstrate the effectiveness of STAS through extensive experiments on CIFAR-10,
CIFAR-100, and ImageNet, achieving up to 45.9%, 43.8%, and 30.1%, respectively, for
SOTA architectures while improving accuracy.

2 RELATED WORK

Methods like DT-SNN dynamically adjust the timesteps of an SNN during inference based on ac-
curacy needs, using entropy and confidence metrics to halt computation early for simpler inputs.
SEENN (Li et al., 2023; 2024) employs reinforcement learning to optimize timesteps for each im-
age, allowing for fine-grained per-instance optimization, while TET (Deng et al., 2022) introduces
a loss function to address gradient loss in spiking neurons, achieving higher accuracy with fewer
timesteps. However, the decision-making overhead of these temporal methods can outweigh the
benefits in low-timestep regimes, making them less suitable for deeper, more efficient models. In
a different approach, MST (Wang et al., 2023) proposes an ANN-to-SNN conversion method for
SNN-based ViTs, using token masking within model blocks to reduce energy consumption. Despite

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(b) ViT (c) SNN-based ViT

Block 𝐵1

Block 𝐵2

Block 𝐵1

Block 𝐵2

Block 𝐵1

Block 𝐵2

t = 1 t = 2

𝑥1 𝑥1,1 𝑥1,2

𝑥2,1 𝑥2,2

(a) RNN

Block 𝐵1

Hidden

state

𝑥2
ℎ

ℎ1

ℎ2

ℎ1,1

ℎ2,1

𝑥1
ℎ1,2

ℎ2,2

Input

Halting score

A
cc

u
m

u
la

ti
o
n

A
cc

u
m

u
la

ti
o
n

Accumulation (not working)

A
cc

u
m

u
la

ti
o
n

Residual 

network

0.5
0.6
0.7
0.8
0.9

1 3 5 7 9

C
o
si

n
e 

si
m

il
ar

it
y

(d) ViT

(e) SNN-based ViT

-th consecutive blocks

-th consecutive blocks

0.5
0.6
0.7
0.8
0.9

1 2 3
-th consecutive timesteps

1 2 3

2nd Block2nd Timestep

I-SPS

SPS

C
o
si

n
e 

si
m

il
ar

it
y

Figure 2: Model architecture and halting-score accumulation paths when Adaptive Computation
Time (ACT) is applied: (a) RNN, (b) ViT, and (c) SNN-based ViT. Cosine similarity of tokens
between consecutive blocks for (d) ViT and (e) SNN-based ViT (Spikingformer) on CIFAR-100.

its effectiveness, this reliance on ANN-to-SNN conversion means MST still requires hundreds of
timesteps for inference.

The principles of ACT (Graves, 2016) were first introduced to dynamically allocate inference steps
for RNN models based on input difficulty. This concept was extended by SACT (Figurnov et al.,
2017) for ResNet architectures and A-ViT (Yin et al., 2022), which dynamically adjusts computation
in Transformers by halting individual tokens at different layers. However, these studies are based
on ANNs, and their formulations are fundamentally incompatible with the discrete, multi-timestep
nature of SNNs, as they typically perform a single inference pass. While LFACT (Zhang et al., 2021)
expands ACT for repeated inferences across sequences, it remains limited to RNNs. In contrast,
STAS is explicitly designed to address the unique two-dimensional challenge of SNN-based ViTs,
simultaneously considering adaptivity across both spatial blocks and discrete timesteps.

3 METHOD

3.1 I-SPS: INTEGRATED SPIKE PATCH SPLITTING

ACT enables neural networks to dynamically adjust their computational depth per input, learning
to halt processing to improve efficiency. The mechanism is predicated on the principle of halting
computation once the network’s internal representations stabilize. This concept was originally pro-
posed for RNNs, where an encoder block B1 iteratively refines its state from the same input x1,
and a sigmoidal halting unit determines when to cease processing (Fig. 2(a)). This architectural
paradigm extends naturally to ViTs, which can be viewed as an “unrolled iterative estimation” pro-
cess. Their structure, featuring multiple identical encoder blocks (property (i)) with residual connec-
tions (Fig. 2(b)), ensures high input similarity between consecutive blocks (property (ii), Fig. 2(d)).
This representational stability is a prerequisite for ACT, enabling effective spatial halting in ViTs by
allowing each block Bi to accumulate a corresponding halting score hi (Yin et al., 2022).

However, applying ACT to SNN-based ViTs introduces a dual-dimensional challenge, as the condi-
tions for effective halting must be met across both spatial (inter-block) and temporal (inter-timestep)
axes (Fig. 2(c)). Spatially, SNN-based ViTs are analogous to their standard counterparts; they sat-
isfy property (i) via residual connections and, consequently, maintain high block-to-block similarity
(property (ii)), making them suitable for spatial ACT (left subfigure of Fig. 2(e)). Temporally, the
challenge is more profound. While property (i) is satisfied because membrane potentials are shared
across timesteps within the same block, SNNs inherently violate property (ii). Each timestep re-
ceives a different input spike vector, leading to low cosine similarity between consecutive temporal
inputs, as shown by the blue curve in the right subfigure of Fig. 2(e).

To address the low temporal similarity in SNN-based ViTs that impedes ACT, we introduce the I-
SPS module. Unlike vanilla SPS, I-SPS integrates multi-timestep spike signals into a single, unified
representation at the initial stage, which is then reused for all subsequent computations (Fig. 3(b)).
This positions our method as a type of ‘one-step’ approach1, an emerging concept in SOTA SNN

1This is termed a ‘one-step’ approach because the computationally expensive CNN operation is reduced to
a single pass, while the low-latency LIF neuron operations still iterate for T timesteps.
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Figure 3: Architectural comparison of (a) a conventional SNN-based ViT using vanilla SPS and
SSA, and (b) our STAS framework featuring I-SPS and A-SSA. STAS utilizes I-SPS to create a sin-
gle, unified tokenized input from multiple timesteps, which establishes the high temporal similarity
necessary for the two-dimensional token halting performed by A-SSA.

Table 1: Effectiveness of I-SPS for A-SSA on Spikformer-4-384 and Spikingformer-4-384 with
CIFAR-100.

Architecture I-SPS A-SSA Avg. tokens Acc (%)

Spikformer
✗ ✗ ×1 77.3
✗ ✓ ×0.63 77.3 (−)
✓ ✓ ×0.46 78.1 (↑)

Spikingformer
✗ ✗ ×1 79.4
✗ ✓ ×0.95 77.4 (↓)
✓ ✓ ×0.70 79.9 (↑)

studies where expensive operations are reduced to a single pass in distinct ways for varied goals,
such as latency reduction (e.g., OST) or simplified adversarial attacks (e.g., RGA (Bu et al., 2023)).
The viability of such methods, which sacrifice precise temporal information, is rooted in mitigating
challenges in direct SNN training; a shortened temporal backpropagation path reduces the impact of
both vanishing gradients and error accumulation from surrogate functions. This improved gradient
flow appears to offset the information loss from temporal compression. STAS operationalizes this
principle via the I-SPS module, creating the high temporal similarity (Fig. 2(e)) that is the prerequi-
site for our A-SSA module to perform dynamic, two-dimensional token halting.

Empirical validation. Table 1 validates the synergistic relationship between our static architec-
tural module (I-SPS) and dynamic halting mechanism (A-SSA), which is detailed in Sec. 3.2. Ap-
plying A-SSA alone is ineffective, yielding only a limited token reduction on both Spikeformer and
Spikingformer (×0.63 and ×0.95, respectively). However, when combined with I-SPS—which es-
tablishes the necessary temporal similarity—the synergy drastically reduces token usage to ×0.46
on Spikformer and ×0.70 on Spikingformer, while maintaining or even slightly improving accuracy.
These results empirically demonstrate that I-SPS is a critical prerequisite for A-SSA to perform ef-
ficient and accuracy-aware spatio-temporal halting.

3.2 A-SSA: ADAPTIVE SPIKING SELF-ATTENTION

We formulate the SNN-based ViT as follows (Zhou et al., 2023):

fT (x) = FC(
1

T

T∑
t=1

BL ◦ BL−1 ◦ · · · ◦ B1 ◦ S(x)), (1)

where x ∈ RT×C×H×W is the input of which T , C, H , and W denote the timesteps, channels,
height, and width.

The function S(·) represents the spike patch splitting (SPS) module, which divides the input image
into multiple tokens. The function B(·) denotes a single encoder block, consisting of spike self-
attention (SSA) and a multi-layer perceptron (MLP), with a total of L blocks in the model. The
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Figure 4: Token-level halting example of STAS: At the first timestep t = 1, the input x passes
through the I-SPS, generating a token set T l,t. In the first block B1, for nine tokens, the halting
scores h1,1

k are added through inference. In subsequent blocks, tokens with accumulated halting
scores H(l, t) of one or greater are masked. From the second timestep onwards, the same operations
are repeated on the same input x. The halting score accumulation follows Eq. equation 4. The vector
values of masked tokens are set to zero, and no further halting score is accumulated for the tokens.

function FC(·) represents a fully-connected layer. Finally, the tokens passing through all blocks are
averaged and input to FC(·).
After passing through S(x) at a timestep t, the input image x is divided into a set of tokens denoted
by T 0,t. Let T l,t represent the set of tokens in the l-th (for l > 0) block at the t-th timestep, which
is expressed as follows:

T l,t = Bl(T l−1,t). (2)

The halting score hl,t of the tokens at the t-th timestep in the l-th block can be defined as follows:

hl,t
k = σ(α× T l,t

k,1 + β), (3)

where σ(·) denotes the logistic sigmoid function, and α and β are scaling factors.

Let T l,t
k represent the embedding vector of the k-th token, and T l,t

k,1 denote the first element of this
vector. The sigmoid function ensures that 0 ≤ hl,t

k ≤ 1. STAS calculates hl,t
k using the first element

of the embedding vector of the token, and the first node of MLP in each block learns the halting
score.

STAS accumulates halting scores across blocks within a single timestep and continues to accumulate
scores from previous timesteps and blocks over multiple timesteps, as a two-dimensional halting
policy. STAS defines the halting module Hk(L

′, T ′) at the T ′-th timestep and the L′-th block as
follows:

Hk(L
′, T ′) =

L′−1∑
l=1

T ′∑
t=1

hl,t
k . (4)

STAS masks tokens with Hk(L
′, T ′) ≥ 1 − ϵ in each block. If the k-th token is halted at the L′-th

block and T ′-th timestep, it remains zeroed out from the L′ + 1 block onward in the T ′-th timestep.
Fig. 4 illustrates a token-level merging and masking example of AT-SNN.

Based on the defined halting score, we propose a new loss function that allows STAS to determine
the required number of tokens according to the input image during training. We define N t

k as the
index of the block where the k-th token halts at the t-th timestep, which is obtained by

N t
k = argmin

l≤L
Hk(l, t) ≥ 1− ϵ, (5)
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where ϵ is a constant value that determines the threshold for the halting score.

Additionally, we define an auxiliary variable, remainder, to track the remaining amount of halting
score for each token until it halts at each timestep and layer as follows:

rl,tk = 1−Hk(l, t). (6)

Then, we define the halting probability of each token at each timestep and block as follows:

pl,tk =

{
hl,t
k if t = {1, ..., T} and l < N t

rl,tk if t = {1, ..., T} and l = N t

0 otherwise
(7)

According to the definitions of hl,t
k and rl,tk , 0 ≤ pl,tk ≤ 1 holds.

Based on the previously defined halting module and probability, we propose the following loss func-
tions for training STAS. First, we apply a mean-field formulation (halting-probability weighted aver-
age of previous states) to the output at each block and timestep, accumulating the results. Therefore,
the classification loss function Ltask is defined as follows:

Ltask = C(FC(
1

TK

T∑
t=1

K∑
k=1

L∑
l=1

T l,t
k · pl,tk )), (8)

where C denotes the cross-entropy loss.

Next, we propose a loss function to encourage each token to halt at earlier timesteps and blocks,
using fewer computations. We defined the ponder loss Lponder as follows:

Lponder =
1

TK

T∑
t=1

K∑
k=1

(N t
k + r

N t
k,t

k ). (9)

Lponder consists of the average number of blocks over which each token accumulates its halting
score and the average remainder at each timestep.

Loverall = Ltask + δpLponder, (10)

where δp is a parameter that weights Lponder. STAS is trained to minimize Loverall.

3.3 FLEXIBLE HALTING THRESHOLD

STAS adaptively determines the number of tokens to halt for each input image during training. How-
ever, during inference, there remains a trade-off between the number of tokens to halt and accuracy.
To address this, we introduce STASϵ, a method that provides control-knob between the number of
tokens to halt and accuracy by adjusting the halting threshold parameter ϵ during inference. By in-
creasing the value of ϵ, STASϵ halts more tokens at earlier blocks or timesteps, leading to reduced
energy consumption and accuracy.

4 EXPERIMENTS

We first analyze the qualitative and quantitative results to assess how efficiently STAS reduces to-
kens for the input images. Then, we conduct a comparative analysis to evaluate how effectively
STAS reduces tokens in terms of accuracy, comparing it with existing methods, and analyze how the
reduced tokens by STAS impact energy consumption. Finally, we discuss the properties required for
STAS’s two-dimensional ACT to efficiently process tokens through an ablation study.

Implementation details. We implement the simulation on Pytorch and SpikingJelly (Fang et al.,
2023). All experiments in this section are conducted on Spikformer (Zhou et al., 2022) and Spik-
ingformer (Zhou et al., 2023) on RTX NVIDIA A6000 GPUs. Note that STAS is applicable to other
SNN-based vision Transformers with direct training. We first train each model by replacing its orig-
inal SPS module with the proposed I-SPS, and use the resulting model as a pre-trained model for
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(c) Easy and Hard samples
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(a) Visualization of halted tokens

Figure 5: (a) Example of halted tokens across different timesteps and blocks on STASϵ (based on
Spikingformer-8-384) with ImageNet. Tokens that are halted with a shaded (non-white) overlay. (b)
The number of halted tokens across different blocks and timesteps, and (c) visual comparison of
hard and easy samples in classification on STASϵ (based on Spikingformer-8-384) with ImageNet.

applying the proposed two-dimensional ACT. Subsequently, we retrain the models using the loss
function defined in Eq. equation 10. We use automatic-mixed precision (AMP) (Micikevicius et al.,
2017) for training acceleration and surrogate module learning (SML) (Deng et al., 2023) method
to mitigate the gradient errors of SNNs. For a fair comparison, we trained several existing methods
(e.g., Spikformer, Spikingformer, and STATA2) on our computing environment, and these models
are marked with an asterisk (*) in Tables 2 and 3. We evaluate our method for the classification task
on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and ImageNet (Deng et al., 2009).

4.1 ANALYSIS

Qualitative results. For visualization of STASϵ, we use Spikingformer-8-384 with eight blocks
per timestep, trained on ImageNet. Each input image contains 196 tokens (14 × 14). Fig. 5(a) vi-
sualizes how tokens are halted over timesteps and blocks. Since STAS accumulates halting scores
in two dimensions (blocks and timesteps), more tokens are halted as the block and timestep indices
increase. With four timesteps and eight blocks, the maximum processed count for each token is 32,
where brighter regions indicate more processing, and darker regions indicate less (i.e., halted ear-
lier). Tokens from the less informative background are halted first, with an increasing number of
tokens being halted over time.

Quantitative results and classification difficulty. Fig. 5(b) shows the number of tokens halted
per block and timestep. As visualized in Fig. 5(a), more tokens are halted as the block and timestep
indices increase. Due to the two-dimensional halting policy of STASϵ, more tokens halt as the num-
ber of timesteps increases. Figure 5(c) visualizes samples correctly classified by STASϵ, comparing
those that use more tokens versus those that use fewer tokens. On average, easy samples utilize 37%
or fewer of all tokens per block, while hard samples use 57% or more of all tokens per block. We
observe that STASϵ uses fewer tokens when the object in the image is clearly separated from the
background and other objects.

4.2 COMPARISON TO PRIOR ART

We evaluate STAS against SNN methods based on both CNNs (e.g., VGG, ResNet) and Transform-
ers (e.g., Spikformer, Spikingformer). To benchmark against other dynamic computation techniques

2As the official implementation is not publicly available, we re-implemented the method based on the de-
scriptions in the original paper and made our best effort to reproduce it faithfully.
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Table 2: Main experiment results on ImageNet.

Method Architecture Param (M) Timestep Energy (mJ) Acc
Hybrid training (Rathi et al., 2020) ResNet-34 21.79 250 - 61.48
STBP-tdBN (Zheng et al., 2021) ResNet-34 21.79 6 6.39 63.72

TET (Deng et al., 2022) Spiking-ResNet-34 21.79 6 - 64.79
SEW ResNet-34 21.79 4 - 68.00

Spiking ResNet (Hu et al., 2021a) ResNet-34 21.79 350 59.30 71.61
ResNet-50 25.56 350 70.93 72.75

SEW ResNet (Fang et al., 2021)

SEW ResNet-34 21.79 4 4.04 67.04
SEW ResNet-50 25.56 4 4.89 67.78

SEW ResNet-101 44.55 4 8.91 68.76
SEW ResNet-152 60.19 4 12.89 69.26

MS-ResNet (Hu et al., 2021b) ResNet-104 44.55+ 5 - 74.21

Att MS ResNet (Yao et al., 2023) Att-MS-ResNet-18 11.87 1 0.48 63.97
Att-MS-ResNet-34 22.12 1 0.57 69.15

ANN Transformer-8-512 29.68 - 38.34 80.80
Spikformer (Zhou et al., 2022) Spikformer-8-768 66.34 4 21.48 74.81

OST (Song et al., 2024) OST-8-384 19.36 1 4.63 72.42
OST-8-512 33.87 1 6.92 74.97

Spikingformer (Zhou et al., 2023) Spikingformer-8-384 16.81 4 4.69 72.45
Spikingformer-8-512 29.68 4 7.46 74.79

STATA (Zhuge et al., 2024) Spikingformer-8-384 16.82 4 4.33∗ 67.65∗

Spikformer-8-768 - 4 11.16 74.03

STAS Spikingformer-8-384 16.81 4 3.81 (-18.8%) 73.45 (↑)
Spikingformer-8-512 29.68 4 7.16 (-4.02%) 75.96 (↑)

STASϵ Spikingformer-8-384 16.83 4 3.28 (-30.1%) 72.61 (↑)
Spikingformer-8-512 29.68 4 5.73 (-23.19%) 75.13 (↑)

Table 3: Experiment results on CIFAR-10/CIFAR-100.

Method Architecture Param (M) Timestep Energy (mJ) Acc
STBP-tdBN (Zheng et al., 2021) ResNet-19 12.63 4 - 92.9/70.9

AutoSNN (Na et al., 2022) AutoSNN (C=128) 21 8 - 93.2/69.2
SpikeDHSD (Che et al., 2022) SpikeDHS-CLA (n3s1) 14 6 - 95.4/76.3

Hybrid training (Rathi et al., 2020) VGG-11 9.27 125 - 92.2/67.9
Diet-SNN (Rathi & Roy, 2020) ResNet-20 0.27 10/5 - 92.5/64.1

TET (Deng et al., 2022) ResNet-19 12.63 4 - 94.4/74.5
ANN-to-SNN (Deng & Gu, 2021) ResNet-20 10.91 32 - 93.3/68.4

ANN Transformer-4-384 9.32 - 4.25 96.7/81.0
Spikformer (Zhou et al., 2022) Spikformer-4-384 9.32 4 0.74∗/0.89∗ 94.8∗/77.3∗

STATA (Zhuge et al., 2024) Spikformer-4-384 - 4 - 95.2/77.9
STASϵ Spikformer-4-384 9.32 4 0.40/0.50 95.2/77.9

OST (Song et al., 2024) OST-4-384 11.37 1 0.46 95.6/78.8
Spikingformer (Zhou et al., 2023) Spikingformer-4-384 9.32 4 0.42∗/0.50∗ 95.7∗/79.4∗

STATA (Zhuge et al., 2024) Spikingformer-4-384 - 4 - 95.8/79.9
STASϵ Spikingformer-4-384 9.32 4 0.37/0.46 95.8/79.4

for SNN-based ViTs, we also compare our results with those of OST and STATA. We measured the
energy consumption3 and accuracy of each model during inference on ImageNet (in Table 2) and
CIFAR-10/CIFAR-100 (in Table 3).

ImageNet We trained STAS on the Spikingformer-8-384 and Spikingformer-8-512 models. We set
hyper-parameters as α = 5, β = −25, and δp = 10−4. To compare against a static token-dropping
method, we implemented STATA4 and evaluated its performance. As shown in Table 2, Transformer-
based methods generally outperform CNN-based ones. On the Spikingformer-8-384, STATA reduces
some energy but incurs a significant accuracy drop because it drops a fixed ratio of tokens without
considering timesteps. In contrast, STAS reduces energy consumption while achieving even higher
accuracy than the original Spikingformer. Furthermore, by adjusting the halting threshold ϵ, we can
create a variant, STASϵ, which trades some accuracy for greater energy savings. When configured

3Following the widely accepted measurement methods in previous SNN studies (Zhou et al., 2022; 2023),
the equation for calculating energy consumption is provided in the supplement.

4Same as Footnote 1.
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Table 4: Ablation study on Spikformer-4-384 and Spikingformer-4-384 with CIFAR-100.

Architecture I-SPS ϵ Accumulation Avg. tokens Acc (%)

Spikformer

✗ ✗ B ×0.60 78.0
✗ ✗ T + B ×0.63 77.3
✓ ✗ T + B ×0.46 78.1
✓ ✓ T + B ×0.42 77.9

Spikingformer

✗ ✗ B ×0.65 78.5
✗ ✗ T + B ×0.95 77.4
✓ ✗ T + B ×0.70 79.9
✓ ✓ T + B ×0.50 78.5

for significant energy savings, STAS reduces the energy consumption of the original Spikingformer
by 18.8% to 30.1% while maintaining a comparable or even slightly higher accuracy.

CIFAR-10/CIFAR-100 We trained STAS on Spikformer-4-384 and Spikingformer-4-384. We set
hyper-parameters as α = −5, β = 0, δp = 10−3 for Spikformer, and α = 5, β = −25, δp = 10−3

for Spikingformer. For a fair comparison, we adjusted the halting threshold ϵ to create STAS variants
tuned to the accuracy levels of the original models. For the Spikformer, we achieved substantial
energy reductions of 45.9% on CIFAR-10 and 43.8% on CIFAR-100, respectively, while attaining
higher accuracy. On the Spikingformer, STAS also achieved higher accuracy while reducing energy
by 11.9% on CIFAR-10 and 8.0% on CIFAR-100.

4.3 ABLATION STUDIES

We evaluate the impact of I-SPS and the accumulation methods on the accuracy and energy effi-
ciency of STAS. Table 4 shows the average number of tokens used per block and the corresponding
accuracy with and without each component. All experiments are conducted on the Spikformer-4-384
model using the CIFAR-100.

I-SPS vs SPS. Table 4 presents the token usage and accuracy of STAS with and without I-SPS.
With I-SPS, STAS achieves higher accuracy (77.3% vs. 78.1%) while using fewer tokens (×0.63 vs.
×0.46). This improvement arises because, as shown in Fig. 3(c), I-SPS encourages similarity among
inputs across consecutive timesteps, enabling more efficient application of ACT.

Two- vs one-dimensional halting. Table 4 compares the halting score accumulation methods on
CIFAR-100: one that accumulates only across one dimension ( B , block-level only) and another
that accumulates scores across two dimensions ( T + B , both timestep and block-levels as per
Eq. equation 4). As shown in Table 4, the two-dimensional halting mechanism achieves higher ac-
curacy (78.0% vs 78.1%) while removing more tokens (×0.60 vs ×0.46) compared to the one-
dimensional halting. This is because, by definition, the LHS of Eq. equation 4 becomes larger under
two-dimensional halting than under one-dimensional halting, which in turn increases the LHS of
Eq. equation 9, leading to more tokens being halted. Furthermore, the STASϵ variant maximizes
this halting effect, achieving even greater token reduction (×0.42 and ×0.50 for Spikformer and
Spikingformer, respectively).

5 CONCLUSION

In this paper, we addressed the fundamental two-dimensional (spatio-temporal) adaptive computa-
tion challenge inherent to SNN-based ViTs. We first identified that the efficacy of dynamic halting is
fundamentally constrained by the static architecture’s lack of temporal similarity. To resolve this, we
proposed STAS, a framework that co-designs a static architectural module (I-SPS) with a dynamic
halting policy (A-SSA) to enable accuracy-aware token halting across both spatial and temporal
axes. Our experiments on CIFAR-10, CIFAR-100, and ImageNet demonstrate the effectiveness of
this synergistic approach: STAS significantly improves the accuracy-energy trade-off, reducing en-
ergy consumption by up to 45.9%, 43.8%, and 30.1%, respectively, while simultaneously enhancing
accuracy.
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APPENDIX

This document provides supplementary material to the main submission. Sec. A details a widely
accepted equation (Chen et al., 2023) for calculating SNN energy consumption and discusses the
minor runtime overhead of our halting mechanism. We then present a detailed analysis in Sec. B on
the impact of key hyperparameters (δp, α, and β) and surrogate module learning. Sec. C evaluates
the generalizability of STAS on dynamic vision sensor (DVS) datasets (Li et al., 2017), and Sec. D
provides additional qualitative results visualizing the token halting process.

A ENERGY CALCULATION

To measure the energy consumption of an SNN, we calculate the theoretical energy usage based
on the number of operations during inference. To do this, we first define the number of synaptic
operations in each block as follows:

SOPs(l) = T × fr(l)× FLOPs(l), (11)

where l represents the index of the block, and T denotes the timestep. The term fr(l) refers to the
firing ratio of spikes entering block l. SOPs(l) indicates the number of synaptic operations performed
in the l-th block, while FLOPs(l) denotes the number of floating-point operations in the same block.
Using SOPs, we can calculate the total energy consumption E of the SNN as follows:

E = EMAC × FLOPsSPS + EAC × (SOPsSPS +
L∑

l=1

SOPsSSA(l) +
L∑

l=1

SOPsMLP (l)), (12)

where EMAC and EAC represent the energy consumed per operation for multiplication and accu-
mulation (MAC) and accumulation (AC), respectively, with EMAC = 4.6pJ and EAC = 0.9pJ.
SOPsSPS refers to the synaptic operations in the SPS, while SOPsSSA(l) and SOPsMLP (l) denote
the synaptic operations in the SSA and MLP of a block, respectively. Additionally, FLOPsSPS rep-
resents the floating-point operations in the SPS. By preventing merged or masked tokens from firing
spikes, STAS reduces the firing ratio fr(l), reducing energy consumption in the SSA and MLP.

Energy consumption for runtime overhead. STAS performs additional computations at runtime
to calculate the halting score for each token, which results in additional energy consumption. Since
the computation for halting scores involves MAC operations, we estimate the energy per operation
using EMAC . Although halting scores are computed once per block and timestep, the operations
are element-wise and lightweight, contributing only a negligible amount of energy compared to the
total consumption of the model. For instance, STAS consumes at most only 0.03 mJ and 0.04 mJ of
additional energy on ImageNet with Spikingformer-8-384 and Spikingformer-8-512, respectively,
and just 0.005 mJ for each model on CIFAR-100 with Spikingformer-4-384. Note that the energy
consumption of STAS reported in the main submission already includes all runtime overheads.

B HYPERPARAMETER ANALYSIS

Various δp. STAS allows for adjusting the trade-off between accuracy and the number of tokens
through the hyperparameter δp in Eq. (10) in the main body of the paper. To examine the effect of
δp, we compare the accuracy and the number of tokens on the CIFAR-10 and CIFAR-100 datasets
across a range of δp values from 10−1 to 10−4. We trained Spikingformer-4-384 during 410 epochs.
Fig. 6 shows the accuracy and token usage during the training phase. As shown in Fig. 6, a smaller δp
(10−4, 10−3) results in higher accuracy, while a larger δp (10−2, 10−1) leads to reduce the number
of tokens. Consequently, STAS can be finely tuned by adjusting δp to achieve the desired balance
between higher accuracy and fewer tokens, depending on the specific application requirements.

Various α and β. During training, STAS can control the trade-off between token usage and ac-
curacy not only through δp, but also via the hyperparameters α and β in Eq.(3). The hyperparame-
ters α and β directly adjust the halting score, thereby influencing halting behavior during training.
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Figure 6: Training curve depedending on δp with Spikingformer

Table 5: Effect of α and β on Spikingformer.

Dataset CIFAR-100
α 3 5 8 β -15 -25 -35

Avg. tokens ×1 ×0.70 ×0.50 Avg. tokens ×0.46 ×0.70 ×0.75
Acc (%) 78.3 79.9 78.6 Acc (%) 78.7 79.9 79.9

Table 6: Effect of SML on Spikingformer.

Dataset CIFAR-10 CIFAR-100
SML ✗ ✓ ✗ ✓
δp 1e-3 1e-2 1e-3 1e-3 1e-2 1e-3
ϵ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Avg. tokens ×1 ×0.47 ×0.45 ×0.44 ×1 ×0.76 ×0.73 ×0.70
Acc (%) 96.1 95.9 95.8 95.8 80.0 80.1 79.9 79.9

To investigate their effects, we conduct experiments on CIFAR-100, varying α ∈ {3, 5, 8} and
β ∈ {−15,−25,−35} while fixing δp = 10−3. We use Spikingformer-4-384, and all models are
trained for 410 epochs. Table 5 shows the accuracy and average token usage across different α and
β. As shown in the Table 5, increasing α results in lower token usage (e.g., ×1.00 vs. ×0.50). Con-
versely, decreasing β also reduces token usage (e.g., ×0.75 vs. ×0.46), as it causes the halting scores
to accumulate more rapidly.

Surrogate module learning. Surrogate module learning (SML) (Deng et al., 2023) effectively
mitigates gradient errors during SNN training, thereby improving accuracy. Table 6 presents the
effect of SML on token usage and accuracy under the setting of α = 5 and β = −25 for both
CIFAR-10 and CIFAR-100. As shown in Table 6, SML achieves reduced token usage (e.g., ×1.00 vs.
×0.70) while maintaining comparable accuracy (80.0% vs. 79.9%) on CIFAR-100 under the same
setting. However, since the accuracy of STAS can be adjusted through hyperparameter tuning, we
measure energy efficiency at comparable accuracy to SML by appropriately setting hyperparameters
(e.g., δp, ϵ) for a fair comparison. Under these conditions, SML consistently demonstrates improved
token efficiency at comparable accuracy. This suggests that training methods that enhance energy
efficiency can be applied orthogonally to STAS without compromising accuracy.

C ADAPTABILITY OF STAS

Another SNN-based transformer. To verify whether our methodology works on ViTs based on
directly trained SNNs other than Spikformer and Spikingformer, we applied it to spike-driven Trans-
former (Yao et al., 2023) and evaluated its performance on CIFAR-10 and CIFAR-100. We compared
the accuracy of a model trained for 310 epochs with that of STAS, which was trained for an ad-
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Table 7: Experiment results on Spike-Driven Transformer with four timesteps.

Dataset CIFAR-10 CIFAR-100
Method STATIC STAS STATIC STAS

Avg. tokens ×1 ×0.38 ×1 ×0.54
Acc (%) 95.6 95.8 78.4 78.9

Table 8: Experiment result on neuromorphic dataset with Spikingformer.

Dataset CIFAR10-DVS DVS128Gesture
Method STATIC STAS STATIC STAS

Avg. tokens ×1 ×0.60 ×1 ×0.70
Acc (%) 81.3 82.4 98.3 97.9

ditional 310 epochs using the pretrained model. As shown in Table 7, similar to the results with
Spikformer and Spikingformer, our approach maintains accuracy comparable to STATIC (without
any lightweight method) in spike-driven Transformer, while reducing the average number of tokens
used per block to 0.38 for CIFAR-10 and 0.54 for CIFAR-100.

Figure 7: Original images (odd-numbered columns) and heatmaps showing the number of blocks
(for four timesteps) each token processes (even-numbered columns) on ImageNet. Brighter colors
indicate more processing per token. STAS halts earlier on tokens that lack visual information.

Application to DVS Datasets. To evaluate the adaptability of STAS, we tested its performance
on the CIFAR10-DVS (Li et al., 2017) and DVS128Gesture (Amir et al., 2017) datasets. For these
experiments, we trained a Spikingformer-2-384 model for 106 epochs with 16 timesteps, setting
hyperparameters to α = 5, β = −10, and δp = 10−3. As shown in Table 8, this configuration
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still demonstrated strong performance, improving accuracy on CIFAR10-DVS to 82.4% with ×0.60
token usage, and maintaining comparable accuracy (97.9%) on DVS128Gesture with ×0.70 token
usage. This highlights that while the full STAS co-design is optimal for static images, the A-SSA
halting mechanism is robust and highly effective as a standalone module for processing inherently
temporal data.

D VISUALIZATION

We visualize STAS’s token halting process on ImageNet samples using the Spikingformer-8-384
model. Figure 7 shows the original images alongside heatmaps that represent the computational
depth of each token, defined as the total number of blocks it is processed for across four timesteps.
Brighter colors in the heatmaps indicate more processing (later halting). The visualizations consis-
tently show that STAS allocates more computation to tokens corresponding to salient object features.
Conversely, tokens from uninformative regions, such as the background, are halted much earlier,
resulting in darker areas on the heatmap. Notably, the policy appears more nuanced than simple
foreground-background segmentation, often prioritizing semantically rich features within an object,
like faces or distinctive textures.
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