

000 001 002 003 004 005 STAS: SPATIO-TEMPORAL ADAPTIVE COMPUTATION 006 TIME FOR SPIKING TRANSFORMERS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 Spiking neural networks (SNNs), while energy-efficient, suffer from high latency
028 and computational overhead, and existing dynamic computation methods to ad-
029 dress this remain fragmented. While the principles of adaptive computation time
030 (ACT) offer a robust foundation for a unified approach, its application to SNN-
031 based vision Transformers (ViTs) is hindered by two core issues: the violation
032 of its temporal similarity prerequisite and a static architecture fundamentally un-
033 suited for its principles. To address these challenges, we propose STAS (Spatio-
034 Temporal Adaptive computation time for Spiking transformers), a framework that
035 co-designs the static architecture and dynamic computation policy. STAS intro-
036 duces an integrated spike patch splitting (I-SPS) module to establish temporal
037 stability by creating a unified input representation, thereby solving the architec-
038 tural problem of temporal dissimilarity. This stability, in turn, allows our adaptive
039 spiking self-attention (A-SSA) module to perform two-dimensional token prun-
040 ing across both spatial and temporal axes. Implemented on spiking Transformer
041 architectures and validated on CIFAR-10, CIFAR-100, and ImageNet, STAS re-
042 duces energy consumption by up to 45.9%, 43.8%, and 30.1%, respectively, while
043 simultaneously improving accuracy over SOTA models.
044

1 INTRODUCTION

045 Spiking neural networks (SNNs) are energy-efficient but suffer from high latency and computational
046 overhead due to their multi-timestep operational nature. State-of-the-art (SOTA) studies to improve
047 SNNs have followed two main paths: **(S)** static architectural enhancements (e.g., Spikformer (Zhou
048 et al., 2022), Spikingformer (Zhou et al., 2023)) and **(D)** dynamic computation methods (e.g.,
049 OST (Song et al., 2024), STATA (Zhuge et al., 2024)), with their performances shown in Fig. 1(a).
050 Dynamic methods are motivated by the observation that accuracy often saturates long before the
051 final block or timestep, presenting a clear opportunity for input-dependent halting (Fig. 1(b)).
052

053 The exploration of dynamic computation has fragmented into distinct approaches. One line of re-
054 search has refined **(D1)** architecture-agnostic spatial halting (e.g., SACT (Figurnov et al., 2017)).
055 In parallel, SNN-specific works have focused on **(D2)** temporal adaptivity (e.g., DT-SNN (Li et al.,
056 2023)). A third approach is **(D3)** architecture-aware halting (e.g., A-ViT (Yin et al., 2022)), which
057 leverages a model’s unique components, such as Transformer tokens. These strategies operate in-
058 dependently along a single dimension, not only due to a lack of research into their synergy, but
059 because of a fundamental conflict we identify (in Sec. 3.1): the direct application of a method from
060 one dimension can degrade performance in another. This issue becomes particularly evident when
061 powerful halting principles are applied to the unique temporal dynamics of SNNs.
062

063 This architectural conflict is aptly illustrated by the principles of adaptive computation time (ACT).
064 While ACT offers a potential foundation for a unified framework, its direct application to SNN-
065 based vision Transformers (ViTs) reveals a deeper, architectural obstacle. ACT’s efficacy is critically
066 constrained by the static architecture; it relies on high input similarity for stable refinement. While
067 SNN-ViTs possess spatial similarity, their design leads to critically low temporal similarity due to
068 varying spike inputs at each timestep. This architectural flaw makes true spatio-temporal halting
069 impossible with a purely dynamic approach and reveals a critical interdependence: an effective dy-
070 namic framework requires a new static architecture, necessitating an integrated **(S with D1–D3)**
071 paradigm.
072

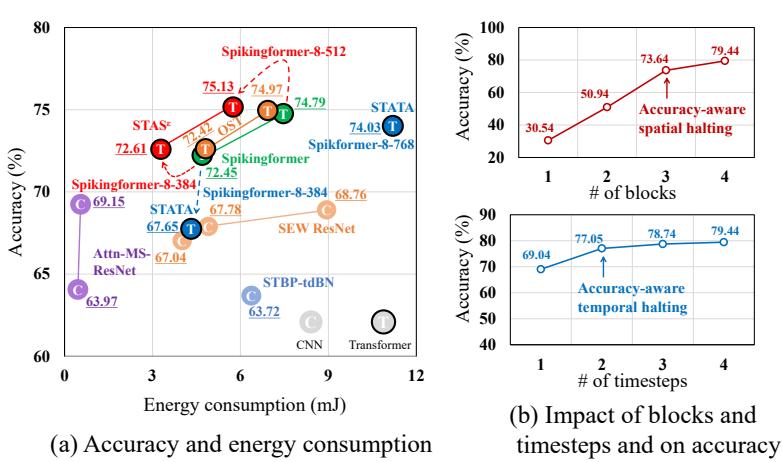


Figure 1: Accuracy of adaptive computation methods for Spikingformer on ImageNet. (a) Accuracy-energy trade-off for various models (see Table 2). (b) Accuracy saturation motivating halting, shown spatially (top) and temporally (bottom).

In this paper, we propose STAS (Spatio-Temporal Adaptive computation time for Spiking Transformers), a novel framework that resolves this interdependence by co-designing the static architecture and the dynamic computation method. STAS first addresses the architectural bottleneck with an integrated spike patch splitting (I-SPS) module, providing the static solution \mathbf{S} by creating a temporally unified representation. This engineered stability, in turn, unlocks true two-dimensional adaptivity, enabling our adaptive spiking self-attention (A-SSA) module to act as the unified framework for **D1–D3** by performing concurrent token halting across both spatial and temporal axes.

We implemented STAS on strong, directly trained spiking Transformers, including Spikformer and Spikingformer, and validated its performance on the CIFAR-10, CIFAR-100, and ImageNet classification datasets. When applied to these architectures, STAS reduces energy consumption by up to 45.9%, 43.8%, and 30.1% on the three datasets, respectively, while simultaneously improving top-1 accuracy.

Our contribution can be summarized as follows:

- We diagnose the fundamental barrier to a unified adaptive framework in SNN-based ViTs through a spatio-temporal similarity analysis, revealing that their architectural design inherently obstructs temporal halting.
- We propose I-SPS that re-engineers the SNN input stage to establish the temporal similarity required for effective temporal adaptation.
- Building upon the stability provided by I-SPS, we introduce A-SSA, a unified mechanism that performs concurrent spatial and temporal token halting.
- We demonstrate the effectiveness of STAS through extensive experiments on CIFAR-10, CIFAR-100, and ImageNet, achieving up to 45.9%, 43.8%, and 30.1%, respectively, for SOTA architectures while improving accuracy.

2 RELATED WORK

Methods like DT-SNN dynamically adjust the timesteps of an SNN during inference based on accuracy needs, using entropy and confidence metrics to halt computation early for simpler inputs. SEENN (Li et al., 2023; 2024) employs reinforcement learning to optimize timesteps for each image, allowing for fine-grained per-instance optimization, while TET (Deng et al., 2022) introduces a loss function to address gradient loss in spiking neurons, achieving higher accuracy with fewer timesteps. However, the decision-making overhead of these temporal methods can outweigh the benefits in low-timestep regimes, making them less suitable for deeper, more efficient models. In a different approach, MST (Wang et al., 2023) proposes an ANN-to-SNN conversion method for SNN-based ViTs, using token masking within model blocks to reduce energy consumption. Despite

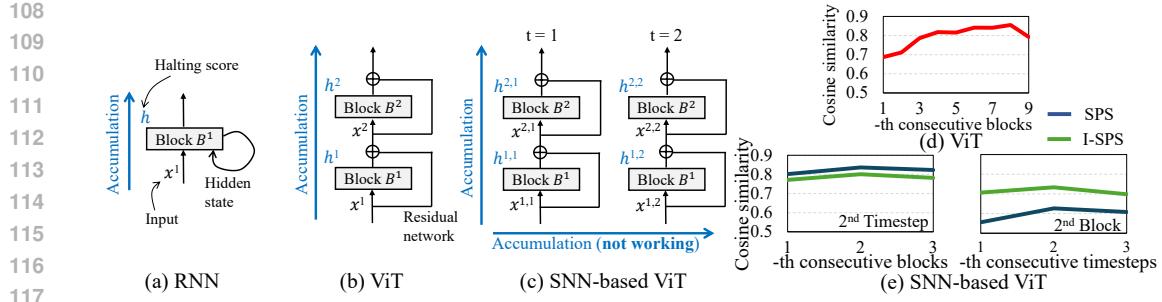


Figure 2: Model architecture and halting-score accumulation paths when Adaptive Computation Time (ACT) is applied: (a) RNN, (b) ViT, and (c) SNN-based ViT. Cosine similarity of tokens between consecutive blocks for (d) ViT and (e) SNN-based ViT (Spikingformer) on CIFAR-100.

its effectiveness, this reliance on ANN-to-SNN conversion means MST still requires hundreds of timesteps for inference.

The principles of ACT (Graves, 2016) were first introduced to dynamically allocate inference steps for RNN models based on input difficulty. This concept was extended by SACT (Figurnov et al., 2017) for ResNet architectures and A-ViT (Yin et al., 2022), which dynamically adjusts computation in Transformers by halting individual tokens at different layers. However, these studies are based on ANNs, and their formulations are fundamentally incompatible with the discrete, multi-timestep nature of SNNs, as they typically perform a single inference pass. While LFACT (Zhang et al., 2021) expands ACT for repeated inferences across sequences, it remains limited to RNNs. In contrast, STAS is explicitly designed to address the unique two-dimensional challenge of SNN-based ViTs, simultaneously considering adaptivity across both spatial blocks and discrete timesteps.

3 METHOD

3.1 I-SPS: INTEGRATED SPIKE PATCH SPLITTING

ACT enables neural networks to dynamically adjust their computational depth per input, learning to halt processing to improve efficiency. The mechanism is predicated on the principle of halting computation once the network’s internal representations stabilize. This concept was originally proposed for RNNs, where an encoder block \mathcal{B}^1 iteratively refines its state from the same input x^1 , and a sigmoidal halting unit determines when to cease processing (Fig. 2(a)). This architectural paradigm extends naturally to ViTs, which can be viewed as an “unrolled iterative estimation” process. Their structure, featuring multiple identical encoder blocks (property (i)) with residual connections (Fig. 2(b)), ensures high input similarity between consecutive blocks (property (ii), Fig. 2(d)). This representational stability is a prerequisite for ACT, enabling effective spatial halting in ViTs by allowing each block \mathcal{B}^i to accumulate a corresponding halting score h^i (Yin et al., 2022).

However, applying ACT to SNN-based ViTs introduces a dual-dimensional challenge, as the conditions for effective halting must be met across both spatial (inter-block) and temporal (inter-timestep) axes (Fig. 2(c)). **Spatially**, SNN-based ViTs are analogous to their standard counterparts; they satisfy property (i) via residual connections and, consequently, maintain high block-to-block similarity (property (ii)), making them suitable for spatial ACT (left subfigure of Fig. 2(e)). **Temporally**, the challenge is more profound. While property (i) is satisfied because membrane potentials are shared across timesteps within the same block, SNNs inherently violate property (ii). Each timestep receives a different input spike vector, leading to low cosine similarity between consecutive temporal inputs, as shown by the blue curve in the right subfigure of Fig. 2(e).

To address the low temporal similarity in SNN-based ViTs that impedes ACT, we introduce the I-SPS module. Unlike vanilla SPS, I-SPS integrates multi-timestep spike signals into a single, unified representation at the initial stage, which is then reused for all subsequent computations (Fig. 3(b)). This positions our method as a type of ‘one-step’ approach¹, an emerging concept in SOTA SNN

¹This is termed a ‘one-step’ approach because the computationally expensive CNN operation is reduced to a single pass, while the low-latency LIF neuron operations still iterate for T timesteps.

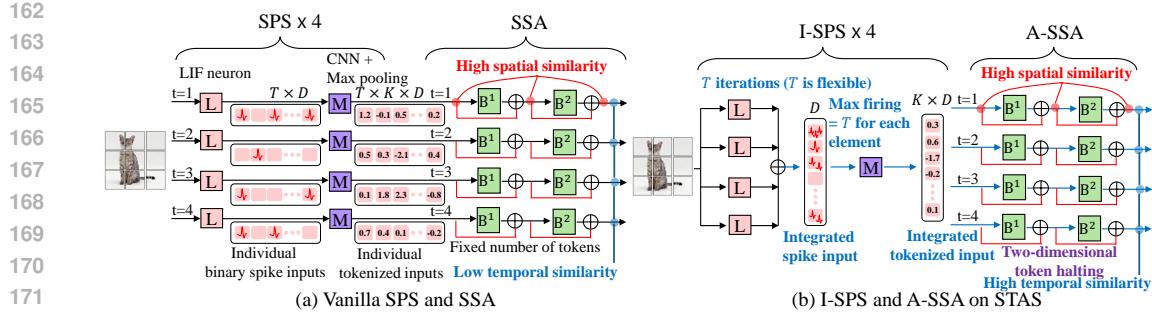


Figure 3: Architectural comparison of (a) a conventional SNN-based ViT using vanilla SPS and SSA, and (b) our STAS framework featuring I-SPS and A-SSA. STAS utilizes I-SPS to create a single, unified tokenized input from multiple timesteps, which establishes the high temporal similarity necessary for the two-dimensional token halting performed by A-SSA.

Table 1: Effectiveness of I-SPS for A-SSA on Spikformer-4-384 and Spikingformer-4-384 with CIFAR-100.

Architecture	I-SPS	A-SSA	Avg. tokens	Acc (%)
Spikformer	✗	✗	×1	77.3
	✗	✓	×0.63	77.3 (–)
	✓	✓	×0.46	78.1 (↑)
Spikingformer	✗	✗	×1	79.4
	✗	✓	×0.95	77.4 (↓)
	✓	✓	×0.70	79.9 (↑)

studies where expensive operations are reduced to a single pass in distinct ways for varied goals, such as latency reduction (e.g., OST) or simplified adversarial attacks (e.g., RGA (Bu et al., 2023)). The viability of such methods, which sacrifice precise temporal information, is rooted in mitigating challenges in direct SNN training; a shortened temporal backpropagation path reduces the impact of both vanishing gradients and error accumulation from surrogate functions. This improved gradient flow appears to offset the information loss from temporal compression. STAS operationalizes this principle via the I-SPS module, creating the high temporal similarity (Fig. 2(e)) that is the prerequisite for our A-SSA module to perform dynamic, two-dimensional token halting.

Empirical validation. Table 1 validates the synergistic relationship between our static architectural module (I-SPS) and dynamic halting mechanism (A-SSA), which is detailed in Sec. 3.2. Applying A-SSA alone is ineffective, yielding only a limited token reduction on both Spikeformer and Spikingformer (×0.63 and ×0.95, respectively). However, when combined with I-SPS—which establishes the necessary temporal similarity—the synergy drastically reduces token usage to ×0.46 on Spikformer and ×0.70 on Spikingformer, while maintaining or even slightly improving accuracy. These results empirically demonstrate that I-SPS is a critical prerequisite for A-SSA to perform efficient and accuracy-aware spatio-temporal halting.

3.2 A-SSA: ADAPTIVE SPIKING SELF-ATTENTION

We formulate the SNN-based ViT as follows (Zhou et al., 2023):

$$f_T(x) = FC\left(\frac{1}{T} \sum_{t=1}^T \mathcal{B}^L \circ \mathcal{B}^{L-1} \circ \dots \circ \mathcal{B}^1 \circ \mathcal{S}(x)\right), \quad (1)$$

where $x \in \mathbb{R}^{T \times C \times H \times W}$ is the input of which T , C , H , and W denote the timesteps, channels, height, and width.

The function $\mathcal{S}(\cdot)$ represents the spike patch splitting (SPS) module, which divides the input image into multiple tokens. The function $\mathcal{B}(\cdot)$ denotes a single encoder block, consisting of spike self-attention (SSA) and a multi-layer perceptron (MLP), with a total of L blocks in the model. The

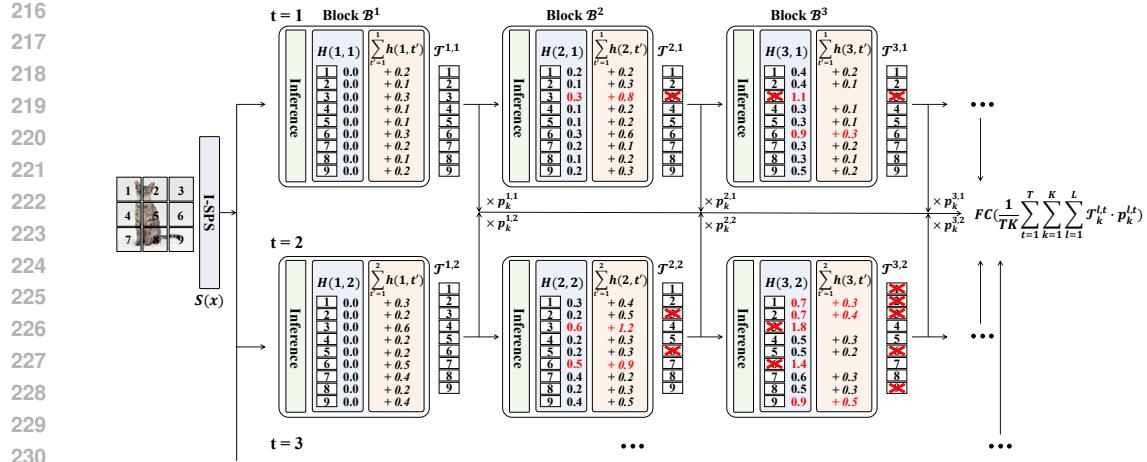


Figure 4: Token-level halting example of STAS: At the first timestep $t = 1$, the input x passes through the I-SPS, generating a token set $\mathcal{T}^{l,t}$. In the first block \mathcal{B}^1 , for nine tokens, the halting scores $h_k^{1,1}$ are added through inference. In subsequent blocks, tokens with accumulated halting scores $H(l,t)$ of one or greater are masked. From the second timestep onwards, the same operations are repeated on the same input x . The halting score accumulation follows Eq. equation 4. The vector values of masked tokens are set to zero, and no further halting score is accumulated for the tokens.

function $FC(\cdot)$ represents a fully-connected layer. Finally, the tokens passing through all blocks are averaged and input to $FC(\cdot)$.

After passing through $\mathcal{S}(x)$ at a timestep t , the input image x is divided into a set of tokens denoted by $\mathcal{T}^{0,t}$. Let $\mathcal{T}^{l,t}$ represent the set of tokens in the l -th (for $l > 0$) block at the t -th timestep, which is expressed as follows:

$$\mathcal{T}^{l,t} = \mathcal{B}^l(\mathcal{T}^{l-1,t}). \quad (2)$$

The halting score $h_k^{l,t}$ of the tokens at the t -th timestep in the l -th block can be defined as follows:

$$h_k^{l,t} = \sigma(\alpha \times \mathcal{T}_{k,1}^{l,t} + \beta), \quad (3)$$

where $\sigma(\cdot)$ denotes the logistic sigmoid function, and α and β are scaling factors.

Let $\mathcal{T}_k^{l,t}$ represent the embedding vector of the k -th token, and $\mathcal{T}_{k,1}^{l,t}$ denote the first element of this vector. The sigmoid function ensures that $0 \leq h_k^{l,t} \leq 1$. STAS calculates $h_k^{l,t}$ using the first element of the embedding vector of the token, and the first node of MLP in each block learns the halting score.

STAS accumulates halting scores across blocks within a single timestep and continues to accumulate scores from previous timesteps and blocks over multiple timesteps, as a two-dimensional halting policy. STAS defines the halting module $H_k(L', T')$ at the T' -th timestep and the L' -th block as follows:

$$H_k(L', T') = \sum_{l=1}^{L'-1} \sum_{t=1}^{T'} h_k^{l,t}. \quad (4)$$

STAS masks tokens with $H_k(L', T') \geq 1 - \epsilon$ in each block. If the k -th token is halted at the L' -th block and T' -th timestep, it remains zeroed out from the $L' + 1$ block onward in the T' -th timestep. Fig. 4 illustrates a token-level merging and masking example of AT-SNN.

Based on the defined halting score, we propose a new loss function that allows STAS to determine the required number of tokens according to the input image during training. We define \mathcal{N}_k^t as the index of the block where the k -th token halts at the t -th timestep, which is obtained by

$$\mathcal{N}_k^t = \arg \min_{l \leq L} H_k(l, t) \geq 1 - \epsilon, \quad (5)$$

270 where ϵ is a constant value that determines the threshold for the halting score.
 271

272 Additionally, we define an auxiliary variable, remainder, to track the remaining amount of halting
 273 score for each token until it halts at each timestep and layer as follows:

$$274 \quad r_k^{l,t} = 1 - H_k(l, t). \quad (6)$$

275
 276 Then, we define the halting probability of each token at each timestep and block as follows:
 277

$$278 \quad p_k^{l,t} = \begin{cases} h_k^{l,t} & \text{if } t = \{1, \dots, T\} \text{ and } l < \mathcal{N}^t \\ r_k^{l,t} & \text{if } t = \{1, \dots, T\} \text{ and } l = \mathcal{N}^t \\ 0 & \text{otherwise} \end{cases} \quad (7)$$

281 According to the definitions of $h_k^{l,t}$ and $r_k^{l,t}$, $0 \leq p_k^{l,t} \leq 1$ holds.
 282

283 Based on the previously defined halting module and probability, we propose the following loss func-
 284 tions for training STAS. First, we apply a mean-field formulation (halting-probability weighted aver-
 285 age of previous states) to the output at each block and timestep, accumulating the results. Therefore,
 286 the classification loss function \mathcal{L}_{task} is defined as follows:
 287

$$288 \quad \mathcal{L}_{task} = \mathcal{C}(FC(\frac{1}{TK} \sum_{t=1}^T \sum_{k=1}^K \sum_{l=1}^L \mathcal{T}_k^{l,t} \cdot p_k^{l,t})), \quad (8)$$

290 where \mathcal{C} denotes the cross-entropy loss.
 291

292 Next, we propose a loss function to encourage each token to halt at earlier timesteps and blocks,
 293 using fewer computations. We defined the ponder loss \mathcal{L}_{ponder} as follows:
 294

$$295 \quad \mathcal{L}_{ponder} = \frac{1}{TK} \sum_{t=1}^T \sum_{k=1}^K (\mathcal{N}_k^t + r_k^{\mathcal{N}_k^t, t}). \quad (9)$$

296
 297 \mathcal{L}_{ponder} consists of the average number of blocks over which each token accumulates its halting
 298 score and the average remainder at each timestep.
 299

$$300 \quad \mathcal{L}_{overall} = \mathcal{L}_{task} + \delta_p \mathcal{L}_{ponder}, \quad (10)$$

301 where δ_p is a parameter that weights \mathcal{L}_{ponder} . STAS is trained to minimize $\mathcal{L}_{overall}$.
 302

303 3.3 FLEXIBLE HALTING THRESHOLD

304 STAS adaptively determines the number of tokens to halt for each input image during training. How-
 305 ever, during inference, there remains a trade-off between the number of tokens to halt and accuracy.
 306 To address this, we introduce STAS $^\epsilon$, a method that provides control-knob between the number of
 307 tokens to halt and accuracy by adjusting the halting threshold parameter ϵ during inference. By in-
 308 creasing the value of ϵ , STAS $^\epsilon$ halts more tokens at earlier blocks or timesteps, leading to reduced
 309 energy consumption and accuracy.
 310

312 4 EXPERIMENTS

313 We first analyze the qualitative and quantitative results to assess how efficiently STAS reduces to-
 314 kens for the input images. Then, we conduct a comparative analysis to evaluate how effectively
 315 STAS reduces tokens in terms of accuracy, comparing it with existing methods, and analyze how the
 316 reduced tokens by STAS impact energy consumption. Finally, we discuss the properties required for
 317 STAS's two-dimensional ACT to efficiently process tokens through an ablation study.
 318

319
 320 **Implementation details.** We implement the simulation on Pytorch and SpikingJelly (Fang et al.,
 321 2023). All experiments in this section are conducted on Spikformer (Zhou et al., 2022) and Spik-
 322 ingformer (Zhou et al., 2023) on RTX NVIDIA A6000 GPUs. Note that STAS is applicable to other
 323 SNN-based vision Transformers with direct training. We first train each model by replacing its orig-
 324 inal SPS module with the proposed I-SPS, and use the resulting model as a pre-trained model for

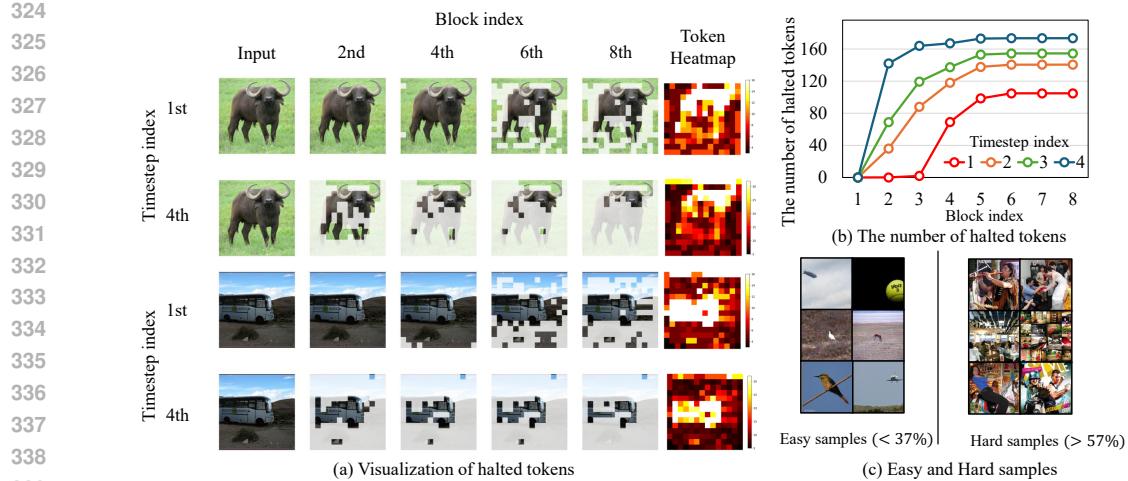


Figure 5: (a) Example of halted tokens across different timesteps and blocks on STAS^e (based on Spikingformer-8-384) with ImageNet. Tokens that are halted with a shaded (non-white) overlay. (b) The number of halted tokens across different blocks and timesteps, and (c) visual comparison of hard and easy samples in classification on STAS^e (based on Spikingformer-8-384) with ImageNet.

applying the proposed two-dimensional ACT. Subsequently, we retrain the models using the loss function defined in Eq. equation 10. We use automatic-mixed precision (AMP) (Micikevicius et al., 2017) for training acceleration and surrogate module learning (SML) (Deng et al., 2023) method to mitigate the gradient errors of SNNs. For a fair comparison, we trained several existing methods (e.g., Spikformer, Spikingformer, and STATA²) on our computing environment, and these models are marked with an asterisk (*) in Tables 2 and 3. We evaluate our method for the classification task on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and ImageNet (Deng et al., 2009).

4.1 ANALYSIS

Qualitative results. For visualization of STAS^e , we use Spikingformer-8-384 with eight blocks per timestep, trained on ImageNet. Each input image contains 196 tokens (14×14). Fig. 5(a) visualizes how tokens are halted over timesteps and blocks. Since STAS accumulates halting scores in two dimensions (blocks and timesteps), more tokens are halted as the block and timestep indices increase. With four timesteps and eight blocks, the maximum processed count for each token is 32, where brighter regions indicate more processing, and darker regions indicate less (i.e., halted earlier). Tokens from the less informative background are halted first, with an increasing number of tokens being halted over time.

Quantitative results and classification difficulty. Fig. 5(b) shows the number of tokens halted per block and timestep. As visualized in Fig. 5(a), more tokens are halted as the block and timestep indices increase. Due to the two-dimensional halting policy of STAS^e , more tokens halt as the number of timesteps increases. Figure 5(c) visualizes samples correctly classified by STAS^e , comparing those that use more tokens versus those that use fewer tokens. On average, easy samples utilize 37% or fewer of all tokens per block, while hard samples use 57% or more of all tokens per block. We observe that STAS^e uses fewer tokens when the object in the image is clearly separated from the background and other objects.

4.2 COMPARISON TO PRIOR ART

We evaluate STAS against SNN methods based on both CNNs (e.g., VGG, ResNet) and Transformers (e.g., Spikformer, Spikingformer). To benchmark against other dynamic computation techniques

²As the official implementation is not publicly available, we re-implemented the method based on the descriptions in the original paper and made our best effort to reproduce it faithfully.

378 Table 2: Main experiment results on ImageNet.
379

380 Method	381 Architecture	382 Param (M)	383 Timestep	384 Energy (mJ)	385 Acc
381 Hybrid training (Rathi et al., 2020)	382 ResNet-34	383 21.79	384 250	385 -	386 61.48
382 STBP-tdBN (Zheng et al., 2021)	383 ResNet-34	384 21.79	385 6	386 6.39	387 63.72
383 TET (Deng et al., 2022)	384 Spiking-ResNet-34	385 21.79	386 6	387 -	388 64.79
384 Spiking ResNet (Hu et al., 2021a)	385 SEW ResNet-34	386 21.79	387 4	388 -	389 68.00
385	386 ResNet-34	387 21.79	388 350	389 59.30	390 71.61
386	387 ResNet-50	388 25.56	389 350	390 70.93	391 72.75
387	388 SEW ResNet-34	389 21.79	390 4	391 4.04	392 67.04
388	389 SEW ResNet-50	390 25.56	391 4	392 4.89	393 67.78
389	390 SEW ResNet-101	391 44.55	392 4	393 8.91	394 68.76
390	391 SEW ResNet-152	392 60.19	393 4	394 12.89	395 69.26
391	392 MS-ResNet (Hu et al., 2021b)	393 ResNet-104	394 44.55+	395 5	396 -
392	393 Att MS ResNet (Yao et al., 2023)	394 Att-MS-ResNet-18	395 11.87	396 1	397 0.48
393	394 Att-MS-ResNet-34	395 22.12	396 1	397 0.57	398 69.15
394	395 ANN	396 Transformer-8-512	397 29.68	398 -	399 38.34
395	396 Spikformer (Zhou et al., 2022)	397 Spikformer-8-768	398 66.34	399 4	400 21.48
396	397 OST (Song et al., 2024)	398 OST-8-384	399 19.36	400 1	401 4.63
397	398 OST-8-512	399 33.87	400 1	401 6.92	402 74.97
398	399 Spikingformer (Zhou et al., 2023)	400 Spikingformer-8-384	401 16.81	402 4	403 4.69
399	400 Spikingformer-8-512	401 29.68	402 4	403 7.46	404 74.79
400	401 STATA (Zhuge et al., 2024)	402 Spikingformer-8-384	403 16.82	404 4	405 4.33*
401	402 STATA	403 Spikformer-8-768	404 -	405 4	406 11.16
402	403 STAS	404 Spikingformer-8-384	405 16.81	406 4	407 3.81 (-18.8%)
403	404 STAS	405 Spikingformer-8-512	406 29.68	407 4	408 7.16 (-4.02%)
404	405 STAS ^ε	406 Spikingformer-8-384	407 16.83	408 4	409 3.28 (-30.1%)
405	406 STAS ^ε	407 Spikingformer-8-512	408 29.68	409 4	410 5.73 (-23.19%)
406	407	408	409	410	411 75.13 (↑)

401 Table 3: Experiment results on CIFAR-10/CIFAR-100.
402

403 Method	404 Architecture	405 Param (M)	406 Timestep	407 Energy (mJ)	408 Acc
404 STBP-tdBN (Zheng et al., 2021)	405 ResNet-19	406 12.63	407 4	408 -	409 92.9/70.9
405 AutoSNN (Na et al., 2022)	406 AutoSNN (C=128)	407 21	408 8	409 -	410 93.2/69.2
406 SpikeDHS ^D (Che et al., 2022)	407 SpikeDHS-CLA (n3s1)	408 14	409 6	410 -	411 95.4/76.3
407 Hybrid training (Rathi et al., 2020)	408 VGG-11	409 9.27	410 125	411 -	412 92.2/67.9
408 Diet-SNN (Rathi & Roy, 2020)	409 ResNet-20	410 0.27	411 10/5	412 -	413 92.5/64.1
409 TET (Deng et al., 2022)	410 ResNet-19	411 12.63	412 4	413 -	414 94.4/74.5
410 ANN-to-SNN (Deng & Gu, 2021)	411 ResNet-20	412 10.91	413 32	414 -	415 93.3/68.4
411 ANN	412 Transformer-4-384	413 9.32	414 -	415 4.25	416 96.7/81.0
412 Spikformer (Zhou et al., 2022)	413 Spikformer-4-384	414 9.32	415 4	416 0.74*/0.89*	417 94.8*/77.3*
413 STATA (Zhuge et al., 2024)	414 Spikformer-4-384	415 -	416 4	417 -	418 95.2/77.9
414 STAS ^ε	415 Spikformer-4-384	416 9.32	417 4	418 0.40/0.50	419 95.2/77.9
415 OST (Song et al., 2024)	416 OST-4-384	417 11.37	418 1	419 0.46	420 95.6/78.8
416 Spikingformer (Zhou et al., 2023)	417 Spikingformer-4-384	418 9.32	419 4	420 0.42*/0.50*	421 95.7*/79.4*
417 STATA (Zhuge et al., 2024)	418 Spikingformer-4-384	419 -	420 4	421 -	422 95.8/79.9
418 STAS ^ε	419 Spikingformer-4-384	420 9.32	421 4	422 0.37/0.46	423 95.8/79.4

418 for SNN-based ViTs, we also compare our results with those of OST and STATA. We measured the
419 energy consumption³ and accuracy of each model during inference on ImageNet (in Table 2) and
420 CIFAR-10/CIFAR-100 (in Table 3).

421 **ImageNet** We trained STAS on the Spikingformer-8-384 and Spikingformer-8-512 models. We set
422 hyper-parameters as $\alpha = 5$, $\beta = -25$, and $\delta_p = 10^{-4}$. To compare against a static token-dropping
423 method, we implemented STATA⁴ and evaluated its performance. As shown in Table 2, Transformer-
424 based methods generally outperform CNN-based ones. On the Spikingformer-8-384, STATA reduces
425 some energy but incurs a significant accuracy drop because it drops a fixed ratio of tokens without
426 considering timesteps. In contrast, STAS reduces energy consumption while achieving even higher
427 accuracy than the original Spikingformer. Furthermore, by adjusting the halting threshold ϵ , we can
428 create a variant, STAS^ε, which trades some accuracy for greater energy savings. When configured

429
430 ³Following the widely accepted measurement methods in previous SNN studies (Zhou et al., 2022; 2023),
431 the equation for calculating energy consumption is provided in the supplement.

432 ⁴Same as Footnote 1.

432 Table 4: Ablation study on Spikformer-4-384 and Spikingformer-4-384 with CIFAR-100.
433

Architecture	I-SPS	ϵ	Accumulation	Avg. tokens	Acc (%)
Spikformer	\times	\times	(\bar{B})	$\times 0.60$	78.0
	\times	\times	(\bar{T}) + (\bar{B})	$\times 0.63$	77.3
	\checkmark	\times	(\bar{T}) + (\bar{B})	$\times 0.46$	78.1
	\checkmark	\checkmark	(\bar{T}) + (\bar{B})	$\times 0.42$	77.9
Spikingformer	\times	\times	(\bar{B})	$\times 0.65$	78.5
	\times	\times	(\bar{T}) + (\bar{B})	$\times 0.95$	77.4
	\checkmark	\times	(\bar{T}) + (\bar{B})	$\times 0.70$	79.9
	\checkmark	\checkmark	(\bar{T}) + (\bar{B})	$\times 0.50$	78.5

443 for significant energy savings, STAS reduces the energy consumption of the original Spikingformer
444 by 18.8% to 30.1% while maintaining a comparable or even slightly higher accuracy.
445

446 **CIFAR-10/CIFAR-100** We trained STAS on Spikformer-4-384 and Spikingformer-4-384. We set
447 hyper-parameters as $\alpha = -5, \beta = 0, \delta_p = 10^{-3}$ for Spikformer, and $\alpha = 5, \beta = -25, \delta_p = 10^{-3}$
448 for Spikingformer. For a fair comparison, we adjusted the halting threshold ϵ to create STAS variants
449 tuned to the accuracy levels of the original models. For the Spikformer, we achieved substantial
450 energy reductions of 45.9% on CIFAR-10 and 43.8% on CIFAR-100, respectively, while attaining
451 higher accuracy. On the Spikingformer, STAS also achieved higher accuracy while reducing energy
452 by 11.9% on CIFAR-10 and 8.0% on CIFAR-100.

453 4.3 ABLATION STUDIES

454 We evaluate the impact of I-SPS and the accumulation methods on the accuracy and energy effi-
455 ciency of STAS. Table 4 shows the average number of tokens used per block and the corresponding
456 accuracy with and without each component. All experiments are conducted on the Spikformer-4-384
457 model using the CIFAR-100.

458 **I-SPS vs SPS.** Table 4 presents the token usage and accuracy of STAS with and without I-SPS.
459 With I-SPS, STAS achieves higher accuracy (77.3% vs. 78.1%) while using fewer tokens ($\times 0.63$ vs.
460 $\times 0.46$). This improvement arises because, as shown in Fig. 3(c), I-SPS encourages similarity among
461 inputs across consecutive timesteps, enabling more efficient application of ACT.

462 **Two- vs one-dimensional halting.** Table 4 compares the halting score accumulation methods on
463 CIFAR-100: one that accumulates only across one dimension (\bar{B} , block-level only) and another
464 that accumulates scores across two dimensions (\bar{T}) + (\bar{B}), both timestep and block-levels as per
465 Eq. equation 4). As shown in Table 4, the two-dimensional halting mechanism achieves higher ac-
466 curacy (78.0% vs 78.1%) while removing more tokens ($\times 0.60$ vs $\times 0.46$) compared to the one-
467 dimensional halting. This is because, by definition, the LHS of Eq. equation 4 becomes larger under
468 two-dimensional halting than under one-dimensional halting, which in turn increases the LHS of
469 Eq. equation 9, leading to more tokens being halted. Furthermore, the STAS $^\epsilon$ variant maximizes
470 this halting effect, achieving even greater token reduction ($\times 0.42$ and $\times 0.50$ for Spikformer and
471 Spikingformer, respectively).

472 5 CONCLUSION

473 In this paper, we addressed the fundamental two-dimensional (spatio-temporal) adaptive computa-
474 tion challenge inherent to SNN-based ViTs. We first identified that the efficacy of dynamic halting is
475 fundamentally constrained by the static architecture’s lack of temporal similarity. To resolve this, we
476 proposed STAS, a framework that co-designs a static architectural module (I-SPS) with a dynamic
477 halting policy (A-SSA) to enable accuracy-aware token halting across both spatial and temporal
478 axes. Our experiments on CIFAR-10, CIFAR-100, and ImageNet demonstrate the effectiveness of
479 this synergistic approach: STAS significantly improves the accuracy-energy trade-off, reducing en-
480 ergy consumption by up to 45.9%, 43.8%, and 30.1%, respectively, while simultaneously enhancing
481 accuracy.
482

486 REFERENCES
487

488 Tong Bu, Jianhao Ding, Zecheng Hao, and Zhaofei Yu. Rate gradient approximation attack threats
489 deep spiking neural networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
490 and *Pattern Recognition*, pp. 7896–7906, 2023.

491 Kaiwei Che, Liziwei Leng, Kaixuan Zhang, Jianguo Zhang, Qinghu Meng, Jie Cheng, Qinghai
492 Guo, and Jianxing Liao. Differentiable hierarchical and surrogate gradient search for spiking
493 neural networks. *Advances in Neural Information Processing Systems*, 35:24975–24990, 2022.

494 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
495 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
496 pp. 248–255. Ieee, 2009.

497 Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to spiking
498 neural networks. *arXiv preprint arXiv:2103.00476*, 2021.

500 Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
501 neural network via gradient re-weighting. *arXiv preprint arXiv:2202.11946*, 2022.

502 Shikuang Deng, Hao Lin, Yuhang Li, and Shi Gu. Surrogate module learning: Reduce the gradient
503 error accumulation in training spiking neural networks. In *International Conference on Machine*
504 *Learning*, pp. 7645–7657. PMLR, 2023.

505 Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
506 residual learning in spiking neural networks. *Advances in Neural Information Processing Systems*,
507 34:21056–21069, 2021.

508 Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang,
509 Huihui Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine learning
510 infrastructure platform for spike-based intelligence. *Science Advances*, 9(40):eadi1480, 2023.

511 Michael Figurnov, Maxwell D Collins, Yukun Zhu, Li Zhang, Jonathan Huang, Dmitry Vetrov, and
512 Ruslan Salakhutdinov. Spatially adaptive computation time for residual networks. In *Proceedings*
513 of the IEEE conference on computer vision and pattern recognition, pp. 1039–1048, 2017.

514 Alex Graves. Adaptive computation time for recurrent neural networks. *arXiv preprint*
515 *arXiv:1603.08983*, 2016.

516 Yangfan Hu, Huajin Tang, and Gang Pan. Spiking deep residual networks. *IEEE Transactions on*
517 *Neural Networks and Learning Systems*, 34(8):5200–5205, 2021a.

518 Yifan Hu, Yujie Wu, Lei Deng, and Guoqi Li. Advancing residual learning towards powerful deep
519 spiking neural networks. *arXiv preprint arXiv:2112.08954*, 7:2, 2021b.

520 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
521 2009.

522 Yuhang Li, Abhishek Moitra, Tamar Geller, and Priyadarshini Panda. Input-aware dynamic timestep
523 spiking neural networks for efficient in-memory computing. In *2023 60th ACM/IEEE Design*
524 *Automation Conference (DAC)*, pp. 1–6. IEEE, 2023.

525 Yuhang Li, Tamar Geller, Youngeun Kim, and Priyadarshini Panda. Seenn: Towards temporal spik-
526 ing early exit neural networks. *Advances in Neural Information Processing Systems*, 36, 2024.

527 Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
528 Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
529 training. *arXiv preprint arXiv:1710.03740*, 2017.

530 Byunggook Na, Jisoo Mok, Seongsik Park, Dongjin Lee, Hyeokjun Choe, and Sungroh Yoon. Au-
531 tosnn: Towards energy-efficient spiking neural networks. In *International conference on machine*
532 *learning*, pp. 16253–16269. PMLR, 2022.

533 Nitin Rathi and Kaushik Roy. Diet-snn: Direct input encoding with leakage and threshold optimiza-
534 tion in deep spiking neural networks. *arXiv preprint arXiv:2008.03658*, 2020.

540 Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Enabling deep
 541 spiking neural networks with hybrid conversion and spike timing dependent backpropagation.
 542 *arXiv preprint arXiv:2005.01807*, 2020.

543 Xiaotian Song, Andy Song, Rong Xiao, and Yanan Sun. One-step spiking transformer with a lin-
 544 ear complexity. In *Proceedings of the Thirty-Third International Joint Conference on Artificial*
 545 *Intelligence*, pp. 3142–3150, 2024.

546 Ziqing Wang, Yuetong Fang, Jiahang Cao, Qiang Zhang, Zhongrui Wang, and Renjing Xu. Masked
 547 spiking transformer. In *Proceedings of the IEEE/CVF International Conference on Computer*
 548 *Vision*, pp. 1761–1771, 2023.

549 Man Yao, Guangshe Zhao, Hengyu Zhang, Yifan Hu, Lei Deng, Yonghong Tian, Bo Xu, and Guoqi
 550 Li. Attention spiking neural networks. *IEEE transactions on pattern analysis and machine intel-*
 551 *ligence*, 45(8):9393–9410, 2023.

552 Hongxu Yin, Arash Vahdat, Jose M Alvarez, Arun Mallya, Jan Kautz, and Pavlo Molchanov. A-ViT:
 553 Adaptive tokens for efficient vision transformer. In *Proceedings of the IEEE/CVF Conference on*
 554 *Computer Vision and Pattern Recognition*, pp. 10809–10818, 2022.

555 Lida Zhang, Abdolghani Ebrahimi, and Diego Klabjan. Layer flexible adaptive computation time.
 556 In *2021 International Joint Conference on Neural Networks (IJCNN)*, pp. 1–9. IEEE, 2021.

557 Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
 558 larger spiking neural networks. In *Proceedings of the AAAI conference on artificial intelligence*,
 559 volume 35, pp. 11062–11070, 2021.

560 Chenlin Zhou, Liutao Yu, Zhaokun Zhou, Han Zhang, Zhengyu Ma, Huihui Zhou, and Yonghong
 561 Tian. Spikingformer: Spike-driven residual learning for transformer-based spiking neural net-
 562 work. *arXiv preprint arXiv:2304.11954*, 2023.

563 Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and
 564 Li Yuan. Spikformer: When spiking neural network meets transformer. *arXiv preprint*
 565 *arXiv:2209.15425*, 2022.

566 Zhengyang Zhuge, Peisong Wang, Xingting Yao, and Jian Cheng. Towards efficient spiking trans-
 567 former: a token sparsification framework for training and inference acceleration. In *Forty-first*
 568 *International Conference on Machine Learning*, 2024.

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 APPENDIX
595

596 This document provides supplementary material to the main submission. Sec. A details a widely
597 accepted equation (Chen et al., 2023) for calculating SNN energy consumption and discusses the
598 minor runtime overhead of our halting mechanism. We then present a detailed analysis in Sec. B on
599 the impact of key hyperparameters (δ_p , α , and β) and surrogate module learning. Sec. C evaluates
600 the generalizability of STAS on dynamic vision sensor (DVS) datasets (Li et al., 2017), and Sec. D
601 provides additional qualitative results visualizing the token halting process.

602
603 A ENERGY CALCULATION
604

605 To measure the energy consumption of an SNN, we calculate the theoretical energy usage based
606 on the number of operations during inference. To do this, we first define the number of synaptic
607 operations in each block as follows:

$$608 \text{SOPs}(l) = T \times fr(l) \times \text{FLOPs}(l), \quad (11)$$

609 where l represents the index of the block, and T denotes the timestep. The term $fr(l)$ refers to the
610 firing ratio of spikes entering block l . $\text{SOPs}(l)$ indicates the number of synaptic operations performed
611 in the l -th block, while $\text{FLOPs}(l)$ denotes the number of floating-point operations in the same block.
612 Using SOPs , we can calculate the total energy consumption E of the SNN as follows:

$$613 E = E_{MAC} \times \text{FLOPs}_{SPS} + E_{AC} \times (\text{SOPs}_{SPS} + \sum_{l=1}^L \text{SOPs}_{SSA}(l) + \sum_{l=1}^L \text{SOPs}_{MLP}(l)), \quad (12)$$

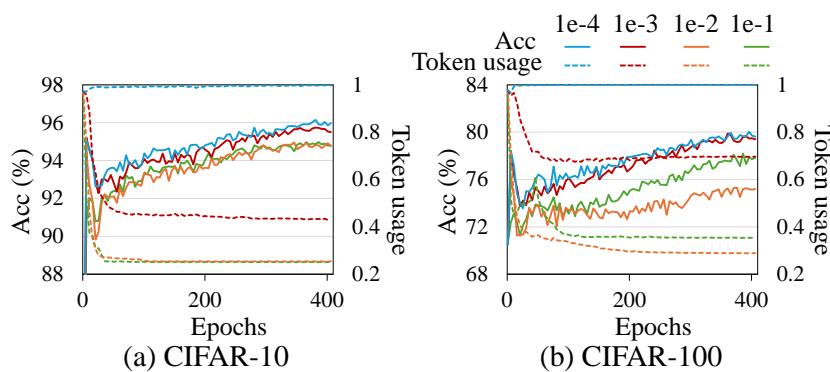
614 where E_{MAC} and E_{AC} represent the energy consumed per operation for multiplication and accumula-
615 tion (MAC) and accumulation (AC), respectively, with $E_{MAC} = 4.6\text{pJ}$ and $E_{AC} = 0.9\text{pJ}$.
616 SOPs_{SPS} refers to the synaptic operations in the SPS, while $\text{SOPs}_{SSA}(l)$ and $\text{SOPs}_{MLP}(l)$ denote
617 the synaptic operations in the SSA and MLP of a block, respectively. Additionally, FLOPs_{SPS} rep-
618 presents the floating-point operations in the SPS. By preventing merged or masked tokens from firing
619 spikes, STAS reduces the firing ratio $fr(l)$, reducing energy consumption in the SSA and MLP.

620 **Energy consumption for runtime overhead.** STAS performs additional computations at runtime
621 to calculate the halting score for each token, which results in additional energy consumption. Since
622 the computation for halting scores involves MAC operations, we estimate the energy per operation
623 using E_{MAC} . Although halting scores are computed once per block and timestep, the operations
624 are element-wise and lightweight, contributing only a negligible amount of energy compared to the
625 total consumption of the model. For instance, STAS consumes at most only 0.03 mJ and 0.04 mJ of
626 additional energy on ImageNet with Spikingformer-8-384 and Spikingformer-8-512, respectively,
627 and just 0.005 mJ for each model on CIFAR-100 with Spikingformer-4-384. Note that the energy
628 consumption of STAS reported in the main submission already includes all runtime overheads.

629
630 B HYPERPARAMETER ANALYSIS
631

632 **Various δ_p .** STAS allows for adjusting the trade-off between accuracy and the number of tokens
633 through the hyperparameter δ_p in Eq. (10) in the main body of the paper. To examine the effect of
634 δ_p , we compare the accuracy and the number of tokens on the CIFAR-10 and CIFAR-100 datasets
635 across a range of δ_p values from 10^{-1} to 10^{-4} . We trained Spikingformer-4-384 during 410 epochs.
636 Fig. 6 shows the accuracy and token usage during the training phase. As shown in Fig. 6, a smaller δ_p
637 ($10^{-4}, 10^{-3}$) results in higher accuracy, while a larger δ_p ($10^{-2}, 10^{-1}$) leads to reduce the number
638 of tokens. Consequently, STAS can be finely tuned by adjusting δ_p to achieve the desired balance
639 between higher accuracy and fewer tokens, depending on the specific application requirements.

640 **Various α and β .** During training, STAS can control the trade-off between token usage and ac-
641 curacy not only through δ_p , but also via the hyperparameters α and β in Eq.(3). The hyperparam-
642 eters α and β directly adjust the halting score, thereby influencing halting behavior during training.

Figure 6: Training curve depending on δ_p with SpikingformerTable 5: Effect of α and β on Spikingformer.

Dataset	CIFAR-100							
	α	3	5	8	β	-15	-25	-35
Avg. tokens		$\times 1$	$\times 0.70$	$\times 0.50$	Avg. tokens	$\times 0.46$	$\times 0.70$	$\times 0.75$
Acc (%)		78.3	79.9	78.6	Acc (%)	78.7	79.9	79.9

Table 6: Effect of SML on Spikingformer.

Dataset	CIFAR-10			CIFAR-100		
	SML	\times	\checkmark	SML	\times	\checkmark
δ_p	1e-3	1e-2	1e-3	1e-3	1e-2	1e-3
ϵ	\times	\times	\checkmark	\times	\times	\times
Avg. tokens	$\times 1$	$\times 0.47$	$\times 0.45$	$\times 0.44$	$\times 1$	$\times 0.76$
Acc (%)	96.1	95.9	95.8	95.8	80.0	79.9

To investigate their effects, we conduct experiments on CIFAR-100, varying $\alpha \in \{3, 5, 8\}$ and $\beta \in \{-15, -25, -35\}$ while fixing $\delta_p = 10^{-3}$. We use Spikingformer-4-384, and all models are trained for 410 epochs. Table 5 shows the accuracy and average token usage across different α and β . As shown in the Table 5, increasing α results in lower token usage (e.g., $\times 1.00$ vs. $\times 0.50$). Conversely, decreasing β also reduces token usage (e.g., $\times 0.75$ vs. $\times 0.46$), as it causes the halting scores to accumulate more rapidly.

Surrogate module learning. Surrogate module learning (SML) (Deng et al., 2023) effectively mitigates gradient errors during SNN training, thereby improving accuracy. Table 6 presents the effect of SML on token usage and accuracy under the setting of $\alpha = 5$ and $\beta = -25$ for both CIFAR-10 and CIFAR-100. As shown in Table 6, SML achieves reduced token usage (e.g., $\times 1.00$ vs. $\times 0.70$) while maintaining comparable accuracy (80.0% vs. 79.9%) on CIFAR-100 under the same setting. However, since the accuracy of STAS can be adjusted through hyperparameter tuning, we measure energy efficiency at comparable accuracy to SML by appropriately setting hyperparameters (e.g., δ_p , ϵ) for a fair comparison. Under these conditions, SML consistently demonstrates improved token efficiency at comparable accuracy. This suggests that training methods that enhance energy efficiency can be applied orthogonally to STAS without compromising accuracy.

C ADAPTABILITY OF STAS

Another SNN-based transformer. To verify whether our methodology works on ViTs based on directly trained SNNs other than Spikformer and Spikingformer, we applied it to spike-driven Transformer (Yao et al., 2023) and evaluated its performance on CIFAR-10 and CIFAR-100. We compared the accuracy of a model trained for 310 epochs with that of STAS, which was trained for an ad-

702
703
704 Table 7: Experiment results on Spike-Driven Transformer with four timesteps.
705
706
707
708

Dataset	CIFAR-10		CIFAR-100	
Method	STATIC	STAS	STATIC	STAS
Avg. tokens	$\times 1$	$\times 0.38$	$\times 1$	$\times 0.54$
Acc (%)	95.6	95.8	78.4	78.9

709
710
711 Table 8: Experiment result on neuromorphic dataset with Spikingformer.
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

ditional 310 epochs using the pretrained model. As shown in Table 7, similar to the results with Spikformer and Spikingformer, our approach maintains accuracy comparable to STATIC (without any lightweight method) in spike-driven Transformer, while reducing the average number of tokens used per block to 0.38 for CIFAR-10 and 0.54 for CIFAR-100.

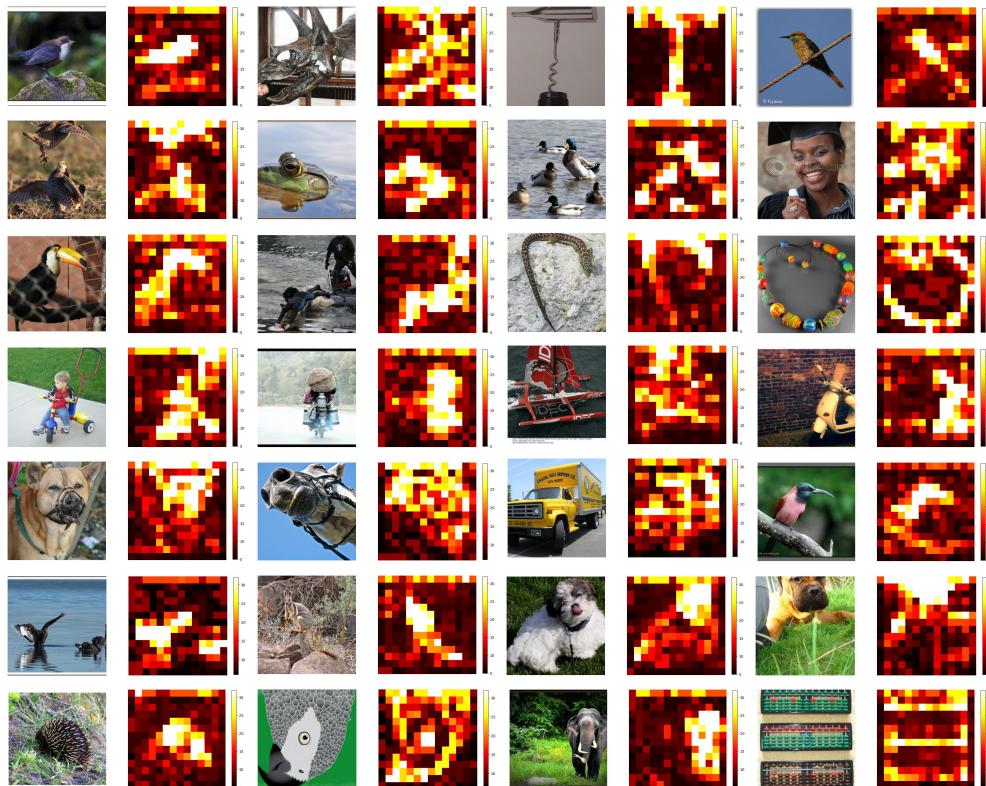


Figure 7: Original images (odd-numbered columns) and heatmaps showing the number of blocks (for four timesteps) each token processes (even-numbered columns) on ImageNet. Brighter colors indicate more processing per token. STAS halts earlier on tokens that lack visual information.

Application to DVS Datasets. To evaluate the adaptability of STAS, we tested its performance on the CIFAR10-DVS (Li et al., 2017) and DVS128Gesture (Amir et al., 2017) datasets. For these experiments, we trained a Spikingformer-2-384 model for 106 epochs with 16 timesteps, setting hyperparameters to $\alpha = 5$, $\beta = -10$, and $\delta_p = 10^{-3}$. As shown in Table 8, this configuration

756 still demonstrated strong performance, improving accuracy on CIFAR10-DVS to 82.4% with $\times 0.60$
 757 token usage, and maintaining comparable accuracy (97.9%) on DVS128Gesture with $\times 0.70$ token
 758 usage. This highlights that while the full STAS co-design is optimal for static images, the A-SSA
 759 halting mechanism is robust and highly effective as a standalone module for processing inherently
 760 temporal data.

762 D VISUALIZATION

764 We visualize STAS’s token halting process on ImageNet samples using the Spikingformer-8-384
 765 model. Figure 7 shows the original images alongside heatmaps that represent the computational
 766 depth of each token, defined as the total number of blocks it is processed for across four timesteps.
 767 Brighter colors in the heatmaps indicate more processing (later halting). The visualizations consist-
 768 ently show that STAS allocates more computation to tokens corresponding to salient object features.
 769 Conversely, tokens from uninformative regions, such as the background, are halted much earlier,
 770 resulting in darker areas on the heatmap. Notably, the policy appears more nuanced than simple
 771 foreground-background segmentation, often prioritizing semantically rich features within an object,
 772 like faces or distinctive textures.

774 APPENDIX REFERENCES

776 Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo, Tapan
 777 Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al. A low power, fully
 778 event-based gesture recognition system. In *Proceedings of the IEEE conference on computer*
 779 *vision and pattern recognition*, pp. 7243–7252, 2017.

780 Guangyao Chen, Peixi Peng, Guoqi Li, and Yonghong Tian. Training full spike neural networks via
 781 auxiliary accumulation pathway. *arXiv preprint arXiv:2301.11929*, 2023.

782 Shikuang Deng, Hao Lin, Yuhang Li, and Shi Gu. Surrogate module learning: Reduce the gradient
 783 error accumulation in training spiking neural networks. In *International Conference on Machine*
 784 *Learning*, pp. 7645–7657. PMLR, 2023.

786 Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream
 787 dataset for object classification. *Frontiers in neuroscience*, 11:309, 2017.

788 Man Yao, JiaKui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo XU, and Guoqi Li. Spike-driven
 789 transformer. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL
 790 <https://openreview.net/forum?id=9FmolyOHi5>.

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809