
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STAS: SPATIO-TEMPORAL ADAPTIVE COMPUTATION
TIME FOR SPIKING TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking neural networks (SNNs), while energy-efficient, suffer from high latency
and computational overhead, and existing dynamic computation methods to ad-
dress this remain fragmented. While the principles of adaptive computation time
(ACT) offer a robust foundation for a unified approach, its application to SNN-
based vision Transformers (ViTs) is hindered by two core issues: the violation
of its temporal similarity prerequisite and a static architecture fundamentally un-
suited for its principles. To address these challenges, we propose STAS (Spatio-
Temporal Adaptive computation time for Spiking transformers), a framework that
co-designs the static architecture and dynamic computation policy. STAS intro-
duces an integrated spike patch splitting (I-SPS) module to establish temporal
stability by creating a unified input representation, thereby solving the architec-
tural problem of temporal dissimilarity. This stability, in turn, allows our adaptive
spiking self-attention (A-SSA) module to perform two-dimensional token prun-
ing across both spatial and temporal axes. Implemented on spiking Transformer
architectures and validated on CIFAR-10, CIFAR-100, and ImageNet, STAS re-
duces energy consumption by up to 45.9%, 43.8%, and 30.1%, respectively, while
simultaneously improving accuracy over SOTA models.

1 INTRODUCTION

Spiking neural networks (SNNs) are energy-efficient but suffer from high latency and computational
overhead due to their multi-timestep operational nature. State-of-the-art (SOTA) studies to improve
SNNs have followed two main paths: (S) static architectural enhancements (e.g., Spikformer (Zhou
et al., 2022), Spikingformer (Zhou et al., 2023)) and (D) dynamic computation methods (e.g.,
OST (Song et al., 2024), STATA (Zhuge et al., 2024)), with their performances shown in Fig. 1(a).
Dynamic methods are motivated by the observation that accuracy often saturates long before the
final block or timestep, presenting a clear opportunity for input-dependent halting (Fig. 1(b)).

The exploration of dynamic computation has fragmented into distinct approaches. One line of re-
search has refined (D1) architecture-agnostic spatial halting (e.g., SACT (Figurnov et al., 2017)).
In parallel, SNN-specific works have focused on (D2) temporal adaptivity (e.g., DT-SNN (Li et al.,
2023)). A third approach is (D3) architecture-aware halting (e.g., A-ViT (Yin et al., 2022)), which
leverages a model’s unique components, such as Transformer tokens. These strategies operate in-
dependently along a single dimension, not only due to a lack of research into their synergy, but
because of a fundamental conflict we identify (in Sec. 3.1): the direct application of a method from
one dimension can degrade performance in another. This issue becomes particularly evident when
powerful halting principles are applied to the unique temporal dynamics of SNNs.

This architectural conflict is aptly illustrated by the principles of adaptive computation time (ACT).
While ACT offers a potential foundation for a unified framework, its direct application to SNN-
based vision Transformers (ViTs) reveals a deeper, architectural obstacle. ACT’s efficacy is critically
constrained by the static architecture; it relies on high input similarity for stable refinement. While
SNN-ViTs possess spatial similarity, their design leads to critically low temporal similarity due to
varying spike inputs at each timestep. This architectural flaw makes true spatio-temporal halting
impossible with a purely dynamic approach and reveals a critical interdependence: an effective dy-
namic framework requires a new static architecture, necessitating an integrated (S with D1-D3)
paradigm.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

60

65

70

75

80

0 3 6 9 12

(a) Accuracy and energy consumption

(b) Impact of blocks and

 timesteps and on accuracy

STBP-tdBN

Attn-MS-

ResNet

STATA

CNN Transformer

T

C

Spikingformer

TC

74.03

A
cc

u
ra

cy
 (

%
)

Energy consumption (mJ)

SEW ResNet
C

C

C

T

TT

T

C

C

STASε

T

T

40

50

60

70

80

90

1 2 3 4
of timesteps

A
cc

u
ra

cy
 (

%
)

20

40

60

80

100

1 2 3 4
of blocks

A
cc

u
ra

cy
 (

%
)

Accuracy-aware

spatial halting

Accuracy-aware

temporal halting

69.04

77.05 78.74 79.44

30.54

50.94

73.64
79.44

67.04

67.78
68.76

63.72

74.97

69.15

63.97

74.79

72.45

72.61

75.13

Spikingformer-8-512

Spikingformer-8-384

STATA

T67.65

Spikformer-8-768

Spikingformer-8-384

Figure 1: Accuracy of adaptive computation methods for Spikingformer on ImageNet. (a) Accuracy-
energy trade-off for various models (see Table 2). (b) Accuracy saturation motivating halting, shown
spatially (top) and temporally (bottom).

In this paper, we propose STAS (Spatio-Temporal Adaptive computation time for Spiking Trans-
formers), a novel framework that resolves this interdependence by co-designing the static architec-
ture and the dynamic computation method. STAS first addresses the architectural bottleneck with
an integrated spike patch splitting (I-SPS) module, providing the static solution S by creating a
temporally unified representation. This engineered stability, in turn, unlocks true two-dimensional
adaptivity, enabling our adaptive spiking self-attention (A-SSA) module to act as the unified frame-
work for D1-D3 by performing concurrent token halting across both spatial and temporal axes.

We implemented STAS on strong, directly trained spiking Transformers, including Spikformer and
Spikingformer, and validated its performance on the CIFAR-10, CIFAR-100, and ImageNet classi-
fication datasets. When applied to these architectures, STAS reduces energy consumption by up to
45.9%, 43.8%, and 30.1% on the three datasets, respectively, while simultaneously improving top-1
accuracy.

Our contribution can be summarized as follows:

• We diagnose the fundamental barrier to a unified adaptive framework in SNN-based ViTs
through a spatio-temporal similarity analysis, revealing that their architectural design in-
herently obstructs temporal halting.

• We propose I-SPS that re-engineers the SNN input stage to establish the temporal similarity
required for effective temporal adaptation.

• Building upon the stability provided by I-SPS, we introduce A-SSA, a unified mechanism
that performs concurrent spatial and temporal token halting.

• We demonstrate the effectiveness of STAS through extensive experiments on CIFAR-10,
CIFAR-100, and ImageNet, achieving up to 45.9%, 43.8%, and 30.1%, respectively, for
SOTA architectures while improving accuracy.

2 RELATED WORK

Methods like DT-SNN dynamically adjust the timesteps of an SNN during inference based on ac-
curacy needs, using entropy and confidence metrics to halt computation early for simpler inputs.
SEENN (Li et al., 2023; 2024) employs reinforcement learning to optimize timesteps for each im-
age, allowing for fine-grained per-instance optimization, while TET (Deng et al., 2022) introduces
a loss function to address gradient loss in spiking neurons, achieving higher accuracy with fewer
timesteps. However, the decision-making overhead of these temporal methods can outweigh the
benefits in low-timestep regimes, making them less suitable for deeper, more efficient models. In
a different approach, MST (Wang et al., 2023) proposes an ANN-to-SNN conversion method for
SNN-based ViTs, using token masking within model blocks to reduce energy consumption. Despite

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(b) ViT (c) SNN-based ViT

Block 𝐵1

Block 𝐵2

Block 𝐵1

Block 𝐵2

Block 𝐵1

Block 𝐵2

t = 1 t = 2

𝑥1 𝑥1,1 𝑥1,2

𝑥2,1 𝑥2,2

(a) RNN

Block 𝐵1

Hidden

state

𝑥2
ℎ

ℎ1

ℎ2

ℎ1,1

ℎ2,1

𝑥1
ℎ1,2

ℎ2,2

Input

Halting score

A
cc

u
m

u
la

ti
o
n

A
cc

u
m

u
la

ti
o
n

Accumulation (not working)

A
cc

u
m

u
la

ti
o
n

Residual

network

0.5
0.6
0.7
0.8
0.9

1 3 5 7 9

C
o
si

n
e

si
m

il
ar

it
y

(d) ViT

(e) SNN-based ViT

-th consecutive blocks

-th consecutive blocks

0.5
0.6
0.7
0.8
0.9

1 2 3
-th consecutive timesteps

1 2 3

2nd Block2nd Timestep

I-SPS

SPS

C
o
si

n
e

si
m

il
ar

it
y

Figure 2: Model architecture and halting-score accumulation paths when Adaptive Computation
Time (ACT) is applied: (a) RNN, (b) ViT, and (c) SNN-based ViT. Cosine similarity of tokens
between consecutive blocks for (d) ViT and (e) SNN-based ViT (Spikingformer) on CIFAR-100.

its effectiveness, this reliance on ANN-to-SNN conversion means MST still requires hundreds of
timesteps for inference.

The principles of ACT (Graves, 2016) were first introduced to dynamically allocate inference steps
for RNN models based on input difficulty. This concept was extended by SACT (Figurnov et al.,
2017) for ResNet architectures and A-ViT (Yin et al., 2022), which dynamically adjusts computation
in Transformers by halting individual tokens at different layers. However, these studies are based
on ANNs, and their formulations are fundamentally incompatible with the discrete, multi-timestep
nature of SNNs, as they typically perform a single inference pass. While LFACT (Zhang et al., 2021)
expands ACT for repeated inferences across sequences, it remains limited to RNNs. In contrast,
STAS is explicitly designed to address the unique two-dimensional challenge of SNN-based ViTs,
simultaneously considering adaptivity across both spatial blocks and discrete timesteps.

3 METHOD

3.1 I-SPS: INTEGRATED SPIKE PATCH SPLITTING

ACT enables neural networks to dynamically adjust their computational depth per input, learning
to halt processing to improve efficiency. The mechanism is predicated on the principle of halting
computation once the network’s internal representations stabilize. This concept was originally pro-
posed for RNNs, where an encoder block B1 iteratively refines its state from the same input x1,
and a sigmoidal halting unit determines when to cease processing (Fig. 2(a)). This architectural
paradigm extends naturally to ViTs, which can be viewed as an “unrolled iterative estimation” pro-
cess. Their structure, featuring multiple identical encoder blocks (property (i)) with residual connec-
tions (Fig. 2(b)), ensures high input similarity between consecutive blocks (property (ii), Fig. 2(d)).
This representational stability is a prerequisite for ACT, enabling effective spatial halting in ViTs by
allowing each block Bi to accumulate a corresponding halting score hi (Yin et al., 2022).

However, applying ACT to SNN-based ViTs introduces a dual-dimensional challenge, as the condi-
tions for effective halting must be met across both spatial (inter-block) and temporal (inter-timestep)
axes (Fig. 2(c)). Spatially, SNN-based ViTs are analogous to their standard counterparts; they sat-
isfy property (i) via residual connections and, consequently, maintain high block-to-block similarity
(property (ii)), making them suitable for spatial ACT (left subfigure of Fig. 2(e)). Temporally, the
challenge is more profound. While property (i) is satisfied because membrane potentials are shared
across timesteps within the same block, SNNs inherently violate property (ii). Each timestep re-
ceives a different input spike vector, leading to low cosine similarity between consecutive temporal
inputs, as shown by the blue curve in the right subfigure of Fig. 2(e).

To address the low temporal similarity in SNN-based ViTs that impedes ACT, we introduce the I-
SPS module. Unlike vanilla SPS, I-SPS integrates multi-timestep spike signals into a single, unified
representation at the initial stage, which is then reused for all subsequent computations (Fig. 3(b)).
This positions our method as a type of ‘one-step’ approach1, an emerging concept in SOTA SNN

1This is termed a ‘one-step’ approach because the computationally expensive CNN operation is reduced to
a single pass, while the low-latency LIF neuron operations still iterate for T timesteps.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

t=4

t=3

t=2

t=1

Two-dimensional

token halting

Fixed number of tokens

(a) Vanilla SPS and SSA

L

(b) I-SPS and A-SSA on STAS

Integrated

spike inputIndividual

binary spike inputs

𝑇 × 𝐾 × 𝐷 𝐾 × 𝐷𝑇 × 𝐷
𝐷

0.3

0.6

-1.7

-0.2

0.1

0.7 0.4 0.1 -0.2

1.8 2.3 -0.8

0.3 -2.1 0.4

-0.1 0.5 0.2

0.1

0.5

1.2

t=4

t=3

t=2

t=1

t=4

t=3

t=2

t=1
B2B1

B2B1

B2B1

B2B1

L

L

L

L

L

L

L

M

M

M

M

M

B2B1

B2B1

B2B1

B2B1

High spatial similarity

Low temporal similarity

High spatial similarity

High temporal similarity

LIF neuron
CNN +

Max pooling

SPS x 4 SSA

Individual

tokenized inputs

Integrated

tokenized input

I-SPS x 4 A-SSA

𝑇 iterations (𝑇 is flexible)

Max firing

= 𝑇 for each

element

Figure 3: Architectural comparison of (a) a conventional SNN-based ViT using vanilla SPS and
SSA, and (b) our STAS framework featuring I-SPS and A-SSA. STAS utilizes I-SPS to create a sin-
gle, unified tokenized input from multiple timesteps, which establishes the high temporal similarity
necessary for the two-dimensional token halting performed by A-SSA.

Table 1: Effectiveness of I-SPS for A-SSA on Spikformer-4-384 and Spikingformer-4-384 with
CIFAR-100.

Architecture I-SPS A-SSA Avg. tokens Acc (%)

Spikformer
✗ ✗ ×1 77.3
✗ ✓ ×0.63 77.3 (−)
✓ ✓ ×0.46 78.1 (↑)

Spikingformer
✗ ✗ ×1 79.4
✗ ✓ ×0.95 77.4 (↓)
✓ ✓ ×0.70 79.9 (↑)

studies where expensive operations are reduced to a single pass in distinct ways for varied goals,
such as latency reduction (e.g., OST) or simplified adversarial attacks (e.g., RGA (Bu et al., 2023)).
The viability of such methods, which sacrifice precise temporal information, is rooted in mitigating
challenges in direct SNN training; a shortened temporal backpropagation path reduces the impact of
both vanishing gradients and error accumulation from surrogate functions. This improved gradient
flow appears to offset the information loss from temporal compression. STAS operationalizes this
principle via the I-SPS module, creating the high temporal similarity (Fig. 2(e)) that is the prerequi-
site for our A-SSA module to perform dynamic, two-dimensional token halting.

Empirical validation. Table 1 validates the synergistic relationship between our static architec-
tural module (I-SPS) and dynamic halting mechanism (A-SSA), which is detailed in Sec. 3.2. Ap-
plying A-SSA alone is ineffective, yielding only a limited token reduction on both Spikeformer and
Spikingformer (×0.63 and ×0.95, respectively). However, when combined with I-SPS—which es-
tablishes the necessary temporal similarity—the synergy drastically reduces token usage to ×0.46
on Spikformer and ×0.70 on Spikingformer, while maintaining or even slightly improving accuracy.
These results empirically demonstrate that I-SPS is a critical prerequisite for A-SSA to perform ef-
ficient and accuracy-aware spatio-temporal halting.

3.2 A-SSA: ADAPTIVE SPIKING SELF-ATTENTION

We formulate the SNN-based ViT as follows (Zhou et al., 2023):

fT (x) = FC(
1

T

T∑
t=1

BL ◦ BL−1 ◦ · · · ◦ B1 ◦ S(x)), (1)

where x ∈ RT×C×H×W is the input of which T , C, H , and W denote the timesteps, channels,
height, and width.

The function S(·) represents the spike patch splitting (SPS) module, which divides the input image
into multiple tokens. The function B(·) denotes a single encoder block, consisting of spike self-
attention (SSA) and a multi-layer perceptron (MLP), with a total of L blocks in the model. The

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

t = 1

t = 2

t = 3

𝑭𝑪(
𝟏

𝑻𝑲
෍

𝒕=𝟏

𝑻

෍

𝒌=𝟏

𝑲

෍

𝒍=𝟏

𝑳

𝓣𝒌
𝒍,𝒕 ∙ 𝒑𝒌

𝒍,𝒕)

Block 𝓑𝟏

𝑯(𝟏, 𝟏)

0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0

0.0

× 𝒑𝒌
𝟏,𝟏 × 𝒑𝒌

𝟐,𝟏

× 𝒑𝒌
𝟏,𝟐

× 𝒑𝒌
𝟐,𝟐

× 𝒑𝒌
𝟑,𝟏

× 𝒑𝒌
𝟑,𝟐

1 2 3

4 5 6

7 8 9

In
feren

ce

𝑺(𝒙)

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

𝓣𝟏,𝟐

𝓣𝟏,𝟏

+ 0.1

+ 0.1
+ 0.1
+ 0.3
+ 0.2
+ 0.1
+ 0.2

+ 0.2

+ 0.3

෍

𝒕′=𝟏

𝟏

𝒉(𝟏, 𝒕′)

𝑯(𝟏, 𝟐)

0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0

0.0

In
feren

ce

1
2
3
4
5
6
7
8
9

෍

𝒕′=𝟏

𝟐

𝒉(𝟏, 𝒕′)

+ 0.2

+ 0.2
+ 0.2
+ 0.5
+ 0.4
+ 0.2
+ 0.4

+ 0.3

+ 0.6

I-S
P

S

Block 𝓑𝟐

𝑯(𝟐, 𝟏)

0.1

0.1
0.1
0.3
0.2
0.1
0.2

0.2

0.3

In
feren

ce

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

𝓣𝟐,𝟐

𝓣𝟐,𝟏

+ 0.3

+ 0.2
+ 0.2
+ 0.6
+ 0.1
+ 0.2
+ 0.3

+ 0.2

+ 0.8

෍

𝒕′=𝟏

𝟏

𝒉(𝟐, 𝒕′)

𝑯(𝟐, 𝟐)

0.2

0.2
0.2
0.5
0.4
0.2
0.4

0.3

0.6

In
feren

ce

1
2
3
4
5
6
7
8
9

෍

𝒕′=𝟏

𝟐

𝒉(𝟐, 𝒕′)

Block 𝓑𝟑

𝑯(𝟑, 𝟏)

0.4

0.3
0.3
0.9
0.3
0.3
0.5

0.4

1.1

In
feren

ce

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

𝓣𝟑,𝟐

𝓣𝟑,𝟏

+ 0.1

+ 0.1
+ 0.1
+ 0.3
+ 0.2
+ 0.1
+ 0.2

+ 0.2

෍

𝒕′=𝟏

𝟏

𝒉(𝟑, 𝒕′)

𝑯(𝟑, 𝟐)

0.7

0.5
0.5
1.4
0.6
0.5
0.9

0.7

1.8

In
feren

ce

1
2
3
4
5
6
7
8
9

෍

𝒕′=𝟏

𝟐

𝒉(𝟑, 𝒕′)

+ 0.5

+ 0.3
+ 0.3
+ 0.9
+ 0.2
+ 0.3
+ 0.5

+ 0.4

+ 1.2
+ 0.4

+ 0.3
+ 0.2

+ 0.3
+ 0.3
+ 0.5

+ 0.3

Figure 4: Token-level halting example of STAS: At the first timestep t = 1, the input x passes
through the I-SPS, generating a token set T l,t. In the first block B1, for nine tokens, the halting
scores h1,1

k are added through inference. In subsequent blocks, tokens with accumulated halting
scores H(l, t) of one or greater are masked. From the second timestep onwards, the same operations
are repeated on the same input x. The halting score accumulation follows Eq. equation 4. The vector
values of masked tokens are set to zero, and no further halting score is accumulated for the tokens.

function FC(·) represents a fully-connected layer. Finally, the tokens passing through all blocks are
averaged and input to FC(·).
After passing through S(x) at a timestep t, the input image x is divided into a set of tokens denoted
by T 0,t. Let T l,t represent the set of tokens in the l-th (for l > 0) block at the t-th timestep, which
is expressed as follows:

T l,t = Bl(T l−1,t). (2)

The halting score hl,t of the tokens at the t-th timestep in the l-th block can be defined as follows:

hl,t
k = σ(α× T l,t

k,1 + β), (3)

where σ(·) denotes the logistic sigmoid function, and α and β are scaling factors.

Let T l,t
k represent the embedding vector of the k-th token, and T l,t

k,1 denote the first element of this
vector. The sigmoid function ensures that 0 ≤ hl,t

k ≤ 1. STAS calculates hl,t
k using the first element

of the embedding vector of the token, and the first node of MLP in each block learns the halting
score.

STAS accumulates halting scores across blocks within a single timestep and continues to accumulate
scores from previous timesteps and blocks over multiple timesteps, as a two-dimensional halting
policy. STAS defines the halting module Hk(L

′, T ′) at the T ′-th timestep and the L′-th block as
follows:

Hk(L
′, T ′) =

L′−1∑
l=1

T ′∑
t=1

hl,t
k . (4)

STAS masks tokens with Hk(L
′, T ′) ≥ 1 − ϵ in each block. If the k-th token is halted at the L′-th

block and T ′-th timestep, it remains zeroed out from the L′ + 1 block onward in the T ′-th timestep.
Fig. 4 illustrates a token-level merging and masking example of AT-SNN.

Based on the defined halting score, we propose a new loss function that allows STAS to determine
the required number of tokens according to the input image during training. We define N t

k as the
index of the block where the k-th token halts at the t-th timestep, which is obtained by

N t
k = argmin

l≤L
Hk(l, t) ≥ 1− ϵ, (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where ϵ is a constant value that determines the threshold for the halting score.

Additionally, we define an auxiliary variable, remainder, to track the remaining amount of halting
score for each token until it halts at each timestep and layer as follows:

rl,tk = 1−Hk(l, t). (6)

Then, we define the halting probability of each token at each timestep and block as follows:

pl,tk =

{
hl,t
k if t = {1, ..., T} and l < N t

rl,tk if t = {1, ..., T} and l = N t

0 otherwise
(7)

According to the definitions of hl,t
k and rl,tk , 0 ≤ pl,tk ≤ 1 holds.

Based on the previously defined halting module and probability, we propose the following loss func-
tions for training STAS. First, we apply a mean-field formulation (halting-probability weighted aver-
age of previous states) to the output at each block and timestep, accumulating the results. Therefore,
the classification loss function Ltask is defined as follows:

Ltask = C(FC(
1

TK

T∑
t=1

K∑
k=1

L∑
l=1

T l,t
k · pl,tk)), (8)

where C denotes the cross-entropy loss.

Next, we propose a loss function to encourage each token to halt at earlier timesteps and blocks,
using fewer computations. We defined the ponder loss Lponder as follows:

Lponder =
1

TK

T∑
t=1

K∑
k=1

(N t
k + r

N t
k,t

k). (9)

Lponder consists of the average number of blocks over which each token accumulates its halting
score and the average remainder at each timestep.

Loverall = Ltask + δpLponder, (10)

where δp is a parameter that weights Lponder. STAS is trained to minimize Loverall.

3.3 FLEXIBLE HALTING THRESHOLD

STAS adaptively determines the number of tokens to halt for each input image during training. How-
ever, during inference, there remains a trade-off between the number of tokens to halt and accuracy.
To address this, we introduce STASϵ, a method that provides control-knob between the number of
tokens to halt and accuracy by adjusting the halting threshold parameter ϵ during inference. By in-
creasing the value of ϵ, STASϵ halts more tokens at earlier blocks or timesteps, leading to reduced
energy consumption and accuracy.

4 EXPERIMENTS

We first analyze the qualitative and quantitative results to assess how efficiently STAS reduces to-
kens for the input images. Then, we conduct a comparative analysis to evaluate how effectively
STAS reduces tokens in terms of accuracy, comparing it with existing methods, and analyze how the
reduced tokens by STAS impact energy consumption. Finally, we discuss the properties required for
STAS’s two-dimensional ACT to efficiently process tokens through an ablation study.

Implementation details. We implement the simulation on Pytorch and SpikingJelly (Fang et al.,
2023). All experiments in this section are conducted on Spikformer (Zhou et al., 2022) and Spik-
ingformer (Zhou et al., 2023) on RTX NVIDIA A6000 GPUs. Note that STAS is applicable to other
SNN-based vision Transformers with direct training. We first train each model by replacing its orig-
inal SPS module with the proposed I-SPS, and use the resulting model as a pre-trained model for

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1st

4thT
im

es
te

p
 i

n
d
ex

2nd 4th 6th 8th

Block index
Token

HeatmapInput

1st

4thT
im

es
te

p
 i

n
d
ex

0

40

80

120

160

1 2 3 4 5 6 7 8

1 2 3 4

Block indexT
h
e

n
u
m

b
er

 o
f

h
al

te
d
 t

o
k
en

s

Timestep index

(b) The number of halted tokens

(c) Easy and Hard samples

Easy samples (< 37%) Hard samples (> 57%)

(a) Visualization of halted tokens

Figure 5: (a) Example of halted tokens across different timesteps and blocks on STASϵ (based on
Spikingformer-8-384) with ImageNet. Tokens that are halted with a shaded (non-white) overlay. (b)
The number of halted tokens across different blocks and timesteps, and (c) visual comparison of
hard and easy samples in classification on STASϵ (based on Spikingformer-8-384) with ImageNet.

applying the proposed two-dimensional ACT. Subsequently, we retrain the models using the loss
function defined in Eq. equation 10. We use automatic-mixed precision (AMP) (Micikevicius et al.,
2017) for training acceleration and surrogate module learning (SML) (Deng et al., 2023) method
to mitigate the gradient errors of SNNs. For a fair comparison, we trained several existing methods
(e.g., Spikformer, Spikingformer, and STATA2) on our computing environment, and these models
are marked with an asterisk (*) in Tables 2 and 3. We evaluate our method for the classification task
on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and ImageNet (Deng et al., 2009).

4.1 ANALYSIS

Qualitative results. For visualization of STASϵ, we use Spikingformer-8-384 with eight blocks
per timestep, trained on ImageNet. Each input image contains 196 tokens (14 × 14). Fig. 5(a) vi-
sualizes how tokens are halted over timesteps and blocks. Since STAS accumulates halting scores
in two dimensions (blocks and timesteps), more tokens are halted as the block and timestep indices
increase. With four timesteps and eight blocks, the maximum processed count for each token is 32,
where brighter regions indicate more processing, and darker regions indicate less (i.e., halted ear-
lier). Tokens from the less informative background are halted first, with an increasing number of
tokens being halted over time.

Quantitative results and classification difficulty. Fig. 5(b) shows the number of tokens halted
per block and timestep. As visualized in Fig. 5(a), more tokens are halted as the block and timestep
indices increase. Due to the two-dimensional halting policy of STASϵ, more tokens halt as the num-
ber of timesteps increases. Figure 5(c) visualizes samples correctly classified by STASϵ, comparing
those that use more tokens versus those that use fewer tokens. On average, easy samples utilize 37%
or fewer of all tokens per block, while hard samples use 57% or more of all tokens per block. We
observe that STASϵ uses fewer tokens when the object in the image is clearly separated from the
background and other objects.

4.2 COMPARISON TO PRIOR ART

We evaluate STAS against SNN methods based on both CNNs (e.g., VGG, ResNet) and Transform-
ers (e.g., Spikformer, Spikingformer). To benchmark against other dynamic computation techniques

2As the official implementation is not publicly available, we re-implemented the method based on the de-
scriptions in the original paper and made our best effort to reproduce it faithfully.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Main experiment results on ImageNet.

Method Architecture Param (M) Timestep Energy (mJ) Acc
Hybrid training (Rathi et al., 2020) ResNet-34 21.79 250 - 61.48
STBP-tdBN (Zheng et al., 2021) ResNet-34 21.79 6 6.39 63.72

TET (Deng et al., 2022) Spiking-ResNet-34 21.79 6 - 64.79
SEW ResNet-34 21.79 4 - 68.00

Spiking ResNet (Hu et al., 2021a) ResNet-34 21.79 350 59.30 71.61
ResNet-50 25.56 350 70.93 72.75

SEW ResNet (Fang et al., 2021)

SEW ResNet-34 21.79 4 4.04 67.04
SEW ResNet-50 25.56 4 4.89 67.78

SEW ResNet-101 44.55 4 8.91 68.76
SEW ResNet-152 60.19 4 12.89 69.26

MS-ResNet (Hu et al., 2021b) ResNet-104 44.55+ 5 - 74.21

Att MS ResNet (Yao et al., 2023) Att-MS-ResNet-18 11.87 1 0.48 63.97
Att-MS-ResNet-34 22.12 1 0.57 69.15

ANN Transformer-8-512 29.68 - 38.34 80.80
Spikformer (Zhou et al., 2022) Spikformer-8-768 66.34 4 21.48 74.81

OST (Song et al., 2024) OST-8-384 19.36 1 4.63 72.42
OST-8-512 33.87 1 6.92 74.97

Spikingformer (Zhou et al., 2023) Spikingformer-8-384 16.81 4 4.69 72.45
Spikingformer-8-512 29.68 4 7.46 74.79

STATA (Zhuge et al., 2024) Spikingformer-8-384 16.82 4 4.33∗ 67.65∗

Spikformer-8-768 - 4 11.16 74.03

STAS Spikingformer-8-384 16.81 4 3.81 (-18.8%) 73.45 (↑)
Spikingformer-8-512 29.68 4 7.16 (-4.02%) 75.96 (↑)

STASϵ Spikingformer-8-384 16.83 4 3.28 (-30.1%) 72.61 (↑)
Spikingformer-8-512 29.68 4 5.73 (-23.19%) 75.13 (↑)

Table 3: Experiment results on CIFAR-10/CIFAR-100.

Method Architecture Param (M) Timestep Energy (mJ) Acc
STBP-tdBN (Zheng et al., 2021) ResNet-19 12.63 4 - 92.9/70.9

AutoSNN (Na et al., 2022) AutoSNN (C=128) 21 8 - 93.2/69.2
SpikeDHSD (Che et al., 2022) SpikeDHS-CLA (n3s1) 14 6 - 95.4/76.3

Hybrid training (Rathi et al., 2020) VGG-11 9.27 125 - 92.2/67.9
Diet-SNN (Rathi & Roy, 2020) ResNet-20 0.27 10/5 - 92.5/64.1

TET (Deng et al., 2022) ResNet-19 12.63 4 - 94.4/74.5
ANN-to-SNN (Deng & Gu, 2021) ResNet-20 10.91 32 - 93.3/68.4

ANN Transformer-4-384 9.32 - 4.25 96.7/81.0
Spikformer (Zhou et al., 2022) Spikformer-4-384 9.32 4 0.74∗/0.89∗ 94.8∗/77.3∗

STATA (Zhuge et al., 2024) Spikformer-4-384 - 4 - 95.2/77.9
STASϵ Spikformer-4-384 9.32 4 0.40/0.50 95.2/77.9

OST (Song et al., 2024) OST-4-384 11.37 1 0.46 95.6/78.8
Spikingformer (Zhou et al., 2023) Spikingformer-4-384 9.32 4 0.42∗/0.50∗ 95.7∗/79.4∗

STATA (Zhuge et al., 2024) Spikingformer-4-384 - 4 - 95.8/79.9
STASϵ Spikingformer-4-384 9.32 4 0.37/0.46 95.8/79.4

for SNN-based ViTs, we also compare our results with those of OST and STATA. We measured the
energy consumption3 and accuracy of each model during inference on ImageNet (in Table 2) and
CIFAR-10/CIFAR-100 (in Table 3).

ImageNet We trained STAS on the Spikingformer-8-384 and Spikingformer-8-512 models. We set
hyper-parameters as α = 5, β = −25, and δp = 10−4. To compare against a static token-dropping
method, we implemented STATA4 and evaluated its performance. As shown in Table 2, Transformer-
based methods generally outperform CNN-based ones. On the Spikingformer-8-384, STATA reduces
some energy but incurs a significant accuracy drop because it drops a fixed ratio of tokens without
considering timesteps. In contrast, STAS reduces energy consumption while achieving even higher
accuracy than the original Spikingformer. Furthermore, by adjusting the halting threshold ϵ, we can
create a variant, STASϵ, which trades some accuracy for greater energy savings. When configured

3Following the widely accepted measurement methods in previous SNN studies (Zhou et al., 2022; 2023),
the equation for calculating energy consumption is provided in the supplement.

4Same as Footnote 1.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Ablation study on Spikformer-4-384 and Spikingformer-4-384 with CIFAR-100.

Architecture I-SPS ϵ Accumulation Avg. tokens Acc (%)

Spikformer

✗ ✗ B ×0.60 78.0
✗ ✗ T + B ×0.63 77.3
✓ ✗ T + B ×0.46 78.1
✓ ✓ T + B ×0.42 77.9

Spikingformer

✗ ✗ B ×0.65 78.5
✗ ✗ T + B ×0.95 77.4
✓ ✗ T + B ×0.70 79.9
✓ ✓ T + B ×0.50 78.5

for significant energy savings, STAS reduces the energy consumption of the original Spikingformer
by 18.8% to 30.1% while maintaining a comparable or even slightly higher accuracy.

CIFAR-10/CIFAR-100 We trained STAS on Spikformer-4-384 and Spikingformer-4-384. We set
hyper-parameters as α = −5, β = 0, δp = 10−3 for Spikformer, and α = 5, β = −25, δp = 10−3

for Spikingformer. For a fair comparison, we adjusted the halting threshold ϵ to create STAS variants
tuned to the accuracy levels of the original models. For the Spikformer, we achieved substantial
energy reductions of 45.9% on CIFAR-10 and 43.8% on CIFAR-100, respectively, while attaining
higher accuracy. On the Spikingformer, STAS also achieved higher accuracy while reducing energy
by 11.9% on CIFAR-10 and 8.0% on CIFAR-100.

4.3 ABLATION STUDIES

We evaluate the impact of I-SPS and the accumulation methods on the accuracy and energy effi-
ciency of STAS. Table 4 shows the average number of tokens used per block and the corresponding
accuracy with and without each component. All experiments are conducted on the Spikformer-4-384
model using the CIFAR-100.

I-SPS vs SPS. Table 4 presents the token usage and accuracy of STAS with and without I-SPS.
With I-SPS, STAS achieves higher accuracy (77.3% vs. 78.1%) while using fewer tokens (×0.63 vs.
×0.46). This improvement arises because, as shown in Fig. 3(c), I-SPS encourages similarity among
inputs across consecutive timesteps, enabling more efficient application of ACT.

Two- vs one-dimensional halting. Table 4 compares the halting score accumulation methods on
CIFAR-100: one that accumulates only across one dimension (B , block-level only) and another
that accumulates scores across two dimensions (T + B , both timestep and block-levels as per
Eq. equation 4). As shown in Table 4, the two-dimensional halting mechanism achieves higher ac-
curacy (78.0% vs 78.1%) while removing more tokens (×0.60 vs ×0.46) compared to the one-
dimensional halting. This is because, by definition, the LHS of Eq. equation 4 becomes larger under
two-dimensional halting than under one-dimensional halting, which in turn increases the LHS of
Eq. equation 9, leading to more tokens being halted. Furthermore, the STASϵ variant maximizes
this halting effect, achieving even greater token reduction (×0.42 and ×0.50 for Spikformer and
Spikingformer, respectively).

5 CONCLUSION

In this paper, we addressed the fundamental two-dimensional (spatio-temporal) adaptive computa-
tion challenge inherent to SNN-based ViTs. We first identified that the efficacy of dynamic halting is
fundamentally constrained by the static architecture’s lack of temporal similarity. To resolve this, we
proposed STAS, a framework that co-designs a static architectural module (I-SPS) with a dynamic
halting policy (A-SSA) to enable accuracy-aware token halting across both spatial and temporal
axes. Our experiments on CIFAR-10, CIFAR-100, and ImageNet demonstrate the effectiveness of
this synergistic approach: STAS significantly improves the accuracy-energy trade-off, reducing en-
ergy consumption by up to 45.9%, 43.8%, and 30.1%, respectively, while simultaneously enhancing
accuracy.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Tong Bu, Jianhao Ding, Zecheng Hao, and Zhaofei Yu. Rate gradient approximation attack threats
deep spiking neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 7896–7906, 2023.

Kaiwei Che, Luziwei Leng, Kaixuan Zhang, Jianguo Zhang, Qinghu Meng, Jie Cheng, Qinghai
Guo, and Jianxing Liao. Differentiable hierarchical and surrogate gradient search for spiking
neural networks. Advances in Neural Information Processing Systems, 35:24975–24990, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to spiking
neural networks. arXiv preprint arXiv:2103.00476, 2021.

Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
neural network via gradient re-weighting. arXiv preprint arXiv:2202.11946, 2022.

Shikuang Deng, Hao Lin, Yuhang Li, and Shi Gu. Surrogate module learning: Reduce the gradient
error accumulation in training spiking neural networks. In International Conference on Machine
Learning, pp. 7645–7657. PMLR, 2023.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
residual learning in spiking neural networks. Advances in Neural Information Processing Systems,
34:21056–21069, 2021.

Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang,
Huihui Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine learning
infrastructure platform for spike-based intelligence. Science Advances, 9(40):eadi1480, 2023.

Michael Figurnov, Maxwell D Collins, Yukun Zhu, Li Zhang, Jonathan Huang, Dmitry Vetrov, and
Ruslan Salakhutdinov. Spatially adaptive computation time for residual networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 1039–1048, 2017.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

Yangfan Hu, Huajin Tang, and Gang Pan. Spiking deep residual networks. IEEE Transactions on
Neural Networks and Learning Systems, 34(8):5200–5205, 2021a.

Yifan Hu, Yujie Wu, Lei Deng, and Guoqi Li. Advancing residual learning towards powerful deep
spiking neural networks. arXiv preprint arXiv:2112.08954, 7:2, 2021b.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yuhang Li, Abhishek Moitra, Tamar Geller, and Priyadarshini Panda. Input-aware dynamic timestep
spiking neural networks for efficient in-memory computing. In 2023 60th ACM/IEEE Design
Automation Conference (DAC), pp. 1–6. IEEE, 2023.

Yuhang Li, Tamar Geller, Youngeun Kim, and Priyadarshini Panda. Seenn: Towards temporal spik-
ing early exit neural networks. Advances in Neural Information Processing Systems, 36, 2024.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

Byunggook Na, Jisoo Mok, Seongsik Park, Dongjin Lee, Hyeokjun Choe, and Sungroh Yoon. Au-
tosnn: Towards energy-efficient spiking neural networks. In International conference on machine
learning, pp. 16253–16269. PMLR, 2022.

Nitin Rathi and Kaushik Roy. Diet-snn: Direct input encoding with leakage and threshold optimiza-
tion in deep spiking neural networks. arXiv preprint arXiv:2008.03658, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Enabling deep
spiking neural networks with hybrid conversion and spike timing dependent backpropagation.
arXiv preprint arXiv:2005.01807, 2020.

Xiaotian Song, Andy Song, Rong Xiao, and Yanan Sun. One-step spiking transformer with a lin-
ear complexity. In Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence, pp. 3142–3150, 2024.

Ziqing Wang, Yuetong Fang, Jiahang Cao, Qiang Zhang, Zhongrui Wang, and Renjing Xu. Masked
spiking transformer. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 1761–1771, 2023.

Man Yao, Guangshe Zhao, Hengyu Zhang, Yifan Hu, Lei Deng, Yonghong Tian, Bo Xu, and Guoqi
Li. Attention spiking neural networks. IEEE transactions on pattern analysis and machine intel-
ligence, 45(8):9393–9410, 2023.

Hongxu Yin, Arash Vahdat, Jose M Alvarez, Arun Mallya, Jan Kautz, and Pavlo Molchanov. A-ViT:
Adaptive tokens for efficient vision transformer. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10809–10818, 2022.

Lida Zhang, Abdolghani Ebrahimi, and Diego Klabjan. Layer flexible adaptive computation time.
In 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–9. IEEE, 2021.

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 35, pp. 11062–11070, 2021.

Chenlin Zhou, Liutao Yu, Zhaokun Zhou, Han Zhang, Zhengyu Ma, Huihui Zhou, and Yonghong
Tian. Spikingformer: Spike-driven residual learning for transformer-based spiking neural net-
work. arXiv preprint arXiv:2304.11954, 2023.

Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and
Li Yuan. Spikformer: When spiking neural network meets transformer. arXiv preprint
arXiv:2209.15425, 2022.

Zhengyang Zhuge, Peisong Wang, Xingting Yao, and Jian Cheng. Towards efficient spiking trans-
former: a token sparsification framework for training and inference acceleration. In Forty-first
International Conference on Machine Learning, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

APPENDIX

This document provides supplementary material to the main submission. Sec. A details a widely
accepted equation (Chen et al., 2023) for calculating SNN energy consumption and discusses the
minor runtime overhead of our halting mechanism. We then present a detailed analysis in Sec. B on
the impact of key hyperparameters (δp, α, and β) and surrogate module learning. Sec. C evaluates
the generalizability of STAS on dynamic vision sensor (DVS) datasets (Li et al., 2017), and Sec. D
provides additional qualitative results visualizing the token halting process.

A ENERGY CALCULATION

To measure the energy consumption of an SNN, we calculate the theoretical energy usage based
on the number of operations during inference. To do this, we first define the number of synaptic
operations in each block as follows:

SOPs(l) = T × fr(l)× FLOPs(l), (11)

where l represents the index of the block, and T denotes the timestep. The term fr(l) refers to the
firing ratio of spikes entering block l. SOPs(l) indicates the number of synaptic operations performed
in the l-th block, while FLOPs(l) denotes the number of floating-point operations in the same block.
Using SOPs, we can calculate the total energy consumption E of the SNN as follows:

E = EMAC × FLOPsSPS + EAC × (SOPsSPS +
L∑

l=1

SOPsSSA(l) +
L∑

l=1

SOPsMLP (l)), (12)

where EMAC and EAC represent the energy consumed per operation for multiplication and accu-
mulation (MAC) and accumulation (AC), respectively, with EMAC = 4.6pJ and EAC = 0.9pJ.
SOPsSPS refers to the synaptic operations in the SPS, while SOPsSSA(l) and SOPsMLP (l) denote
the synaptic operations in the SSA and MLP of a block, respectively. Additionally, FLOPsSPS rep-
resents the floating-point operations in the SPS. By preventing merged or masked tokens from firing
spikes, STAS reduces the firing ratio fr(l), reducing energy consumption in the SSA and MLP.

Energy consumption for runtime overhead. STAS performs additional computations at runtime
to calculate the halting score for each token, which results in additional energy consumption. Since
the computation for halting scores involves MAC operations, we estimate the energy per operation
using EMAC . Although halting scores are computed once per block and timestep, the operations
are element-wise and lightweight, contributing only a negligible amount of energy compared to the
total consumption of the model. For instance, STAS consumes at most only 0.03 mJ and 0.04 mJ of
additional energy on ImageNet with Spikingformer-8-384 and Spikingformer-8-512, respectively,
and just 0.005 mJ for each model on CIFAR-100 with Spikingformer-4-384. Note that the energy
consumption of STAS reported in the main submission already includes all runtime overheads.

B HYPERPARAMETER ANALYSIS

Various δp. STAS allows for adjusting the trade-off between accuracy and the number of tokens
through the hyperparameter δp in Eq. (10) in the main body of the paper. To examine the effect of
δp, we compare the accuracy and the number of tokens on the CIFAR-10 and CIFAR-100 datasets
across a range of δp values from 10−1 to 10−4. We trained Spikingformer-4-384 during 410 epochs.
Fig. 6 shows the accuracy and token usage during the training phase. As shown in Fig. 6, a smaller δp
(10−4, 10−3) results in higher accuracy, while a larger δp (10−2, 10−1) leads to reduce the number
of tokens. Consequently, STAS can be finely tuned by adjusting δp to achieve the desired balance
between higher accuracy and fewer tokens, depending on the specific application requirements.

Various α and β. During training, STAS can control the trade-off between token usage and ac-
curacy not only through δp, but also via the hyperparameters α and β in Eq.(3). The hyperparame-
ters α and β directly adjust the halting score, thereby influencing halting behavior during training.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

0.2

0.4

0.6

0.8

1

88

90

92

94

96

98

0 200 400

1e-4 1e-3 1e-2 1e-1
Acc

Token usage

0.2

0.4

0.6

0.8

1

68

72

76

80

84

0 200 400

(a) CIFAR-10 (b) CIFAR-100

A
cc

 (
%

)

A
cc

 (
%

)
T

o
k

en
 u

sag
e

T
o
k

en
 u

sag
e

Epochs Epochs

Figure 6: Training curve depedending on δp with Spikingformer

Table 5: Effect of α and β on Spikingformer.

Dataset CIFAR-100
α 3 5 8 β -15 -25 -35

Avg. tokens ×1 ×0.70 ×0.50 Avg. tokens ×0.46 ×0.70 ×0.75
Acc (%) 78.3 79.9 78.6 Acc (%) 78.7 79.9 79.9

Table 6: Effect of SML on Spikingformer.

Dataset CIFAR-10 CIFAR-100
SML ✗ ✓ ✗ ✓
δp 1e-3 1e-2 1e-3 1e-3 1e-2 1e-3
ϵ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Avg. tokens ×1 ×0.47 ×0.45 ×0.44 ×1 ×0.76 ×0.73 ×0.70
Acc (%) 96.1 95.9 95.8 95.8 80.0 80.1 79.9 79.9

To investigate their effects, we conduct experiments on CIFAR-100, varying α ∈ {3, 5, 8} and
β ∈ {−15,−25,−35} while fixing δp = 10−3. We use Spikingformer-4-384, and all models are
trained for 410 epochs. Table 5 shows the accuracy and average token usage across different α and
β. As shown in the Table 5, increasing α results in lower token usage (e.g., ×1.00 vs. ×0.50). Con-
versely, decreasing β also reduces token usage (e.g., ×0.75 vs. ×0.46), as it causes the halting scores
to accumulate more rapidly.

Surrogate module learning. Surrogate module learning (SML) (Deng et al., 2023) effectively
mitigates gradient errors during SNN training, thereby improving accuracy. Table 6 presents the
effect of SML on token usage and accuracy under the setting of α = 5 and β = −25 for both
CIFAR-10 and CIFAR-100. As shown in Table 6, SML achieves reduced token usage (e.g., ×1.00 vs.
×0.70) while maintaining comparable accuracy (80.0% vs. 79.9%) on CIFAR-100 under the same
setting. However, since the accuracy of STAS can be adjusted through hyperparameter tuning, we
measure energy efficiency at comparable accuracy to SML by appropriately setting hyperparameters
(e.g., δp, ϵ) for a fair comparison. Under these conditions, SML consistently demonstrates improved
token efficiency at comparable accuracy. This suggests that training methods that enhance energy
efficiency can be applied orthogonally to STAS without compromising accuracy.

C ADAPTABILITY OF STAS

Another SNN-based transformer. To verify whether our methodology works on ViTs based on
directly trained SNNs other than Spikformer and Spikingformer, we applied it to spike-driven Trans-
former (Yao et al., 2023) and evaluated its performance on CIFAR-10 and CIFAR-100. We compared
the accuracy of a model trained for 310 epochs with that of STAS, which was trained for an ad-

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 7: Experiment results on Spike-Driven Transformer with four timesteps.

Dataset CIFAR-10 CIFAR-100
Method STATIC STAS STATIC STAS

Avg. tokens ×1 ×0.38 ×1 ×0.54
Acc (%) 95.6 95.8 78.4 78.9

Table 8: Experiment result on neuromorphic dataset with Spikingformer.

Dataset CIFAR10-DVS DVS128Gesture
Method STATIC STAS STATIC STAS

Avg. tokens ×1 ×0.60 ×1 ×0.70
Acc (%) 81.3 82.4 98.3 97.9

ditional 310 epochs using the pretrained model. As shown in Table 7, similar to the results with
Spikformer and Spikingformer, our approach maintains accuracy comparable to STATIC (without
any lightweight method) in spike-driven Transformer, while reducing the average number of tokens
used per block to 0.38 for CIFAR-10 and 0.54 for CIFAR-100.

Figure 7: Original images (odd-numbered columns) and heatmaps showing the number of blocks
(for four timesteps) each token processes (even-numbered columns) on ImageNet. Brighter colors
indicate more processing per token. STAS halts earlier on tokens that lack visual information.

Application to DVS Datasets. To evaluate the adaptability of STAS, we tested its performance
on the CIFAR10-DVS (Li et al., 2017) and DVS128Gesture (Amir et al., 2017) datasets. For these
experiments, we trained a Spikingformer-2-384 model for 106 epochs with 16 timesteps, setting
hyperparameters to α = 5, β = −10, and δp = 10−3. As shown in Table 8, this configuration

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

still demonstrated strong performance, improving accuracy on CIFAR10-DVS to 82.4% with ×0.60
token usage, and maintaining comparable accuracy (97.9%) on DVS128Gesture with ×0.70 token
usage. This highlights that while the full STAS co-design is optimal for static images, the A-SSA
halting mechanism is robust and highly effective as a standalone module for processing inherently
temporal data.

D VISUALIZATION

We visualize STAS’s token halting process on ImageNet samples using the Spikingformer-8-384
model. Figure 7 shows the original images alongside heatmaps that represent the computational
depth of each token, defined as the total number of blocks it is processed for across four timesteps.
Brighter colors in the heatmaps indicate more processing (later halting). The visualizations consis-
tently show that STAS allocates more computation to tokens corresponding to salient object features.
Conversely, tokens from uninformative regions, such as the background, are halted much earlier,
resulting in darker areas on the heatmap. Notably, the policy appears more nuanced than simple
foreground-background segmentation, often prioritizing semantically rich features within an object,
like faces or distinctive textures.

APPENDIX REFERENCES

Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo, Tapan
Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al. A low power, fully
event-based gesture recognition system. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 7243–7252, 2017.

Guangyao Chen, Peixi Peng, Guoqi Li, and Yonghong Tian. Training full spike neural networks via
auxiliary accumulation pathway. arXiv preprint arXiv:2301.11929, 2023.

Shikuang Deng, Hao Lin, Yuhang Li, and Shi Gu. Surrogate module learning: Reduce the gradient
error accumulation in training spiking neural networks. In International Conference on Machine
Learning, pp. 7645–7657. PMLR, 2023.

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream
dataset for object classification. Frontiers in neuroscience, 11:309, 2017.

Man Yao, JiaKui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo XU, and Guoqi Li. Spike-driven
transformer. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=9FmolyOHi5.

15

https://openreview.net/forum?id=9FmolyOHi5

	Introduction
	Related Work
	Method
	I-SPS: Integrated Spike Patch Splitting
	A-SSA: Adaptive Spiking Self-Attention
	Flexible Halting Threshold

	Experiments
	Analysis
	Comparison to Prior Art
	Ablation Studies

	Conclusion
	Energy calculation
	Hyperparameter Analysis
	Adaptability of STAS
	Visualization

