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Abstract

Pruning of deep neural networks has been an effective technique for reducing model size
while preserving most of the performance of dense networks, crucial for deploying mod-
els on memory and power-constrained devices. While recent sparse learning methods have
shown promising performance up to moderate sparsity levels such as 95% and 98%, accuracy
quickly deteriorates when pushing sparsities to extreme levels due to unique challenges such
as fragile gradient flow. In this work, we explore network performance beyond the commonly
studied sparsities, and develop techniques that encourage stable training without accuracy
collapse even at extreme sparsities, including 99.90%, 99.95% and 99.99% on ResNet archi-
tectures. We propose three complementary techniques that enhance sparse training through
different mechanisms: 1) Dynamic ReLU phasing, where DyReLU initially allows for richer
parameter exploration before being gradually replaced by standard ReLU, 2) weight shar-
ing which reuses parameters within a residual layer while maintaining the same number of
learnable parameters, and 3) cyclic sparsity, where both sparsity levels and sparsity pat-
terns evolve dynamically throughout training to better encourage parameter exploration.
We evaluate our method, which we term Extreme Adaptive Sparse Training (EAST) at
extreme sparsities using ResNet-34 and ResNet-50 on CIFAR-10, CIFAR-100, and Ima-
geNet,achieving competitive or improved performance compared to existing methods, with
notable gains at extreme sparsity levels. Code is available at redacted.

1 Introduction

Network pruning (Han et al., 2015a;b; LeCun et al., 1990; Liu et al., 2017; Li et al., 2016; Kusupati et al.,
2020) is a widely-used technique for reducing a network’s parameters and compressing its size. Reducing
model sizes is crucial for deploying models on edge devices with limited resources. Conventionally, pruning
methods have focused on reducing parameters from pre-trained models. However, it requires at least as
much computation as training a dense model as it must converge before pruning takes place. The Lottery
Ticket Hypothesis work (Frankle & Carbin, 2018; Frankle et al., 2020a; Malach et al., 2020) gives theoretical
foundation that subnetworks have the potential to reach full performance even when trained from an initially
sparse state. This insight has recently gained much traction in sparse training, a paradigm in which sparse
networks are trained from scratch without the need for dense pre-training.

Sparse training methods can be broadly classified into two categories: static sparse training (SST), also
sometimes referred to as Pruning at Initialization (PaI), where the sparsity pattern is pre-determined at
initialization and remains fixed throughout training (Lee et al., 2019; Wang et al., 2020; Tanaka et al.,
2020a; De Jorge et al., 2020), and dynamic sparse training (DST), where the sparsity pattern continuously
evolves during training (Mocanu et al., 2018; Dettmers & Zettlemoyer, 2019; Evci et al., 2021; Yin et al.,
2022). These methods perform well at moderate sparsity commonly up to 98%, but experience rapid accu-
racy degradation beyond this due to limitations such as layer collapse and gradient issues (Tanaka et al.,
2020b; Wang et al., 2020). There is an increasing demand to push towards ’extreme sparsities’, particularly
in resource-constrained settings where substantial computational and memory benefits may justify some
accuracy trade-offs. Our work is motivated by this practical consideration, and thus we emphasize that our
primary focus is on the deployable model used for inference rather than training efficiency. Despite this need,
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Figure 1: Illustration of EAST (top). Starting with ERK-initialized sparse network A = {θ0,M0} at sparsity
s, EAST employs three key components: DyReLU phasing, weight sharing, and cyclic sparsity to transform
the network to final state A′ = {θT , MT }, achieving meaningful performance at extreme sparsity levels.
The topology update box (bottom) illustrates the connectivity change throughout training: connections are
first grown, then pruned, and eventually maintained with a fixed sparsity update schedule until completion.

extreme sparsities remain relatively understudied, with only a few methods attempting to maintain usable
accuracy at these extreme levels (Tanaka et al., 2020b; De Jorge et al., 2020; Price & Tanner, 2021).

Our work proposes a collection of adaptive methods that can achieve meaningful performance at extreme
sparsities. By leveraging three core strategies - 1) phased Dynamic ReLU activation, 2) weight sharing,
3) cyclic sparsity scheduling - we present a flexible framework that is capable of optimizing performance
at extreme sparsities. Each component independently enhances the sparse model’s capacity as seen in
our ablation studies, where individual strategy improves performance on their own. These methods can
also cohesively achieve an even stronger performance when combined. This framework, which we term
Extreme Adaptive Sparse Training (EAST), offers a modular approach that can be adapted to existing
DST frameworks, postponing their total performance collapse. Through empirical analysis, we find that
EAST prevents gradient vanishing and encourages parameter exploration, achieving notable performance
gain over our baselines. Our contribution and key achievements can be summarized as follows:

• We introduce EAST - a method that combines phased Dynamic ReLU activation, weight sharing,
and cyclic sparsity scheduling, aimed at retaining performance past common sparsity thresholds.

• We perform extensive empirical evaluation of EAST on image classification tasks, and demonstrate
competitive performance at sparsities beyond 99.90%.

• We explore and demonstrate that DyReLU when used as a drop-in replacement for ReLU at initial-
ization at then replaced completely can still improve the parameter exploration at extreme sparsities,
leading to higher performance than sparse models trained using ReLU only.
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• Unlike existing DST methods that maintain fixed sparsity levels, EAST introduces cyclic sparsity
scheduling where both patterns and sparsity levels evolve dynamically during training. Our cyclic
sparsity schedule allows models to explore parameters and stabilize at extreme sparsity, as evidenced
by our ablation studies.

• Unlike DCTpS, EAST achieves extreme sparsity without requiring dense matrix computations for
inference, resulting in a truly lightweight and efficient model for edge deployment. We also demon-
strate the versatility of our method by combining with DCT layers on top of DST, consistently
improving accuracy at the tested settings.
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Figure 2: Comparison of test accuracies across different sparsities. Each point represents median accuracy
over three runs with different seeds, and the shaded regions highlight the variability across runs.

2 Related Work

Dynamic Sparse Training. Early work by Mocanu et al. (2018) demonstrated the viability of DST
through SET, which used magnitude pruning and random weight regrowth. Subsequent criteria for regrow-
ing connections have been developed, such as using the momentum of parameters in SNFS (Dettmers &
Zettlemoyer, 2019) or their gradient in RigL (Evci et al., 2021) to determine the salience of deactivated
connections. GraNet (Liu et al., 2021a) adapted RigL’s approach by starting with half the parameters and
gradually increasing to target sparsity instead of starting from the target sparsity. ITOP (Liu et al., 2021b)
provides a deeper understanding of pre-existing DST methods and enhances parameter exploration during
sparse training. Supticket (Yin et al., 2022) further enhances the performance of DST by leveraging weight
averaging at the late training stage. NeurRev (Li et al., 2024) addressed the issue of dormant neurons by
removing harmful negative weights. Recent advances include Top-KAST (Jayakumar et al., 2020), which
maintains an auxiliary set of weights for enhanced exploration, and BiDST (Ji et al., 2024) which formulates
DST as a bi-level optimization problem for joint weight-mask optimization. MEST (Yuan et al., 2021) intro-
duces a memory-efficient sparse training framework for edge devices, while Chase (Yin et al., 2024) adapts
dynamic unstructured sparsity into hardware-friendly channel-wise sparsity, both optimizing performance
on resource-constrained systems without sacrificing accuracy.

Extreme Sparsity Methods. Most current methods focus on sparsity levels at which pruned networks
match or closely approximate the performance of their dense counterparts, a concept referred to as matching
sparsity (Frankle et al., 2020b). However, there is growing interest in extreme sparsities, where accuracy
trade-offs become inevitable but potentially worthwhile for substantial computational gains. Yet there
remains challenges, such as maintaining stable gradient flow and preventing layer collapse, which conventional
pruning methods struggle to address. GraSP (Wang et al., 2020) and SynFlow (Tanaka et al., 2020b)
specifically addressed the gradient preservation and layer collapse issues at high sparsities via careful network
initialization. SNIP (Lee et al., 2019) and SNIP-it (Verdenius et al., 2020) proposed PaI methods that
showed promising results at higher sparsities, though primarily focused on static masks. De Jorge et al.
(2020) demonstrated that methods like SNIP and GraSP can perform worse than random pruning at 99%
sparsity and beyond, and proposed iterative pruning approaches (Iter-SNIP and FORCE) that maintained
meaningful performance up to 99.5% sparsity through gradual parameter elimination. DCTpS (Price &
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Figure 3: Positive pre-activations analysis in ResNet-34 at 99.99% sparsity. The left figure shows layerwise-
comparison of positive pre-activations after DyReLU is completely converted to ReLU. The right figure shows
their overall amount before, during and after DyReLU phasing.

Tanner, 2021) introduced "DCT plus Sparse" layers that combined a fixed dense DCT offset matrix with
trainable sparse parameters to maintain propagation at extreme sparsities up to 99.99%.

Activation Functions. Activation functions in sparse networks have traditionally relied on static activation
functions such as ReLU (Nair & Hinton, 2010), which applies a fixed threshold to the input. Parametric
variants such as PReLU (He et al., 2015) introduced learnable parameters to adapt the negative slope,
offering slight improvements in gradient flow. Swish (Ramachandran et al., 2017) and Mish (Misra, 2019)
aim to smooth gradients for better optimization but remain static throughout training. Dynamic ReLU
(DyReLU) (Chen et al., 2020) introduced an adaptive activation that dynamically adjusts the slopes of a
ReLU based on the input.

3 Methodology

3.1 Activation Function

In this work, when initializing a network, we replace the standard ReLU activation with a non-ReLU acti-
vation. We tested several activations and found that DyReLU worked the best, specifically the DyReLU-B
variant, which dynamically adapts and adjusts channel-wise activation coefficients during training, allowing
for richer expressivity during early training. As training progresses, we gradually transition from DyReLU
to standard ReLU, eliminating the additional parameters. Preliminary details about DST, DyReLU and
details on phasing out DyReLU can be found in the Supplementary Materials.

Understanding Gradient Flow Through Neuron Activity. With ReLU, non-positive pre-activations
would result in zero gradient and prevent the learning signal with ReLU. To better understand why DyReLU
phasing improves performance at extreme sparsity, we analyzed pre-activation values throughout training.
As shown in Figure 3, the model trained solely with ReLU maintains around 1.3% positive pre-activations
throughout training, with many deeper layers showing none, interrupting gradient propagation.

In contrast, our DyReLU phasing approach naturally begins from a high 56.8%, decreases during the tran-
sition phase, and stabilizes at 4.5% even after DyReLU is completely converted to ReLU, three times higher
than with ReLU alone. The deeper layers also retain some positive pre-activations, preserving critical acti-
vation pathways that would otherwise be lost. This allows extremely sparse networks to continue learning
where conventional approaches would struggle due to interrupted gradient propagation. We detail the abla-
tion studies on the effect of DyReLU phasing in section 4.2.

3.2 Weight Sharing

Much research in sparse training has been about mask optimization - determining the best subset of param-
eters to keep. However, at extreme sparsities, gradient flow can collapase even with an optimal parameter
subset. Therefore, we ask a different question: Can we increase the number of parameter paths in the
computational graph while maintaining the same number of learnable parameters? Our approach creates
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Figure 4: A layer in ResNet-34 with 4 blocks. Block 3 and Block 4 share parameters (and the masks) with
block 2. Specifically, conv1 layer (green) of block 3 reuses conv1 layer of block 2, and is multiplied by a
learnable scaling factor; similarly, its conv2 layer (blue) reuses conv2 layer of block 2, and is multiplied by
another scaling factor.

multiple references to the same parameter tensors, effectively allowing one learnable parameter to contribute
to multiple locations in the forward/backward pass without additional storage cost.

Our weight sharing mechanism strategically reuses parameters within each layer’s residual blocks, allowing
the remaining active parameters to participate in multiple paths of the computational graph. If at a certain
sparsity, we have n remaining parameters in the original model, we keep exactly this many unique parameters
to learn, but some of these now appear in multiple locations in the computational graph, multiplying their
contribution without increasing storage requirements. During backpropagation, shared parameters recieve
gradient signals from multiple positions, strengthening gradient flow.

Specifically, we choose a block inside a layer and share its parameters (along with their masks) with all blocks
after it. These later blocks reference the single block tensor that they share with, and multiply by a learnable
scaling factor for forward and backward passes. For example, in a ResNet layer with 4 blocks (Figure 4),
if the second block shares parameters with block 3 and 4, a parameter in block 2 effectively appears three
times in the computation graph while only being stored and optimized once.

Since multiple computational paths now reference the same learnable parameters, we adjust our sparsity
calculation to reflect the true number of unique learnable parameters rather than the apparent network size.
Thus, sparsity s = 1− ∥M⊙θlearnable∥0

∥θ∥0
, where θlearnable represents only the unique learnable parameter count

being optimized. θ is the theoretical parameter count in the original network with a mask M ∈ {0, 1}|θ|.
Formally, let L be the number of residual blocks in a layer, and R be the block that shares parameters
(1 < R ≤ L), where the remaining L−R blocks share parameters with the R-th block. Let θi represent the
parameters of the i-th block. Our weight sharing scheme can be expressed as:

θi =
{

θi if i ≤ R

θR if R < i ≤ L

3.3 Cyclic Sparsity

While classic DST methods such as SET and RigL adjust the sparsity pattern, sparsity s remains constant
throughout training - pruning and regrowing of weights take place at the same rate. i.e.,M(t) = Prune(θ(t))∪
Grow(∇θL). In our work, we introduce a cyclic sparsity schedule where the network’s sparsity level itself
evolves dynamically during training. Instead of maintaining constant sparsity, we cyclically adjust the
sparsity s(t) between a maximum value smax and a minimum value smin over a period Tc. This creates phases
of higher and lower connectivity, allowing the network to explore parameters more effectively, preventing the
gradient issues that plague static extreme sparsity training. Once the cyclic phase ends at Tc, we fix the
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sparsity at smax and switch to standard DST updates. Details of the method are summarized in Algorithm
1.

Algorithm 1 Pseudocode for EAST
Input: Sparse neural network with weights θ, maximum sparsity smax, minimum sparsity smin, end of cyclic

sparsity Tc, update frequency ∆T , prune rate rp, DyReLU phase start Ts, end Te

Output: Trained θs

1: Initialize: θs at smax, ϕ← DyReLU
2: for t = 1 to Tend do
3: for Ts ≤ t ≤ Te do ▷ DyReLU to ReLU
4: ϕ← βDyReLU + (1− β) ReLU
5: Update(β)
6: end for
7: if t mod ∆T == 0 then
8: if t <= Tc then
9: starget ← CyclicSchedule(t, smin, smax, Tc) ▷ Update target sparsity

10: if starget > scurrent then
11: θs ← θs −ArgTopK(−|θs|, (starget − scurrent)∥θs∥0) ▷ Magnitude pruning
12: else if starget < scurrent then
13: θs ← θs + ArgTopK(|∇θL|, (scurrent − starget)∥θs∥0) ▷ Gradient regrowth
14: end if
15: else ▷ Switch to fixed update
16: θs ← θs −ArgTopK(−|θs|, rp∥θs∥0)
17: θs ← θs + ArgTopK(|∇θL|, rp∥θs∥0)
18: end if
19: end if
20: end for
21: return θs

4 Experiments

Evaluation Protocol. Our experiments include image classification using ResNet-34 and ResNet-50 (He
et al., 2016) on the benchmark datasets CIFAR-10 and CIFAR-100, as well as ResNet-50 on ImageNet,
following the same evaluation protocol as other SOTA methods in terms of datasets and backbones. We
compare our method with DST methods SET (Mocanu et al., 2018) and RigL (Evci et al., 2021), and a
competitive SST method SynFlow (Tanaka et al., 2020b), which also experiments at very high sparsities.
For SynFlow, we use the official repository with its default hyperparameters to evaluate its performance. For
SET and RigL, we use the repository provided by ITOP (Liu et al., 2021b). We keep all hyperparameters as
they are optimally configured in the paper, including ∆T , ERK initialization, and the mask update interval
of 1500 and 4000 for SET and RigL, respectively.

In addition, we benchmark DCT, the SOTA method specifically focused on extreme sparsity, using the
repository provided by the method in Price & Tanner (2021). While this method performs very competitively
at extreme sparsity settings, it comes at a cost due to the computation of a dense matrix matching the full
architecture size, which adds an extra layer of computational overhead and requires extra memory. This
method achieves the best performance when paired with RigL, which we evaluate, and then we combine it
with our approach to evaluate if our method can improve it further. In this integration, we use only DyReLU
phasing and cyclic density, leaving weight sharing to prevent conflicts with the DCT matrices embedded in
the model architecture. Here, we use ∆T = 100 to match results from the original paper, and we also use
this value for our integration to ensure fairness.

For all DST methods, we use SGD with momentum as our optimizer. The momentum coefficient is set to
0.9, and L2 regularization coefficient is set to 0.0001. We set the training epoch to 250 and use a learning
rate scheduler that decreases from 0.1 by a factor of 10X at half way and three-quarters of way through
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Method CIFAR-10 CIFAR-100

99% 99.90% 99.95% 99.99% 99% 99.90% 99.95% 99.99%

ResNet-34

Synflow 86.03±0.71 61.61±10.76 56.33±3.44 10.00±0.00 57.44±1.72 22.91±18.98 1.00±0.00 1.00±0.00
SET 93.09±0.15 82.70±0.91 70.84±1.51 10.00±0.00 71.97±0.72 47.64±0.43 32.14±0.60 1.00±0.00
RigL 92.92±0.18 85.71±0.23 81.47±0.32 10.03±0.19 70.72±0.25 50.26±0.16 38.44±0.95 1.14±0.24
EAST (ours) 93.51±0.13 86.99±0.32 83.83±0.02 62.12±0.90 71.14±0.51 56.32 ±0.31 45.81±0.60 18.84±0.55

DCTpS+RigL 89.04±0.07 83.96±0.23 80.80±0.51 77.38±0.57 63.12±0.53 51.30±0.26 45.68±0.70 37.59±0.52
DCTpS+RigL+EAST (ours) 89.72±0.09 84.19±0.64 81.96±0.24 77.54±0.17 64.33±0.44 53.21±0.28 47.80±0.69 38.02±0.26

ResNet-50

Synflow 77.06±7.40 48.62±9.32 10.00±0.00 10.00±0.00 48.91±1.48 12.07±10.21 9.40±3.92 1.00±0.00
SET 91.97±0.25 27.05±15.17 16.04±2.85 10.00±0.00 70.35±0.11 8.59±2.61 1.26±0.28 1.00±0.00
RigL 92.75±0.25 58.41±42.03 30.14±10.85 10.00±0.00 70.50±0.32 51.90±0.62 7.02±5.33 1.00±0.00
EAST (ours) 93.48±0.13 86.16±0.12 81.18±0.59 49.55±4.69 71.04±0.15 56.76±0.22 45.55±0.43 3.64±2.84

DCTpS+RigL 89.66±0.27 85.98±0.55 85.03±0.25 83.13±0.53 64.85±0.23 55.98±0.09 52.71±0.20 49.63±1.11
DCTpS+RigL+EAST (ours) 89.67±0.12 87.10±0.35 85.87±0.39 83.88±0.19 64.92±1.41 58.17±0.22 55.60±0.38 51.33±0.57

Table 1: Accuracy comparison on CIFAR-10 and CIFAR-100 at different sparsity levels. Top section com-
pares sparse training methods at each sparsity level. Bottom section shows results with DCTpS, which
achieves higher accuracies at ≥99.95% sparsity, but requires dense matrix computations. The best results
for each category are in bold.

Method Inference FLOP (M) Inference Network Size
99.95% 99.99% Comp. Cost Theoretical GPU-Supported GPU-Supported Params

ResNet-50 (Dense) 1297.83 - O(mn) O(N) O(N) 23.5M
SET 1.24 (0.001×) 0.26 (0.0002×) O(pmn) O(PN) O(N) 23.5M
RigL 1.24 (0.001×) 0.26 (0.0002×) O(pmn) O(PN) O(N) 23.5M
EAST (w/o WS) 1.24 (0.001×) 0.26 (0.0002×) O(pmn) O(PN) O(N) 23.5M
EAST (w/ WS) 2.59 (0.002×) 0.52 (0.0004×) O(pmn) O(PN) O(N −Ns) 13.9M
DCTpS+RigL 40.26 (0.031×) 39.09 (0.030×) O(q log q + pmn) O(PN) O(N) 23.5M
DCTpS+RigL+EAST 40.26 (0.031×) 39.09 (0.030×) O(q log q + pmn) O(PN) O(N) 23.5M

Table 2: Comparison of computational complexity and network size of ResNet-50 on different methods.
FLOPs are given alongside multiplicative change from dense model (×). Let N denote the total parameters
in ResNet-50, Ns the total shared parameters, P ∈ (0, 1) the global density, and m× n the size of flattened
weight tensors with density p, where q = max(m, n). "GPU-Supported Params" refers to the actual number
of parameters on a commercial GPU without native support for irregular sparse patterns.

training. For the DCT experiments, we train for 200 epochs with the Adam optimizer and a learning rate
of 0.001. A more detailed description of the experimental setups and hyperparameters is included in the
Supplementary Material. All experiments in our work are conducted on an A100 GPU.

CIFAR-10 and CIFAR-100. We evaluate EAST with ResNet-34 and ResNet-50 backbones, with a
particular focus on extreme sparsities (99%-99.99%). We repeat our experiments three times and report the
average accuracy in Table 1, which presents results across different configurations.

At 99%, all dynamic training methods achieve comparable performance, significantly outperforming Syn-
Flow. This is unsurprising as a static mask is expected to lead to worse performance than a dynamic mask
(Evci et al., 2021; Mostafa & Wang, 2019). EAST’s advantages become increasingly pronounced at higher
sparsities.

At 99.90% and 99.95%, EAST consistently outperforms existing methods across both architectures and
datasets, with particularly notable improvements on ResNet-50 where competing methods experience severe
accuracy degradation. While other approaches show dramatic performance collapse beyond 99.90% sparsity,
EAST demonstrates more gradual degradation patterns.

At 99.99%, we observe that all other methods result in complete collapse to random performance across
both datasets and architectures. In contrast, EAST maintains non-random accuracies. ResNet-50 shows
greater sensitivity at this extreme sparsity, likely due to vanishing gradient issues exacerbated by the deeper
architecture and reduced parameter density per layer.
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99.50% Sparsity 99.90% Sparsity

Method Top-1 (%) Top-5 (%) Top-1 (%) Top-5 (%)

SynFlow 0.10 0.50 0.10 0.50
SET 0.10 0.50 0.10 0.50
RigL 32.50 58.58 8.53 24.18
DCT 0.10 0.50 0.10 0.50
DCT+RigL 19.99 43.34 6.62 18.84
EAST (ours) 34.45 62.44 11.23 29.47

Inference Performance

Throughput (imgs/sec) Latency (ms)

DCT+RigL 1229.25 10.18
EAST (ours) 1638.41 6.80

Table 3: Performance comparison on ImageNet at extreme sparsity levels using ResNet-50. For throughput
and latency measurements, we use batch sizes of 2 and run 100 times and report the average.

Our evaluation of DCTpS reveals complementary strengths. While DCTpS excels at the highest sparsity
levels (99.95% and 99.99%), classic DST methods including EAST maintain advantages at moderate extreme
sparsities (99% and 99.9%) without requiring additional computational overhead. When combined with
DCTpS, EAST provides consistent improvements across all tested configurations, demonstrating the modular
nature of our approach and its ability to enhance existing extreme sparsity methods.

ImageNet. Prior methods like SynFlow and DCTpS were evaluated primarily on smaller datasets like
CIFAR and Tiny-ImageNet. We extend these baselines to ImageNet by implementing and adapting their
published code and evaluate the scalability of EAST on ImageNet using ResNet-50 at sparsity 99.5% and
99.9%. Given the much shortened training epochs for ImageNet, we implement only the DyReLU phasing
and weight sharing components, excluding cyclic sparsity. As presented in Table 3, EAST has demonstrated
scalability to large-scale datasets compared to existing methods. While SynFlow and SET collapse to random
accuracies, EAST maintains stable performance across both tested sparsity levels and outperforms RigL by
a notable margin.

Interestingly, we observe different dynamics on ImageNet compared to CIFAR experiments. While DCTpS
showed competitive advantages on smaller datasets, it does not exhibit the same competitive advantages as
seen before, even with the extra overhead. DCTpS alone results in performance collapse and it performs
worse than RigL. When combined with RigL, the accuracy improvements are modest and may be attributed
primarily to RigL’s robust dynamic sparse exploration policy, rather than the DCT offset. On the inference
efficiency front, EAST demonstrates practical advantages. Unlike DCTpS, which relies on a dense DCT
matrix, EAST does not have such a drawback, as all DyReLU activations have been replaced with regular
ReLU and thus runs just like the original ResNet model with ReLU. Therefore, EAST should theoretically
have similar inference speed as the other DST methods, but faster than DCTpS for inference. To verify this,
we ran both models for inference 100 times, taking their average and finding that DCTpS has 1.5× higher
latency and 1.33× lower throughput than ours.

4.1 Complexity Analysis

The operations in neural networks can be framed in terms of matrix multiplication, allowing us to analyze
the complexity of these methods. We report the FLOP following RigL’s computation method in Table 2. If
we examine sparse matrix with pmn non-zeros, then theoretically the inference cost of EAST without weight
sharing and other standard DST methods is just the cost of the sparse matrix, O(pmn), and their storage
requirement is just O(PN). With weight sharing, EAST maintains the theoretical network size O(PN)
while physically storing O(N −Ns) parameters, resulting in built-in compression on GPU’s without native
support for irregular sparsity patterns. It reduces the parameter count including zeros from 23.5M to 13.9M,

8
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Model Method 99.95% Sparsity 99.99% Sparsity

ResNet-34 RigL w/ ReLU 81.47 10.03
RigL w/ DyReLU 81.80 54.58
RigL w/ WS 81.96 62.94

ResNet-50 RigL w/ ReLU 30.14 10.00
RigL w/ DyReLU 69.57 53.32
RigL w/ WS 82.02 62.71

Table 4: Ablating DyReLU phasing on DST with evaluation at different sparsities. All settings are kept the
same except the use of DyReLU phasing vs standard ReLU. Experiments were run on CIFAR-10. Results
show improved performance with DyReLU Phasing, especially at higher sparsity levels.

but slightly increases the theoretical inference FLOP count due to the reuse of learnable parameters. This
trade-off potentially offers practical benefits in memory-constrained devices.

While DCTpS achieves higher accuracy than standard DST methods at extreme sparsity levels, it comes with
substantial computational overhead that limits its practical deployment benefits. DCTpS uses a dense DCT
matrix, which theoretically could have a complexity of O(qlogq). We found that its theoretical inference
FLOPs are about 32X higher than the standard DST at 99.95% and 150X higher at 99.99%. This is because
the dense DCT computation dominates at extreme sparsities, becoming an increasingly significant bottleneck
as sparsity increases. This additional computational overhead directly explains the inference throughput and
latency differences observed in our experiments.

4.2 Ablation Studies

Isolating DyReLU and Weight Sharing. We first augment the standard RigL pipeline with only
DyReLU phasing, replacing standard ReLU with DyReLU at initialization and gradually transitioning back
to ReLU before the first learning rate schedule update. Weight sharing and cyclic sparsity are excluded
in this isolated experiment. The results, summarized in Table 4 demonstrate a clear performance boost
when utilizing DyReLU phasing, particularly at higher sparsity levels. At 99.99%, RigL completely loses its
expressive capacity. However, as soon as DyReLU Phasing is used as a drop-in replacement for ReLU, it
immediately starts converging. We observe that not only is training improved while DyReLU is in effect,
but the performance continues to improve even after DyReLU has been completely phased out.

Improving gradient flow during early training has been shown to be critical for successfully training sparse
networks. Evci et al. (2022) demonstrated that methods with better gradient flow, particularly during
initialization and early training, consistently achieved superior performance. Building on this insight, we
investigated the effect of DyReLU phasing on gradient flow in addition to measuring accuracy.

To analyze this, we computed the sum of the gradient norm of all layers, and compared the gradient flow
during training between models using DyReLU phasing against those with standard ReLU. As shown in the
top row of Figure 5, models using only standard ReLU have zero gradient norms at 99.99% sparsity and
this is reflected in their collapsed accuracy. On the other hand, the networks with DyReLU phasing receive
high gradient flow in the beginning where β = 1, during phasing where 0 < β < 1, and maintains healthy
gradient flow when β = 0. Results suggest that the network retains some of the gradient-boosting benefits
initially provided by DyReLU, We conjecture that this is because DyReLU amplifies important features in
the beginning and helps the network settle into a configuration that preserves gradients even after switching
to standard ReLU. Gradient flow especially during early stages is a strong indicator of the DST’s success,
and helps explain the performance gap between the methods.

Similarly, we isolate the effect of weight sharing by adding only this mechanism to the RigL pipeline, keeping
all other settings the same. Once again, gradient flow has been restored and we see a dramatic increase in
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Figure 5: Gradient flow analysis. The top row compares gradient with and without DyReLU. The bottom
row compares gradient with and without weight sharing.

gradient flow, as shown in the bottom row of Figure 5. This supports our hypothesis that creating additional
gradient paths through weight sharing can help maintain stable training at extreme sparsities.

Effect of Cyclic Sparsity. We evaluate the impact of dynamically varying sparsity levels throughout
training compared to maintaining static sparsity. Using ResNet-34 and ResNet-50 on CIFAR-100 at 99.95%
target sparsity, we test cosine-based cyclic schedules against static sparsity baselines. As shown in Figure
6, cyclic sparsity consistently outperforms static sparsity across both architectures to varying degrees. The
cyclic schedule allows the sparsity to temporarily relax before gradually returning to the target extreme
level. This periodic increase in connectivity encourages parameter exploration during the denser phases
while maintaining the desired final sparsity level. While ResNet-34 shows incremental improvement with
cyclic scheduling, ResNet-50 demonstrates more substantial gains, suggesting that deeper networks may
benefit more from this cyclic approach.

We provide more test results using different cyclic patterns in Appendix C. These suggest that the concept of
varying sparsity level may have an impact at extreme sparse training regime. However, we acknowledge that
the large number of possible configurations makes systematic experimentation and hyperparameter tuning
challenging. Future work will focus on identifying optimal schedule for different datasets and architectures.

5 Conclusion

In this paper, we introduced EAST, a new DST approach focusing on extreme sparsities that incorporates
DyReLU phasing, weight sharing, and cyclic sparsity scheduling. Through extensive empirical evaluation on
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Figure 6: The cyclic sparsity schedule (left) and its effect on training a ResNet-34 (middle) and ResNet-50
(right) on CIFAR-100.

CIFAR-10, CIFAR-100 and ImageNet using ResNet-34 and ResNet-50, we demonstrated EAST’s ability to
achieve competitive performance at extreme sparsities, surpassing existing methods by a large margin. Each
component of EAST individually contributes to maintaining robust gradient flow and optimizing parameter
exploration at extreme sparsity, while their combined effect can further enhance performance stability. Our
results highlight the potential for practical applicability in resource-constrained environments, establishing
it as a scalable and effective method for highly compressed networks. This work opens up future research to
optimize models at extreme sparsities, an area often overlooked in previous studies.
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