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ABSTRACT

We investigate the trade-off between expressive power and privacy guarantees in
graph representation learning. Privacy-preserving machine learning faces grow-
ing regulatory demands that pose a fundamental challenge: safeguarding sensitive
data while maintaining expressive power. To address this challenge, we propose
homomorphism density vectors to obtain graph embeddings that are private and
expressive. Homomorphism densities are provably highly discriminative and offer
a powerful tool for distinguishing non-isomorphic graphs. By adding noise cali-
brated to each density’s sensitivity, we ensure that the resulting embeddings sat-
isfy formal differential privacy guarantees. Our theoretical construction preserves
expressivity in expectation, as each private embedding remains unbiased with re-
spect to the true homomorphism densities. Our embeddings match, in expectation,
the expressive power of a broad range of graph neural networks (GNNs), such as
message-passing and subgraph GNNs, while providing formal privacy guarantees.

1 INTRODUCTION

We study the interplay between expressivity and privacy for learning graph representations and
show how to obtain expressive and private representations. Our investigation addresses the need for
privacy-preserving machine learning and our formal guarantees align with the increasing regulatory
pressure in this direction (European Parliament and Council of the European Union, 2016; 2024;
National Institute of Standards and Technology, 2023). In graph representation learning, expressiv-
ity analysis studies the ability of learning algorithms to distinguish pairs of non-isomorphic graphs.
Private algorithms, on the other hand, generally ensure that similar graphs yield similar outputs.
Consider for instance graphs G1 and G2 in Figure 1 that differ by exactly one edge. As the two
graphs are non-isomorphic, an expressive algorithm produces distinct embeddings φ(G1) ̸= φ(G2)
as it captures their structural differences. An edge private algorithm, instead, protects the presence
or absence of individual edges and therefore produces similar embeddings φ(G1) ≈ φ(G2). There-
fore, requiring algorithms to be both expressive and private is challenging. So far, there has been

Figure 1: G1 and G2 are two non-isomorphic graphs that differ in exactly one edge. An expres-
sive graph algorithm should distinguish between these graphs and provide different embeddings
φ(G1) ̸= φ(G2); a differentially private algorithm instead ensures that φ(G1) ≈ φ(G2).

little investigation towards a better theoretical understanding of this tension and a characterization
of the trade-offs between privacy, expressivity, and utility, i.e., predictive performance. We fill this
research gap and investigate to which degree embeddings with provable expressivity and privacy
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guarantees can be obtained. We focus on graph-level learning tasks while providing edge-level
privacy guarantees. This setting allows us to study the effect of the minimal possible structural mod-
ifications, i.e., edge changes, on embeddings which are obtained from the graph structure only, to
isolate the effect of the graph structure itself on privacy and expressivity. Specifically, we consider
the notions of expressivity in expectation and of differential privacy (DP). We propose graph em-
beddings with carefully scaled random noise, such that their distributions sufficiently overlap for
graphs that differ by one edge (see G1 and G2), while remaining distinguishable for graphs with
larger edge edit distance (G1 and G3). We build upon existing work that relies on homomorphism
counts, either as standalone graph representations or to increase the expressive power of graph neu-
ral networks (GNNs) (NT & Maehara, 2020; Welke et al., 2023; Jin et al., 2024; Maehara & NT,
2024). Homomorphism counts are a powerful theoretical tool to investigate expressivity, as they
can be used to distinguish any pairs of non-isomorphic graphs (Lovász, 1967; 2012). We introduce
noisy homomorphism densities, i.e., normalized homomorphism counts with additive noise, to ob-
tain representations which are expressive in expectation and DP. Our method allows for the private
release of the graph embeddings, which can be then used for any further downstream analysis.

Main contributions.

(i) We propose homomorphism densities as a theoretical tool to investigate the trade-off be-
tween expressivity and privacy in graph representation learning.

(ii) We show that the choice of the pattern class used to compute the homomorphism densities
determines the required level of noise needed for privacy guarantees: pattern classes that
provide more expressive power require more noise, which can decrease their utility.

(iii) We provide a general framework to obtain graph embeddings that satisfy a specified pri-
vacy guarantee and level of expressivity in expectation, and can be used for downstream
tasks such as graph classification or regression. Our embeddings match, in expectation,
the expressive power of various GNN architectures such as message-passing GNNs and
subgraph GNNs, while also satisfying DP.

2 RELATED WORK

Recent work in graph representation learning has studied the expressive power of learning algo-
rithms, i.e., their ability to learn different representations for non-isomorphic graphs. A large body
of work analyzed the expressive power of GNNs through the lens of k-Weisfeiler-Leman (k-WL)
tests, a hierarchy of increasingly expressive color refinement algorithms (Xu et al., 2018; Morris
et al., 2019). An alternative approach is to rely on graph representations built using homomorphism
counts (Böker, 2021; Lovász, 2012; Jin et al., 2024; Maehara & NT, 2024; Beaujean et al., 2021;
Wolf et al., 2023) to obtain arbitrarily expressive representations, at least in expectation (NT & Mae-
hara, 2020; Welke et al., 2023). Recently, Zhang et al. (2024a) and Xu (2025) have formalized a
connection between homomorphism counts and the expressive power of many popular GNN archi-
tectures. While expressivity analysis can identify the theoretical limitations of learning algorithms,
there is little research on how expressive power affects other properties such as, e.g., generalization,
as recently pointed out by Morris et al. (2024), robustness (Campi et al., 2023; Kummer et al., 2025),
or privacy. The lack of research on the interplay between privacy and expressivity has also been re-
cently highlighted by Sajadmanesh et al. (2023), who call for more investigation on the expressive
power of DP graph learning algorithms. A line of research in graph privacy focuses specifically on
protecting the structural information in graphs, which is often of sensitive nature. Privacy attacks can
target the edges (Raskhodnikova & Smith, 2016) or the nodes (Kasiviswanathan et al., 2013; Xiang
et al., 2024) of a graph, which can encode sensitive information (Mueller et al., 2022; Li et al., 2023;
Zhang et al., 2024b; Fu et al., 2023). Graph reconstruction attacks can effectively recover private in-
formation from trained models (Zhang et al., 2022; Wu et al., 2024; Zhou et al., 2023; Olatunji et al.,
2023) and a number of DP graph learning approaches have therefore been proposed (Sajadmanesh
& Gatica-Perez, 2024; 2021; Sajadmanesh et al., 2023; Pei et al., 2024; Olatunji et al., 2024). To
address the protection of the edges of graphs, Hidano & Murakami (2024), Xie et al. (2025), and Xu
et al. (2024) focus on edge privacy. In particular, Hidano & Murakami (2024) consider edge-level
privacy for graph-level tasks, which matches the problem setting we focus on. Furthermore, recent
work has considered the problem of private subgraph counting, with a focus on triangle counting
(Ding et al., 2018; Imola et al., 2022; Nguyen et al., 2023). Although expressivity and privacy have
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been independently studied extensively for graph learning algorithms, their interplay has not been
formally investigated so far. The cited DP graph learning algorithms, in fact, aim to obtain the best
utility under privacy constraints but do not provide expressivity guarantees. We initiate the joint
study of expressivity and privacy in graph representation learning to provide a better theoretical and
practical understanding of the trade-off between the two.

3 PRELIMINARIES

In this section, we introduce the relevant preliminaries on graph theory, expressivity, and differential
privacy. Full details can be found in Appendix A.

3.1 GRAPH THEORY AND EXPRESSIVITY IN GRAPH LEARNING

Let G = (V,E) ∈ G be a simple graph where G is the set of finite graphs. G has node set V (G)
with |V (G)| = n and edge set E(G) with e(G) = |E(G)|. For two sets S, T ⊆ V (G), let eG(S, T )
denote the number of edges with one endpoint in S and one endpoint in T . For a graph G with
n nodes and adjacency matrix AG, let ∥AG∥1 =

∑n
i,j |Aij | denote the ℓ1 norm of AG. A tree

decomposition of a graph G consists of a tree T and a family B = {bi | i ∈ V (T )} of subsets of V
such that (i)

⋃
i bi = V (G), (ii) for every edge uv ∈ E(G),∃bi ∈ B such that u ∈ bi and v ∈ bi,

and (iii) ∀bi, bj , bk such that bj lies on the path from bi to bk, then if node v ∈ bi and v ∈ bk this
implies that v ∈ bj . The treewidth of a tree decomposition is maxi |bi|−1. The treewidth of a graph
G is the minimum treewidth among all possible tree decompositions of G. Intuitively, the treewidth
of a graph measures how tree-like a graph is, e.g., trees have treewidth 1 and cycles have treewidth
2. We refer to a graph F ∈ F ⊆ G as a pattern when we count the homomorphisms from F to
some graph G. Given two graphs F,G, a homomorphism from F to G is an edge-preserving map
ψ : V (F ) → V (G). We call ψ an isomorphism in case it is adjacency-preserving and bijective. For
two graphs G,G′ ∈ G, let G ≃ G′ denote that the two graphs are isomorphic.

Definition 3.1 (Homomorphism density). Let hom(F,G) denote the number of homomorphisms
from F to G. Then, we define the homomorphism density as

t(F,G) =
hom(F,G)

|V (G)||V (F )| .

For a given vector of patterns F = (F1, . . . , Fd) we consider the homomorphism density vector
t(F , G) := (t(F1, G), . . . , t(Fd, G)). We now present two common notions of distances on graphs
which are relevant for our investigation, the edge edit distance and the cut distance.

Definition 3.2 (Edge edit distance and cut distance, Lovász 2012; Grohe 2020). For two graphs
G,G′ with the same number of nodes, the edge distance de and the cut distance d□ are defined as

dedge (G,G
′) =

1

2
∥AG −AG′∥1 , d□(G,G

′) = max
S,T⊆V (G)

|eG(S, T )− eG′(S, T )|
n2

.

It holds that d□(G,G′) ≤ 2dedge (G,G
′) /n2 (Lovász, 2012). The counting lemma upper bounds

the absolute difference in the homomorphism densities of two graphs with respect to a pattern.

Lemma 3.1 (Counting Lemma, Lovász 2012). For any three simple graphs F , G, and G′ with
|G| = |G′|, it holds that |t(F,G)− t(F,G′)| ≤ e(F )d□(G,G

′).

As presented by Lovász (2012, Lemma 10.22), the counting lemma relies on a slightly different
notion of cut distance which allows to consider graphs with node sets of different cardinalities,
which are not relevant for our discussion. We provide further details in Appendix A.

The expressive power of graph learning algorithms is commonly measured as their ability to distin-
guish between pairs of non-isomorphic graphs. Let φ : G → Rd be a graph embedding. We assume
φ to be permutation invariant, i.e., for all G,G′ ∈ G, G ≃ G′ implies φ(G) = φ(G′). This is
trivially true for homomorphism counts and homomorphism densities. The ability of an embedding
to distinguish non-isomorphic graphs is referred to as completeness, which we introduce as follows.
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Definition 3.3 (Completeness). An embedding φ : G → Rd is complete if for all G,G′ ∈ G,
G ≃ G′ if and only if φ(G) = φ(G′).

A seminal result by Lovász asserts that homomorphism counts enjoy strong distinguishing proper-
ties, as two non-isomorphic graphs can be distinguished by counting homomorphisms.

Theorem 3.4 (Expressivity of homomorphism counts, Lovász 1967). For any two graphs G,G′ it
holds that G ≃ G′ if and only if hom(F,G) = hom(F,G′) for all simple graphs F .

The embedding built from the homomorphism counts for all patterns F ∈ G is therefore complete.
For patterns restricted to some specific graph class F ⊆ G, we introduce the following notion.

Definition 3.5 (F-expressivity). An embedding φ : G → Rd is F-expressive if, for all G,G′ ∈ G
and for all F ∈ F , hom(F,G) = hom(F,G′) if and only if φ(G) = φ(G′).

Consider now a random embedding, parametrized by a random variable X ∼ D for some distribu-
tion D and denote it by φX : G → Rd. We introduce notions of completeness and expressivity in
expectation as follows.

Definition 3.6 (Expectation-completeness, Welke et al. 2023). An embedding φX : G → Rd is
expectation-complete if the embedding EX [φX ] is complete.

Definition 3.7 (F-expectation-expressivity). An embedding φX : G → Rd is F-expectation-
expressive if the embedding EX [φX ] is F-expressive.

3.2 DIFFERENTIAL PRIVACY

Differential privacy is a formal notion of privacy that protects individual training points. DP is
defined in terms of neighboring databases. A database is a collection of points, where a point in a
database may be, e.g., a row in a table or an edge in a graph. Two databases x, x′ are neighboring if
they differ in a single point, that is, if one single point is present in one database but not in the other.
We denote this as x ∼1 x

′. DP guarantees that an attacker cannot confidently determine from which
of two neighboring databases the output of a DP mechanism has been obtained from. We introduce
two notions of DP and briefly describe how to achieve DP according to these notions.

Definition 3.8 ((ϵ, δ)-DP, Dwork et al. 2006). Let ϵ ≥ 0 and δ ∈ [0, 1). A randomized mechanism
M : X → Y satisfies δ-approximate ϵ-indistinguishability differential privacy, denoted as (ϵ, δ)-
DP, if, for all neighboring x, x′ ∈ X and for any S ∈ Range(M) it holds that Pr[M(x) ∈ S] ≤
eϵ Pr[M(x′) ∈ S] + δ, where probabilities are taken over the randomness of M.

In DP, we refer to ϵ as the privacy budget of a mechanism, with larger values of ϵ providing less
privacy, and a value of ϵ = 0 providing perfect privacy. To make a given function f DP, one can add
noise proportional to its global sensitivity GSf = maxx∼1x′ ∥f(x)− f(x′)∥; see Appendix A.2
for more details. A distributional flavor of DP can be formalized in terms of the divergence of a
randomized mechanism when applied to two neighboring databases.

Definition 3.9 ((ρ, ω)-tCDP, Bun et al. 2018). Let ρ > 0 and ω > 1. LetDα( · ∥ · ) denote the Rényi
divergence of order α (Rényi, 1961; Van Erven & Harremos, 2014). A randomized mechanism
M : X → Y satisfies ω-truncated ρ-concentrated differential privacy, denoted as (ρ, ω)-tCDP, if,
for all neighboring x, x′ ∈ X , for all α ∈ (1, ω) it holds that Dα(M(x) ∥ M(x′)) ≤ ρα.

Definition 3.8 and Definition 3.9 can be formally related as tCDP implies (ϵ, δ)-DP (see Lemma A.2
in Appendix A.2). It is convenient to consider tCDP as, in contrast to the standard mechanisms
described in Appendix A.2, it allows to achieve DP while considering a local notion of sensitivity
for a function f at a point x.

Theorem 3.10. (tCDP with Gaussian noise, Bun et al. 2018) Let f, g : X → R satisfy, for every
pair of neighboring databases x, x′ ∈ X and for ∆f ,∆g ≥ 0,

|f(x)− f(x′)| ≤ ∆f · eg(x)/2, |g(x)− g(x′)| ≤ ∆g.

Let M : X → R be the randomized mechanism defined as M(x) = f(x) +N (0, eg(x)). Then, M
satisfies (∆2

f +∆2
g,

1
2∆g

)-tCDP.
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In Theorem 3.10, ∆f · eg(x)/2 is a smooth upper bound on the local sensitivity of f at x. We extend
this result to the d-dimensional case in Theorem B.6. This is consistent with the smooth sensitivity
framework introduced by Nissim et al. (2007), which we describe in more detail in Section 4.2 and
Appendix A.2.

4 EXPRESSIVITY-PRIVACY TRADE-OFF

In this section, we study the interplay between expressivity and privacy from a theoretical perspec-
tive. As previously discussed (see Figure 1), expressive embeddings can, by definition, not be private
with respect to neighboring graphs. In the other direction, DP requires to add enough noise to mix
the representations of neighboring graphs so that they may not be distinguishable, hindering expres-
sivity. Despite this tension, we can rely on the simple observation that DP noise has mean zero to
note that DP preserves embeddings in expectation. In this context, we take advantage of the fact
that homomorphism counts can be used to obtain embeddings which are, in expectation, complete
(Lovász, 2012; NT & Maehara, 2020; Welke et al., 2023). Expectation-complete embeddings are a
prime candidate for our analysis as they have, in expectation, arbitrary expressive power which can
surpass the limits of, e.g., the WL hierarchy. We show that the noisy homomorphism densities, i.e.,
a private version of the normalized homomorphism counts, retain expressivity in expectation. To
obtain embeddings which are not only private and expressive in theory but also usable in practice,
we then discuss a smooth sensitivity bound that refines the counting lemma to the specifics of our
analysis, and use this to provide formal tCDP guarantees for the embeddings. Our graph embedding
can be used for any downstream graph learning task without incurring further privacy cost, thanks to
the post-processing property of DP (Dwork et al., 2014). Our analysis identifies a key trade-off be-
tween expressivity and privacy: homomorphism densities obtained from patterns which are sampled
from graph classes F that provide stronger distinguishing power require larger amounts of noise to
be DP, which may practically result in worse utility for the embeddings. We defer all missing proofs
to Appendix B.

4.1 EXPRESSIVITY IN EXPECTATION

In this section, we show that homomorphism density vectors with DP noise are, in expectation,
expressive. For now we consider a generic noise term N with mean zero, a condition that DP
noise satisfies, and defer the precise expression for the DP noise to the next section (Section 4.2).
For some graph G and pattern F , we define the noisy homomorphism density embedding as
t̃(F,G) = t(F,G) + N . We define the noisy homomorphism density embedding t̃(F , G) for a
vector of patterns F analogously. It is easy to see that t̃(F , G) is not permutation invariant due to
the added noise, a necessary consequence of the fact that DP requires a randomized mechanism.
This observation does not, however, affect the possibility to obtain expressive or even complete
graph embeddings in expectation.1 For our results, similarly to Welke et al. (2023), we assume that
each pattern is sampled from an appropriate distribution D with full support on the graph class F of
interest.

We first show that for any fixed graph and a single sampled pattern, the noisy homomorphism density
embedding is expressive in expectation.

Theorem 4.1. For any G ∈ G, t̃(F,G) is F-expectation-expressive for F ∼ D if D has full support
on F ⊆ G. If F = G, then t̃(F,G) is expectation-complete.

As we are often interested in a homomorphism density vector obtained from a number of sampled
patterns, we extend Theorem 4.1 to the vector case. We show that the resulting noisy homomorphism
density embedding is not only expressive in expectation, but also remains expressive with high
probability for a large enough number of sampled patterns.

Theorem 4.2. Let D be a distribution on F ⊆ G with full support. Let G ∈ G, F ∼ Dd, and
θ ∈ [0, 1]. For large enough d, t̃(F , G) is F-expressive with probability at least 1 − θ. If F = G,
then, for large enough d, t̃(F , G) is complete with probability at least 1− θ.

1Note that homomorphism densities, in contrast to homomorphism counts, do not distinguish G and a
blowup of G. We discuss this issue and a simple solution to it at the end of this section as well as in more detail
in Appendix B.
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Theorem 4.1 and Theorem 4.2 demonstrate that, despite the noise required for DP, our homomor-
phism density embeddings retain full discriminative power in expectation and, with enough patterns,
with high probability.

4.2 PRIVACY GUARANTEES

In this section, we provide DP guarantees for the homomorphism density embeddings. To calibrate
an appropriate amount of noise to be added to the homomorphism densities to guarantee DP, we
discuss how to bound the sensitivity of t(F , G). In particular, we choose tCDP as our formal notion
of privacy since it allows us to consider a local notion of sensitivity with Gaussian noise, which often
requires less noise to be added in practical settings. In most of the following discussion, we consider
the pattern F to be fixed, but we remark that to achieve expressivity in expectation (see Section 4.1)
the patterns are sampled from a distribution as F ∼ D. We focus on edge-level privacy and strive to
protect the presence/absence of individual edges in a graph. We thus interpret neighboring graphs,
according to the following definition, as two neighboring databases.
Definition 4.3 (Neighboring graphs). Two graphs G, G′ with the same number of nodes are neigh-
boring graphs, written G ∼1 G

′, if dedge (G,G
′) = 1.

Based on our notion of neighboring graphs, we can leverage the counting lemma to obtain a bound on
the global sensitivity of the homomorphism densities: For any two neighboring graphsG ∼1 G

′ with
n nodes, for any pattern F we get thatGSt,F = |t(F,G)−t(F,G′)| ≤ e(F )d□(G,G

′) = 2e(F )/n2

(see Corollary B.1). SinceGSt,F considers the worst case behavior of t around any graphG, using it
in the standard DP mechanism (Appendix A.2) is likely to result in poor performance2. In contrast,
local sensitivity, defined as LSt,F (G) = maxG′∈G:dedge(G,G′)≤1 |t(F,G)− t(F,G′)| provides an
upper bound on the sensitivity around a specific graph G, and is often much smaller than GSt,F .
Additive noise proportional to the local sensitivity, however, does not guarantee DP. A crucial step
in our analysis is therefore to consider noise calibration under the smooth sensitivity framework
(Nissim et al., 2007), which provides a smooth upper bound to the local sensitivity. For some β > 0
and pattern F , the β-smooth sensitivity of t(F,G) at G is defined as

St,F (G) = max
G′∈G

(
e−βdedge(G,G′) · LSt,F (G′)

)
. (1)

As we consider homomorphism density vectors, we show in our next proposition how to provide an
upper bound to the smooth sensitivity of t(F , G) by considering the individual St,Fi(G) for Fi ∈ F .
Proposition 4.4. Let St,∗(G) = ∥St,F1

(G), . . . , St,Fd(G)∥2 and β > 0. Let

St(G) = max
H∈G

(
e−βdedge(G,H) max

H′∈G:dedge(H,H′)≤1
∥t(F , H)− t(F , H ′)∥2

)
(2)

be the β-smooth sensitivity of t(F , G) at G. Then, it holds that St,∗(G) ≥ St(G).

In many cases, domain knowledge allows to assume that the degree of the graphs is bounded. We
thus derive an even smaller bound on the sensitivity of the homomorphism densities.
Theorem 4.5 (Sensitivity of homomorphism density for bounded degree graphs). Let G ∼1 G

′ be
two neighboring graphs with n nodes and maximum degree ∆max. For any pattern F with m > 1
nodes, it holds that

|t(F,G)− t(F,G′)| ≤ 2e(F )

n2

(
∆max

n

)m−2

. (3)

For large graphs and large patterns
(
∆max

n

)m−2 ≪ 1. Therefore, the bound provided by Equation (3)
is often tighter in practice than the one we could directly obtain from the counting lemma. For
domains where no meaningful public degree bound is available, one could either estimate ∆max

privately or, simply, set ∆max = n to recover the counting lemma. For a private estimate, one
may add, e.g., Laplacian noise to the empirical maximum degree under a small additional privacy
budget. For a given density vector t(F , G), we can now use Theorem 4.5 to upper bound the smooth
sensitivity of each t(F,G) individually and obtain an upper bound St,∗(G) for the entire vector as
shown in Proposition 4.4. With this, we present the main result of this section: a private mechanism
for homomorphism density vectors. More specifically, we derive a tCDP version of t(F , G).

2See the ablation study in Appendix D.3 for empirical evidence supporting this claim.
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Theorem 4.6. Let t(F , G) be the homomorphism density vector for graph G and pattern set F
with |F | = d, ρ′ > 0, and St,∗(G) be a β-smooth upper bound to the local sensitivity as per
Proposition 4.4. Then, the mechanism

t̃(F , G) = t(F , G) +N
(
0,

[St,∗(G)]
2

2ρ′
Id

)
(4)

is
(
2ρ′ + d · 4β2, 1

4β

)
-tCDP for neighboring graphs as per Definition 4.3.

Theorem 4.6 enables us to determine the amount of noise needed to guarantee tCDP for the ho-
momorphism densities. The additive noise has mean zero, and thus our results on expectation-
expressivity of the previous section apply: in expectation, the noisy, private homomorphism den-
sities are unbiased with respect to the non-private densities. As smooth sensitivities are upper-
bounded by the global sensitivity, we expect this procedure (Theorem B.6) to yield a significantly
better privacy-utility trade-off compared to the standard Gaussian mechanism; see Table 6 in Ap-
pendix D.3 for empirical evidence.

4.3 PRIVATE AND EXPRESSIVE GRAPH REPRESENTATIONS

We are now able to combine the results of the previous two sections to (i) show how to obtain
provably expressive and private graph representations, and (ii) formally quantify the expressivity-
privacy trade-off. Before we present our main result in Theorem 4.8, we highlight a technicality on
how to distinguish blowup graphs, which we also discuss more thoroughly in Remark B.1.
Remark 4.7 (Completeness of homomorphism density embeddings). A p-blowup of G can be ob-
tained by replacing each node of G by p ≥ 1 twin copies (Lovász, 2012). Two graphs G,G′, where
G′ is a blowup of G, have the same homomorphism density for any pattern F (Lovász, 2012, The-
orem 5.32). Therefore, homomorphism densities cannot be used to distinguish all non-isomorphic
graphs. To resolve this, we append the node count |V (G)| to the homomorphism density embed-
ding of G to distinguish it from all its blowups. This operation is trivially DP with respect to the
neighboring graph notion in Definition 4.3, as any two neighboring graphs have the same number of
nodes, and thus costs no further privacy budget.

Our first result in this section states that we can generate graph embeddings which are provably
private and expressive. We show that for a chosen privacy budget and a chosen graph class F , we
guarantee that our homomorphism density embeddings are tCDP and F-expectation-expressive.

Theorem 4.8. Let D be a distribution on F ⊆ G with full support. Let G ∈ G be a graph and
F = (F1, . . . , Fd) ∼ Dd be a vector of patterns. Then, the graph representation t̃(F , G) =

t(F , G) + N
(
0,

[St,∗(G)]2

2ρ′ Id

)
is F-expectation-expressive and (2ρ′ + d · 4β2, 1

4β )-tCDP, where

ρ′ > 0 and St,∗(G) is a β-smooth upper-bound on the local sensitivity of t(F , G). If Fd = Gd, then
t̃(F , G) is also expectation-complete.

Theorem 4.8 allows us to characterize the expressive power of our embeddings more precisely by
sampling patterns from a graph class F that determines a certain level of expressivity in expectation
(NT & Maehara, 2020). For instance, it is well known that 1-WL serves as upper bound for the
expressive power of a large class of message-passing graph neural networks (MPNNs) (Xu et al.,
2018; Morris et al., 2019). The expressive power of 1-WL, in turn, is equivalent to counting tree
homomorphisms. In other words, two graphs have the same 1-WL color multiset (Xu et al., 2018) if
and only if they have the same homomorphism counts for all trees. This equivalence can be general-
ized for many popular GNN architectures by determining their homomorphism-distinguishing closed
graph class (Neuen, 2024), which corresponds to the pattern graph class in our setting. For instance,
the expressive power of k-GNNs (Morris et al., 2019; 2023) corresponds to the homomorphism-
distinguishing closed graph classes of treewidth k (Neuen, 2024). We refer to Zhang et al. (2024a)
and Xu (2025) for a more in-depth discussion of homomorphism expressivity and general techniques
to obtain homomorphism-distinguishing closed graph classes for given GNN architectures.

Based on our theoretical investigation, we now present our second result and quantify the trade-off
between expressivity and privacy: the choice of the graph class F does not only affect expressivity,
but also the amount of noise that needs to be added to the embeddings to obtain privacy guarantees.
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Table 1: Common GNNs and their homomorphism-distinguishing closed graph classes (see Paolino
et al. 2024 for r-ℓMPNNs, Gai et al. 2025 for spectral invariant GNNs, and Zhang et al. 2022 for the
remaining GNNs). For details on the maximum numbers of edges refer to Appendix B.2.

GNN Graph class F maxF∈F,m=|V (F )| e(F )

MPNNs (1-WL) Trees m− 1

r-ℓMPNNs (r-ℓWL) Fan-cactus graphs 2m− 3

Spectral invariant GNNs Parallel trees 2m− 3

Subgraph k-GNNs {F : ∃U ⊂ V (F ) s.t.
|U | ≤ k and F \ U is a forest} m(k + 1)− 1− k2+3k

2

k-FGNNs (k-WL) {F : tw(F ) ≤ k} km− k(k+1)
2

Proposition 4.9. Consider a graph G with n nodes and let F be a class of patterns with m nodes.
For a chosen privacy parameter ρ′ > 0, the Gaussian noise necessary to obtain a specific privacy
guarantee in Theorem 4.8 has variance σ2 = O

(
(maxF∈F e(F ))

2/n4
)
.

Table 1 provides the homomorphism-distinguishing closed graph class F as well as its maximum
number of edges for some well-known GNN architectures with expressive power precisely charac-
terized by F , i.e., that can distinguish all non-isomorphic graphs in F . With this information, we are
able to generate private graph embeddings that, in expectation, match the expressive power of many
GNN architectures. In general, more expressive GNN architectures often have greater bounds on
e(F ) for F ∈ F . From Proposition 4.9 we can therefore conclude that with patterns sampled from
more expressive graph classes, more noise is required to achieve a given privacy guarantee. Thus,
we have identified an explicit trade-off between privacy and expressivity.

5 EXPERIMENTS

We complement our theoretical investigation with a compact empirical study that can be run on a
single commercial GPU. Our goal is not to compete with state-of-the-art approaches, but rather to
probe the trade-off between the desiderata of privacy and expressivity in practice, as well as assess
the utility, i.e., the performance, of our private embeddings on real-world and synthetic datasets. We
organize our experimental evaluation around the following research questions:

Q1. For a fixed privacy budget, do embeddings obtained from more expressive graph classes
offer better performance?

Q2. For a fixed class of patterns, how does performance degrade when we require stronger
privacy guarantees?

Q3. Are the expressive and private embeddings we obtain practically useful?

Experimental setup. We evaluate the private and expressive homomorphism density vectors for
graph-level tasks on real-world as well as synthetic datasets. We run experiments on four commonly
used OGBG molecular benchmark datasets (MOLHIV, MOLBACE, MOLBBBP, and MOLLIPO (Hu
et al., 2020)) and on three network datasets (REDDIT-BINARY and REDDIT-MULTI-5K (Xiang
et al., 2024), and GitHub STARGAZERS (Rozemberczki et al., 2020)). Additionally, we perform
experiments on a synthetic stochastic block model (SBM, see Appendix C.2)). As we focus on how
the graph structure can be privately leveraged to have expressive representations, the core of our
experiments relies on the graph structure only as encoded by the homomorphism density vectors
and does not consider any node or edge features. We experiment with different privacy budgets
ρ′ ∈ [10−8, 1]. To make results more interpretable, we convert our tCDP guarantees into (ϵ, δ)-
DP guarantees using Lemma A.2 in Appendix A.2; (ϵ, δ)-DP guarantees are easier to interpret as
privacy budgets roughly in the range ϵ ∈ (0, 10] are generally understood to provide meaningful
privacy protection in graph machine learning (Wu et al., 2022; Sajadmanesh & Gatica-Perez, 2021).
To evaluate privacy protection empirically, we run the privacy attacks detailed in Appendix D to try
and recover the original graphs. We consider sampled vectors of patterns F with d = 50 for all
experiments. We compare the performance of our embeddings against the Randomized Response
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(RR) and the degree-preserving Randomized Response (DPRR, Hidano & Murakami, 2024) GNN
baselines. For details on the experimental setup, baselines, and additional results, see Appendix D.

Time complexity. While counting homomorphisms is intractable in general, there exist efficient
algorithms for certain graph classes. For instance, homomorphism counts for cycle patterns can
be computed efficiently via powers of the adjacency matrix, see Proposition C.2 in Appendix C.
For bounded treewidth patterns, Dı́az et al. (2002) introduced a polynomial-time algorithm that
computes hom(F,G) in O(|V (F )| |V (G)|tw(F )+1), where tw(F ) denotes the treewidth of pattern
F . Based on this result, Welke et al. (2023) propose, for each Gn for fixed n, a sampling strategy
with polynomial runtime in expectation by decreasing the probability mass of patterns with higher
treewidth. The key idea behind their approach is to construct a probability distribution and ensure
that every pattern has a nonzero, but potentially very small probability to be sampled. We refer to
Welke et al. (2023, Thm. 15, App. C) for a more in-depth discussion on the construction of such a
distribution and details on the sampling strategy. We remark that the computation and addition of DP
noise does not introduce any noticeable computational overhead. Furthermore, the computation of
our embeddings can be regarded as a one-time pre-processing step and can subsequently be used for
any downstream analysis. In practice, counting homomorphisms from bounded treewidth patterns,
which matches the expressive power of highly expressive GNNs, can be done on standard consumer-
grade hardware; see Table 8 for detailed runtimes for MOLHIV with increasing maximum treewidth
of tw = {1, 2, 3} and REDDIT-BINARY with tw = 1.
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Figure 2: Visualizations for two of our experiments on SBM and MOLHIV. We report average results
with error bars of 2 standard deviations across 9 runs.

Table 2: Utility and attack accuracy for our experiments on OGBG datasets. As utility metric, we
use the regression RMSE for MOLLIPO and the classification AUC for MOLHIV, MOLBBBP, and
MOLBACE. We report average results and standard deviations across 9 runs. Bold marks best results
for the private runs.

t(F , G) MOLHIV ↑ MOLBBBP ↑ MOLBACE ↑ MOLLIPO ↓

Private (ϵ = 1) Utility 0.692 (0.020) 0.602 (0.005) 0.652 (0.069) 1.086 (0.004)

Attack 0.003 (< 0.001) 0.025 (0.003) 0.027 (0.002) 0.011 (0.002)

Non private (ϵ = ∞) Utility 0.745 (< 0.001) 0.644 (0.008) 0.752 (0.002) 1.055 (0.002)

Attack 0.955 (0.020) 1.000 (< 0.001) 0.990 (< 0.001) 0.992 (0.006)

GNN Baseline

Private (ϵ = 1) RR Utility 0.488 (0.008) 0.440 (0.005) 0.457 (0.024) 1.568 (0.248)

Private (ϵ = 1) DPRR Utility 0.595 (0.155) 0.539 (0.019) 0.648 (0.043) 1.499 (0.333)

Non private (ϵ = ∞) Utility 0.672 (0.022) 0.586 (0.027) 0.768 (0.033) 1.033 (0.021)

Results. To answer questions Q1 and Q2 we perform two sets of experiments: In the first set of
experiments (a), we consider a learning task where one pattern class is provably more expressive
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than another pattern class. In the second set of experiments (b), we instead consider a learning task
where more expressive patterns are not expected to improve performance. For (a), we construct an
SBM dataset, for which cycle patterns have provably stronger distinguishing properties than tree pat-
terns (see Lemma C.1). We observe in Figure 2a that cycle homomorphism densities, a pattern class
that ensures expressivity in expectation, result in drastically better practical performance compared
to tree homomorphism densities. We can further see that the performance for cycles remains good
for reasonable privacy budgets around ϵ = 1. For (b), we use patterns with increasing maximum
treewidth of {1, 2, 3}, and therefore increasing expressive power, on MOLHIV. On this dataset, pat-
terns with maximum treewidth of 1 achieve good performance. In this case, choosing patterns from
more expressive graph classes may not offer a benefit in performance: to obtain the same privacy
guarantee and comparable resilience to privacy attacks, we expect to add more noise to more ex-
pressive patterns according to Proposition 4.9. In fact, in Figure 2b, we observe a downward trend
in the AUC as we increase the maximum treewidth. This confirms that there is indeed a practical
trade-off between expressivity and privacy. Finally, our results in Table 2 and Table 4 positively an-
swer Q3: overall, our private and expressive homomorphism density vectors are useful embeddings
for graph classification and regression tasks. Moreover, the private embeddings offer significantly
better resilience to privacy attacks compared to their non-private counterparts. For a reasonable pri-
vacy budget of ϵ = 1, we always outperform the baseline and MOLHIV, MOLBBBP, and MOLLIPO
stay within 90% of the performance of the non-private homomorphism density embeddings. For
the network datasets, we obtain performances comparable to those in Hidano & Murakami (2024),
despite relying on significantly simpler classifiers, which further confirms the practical usefulness
of our embeddings; see Appendix D for a more in-depth discussion. Indeed, we emphasize that for
all our experiments we use basic machine learning algorithms such as k-nearest neighbor (k-NN)
classifiers, support vector machines and random forests (see Appendix D.1). This suggests that the
private embeddings we obtain are themselves highly informative. We report further experiments
and ablation studies in Appendix D, where we verify the impact of node features on utility, and we
confirm that a straightforward implementation of DP with global sensitivity yields unusably noisy
embeddings, highlighting the necessity for the more refined bounds on sensitivity we discuss in
Section 4.2 to obtain practically usable private embeddings.

6 CONCLUSION

We study the trade-off between expressivity and privacy in graph representation learning. Our re-
sults first address an existing research gap on the interplay between the desiderata of expressivity
and privacy. We propose a noisy version of homomorphism densities as graph embeddings, and
show that our embeddings satisfy formal expressivity and differential privacy guarantees. In our
experiments, we show that our embeddings are also useful in practice and retain high classification
performance with practical protection against privacy attacks.

Limitations. A natural limitation of our approach is that it inherits all the limitations of homo-
morphism counts and densities. As discussed, homomorphism counts can be expensive to compute.
Moreover, homomorphism counts alone may not be sufficient for good practical performance, espe-
cially if node features and their topological arrangements are crucial for the task at hand.

Future work. A promising direction for future work is to refine the noise calibration by more
precisely analyzing the sensitivity of specific graph classes, and to privately encode edge features to
further improve the privacy–utility trade-off.

7 ETHICS STATEMENT

Our work provides formal guarantees that align with the increasing regulatory push toward privacy-
preserving machine learning models. We next detail our usage of LLMs. We use LLMs for the
following use cases: (i) as a coding assistant, (ii) for discussion and suggestions on the experimental
setup, (iii) for retrieval and discovery of related work, and (iv) for feedback on the final draft of
our submission. In all cases, we, the authors, were the last ones to check and modify the content
accordingly. Furthermore, we ensured that the content of this submission was not used for further
training of LLMs to not bias the reviewing process.
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8 REPRODUCIBILITY STATEMENT

All our theoretical statements are supported by proofs, which can be found in Appendix B, and/or
pointers to existing literature. Our experimental setup is detailed in Appendix D and the code used
to produce our empirical results can be found here: https://anonymous.4open.science/
r/exp-priv-hom-A45D.
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A ADDITIONAL PRELIMINARIES

In this section we provide additional details on the preliminaries.

A.1 CUT NORM

In our preliminaries we have implicitly assumed that G and G′ are defined on the same node set,
i.e., the nodes of G and G′ have some fixed labeling ∈ [n] which minimizes the cut distance. If two
graphs G and G′ have the same cardinality n but on different node sets, their distance is defined as

δ̂□(G,G
′) = min

Ĝ,Ĝ′
d□(Ĝ, Ĝ′), (5)

with Ĝ and Ĝ′ ranging over all possible labelings of G and G′ by 1, . . . , n.

For two graphs G and G′ with different cardinalities, we define the cut distance using fractional
overlays. A fractional overlay of two graphs G of order n and G′ of order n′ is a nonnegative
n × n′ matrix X = [Xiu]n×n′ such that

∑n′

u=1Xiu = 1
n and

∑n
i=1Xiu = 1

n′ . If n = n′, let
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σ : V (G) → V (G′) be a bijection. Then, Xiu = 1
n1(σ(i) = u) is a fractional overlay. For a fixed

fractional overlay X , we define the labeled cut distance as

d□(G,G
′, X) = max

Q,R⊆V (G)×V (G′)

∣∣∣ ∑
iu∈Q
jv∈R

XiuXjv

(
1(ij ∈ E(G))− 1(uv ∈ E(G′))

)∣∣∣.
The cut distance between G and G′ is defined over all overlays X (G,G′):

δ□(G,G
′) = min

X∈X (G,G′)
d□(G,G

′, X). (6)

Note that, in general, for two graphs with the same cardinality δ□ may not coincide with δ̂□ and it
holds that δ□(G,G′) ≤ δ̂□(G,G

′) Lovász (2012). We can now re-state the counting lemma with
more precise notation.

Lemma A.1 (Counting Lemma Lovász 2012, Lemma 10.22). For any three simple graphs F , G,
and G′, it holds that:

|t(F,G)− t(F,G′)| ≤ e(F )δ□(G,G
′). (7)

As in our setting we consider pairs of graphs G,G′ with the same number of nodes which share the
same node set, we have that d□(G,G′) = δ□(G,G

′) and we thus do not need to consider the cut
distance defined over fractional overlays.

A.2 DIFFERENTIAL PRIVACY

We provide here additional preliminaries on DP, with a focus on how to achieve DP with additive
noise scaled to the global sensitivity of a function.

Definition A.1 (ϵ-DP, Dwork 2006). Let ϵ > 0. A randomized mechanism M : X → Y satisfies
ϵ-indistinguishability differential privacy, denoted as ϵ-DP, if, for all neighboring x, x′ ∈ X ,

Pr[M(x) ∈ Y] ≤ eϵ Pr[M(x) ∈ Y], (8)

where probabilities are taken over the randomness of M.

Definition A.2 ((ϵ, δ)-DP, Dwork et al. 2006). Let ϵ > 0 and δ ∈ [0, 1). A randomized mechanism
M : X → Y satisfies δ-approximate ϵ-indistinguishability differential privacy, denoted as (ϵ, δ)-DP,
if, for all neighboring x, x′ ∈ X ,

Pr[M(x) ∈ Y] ≤ eϵ Pr[M(x) ∈ Y] + δ, (9)

where probabilities are taken over the randomness of M.

In the literature, ϵ-DP is also referred to as pure DP while (ϵ, δ)-DP is also referred to as approximate
DP. Given a deterministic function f , one can build a private mechanism from f by means of additive
noise calibrated to its global sensitivity GSf,p = maxx∼x′ ∥f(x)− f(x′)∥p, where ∥·∥p is a ℓp-
norm. When p is omitted, we consider ℓ2 norms.

Theorem A.3 (Laplace mechanism for pure DP, Dwork 2006; Dwork et al. 2014). Let f : X → R
have ℓ1 sensitivity GSf,ℓ1 . The randomized mechanism M(x) = f(x) + Lap

(
GSf,ℓ1

ϵ

)
satisfies

ϵ-DP, where Lap(b) denotes Laplacian noise with mean 0 and scale b.

Theorem A.4 (Gaussian mechanism for approximate DP, Dwork et al. 2006; Dwork 2006). Let
f : X → R have ℓ2 sensitivity GSf,ℓ2 . The randomized mechanism M(x) = f(x) + N (0, σ2)

satisfies (ϵ, δ)-DP for σ ≥ GSf,ℓ2

√
2 ln(1.25/δ)

ϵ .

Lemma A.2 (tCDP implies (ϵ, δ)-DP, Bun et al. 2018). Suppose mechanism M satisfies (ρ, ω)-
tCDP with a Rényi divergence of order α. Then, for all δ ∈ [0, 1), 1 < α ≤ ω, M satisfies
(ϵ, δ)-DP with

ϵ =

{
ρ+ 2

√
ρ ln(1/δ) if ln(1/δ) ≤ (ω − 1)2ρ

ρω + ln(1/δ)/(ω − 1) if ln(1/δ) ≥ (ω − 1)2ρ.
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Definition A.5 (Smooth Sensitivity, Nissim et al. 2007). For a function f : X → R, let d(x, x′)
measure the distance between x and x′, where d(x, x′) = 1 indicates that x ∼ x′. Define the local
sensitivity of f at x as

LSf (x) = max
x′∈X :d(x,x′)≤1

|f(x)− f(x′)| . (10)

For β > 0, the β-smooth sensitivity of f at x is then defined as

Sf (x) = max
y∈X

e−β d(x,y) LSf (y). (11)

It is immediate to see that for all x ∈ X , it holds that LSf (x) ≤ GSf . Therefore, we expect a
method that relies on smooth sensitivities to provide better utility, compared to one that relies on
global sensitivities.

B MISSING PROOFS

B.1 EXPRESSIVITY

Remark B.1 (On graph blowups). For the following proofs, it is necessary to address the fact that
two graphs G,G′, where G′ is a blowup of G, have the same homomorphism density for any pattern
F (Lovász, 2012, Theorem 5.32). A p-blowup of G can be obtained by replacing each node of
G by p ≥ 1 twin copies (Lovász, 2012). Therefore, homomorphism densities cannot be used to
distinguish all non-isomorphic graphs. This subtlety is not addressed in Welke et al. (2023) who,
in fact, rely on the wrong assumption that homomorphism densities are complete for some of their
results. We can address this in two ways. We can (i) rely on homomorphism counts, which do not
present the same problem and can be used to obtain a complete embedding (Lovász, 1967; Welke
et al., 2023). As our DP statements consider pairs of graphs with the same number of nodes, this
only requires to rescale the definitions of sensitivity and leads to equivalent statements about the
privacy of the embeddings. This does not affect the utility of our embeddings which are, simply,
rescaled. Alternatively, we can (ii) append the node count |V (G)| to the homomorphism density
embedding of G to distinguish it from all its blowups. This operation is trivially DP with respect to
the neighboring graph notion in Definition 4.3 and costs no further privacy budget. As we rely on
the counting lemma to derive our sensitivity bounds, we choose to present our results in terms of
homomorphism densities3. Therefore, we will assume that, if necessary, the node count is appended
to the embedding so that the following statements hold. We stress that this is simply a choice of
presentation, as all our privacy and expressivity statements could be easily rephrased in terms of
homomorphism counts.

Theorem 4.1. For any G ∈ G, t̃(F,G) is F-expectation-expressive for F ∼ D if D has full support
on F ⊆ G. If F = G, then t̃(F,G) is expectation-complete.

Proof. Consider
τ = EF [t(F,G)] =

∑
F ′∈F

Pr
D
(F = F ′)t(F ′, G)eF ′ , (12)

where eF ′ ∈ R|F| is a standard basis unit vector of R|F|. We can write t̃(F,G) = t(F,G) + Y
where Y ∼ N (µY = 0, σ2) for some variance σ2. Note that Y and F are independent random
variables. It then holds that

E[t̃(F,G)] = E[t(F,G) + Y eF ] = EF [t(F,G)] + EY [Y eF ] (13)
= EF [t(F,G)] + EY [Y ]EY [eF ] = EF [t(F,G)] + µY EY [eF ] (14)
= EF [t(F,G)] = τ. (15)

It remains to show that τ is F-expressive. Let G,G′ be two graphs for which there exists F ′ ∈ F
such that hom(F ′, G) ̸= hom(F ′, G′), and let τ , τ ′ be the corresponding vector representations.
If |V (G)| ≠ |V (G′)| and G′ is a blowup of G or vice-versa, simply append the node counts to
τ, τ ′ to get (τ, |V (G)|) ̸= (τ ′, |V (G′)|). If |V (G)| = |V (G′)|, then hom(F ′, G) ̸= hom(F ′, G′)

3Note that this can also be used to recover the results presented in Welke et al. (2023) that rely on the
completeness of homomorphism densities.
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implies that t(F ′, G) ̸= t(F ′, G′). As D has full support on F , then Pr(F = F ′) > 0 and therefore
Pr(F = F ′)t(F ′, G) ̸= Pr(F = F ′)t(F ′, G′), which implies τ ̸= τ ′. This shows that τ is F-
expressive. If F = G, then τ ̸= τ ′ for any two G ̸≃ G′, with analogous argument. Therefore, τ is
in this case complete.

Theorem 4.2. Let D be a distribution on F ⊆ G with full support. Let G ∈ G, F ∼ Dd, and
θ ∈ [0, 1]. For large enough d, t̃(F , G) is F-expressive with probability at least 1 − θ. If F = G,
then, for large enough d, t̃(F , G) is complete with probability at least 1− θ.

Proof. Let G,G′ be any two graphs for which there exists F ′ ∈ F such that hom(F ′, G) ̸=
hom(F ′, G′). First, we consider the noise-free homomorphism density vectors and want to show
that

t(F , G) = (t(F1, G), . . . , t(Fd, G)) ̸= (t(F1, G
′), . . . , t(Fd, G

′)) = t(F , G′) (16)

with probability at least 1 − θ, where F1, . . . , Fd ∼ D iid. To show this, we adapt the proof of
Lemma 3 by Welke et al. (2023). Since t(F,G) is F-expressive for F ∼ D, then EF [t(F,G)] ̸=
EF [t(F,G′)]. In particular, there exists a set FG,G′ of outcomes of F with Pr(F ∈ FG,G′) = p > 0
such that for all F ∗ ∈ FG,G′ it holds that t(F ∗, G) ̸= t(F ∗, G′). We want that Pr[∃ i ∈ {1, . . . , d} :
Fi ∈ FG,G′ ] ≥ 1− θ, and thus it must hold that 1− (1− p)d ≥ 1− θ. Solving for d, we obtain that
if d ≥ ⌈ ln(1/θ)

ln( 1
1−p )

⌉, then t(F , G) is F-expressive with probability at least 1− θ.

Considering now t̃(F , G), note that if t(F ∗, G) ̸= t(F ∗, G′), then, for any variance σ2, it also holds
that t̃(F ∗, G) = t(F ∗, G) + N (0, σ2) ̸= t(F ∗, G′) + N (0, σ2) = t̃(F ∗, G′) with probability 1.
That is, the patterns for which the noise-free homomorphism densities will distinguish G and G′,
also work with additive noise. Therefore, t̃(F , G) is F-expressive with probability at least 1− θ.

If F = G, then t̃(F , G) ̸= t̃(F , G′) for any two G ̸≃ G′, with analogous argument. Therefore,
t̃(F , G) is in this case complete with probability at least 1− θ.

B.2 HOMOMORPHISM-DISTINGUISHING CLOSED GRAPH CLASSES

In Table 1, we report homomorphism-distinguishing closed graph classes for known GNN architec-
tures Zhang et al. (2024a). For r-ℓMPNNs, we upper bound the number of edges by the maximum
number of edges in outerplanar graphs since fan-cactus graphs are outerplanar Paolino et al. (2024).
For k-FGNNs, we can upper bound the number of edges for graphs of bounded treewidth k by
considering the number of edges in a k-tree, as formalized in the following proposition.

Proposition B.2. Let F = {F : tw(F ) ≤ k}. Then, any F ∈ F with |V (F )| = m has at most
km− 1

2k(k + 1) edges.

Proof. A k-tree is a an edge-maximal graph of treewidth k and can be constructed by expanding a
(k + 1)-clique with new nodes such that each new node is connected to exactly k existing nodes.
The initial (k + 1)-clique has 1

2k(k + 1) edges. We add m − (k + 1) new nodes, where each new
node is connected to exactly k existing nodes, thus introducing k(m − (k + 1)) new edges. Thus,
any F ∈ F has at most km− 1

2k(k + 1) edges.

Remark B.3. Maximal outerplanar graphs are 2-trees. Indeed, if we set k = 2, we recover our upper
bound on the number of edges for outerplanar graphs.

Proposition B.4. Let F = {F : ∃U ⊂ V (F ) such that |U | ≤ k and F \ U is a forest}. Then, any
F ∈ F with |V (F )| = m has at most m(k + 1)− 1− 1

2 (k
2 + 3k) edges.

Proof. F \ U is a forest and has thus at most m − k − 1 edges. Let F [U ] denote the subgraph
induced by vertex set U . F [U ] has at most 1

2 (k(k − 1)) edges. Every node in F [U ] is connected to
at most every node in F \U . Thus, any F ∈ F has at most m− k− 1+ 1

2 (k(k− 1))+ k(m− k) =

m(k + 1)− 1− 1
2 (3k + k2) many edges.

Proposition B.5. Let F denote the class of parallel trees as defined in Gai et al. (2025). Then, any
F ∈ F with |V (F )| = m nodes has at most 2m− 3 edges.
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Proof. Parallel trees, as defined in Gai et al. (2025), can be obtained by considering a tree T and
replacing any edge uv ∈ E(T ) with parallel edges, that is, simple paths that share the endpoints
{u, v}. Assume that T has nl leaves, and denote by F a parallel tree obtained from it. If T =
(u, v) = P2, then F is a parallel edge which is a series–parallel graph. Therefore, if nl ∈ [1, 2], i.e.,
T is a path, F is a series–parallel graph as it is obtained via series composition of series–parallel
graphs; then e(F ) ≤ 2m − 3. The bound can be matched by picking T = (u, v) = P2 and adding
m − 2 nodes, each of them with an edge to u and one to v. If nl > 2, then pick a leaf l1 and add
edges {l1l2, . . . , l1lnl} from l1 to each of the other leaves. The resulting graph is a series–parallel
graph with m nodes. To show this, let j ∈ [1, . . . , nl] and consider the nl root–leaf paths P(j), of T ,
and each of the nl subgraphs F(j) of F that have been obtained by replacing edges in this path with
parallel edges. Each of the F(j) is a series–parallel graph. With the added edges, l1 is now a sink of
F ′ = (V (F ), E(F ) ∪ {l1l2, . . . , l1lnl}). With the root as the source, F ′ is a series–parallel graph.
The resulting graph has therefore at most 2m− 3 edges.

B.3 PRIVACY

Corollary B.1. For any two neighboring graphs G ∼1 G
′ with n nodes and for any pattern F it

holds that

|t(F,G)− t(F,G′)| ≤ e(F )d□(G,G
′) =

2e(F )

n2
. (17)

Proof. We consider d□(G,G′) = δ□(G,G
′) as discussed in Appendix A.1. The proof then follows

from Lemma 3.1 and Definition 3.2 by direct computation, with the reminder that eG(S, S) = 2e(S)
for any S ⊆ V (G).

Proposition 4.4. Let St,∗(G) = ∥St,F1(G), . . . , St,Fd(G)∥2 and β > 0. Let

St(G) = max
H∈G

(
e−βdedge(G,H) max

H′∈G:dedge(H,H′)≤1
∥t(F , H)− t(F , H ′)∥2

)
(2)

be the β-smooth sensitivity of t(F , G) at G. Then, it holds that St,∗(G) ≥ St(G).

Proof. Let a(H) be the vector with entries ai(H) defined by

a(H) = (a1(H), . . . , ad(H)) , ai(H) = max
H′′:dedge(H,H′′)≤1

|t(Fi, H)− t(Fi, H
′′)| . (18)

For any H ′ with dedge (H,H
′) ≤ 1,

∥t(F , H)− t(F , H ′)∥2 ≤ ∥a(H)∥2 . (19)

Thus, it holds that

St(G) = max
H∈G

e−βdedge(G,H) max
H′:dedge(H,H′)≤1

∥t(F , H)− t(F , H ′)∥2 (20)

≤ max
H∈G

e−βdedge(G,H) ∥a(H)∥2 (21)

≤
∥∥∥∥max
H∈G

e−βdedge(G,H)a(H)

∥∥∥∥
2

(22)

= ∥St,F1
(G), . . . , St,Fd(G)∥2 = St,∗(G), (23)

which concludes the proof.

Theorem 4.5 (Sensitivity of homomorphism density for bounded degree graphs). Let G ∼1 G
′ be

two neighboring graphs with n nodes and maximum degree ∆max. For any pattern F with m > 1
nodes, it holds that

|t(F,G)− t(F,G′)| ≤ 2e(F )

n2

(
∆max

n

)m−2

. (3)
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Proof. Without loss of generality, let {u, v} ∈ E(G) and {u, v} ̸∈ E(G′). We can explicitly
compute an upper bound on |t(F,G)− t(F,G′)| by counting how many homomorphisms involve
{u, v}. Note that we do not need to consider homomorphisms that do not involve {u, v} as their
count is equal for both G and G′. First, we can pick any edge of F and map it onto {u, v}. For this
first step, we have a total of 2e(F ) choices, as we take into account either order of the endpoints
of each edge of F . We now map the remaining m − 2 nodes of F . A third node of F can now be
mapped in a total of at most ∆max ways, as at most ∆max nodes are adjacent to either u or v. We
can proceed similarly with the remaining nodes. After the first two nodes of F have been mapped,
there are then a total of (∆max)

m−2 ways to map the remaining m − 2 nodes of F . In total, there
are therefore at most 2e(F )(∆max)

m−2 counts which differ for G and G′. Taking the normalization
into account, we get |t(F,G)− t(F,G′)| ≤ 2e(F )(∆max)

m−2

nm = 2e(F )
n2

(
∆max

n

)m−2
.

For the next theorem (Theorem B.6), we first require the following lemma.

Lemma B.1. Consider two multivariate Gaussian distributions N (µ0,Σ0) and N (µ1,Σ1), where
Σ0 = σ2Id and Σ1 = esσ2Id. Then, if αΣ−1

0 + (1− α)Σ−1
1 is positive definite,

Dα(N (µ0,Σ0) ∥ N (µ1,Σ1)) (24)

=
α ∥µ0 − µ1∥22

2 [αes + (1− α)]σ2
− d

2(α− 1)
[αs− ln(αes + 1− α)] (25)

Proof. Let, for shortness, (Σα)
∗ = αΣ1 + (1−α)Σ0. From Gil et al. (2013, Table 2), it holds that

Dα(N (µ0,Σ0) ∥ N (µ1,Σ1)) (26)

=
α

2
(µ0 − µ1)

⊺ [(Σα)
∗]

−1
(µ0 − µ1)︸ ︷︷ ︸

(⋆)

− 1

2(α− 1)
ln

det(Σα)
∗

(detΣ0)1−α(detΣ1)α︸ ︷︷ ︸
(⋆⋆)

. (27)

Note that (Σα)
∗ = [αes + (1− α)]σ2Id, and therefore

(⋆) =
α ∥µ0 − µ1∥22

2 [αes + (1− α)]σ2
and (28)

(⋆⋆) = − 1

2(α− 1)
ln

[αes + (1− α)]
d
σ2d

(σ2d)1−αesdα(σ2d)α
= − 1

2(α− 1)
ln

[αes + (1− α)]
d

esdα
(29)

=
d

2(α− 1)
[αs− ln(αes + 1− α)] , (30)

which concludes the derivation.

As our embeddings are in Rd, we need to derive a d-dimensional version of Theorem 3.10 for the
proof of Theorem 4.6.

Theorem B.6 (tCDP with Gaussian noise in Rd). Let f : X → Rd and g : X → R satisfy, for every
pair of neighboring databases x, x′ ∈ X and for ∆f ,∆g ≥ 0,

∥f(x)− f(x′)∥2 ≤ ∆fe
g(x)/2, |g(x)− g(x′)| ≤ ∆g. (31)

Let M : X → Rd be the randomized mechanism defined as M(x) = f(x)+N
(
0, e g(x) Id

)
. Then,

M satisfies
(
∆2
f + d ·∆2

g,
1

2∆g

)
-tCDP.

Proof. We bound the Rényi divergence of two neighboring databases following Lemma B.1, under
the conditions in Theorem B.6. Similarly to Bun et al. (2018), we consider α, s, γ ∈ R with α(es −
1) + 1 ≥ γ. Note first that s = g(x′) − g(x), as Σ1 = eg(x

′)Id = eg(x
′)−g(x)eg(x)Id = esΣ0.

Due to the ∆g-lipschitzness of g, s > −∆g . We can ensure α(es − 1) + 1 ≥ γ by noting that
es − 1 ≥ e−∆g − 1 ≥ −∆g . Following Bun et al. (2018), we choose γ = 1

2 and can therefore set
α ≤ 1

2∆g
to get α(es − 1) + 1 ≥ 1− α∆g ≥ 1

2 = γ.
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The first term in Equation (25) is bounded as
α ∥µ0 − µ1∥22

2 [αes + (1− α)]σ2
≤
α ∥µ0 − µ1∥22

2γσ2
≤ α∆2

f . (32)

The second term in Equation (25) can be bounded via a Taylor expansion of the function h(s) =
ln [αes + (1− α)]. First, compute

h(0) = 0, h′(s) =
αes

αes + (1− α)
, h′(0) = α, h′′(s) =

α(1− α)es

[αes + (1− α)]
2 . (33)

As in Bun et al. (2018), for α > 1 and α(es − 1) + 1 ≥ γ it holds that 0 ≤ h′′(s) ≤ α(α−1)
γ2 .

Considering a Taylor expansion in s = 0, h(s) = αs+ 1
2h

′′(ζ)s2 for some ζ ∈ [0, s], and so

αs− h(s) = −1

2
h′′(ζ)s2 ≤ α(α− 1)s2

2γ2
. (34)

Thus, for γ = 1/2 the second term in Equation (25) reduces to
d

2(α− 1)
[αs− h(s)] ≤ αds2

4γ2
≤ αd∆2

g. (35)

Equation (32) and Equation (35) together complete the proof.

Theorem 4.6. Let t(F , G) be the homomorphism density vector for graph G and pattern set F
with |F | = d, ρ′ > 0, and St,∗(G) be a β-smooth upper bound to the local sensitivity as per
Proposition 4.4. Then, the mechanism

t̃(F , G) = t(F , G) +N
(
0,

[St,∗(G)]
2

2ρ′
Id

)
(4)

is
(
2ρ′ + d · 4β2, 1

4β

)
-tCDP for neighboring graphs as per Definition 4.3.

Proof. Following the notation in Theorem B.6, let eg(G) =
[St,∗(G)]2

2ρ′ and thus g(G) =

ln
(

[St,∗(G)]2

2ρ′

)
= 2 ln(St,∗(G)) − ln(2ρ′). Therefore, for two adjacent graphs G ∼ G′, ∆g =

|g(G)− g(G′)| = 2 |lnSt,∗(G)− lnSt,∗(G
′)| ≤ 2β as St,∗ is β-smooth (Definition A.5). Setting

∥t(F , G)− t(F , G′)∥2 ≤ St,∗(G) = ∆fe
g(G)/2 = ∆f

(
[St,∗(G)]2

2ρ′

)1/2

= ∆f
St,∗(G)√

2ρ′
, it follows

that ∆f =
√
2ρ′.

From Theorem B.6, t̃(F , G) is thus
(
2ρ′ + d · 4β2, 1

4β

)
-tCDP.

B.4 EXPRESSIVE AND PRIVATE GRAPH REPRESENTATIONS

Theorem 4.8. Let D be a distribution on F ⊆ G with full support. Let G ∈ G be a graph and
F = (F1, . . . , Fd) ∼ Dd be a vector of patterns. Then, the graph representation t̃(F , G) =

t(F , G) + N
(
0,

[St,∗(G)]2

2ρ′ Id

)
is F-expectation-expressive and (2ρ′ + d · 4β2, 1

4β )-tCDP, where

ρ′ > 0 and St,∗(G) is a β-smooth upper-bound on the local sensitivity of t(F , G). If Fd = Gd, then
t̃(F , G) is also expectation-complete.

Proof. From Theorem 4.6, t̃(F , G) is (2ρ′ + d · 4β2, 1
4β )-tCDP. From Theorem 4.1, t̃(F , G) is

F-expectation-expressive and expectation-complete if F = G.

Proposition 4.9. Consider a graph G with n nodes and let F be a class of patterns with m nodes.
For a chosen privacy parameter ρ′ > 0, the Gaussian noise necessary to obtain a specific privacy
guarantee in Theorem 4.8 has variance σ2 = O

(
(maxF∈F e(F ))

2/n4
)
.

Proof. From Theorem 4.5, the local sensitivity of each pattern is O(e(F )/n2). The vector-wise
smooth sensitivity in Proposition 4.4 is not smaller than the largest local sensitivity and therefore
St,∗(G) = O

(
maxF∈F e(F )/n

2
)
. For a fixed ρ′, the variance of the noise in Theorem 4.6 is

σ2 = O
(
(maxF∈F e(F ))

2/n4
)
.
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C TECHNICAL DETAILS

C.1 EXPECTED BEHAVIOR OF AUC UNDER GAUSSIAN NOISE

For a subset of our experiments, we can describe the expected behavior of the AUC for increasing
amounts of additive Gaussian noise as follows.
Proposition C.1. In a binary classification setting with separable classes, the AUC curve follows
the error function erf for embeddings perturbed with additive Gaussian noise.

Proof. In a binary classification setting, let C0 and C1 be the two classes with means µ0 and µ1.
Assume a one-dimensional setting and that the classes are separated by µ1 − µ0 =

♡

> 0. If the
points in each class are perturbed by additive noise N (0, σ2), the distanceB between points from the
two classes is B ∼ N (

♡

, 2σ2). With these assumptions, the AUC is the probability that points are
not misranked and thus AUC = Pr[B > 0] = Pr[N (

♡

, 2σ2) > 0] = Φ(

♡

σ
√
2
) = 1

2

[
1 + erf

( ♡

2σ

)]
,

where Φ is the Gaussian cumulative density function.

As the private mechanism we rely on uses additive Gaussian noise, Proposition C.1 applies. In a
practical setting, even though we may not have perfectly separated classes, we thus expect the AUC
curve to roughly follow the erf function for increasing amounts of noise.

C.2 STOCHASTIC BLOCK MODEL

To highlight how different pattern classes can heavily influence classification performance, we use a
simple two-block stochastic block model (SBM) to generate a dataset where certain pattern classes
are informative while others are not. In the SBM, graphs are sampled according to a fixed, class-
independent mean edge probability q ∈ [0, 1] and a class parameter ζc, which controls the bias
towards same-block edges. In this dataset, up to a O(1/n) factor, tree densities are unaffected by ζc
and do not discriminate between classes. Instead, cycle densities depend on ζmc for a cycle with m
edges and are thus able to effectively distinguish between classes. We thus expect cycles to perform
significantly better than trees on this dataset, as for trees class signal is carried only by a term that
scales with 1/n. In fact, in the large graph limit, the result holds with no O(1/n) term: for graphons
on this SBM dataset, cycles can discriminate between classes while trees cannot (see Lemma C.2).
Lemma C.1 (Homomorphism densities for SBM). Consider a graph G ∈ G sampled from the
stochastic block model (SBM) on n nodes defined as follows. To define the blocks, draw labels
β(v) ∈ {+1,−1} iid with probabilities Pr{β(v) = ±1} = 1/2. The probability of an edge on
distinct, unordered pairs of nodes {u, v} ∈ V (G) is defined as

Pr{uv ∈ E(G) | β} = q + ζcβ(u)β(v) (with u ̸= v), (36)

where q ∈ [0, 1] and |ζc| ≤ min(q, 1− q). We consider the class of G to be determined by the value
of ζc. For any pattern F ∈ F ⊆ G with e(F ) edges and m = |V (F )| nodes it holds that

E[t(F,G)] =
∑

S⊆E(F )
∆S(w) is even ∀w∈V (F )

qe(F )−|S|ζ |S|c +O
(
1

n

)
, (37)

where the constants in the O(1/n) term can depend on F , q, and ζc but not on n. In particular, if T
is a tree it holds that E[t(T,G)] = qe(T ) +O (1/n), and if Cm is a cycle with m edges it holds that
E[t(Cm, G)] = qm + ζmc +O (1/n), where expectations are taken over the SBM sampling.

Proof. Let ψ : V (F ) → V (G) be a map from F to G. Then, the homomorphism density t(F,G)
can be written as

t(F,G) =
1

nm

∑
ψ

Zψ where Zψ =
∏

ab∈E(F )

1{ψ(a)ψ(b) ∈ E(G)}. (38)

The probability of an edge in G is a function of the random variable β. Thus, using the linearity of
expectations and the law of total expectations we can write the expected homomorphism density as
E[t(F,G)] = 1

nm

∑
ψ E[Zψ] = 1

nm

∑
ψ Eβ [E[Zψ | β]].
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Case 1: If ψ is injective on nodes and F is therefore mapped to distinct unordered pairs of nodes,
then the conditional independence of edges on these pairs gives

E[Zψ | β] =
∏

ab∈E(F )

Pr{ψ(a)ψ(b) ∈ E(G) | β} =
∏

ab∈E(F )

(q + ζcβ(ψ(a))β(ψ(b)) . (39)

By the distributive property, we can rewrite

E[Zψ | β] =
∏

ab∈E(F )

(q + ζcβ(ψ(a))β(ψ(b))) =
∑

S⊆E(F )

qe(F )−|S|ζ |S|c

∏
ab∈S

β(ψ(a))β(ψ(b)).

(40)
For each node w ∈ V (F ) the term

∏
ab∈S β(ψ(a))β(ψ(b)) appears exactly ∆S(w) times in each

summand, where ∆S(w) is the number of edges in S that are incident to w. It then holds that∏
ab∈S β(ψ(a))β(ψ(b)) =

∏
w∈V (F ) β(ψ(w))

∆S(w). As ψ is injective on nodes, the random vari-
ables β(ψ(w)) are independent and the expectation over β can be factorized as

Eβ [E[Zψ | β]] = Eβ

 ∑
S⊆E(F )

qe(F )−|S|ζ |S|c

∏
w∈V (F )

β(ψ(w))∆S(w)

 (41)

=
∑

S⊆E(F )

qe(F )−|S|ζ |S|c

∏
w∈V (F )

Eβ
[
β(ψ(w))∆S(w)

]
. (42)

For any β(ψ(w)) it holds that Eβ [β(ψ(w))∆S(w)] is equal to 0 if ∆S(w) is odd, and to 1 otherwise.
Therefore, each term in the sum is 1 if and only if ∆S(w) is even for every node in the graph
(V (F ), S). If ψ is injective on nodes, it therefore holds that

E[Zψ] =
∑

S⊆E(F )
∆S(w) is even ∀w∈V (F )

qe(F )−|S|ζ |S|c . (43)

Case 2: If ψ is not injective on nodes, some edges of F are mapped to the same unordered pair in
G. Therefore, the conditional independence necessary to obtain Equation (39) does not hold. In this
case, we need to consider the image graph Hψ with node set |ψ(V (F ))| < |V (F )| and edge set
E(Hψ) induced by the set of distinct, unordered pairs to which ψ maps to. A similar derivation as
above shows that in this case

E[Zψ] =
∑

S⊆E(Hψ)
∆S(w) is even ∀w∈V (Hψ)

qe(Hψ)−|S|ζ |S|c . (44)

Of the possible nm mappings ψ, there are n(n − 1) · · · (n − m + 1) injective mappings. After
normalization by 1/nm, there is therefore at most a fraction of 1 − n(n−1)···(n−m+1)

nm =
(
m
2

)
/n +

O(1/n2) = O(1/n) non-injective maps. Summing over all ψ leads then to the stated expected value
for the homomorphism density.

The results for cycles and trees can be obtained by noting that, except for the empty set, a cycle with
m has a single subset where every node has even degree (itself), while a tree has no other subsets
where every node as even degree.

Lemma C.2 (Homomorphism densities for SBM on graphons). Consider a two-block graphon de-
fined in accordance to the SBM setting in Lemma C.1. Let therefore W be a graphon W : [0, 1]2 →
[0, 1] defined as W (x, y) = q + ζcs(x)s(y), with s = 1[0,1/2] − 1(1/2,1]. For a cycle Cm with m
edges it holds that t(Cm,W ) = qm + ζmc . For a tree T it holds that t(T,W ) = qe(T ).

Proof. Consider the operator associated to the graphon (TW f)(x) =
∫ 1

0
W (x, y)f(y)dy on the

space of square integrable functions between 0 and 1, L2[0, 1]. By direct computation, TW f =
q⟨1, f⟩1 + ζc⟨s, f⟩s, where ⟨·, ·⟩ is the inner product on L2[0, 1]. Thus the operator is spanned by
{1, s} and the only two non-zero eigenfunctions are 1 and s with eigenvalues q and ζc. As the
homomorphism density for a cycle Cm is t(Cm,W ) =

∑
k λ

m
k , where λk is the k-th eigenvalue

of the graphon operator (Lovász, 2012, Equation 7.22), we get t(Cm,W ) = qm + ζmc . For the
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result for trees, proceed by induction. Given a tree T , consider a leaf node ℓ with a neighbor u, and
denote the leaf and neighbor variables with xℓ and xu. By direct computation, the integral over dxℓ
is
∫ 1

0
W (xℓ, xu)dxℓ = (TW 1)(xu) = q, as the term corresponding to the eigenfunction s evaluates

to zero. Therefore, t(T,W ) = qt(T \ {lv},W ) and, taking the induction step and integrating over
the remaining nodes gives the result for trees, t(T,W ) = qe(T ).

Proposition C.2 (Homomorphism counts for cycles, Lovász 1967, Example 5.11). For a cycle Cm
onm nodes, hom (Cm, G) is the trace of them-th power of the adjacency matrix ofG, and therefore
hom (Cm, G) =

∑n
i=1 λ

m
i , where λ1, . . . , λn are the eigenvalues of the adjacency matrix of G.

D EXPERIMENTS

In this section, we provide details for our experimental evaluation and additional results.

D.1 SETUP AND DETAILS ON EXPERIMENTS

Setup and hyperparameters. For our results, we experiment with values ρ′ ∈ [10−8, 1] and pick
β = ρ′/5. We upper bound smooth sensitivities by evaluating Equation (1) up to dedge (G,G

′) =
6. For visualization purposes, we convert our tCDP guarantees into (ϵ, δ)-DP guarantees using
Lemma A.2 in Appendix A.2; (ϵ, δ)-DP guarantees are easier to interpret. We use δ = 10−6 for
all our guarantees. This choice respects the standard requirement δ ≪ 1/e(G) (Sajadmanesh et al.,
2023) and is a common choice in related literature. Our choice of δ, together with the choice β, and
the range of values of ρ′ we experiment with allow us to obtain meaningful privacy protection and
good performance, for reasonable privacy budgets. In fact, privacy budgets roughly in the range ϵ ∈
(0, 10] are generally understood to provide meaningful privacy protection in graph machine learning
(Wu et al., 2022; Sajadmanesh & Gatica-Perez, 2021). If not differently specified, for each dataset
we sample three pattern vectors F of size d = 50, with the sampling strategy described in Welke
et al. (2023). For each value of ρ′, we perform three runs for each of the sampled pattern vectors
with different seeds, leading to a total of 9 runs. We train our models on the noisy homomorphism
density embeddings, and test on unseen, not noisy embeddings.

Experiments on OGBG data. For the molecular datasets, we take ∆max = 10 for MOLHIV, and
∆max = 6 for MOLBACE, MOLBBBP, and MOLLIPO. For each dataset we sample pattern vectors
F with d = 50 patterns of treewidth 1, with the same sampling strategy as in Welke et al. (2023).
For our classification tasks, we train on the private homomorphism densities to predict the class of
unseen graphs. We consider the 1000 and 100 nearest neighbors in a nearest neighbors classifier
for MOLHIV, MOLBACE, respectively. We consider 200 estimators in a random forest classifier for
MOLBBBP. We compare our results with classifiers trained on the noise-free, non-private homomor-
phism densities. We evaluate the performance of our classifiers and report the classification AUC for
different privacy budgets. For the regression task on MOLLIPO, we use an SVR with linear kernel
and default hyperparameters from scikit-learn, except for epsilon = 0.2.

Experiments on network data. For the network datasets, we take ∆max = n, as there is no
upper bound on the maximum degree of a node that we can infer from domain knowledge. For
each dataset we sample pattern vectors F with d = 50 patterns of treewidth 1, with the same
sampling strategy as in Welke et al. (2023). We train on the private homomorphism densities to
predict the class of unseen graphs. We consider the 300 nearest neighbors in a nearest neighbors
classifier for REDDIT-BINARY. We consider 200 and 50 estimators in a random forest classifier
for REDDIT-MULTI-5K and STARGAZERS, respectively. We compare our results with classifiers
trained on the noise-free, non-private homomorphism densities. We evaluate the performance of our
classifiers and report the classification AUC and accuracy for different privacy budgets.

Experiments on synthetic data. For the SBM dataset, we consider graphs with n = 200 nodes,
and classes defined by ζ ∈ [0.08, 0.16, 0.24, 0.32] as described in Appendix C.2 to generate 100
graphs per class. We use a Chernoff bound to estimate the ∆max with high probability of p =
0.995. We use a nearest neighbor classifier and consider 5 nearest neighbors. For cycle patterns,
the homomorphism densities for a graph G can be quickly computed using the eigenvalues of G
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as in Proposition C.2. To consider a distribution with full support on the cycle graph patterns, we
sample the number of nodes m with a Poisson distribution and then consider all cycles with number
of nodes up to m.

Treewidth tradeoff experiments. On MOLHIV we additionally consider patterns with maximum
treewidth of 2 and 3. For these results, we ensure that at least 25% of the patterns match the maxi-
mum treewidth.

Privacy attacks. To empirically test our privacy guarantees, we consider the following attack
scenario. We assume a strong attacker that has access to the vector of patterns F and to the original
set of graphs {G1, . . . , GN}. For each Gi ∈ {G1, . . . , GN}, the attacker can compute the true
homomorphism density vector t(F , Gi). The attacker has access to the private homomorphism
densities and their goal is to recover an unknown graph G from the private t̃(F , G) by matching
it with one of the computed t(F , Gi). Concretely, we train a nearest neighbor classifier on the
(noise-free) homomorphism densities and use this classifier to perform the attack. We compute
the Top-1 attack accuracy by recording whether the nearest neighbor of t̃(F , G) is the true graph’s
density t(F , G), which allows the attacker to identify G. We compute the Top-10 attack accuracy
by recording whether the true graph appears in the 10 nearest neighbors. This provides an empirical
lower bound to the attacker’s abilities, but the possibility of a stronger attacker is not excluded.

On node features. To evaluate whether the inclusion of node features can be beneficial, we con-
sider aggregated node features which do not consider the structure of the graph (i.e., which are edge
private). More specifically, we consider the following statistics on node features: mean, standard
deviation, median, maximum, minimum, and sum. We evaluate both the performance of node fea-
tures used as embeddings alone, and appended to the private homomorphism densities, to establish
whether using the private homomorphism densities with node features leads to performance gains.

Ablation experiments. To probe the effectiveness of the homomorphisms density embeddings we
conduct two ablation studies. First, to further justify our choice to rely on smooth sensitivities, we
consider noise scaled to global sensitivities and investigate the performance of the resulting noisy
homomorphisms densities on the OGBG datasets. Second, we consider different values for the num-
ber of sampled homomorphisms densities d, to investigate wether smaller or larger homomorphisms
density vectors can provide better performance.

Comparison with GNN baselines. We compare our results with common approaches to achieve
edge DP for graph classification. As a first baseline, we use Randomized Response (RR) (Wang
et al., 2016) to perturb the structures of graphs and use the perturbed graphs with a GNN. RR
perturbs each entry of the (undirected) adjacency matrix A of a graph as follows: each entry Aij
is independently perturbed from a 0 to a 1 (and vice-versa) with probability 1 − p. That is, RR
leaves an entry in the adjacency matrix unchanged with probability p, and flips it with probability
1 − p. If p = eϵ/(1 + eϵ) the resulting perturbed graph is ϵ-edge-DP (Wang et al., 2016). As an
aditional baseline, we also use the degree-preserving variant of RR (DPRR), recently proposed by
Hidano & Murakami (2024). With DPRR, the nodes of the perturbed graphs keep approximately
the same degree of those of the unperturbed graphs, which results in better performance, as well as
more efficient training (Hidano & Murakami, 2024) when compared to RR. For both the RR and
the DPRR baselines, we thus perturb the training graphs for our OGBG experiments and test the
performance of a GIN (Xu et al., 2018) architecture for ϵ = 1. For these experiments, we rely on the
hyperparameters in Welke et al. (2023), not including dropout layers. Note that the notion of ϵ-edge-
DP obtained via RR/DPRR does not perfectly coincide with the smooth sensitivity framework we
leverage. In addition, our homomorphism density embeddings guarantee expressivity in expectation,
while DP GNNs offer no formal expressivity guarantees. Our experiments on the OGBG datasets thus
serve as a sanity check to confirm that our method considerably outperforms common techniques to
achieve edge DP with GNNs.

D.2 ADDITIONAL RESULTS

Our experiments, which we display in Figure 3, show that our approach successfully obtains a
private embedding which retains discrimination abilities that are comparable to that of a non-private
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Figure 3: Visualizations for two of our experiments on MOLHIV and MOLBACE. We report average
results with error bars of 2 standard deviations across 9 runs.

Table 3: Utility and attack accuracy for our experiments on OGBG datasets. As utility metric, we
use the regression RMSE for MOLLIPO and the classification AUC for MOLHIV, MOLBBBP, and
MOLBACE. The arrow indicates whether higher (↑) or lower (↓) values for the utility metric are
preferable. For the attack metric, smaller is always preferable. We include results where we con-
catenate node features (NF) to the private homomorphism density embeddings. We report average
results and standard deviations across 9 runs.

MOLHIV ↑ MOLBBBP ↑ MOLBACE ↑ MOLLIPO ↓
Private
(ϵ = 1)

Utility 0.692 (0.020) 0.602 (0.005) 0.652 (0.069) 1.086 (0.004)

Attack 0.003 (< 0.001) 0.025 (0.003) 0.027 (0.002) 0.011 (0.002)

Non private
(ϵ = ∞)

Utility 0.745 (< 0.001) 0.644 (0.008) 0.752 (0.002) 1.055 (0.002)

Attack 0.955 (0.020) 1.000 (< 0.001) 0.990 (< 0.001) 0.992 (0.006)

Private + NF
(ϵ = 1)

Utility 0.731 (< 0.001) 0.604 (0.005) 0.739 (0.005) 1.086 (0.004)

Attack 0.003 (< 0.001) 0.025 (0.003) 0.027 (0.002) 0.011 (0.002)

Non private + NF
(ϵ = ∞)

Utility 0.750 (0.003) 0.644 (0.010) 0.739 (0.003) 1.053 (0.002)

Attack 0.970 (0.024) 1.000 (< 0.001) 0.990 (< 0.001) 0.992 (0.006)

Features only Utility 0.721 (< 0.001) 0.603 (0.002) 0.730 (< 0.001) 1.085 (< 0.001)

embedding (ϵ = ∞). At the same time, the attacker performance drastically decreases for reasonable
values of ϵ, while being close to 1 for ϵ = ∞. Moreover, the classification AUC closely follows the
error function, empirically confirming the formal connection between privacy and AUC discussed
in Proposition C.1. This result is of great practical utility, as it allows to predictably determine the
maximum privacy budget for a given desired AUC, and vice-versa the predicted AUC for a given
privacy budget. We remark that our private embeddings can be used with any machine learning
algorithm, and are not specifically tailored for the machine learning algorithms we used.

In Table 3, we can see that node features overall achieve reasonable performance. However, com-
bining the node features with our private embeddings with ϵ = 1 provides better performance.
Therefore, we can render the homomorphism density embeddings more informative by additionally
considering node features.

We also perform experiments on the network datasets REDDIT-BINARY, REDDIT-MULTI-5K
(Xiang et al., 2024), and GitHub STARGAZERS (Rozemberczki et al., 2020). We obtain accuracy
and classification AUC comparable to those in Hidano & Murakami (2024, Figure 5), showing
that the noisy homomorphism density embeddings also provide good performance on larger net-
work graphs. Compared to Hidano & Murakami (2024), we rely on significantly simpler and less
resource-expensive classifiers. In fact, we could not reproduce the results in Hidano & Murakami
(2024) due to out-of-memory errors, and we thus refer to Hidano & Murakami (2024) for a compar-
ison.
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Table 4: Utility and attack accuracy for our experiments on network datasets. As utility metric, we
use the classification accuracy and the classification AUC for all datasets. For the utility metrics,
larger is preferable. For the attack metric, smaller is preferable. We report average results and
standard deviations across 9 runs.

REDDIT-BINARY REDDIT-MULTI-5K STARGAZERS

Private
(ϵ = 1)

Accuracy 0.758 (< 0.001) 0.416 (0.021) 0.590 (0.015)

AUC 0.775 (0.009) 0.749 (0.014) 0.609 (0.026)

Attack 0.046 (0.016) 0.018 (0.004) 0.004 (0.001)

Non private
(ϵ = ∞)

Accuracy 0.771 (0.031) 0.508 (0.007) 0.670 (0.003)

AUC 0.844 (0.039) 0.805 (0.002) 0.729 (0.002)

Attack 0.999 (< 0.001) 1.000 (< 0.001) 0.959 (< 0.001)

D.3 ABLATIONS AND COMPARISONS WITH BASELINES

In this section, we perform additional experiments to evaluate the performance of our embeddings
for different values of d, i.e., the number of homomorphism densities we sample. Then, we compare
our results with ones obtained considering a global sensitivity notion, to further motivate our choice
to rely on the smaller smooth sensitivities. Finally, we compare against two DP GNN baselines using
RR and DPRR to perturb the graphs in our datasets before feeding them into a GIN architecture.

Table 5: Utility for our experiments on OGBG using private homomorpshims density embeddings
with varying sizes for d. Results are for ϵ = 1. We report average results and standard deviations
across 9 runs.

d MOLHIV ↑ MOLBBBP ↑ MOLBACE ↑ MOLLIPO ↓
10 0.556 (0.153) 0.503 (0.070) 0.552 (0.156) 1.099 (0.001)

20 0.572 (0.129) 0.547 (0.074) 0.617 (0.134) 1.097 (0.001)

30 0.540 (0.171) 0.554 (0.036) 0.544 (0.098) 1.099 (0.001)

40 0.592 (0.089) 0.570 (0.067) 0.498 (0.134) 1.098 (0.001)

50 0.692 (0.020) 0.602 (0.005) 0.652 (0.069) 1.086 (0.001)

In Table 5, we observe that smaller embeddings, i.e., embeddings which consider fewer patterns,
tend to perform worse. In particular, smaller embeddings have a much higher variance, as their
performance more heavily depends on having sampled patterns which are informative for the task.

Table 6: Utility for our experiments on OGBG using private homomorphism densities obtained with
noise scaled using the global sensitivity of the homomorphism densities, compared to that obtained
with noise scaled with smooth sensitivity. We report average results and standard deviations across
9 runs for ϵ = 1. Bold marks the best results.

MOLHIV ↑ MOLBBBP ↑ MOLBACE ↑ MOLLIPO ↓
Global sensitivity 0.492 (0.023) 0.500 (< 0.001) 0.520 (0.133) 1.199 (< 0.001)

Smooth sensitivity 0.692 (0.020) 0.602 (0.005) 0.652 (0.069) 1.086 (0.004)

In Table 6, we observe that private embeddings obtained relying on global sensitivity perform sig-
nificantly worse than the ones obtained relying on local sensitivity.

In Table 7 we compare the performance obtained with our embeddings against the RR/DPRR GNN
baselines. Our private embeddings consistently outperform the baseline for privacy budget ϵ = 1,
and are competitive with it even in the non-private setting ϵ = ∞.

D.4 RUNTIMES

We measured the time to compute homomorphism density embeddings for MOLHIV with increasing
maximum treewidth of tw = {1, 2, 3} and REDDIT-BINARY with tw = 1. The results presented
in Table 8 are averaged over 3 seeds.
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Table 7: Utility for our experiments on OGBG datasets, compared with the RR baseline and the
DPRR baseline. As utility metric, we use the regression RMSE for MOLLIPO and the classification
AUC for MOLHIV, MOLBBBP, and MOLBACE. We report average results and standard deviations
across 9 runs. Bold marks the best results for the private and non-private runs.

t(F , G) MOLHIV ↑ MOLBBBP ↑ MOLBACE ↑ MOLLIPO ↓
Private (ϵ = 1) 0.692 (0.020) 0.602 (0.005) 0.652 (0.069) 1.086 (0.004)

Non private (ϵ = ∞) 0.745 (< 0.001) 0.644 (0.008) 0.752 (0.002) 1.055 (0.002)

GNN Baseline

Private (ϵ = 1) RR 0.488 (0.008) 0.440 (0.004) 0.457 (0.024) 1.578 (0.248)

Private (ϵ = 1) DPRR 0.595 (0.155) 0.539 (0.019) 0.648 (0.043) 1.499 (0.333)

Non private (ϵ = ∞) 0.672 (0.022) 0.586 (0.027) 0.768 (0.033) 1.033 (0.021)

Table 8: Runtimes for the computation of the homomorphism density embeddings, and for the
training of the GNN baselines for 100 epochs with ϵ = 1. Values reported with a star (∗) for
RR/DPRR are obtained from (Hidano & Murakami, 2024). Values are reported in seconds.

Method MOLHIV REDDIT-BINARY

t(F , G)
tw = 1 tw ≤ 2 tw ≤ 3
2369 (4) 2432 (52) 3916 (1088) 602 (136)

MOLHIV REDDIT-BINARY

RR 1153 (159) > 800∗

DPRR 1214 (101) > 200∗

The runtime of the homomorphism density computation for tw = 1 for MOLHIV is comparable
to training GIN on MOLHIV for 200 epochs with the RR or DPRR baselines. The runtime of our
homomorphism density computation is therefore comparable to that of existing methods, showing
that our approach is also competitive from a runtime perspective. Once the homomorphism density
vectors are computed, the training runtime itself is negligible; the embeddings are informative and
provide competitive performance with simple and efficient approaches such as k-NN or Random
Forest. We finally want to remark that the homomorphism density approach provides expressivity
guarantees which are not provided by the RR/DPRR+GIN baselines.
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