
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ON THE TRADE-OFF BETWEEN EXPRESSIVITY AND
PRIVACY IN GRAPH REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate the trade-off between expressive power and privacy guarantees in
graph representation learning. Privacy-preserving machine learning faces grow-
ing regulatory demands that pose a fundamental challenge: safeguarding sensitive
data while maintaining expressive power. To address this challenge, we propose
homomorphism density vectors to obtain graph embeddings that are private and
expressive. Homomorphism densities are provably highly discriminative and offer
a powerful tool for distinguishing non-isomorphic graphs. By adding noise cali-
brated to each density’s sensitivity, we ensure that the resulting embeddings sat-
isfy formal differential privacy guarantees. Our theoretical construction preserves
expressivity in expectation, as each private embedding remains unbiased with re-
spect to the true homomorphism densities. Our embeddings match, in expectation,
the expressive power of a broad range of graph neural networks (GNNs), such as
message-passing and subgraph GNNs, while providing formal privacy guarantees.

1 INTRODUCTION

We study the interplay between expressivity and privacy for learning graph representations and
show how to obtain expressive and private representations. Our investigation addresses the need for
privacy-preserving machine learning and our formal guarantees align with the increasing regulatory
pressure in this direction (European Parliament and Council of the European Union, 2016; 2024;
National Institute of Standards and Technology, 2023). In graph representation learning, expressiv-
ity analysis studies the ability of learning algorithms to distinguish pairs of non-isomorphic graphs.
Private algorithms, on the other hand, generally ensure that similar graphs yield similar outputs.
Consider for instance graphs G1 and G2 in Figure 1 that differ by exactly one edge. As the two
graphs are non-isomorphic, an expressive algorithm produces distinct embeddings φ(G1) ̸= φ(G2)
as it captures their structural differences. An edge private algorithm, instead, protects the presence
or absence of individual edges and therefore produces similar embeddings φ(G1) ≈ φ(G2). There-
fore, requiring algorithms to be both expressive and private is challenging. So far, there has been

Figure 1: G1 and G2 are two non-isomorphic graphs that differ in exactly one edge. An expres-
sive graph algorithm should distinguish between these graphs and provide different embeddings
φ(G1) ̸= φ(G2); a differentially private algorithm instead ensures that φ(G1) ≈ φ(G2).

little investigation towards a better theoretical understanding of this tension and a characterization
of the trade-offs between privacy, expressivity, and utility, i.e., predictive performance. We fill this
research gap and investigate to which degree embeddings with provable expressivity and privacy

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

guarantees can be obtained. We focus on graph-level learning tasks while providing edge-level
privacy guarantees. This setting allows us to study the effect of the minimal possible structural mod-
ifications, i.e., edge changes, on embeddings which are obtained from the graph structure only, to
isolate the effect of the graph structure itself on privacy and expressivity. Specifically, we consider
the notions of expressivity in expectation and of differential privacy (DP). We propose graph em-
beddings with carefully scaled random noise, such that their distributions sufficiently overlap for
graphs that differ by one edge (see G1 and G2), while remaining distinguishable for graphs with
larger edge edit distance (G1 and G3). We build upon existing work that relies on homomorphism
counts, either as standalone graph representations or to increase the expressive power of graph neu-
ral networks (GNNs) (NT & Maehara, 2020; Welke et al., 2023; Jin et al., 2024; Maehara & NT,
2024). Homomorphism counts are a powerful theoretical tool to investigate expressivity, as they
can be used to distinguish any pairs of non-isomorphic graphs (Lovász, 1967; 2012). We introduce
noisy homomorphism densities, i.e., normalized homomorphism counts with additive noise, to ob-
tain representations which are expressive in expectation and DP. Our method allows for the private
release of the graph embeddings, which can be then used for any further downstream analysis.

Main contributions.

(i) We propose homomorphism densities as a theoretical tool to investigate the trade-off be-
tween expressivity and privacy in graph representation learning.

(ii) We show that the choice of the pattern class used to compute the homomorphism densities
determines the required level of noise needed for privacy guarantees: pattern classes that
provide more expressive power require more noise, which can decrease their utility.

(iii) We provide a general framework to obtain graph embeddings that satisfy a specified pri-
vacy guarantee and level of expressivity in expectation, and can be used for downstream
tasks such as graph classification or regression. Our embeddings match, in expectation,
the expressive power of various GNN architectures such as message-passing GNNs and
subgraph GNNs, while also satisfying DP.

2 RELATED WORK

Recent work in graph representation learning has studied the expressive power of learning algo-
rithms, i.e., their ability to learn different representations for non-isomorphic graphs. A large body
of work analyzed the expressive power of GNNs through the lens of k-Weisfeiler-Leman (k-WL)
tests, a hierarchy of increasingly expressive color refinement algorithms (Xu et al., 2018; Morris
et al., 2019). An alternative approach is to rely on graph representations built using homomorphism
counts (Böker, 2021; Lovász, 2012; Jin et al., 2024; Maehara & NT, 2024; Beaujean et al., 2021;
Wolf et al., 2023) to obtain arbitrarily expressive representations, at least in expectation (NT & Mae-
hara, 2020; Welke et al., 2023). Recently, Zhang et al. (2024a) and Xu (2025) have formalized a
connection between homomorphism counts and the expressive power of many popular GNN archi-
tectures. While expressivity analysis can identify the theoretical limitations of learning algorithms,
there is little research on how expressive power affects other properties such as, e.g., generalization,
as recently pointed out by Morris et al. (2024), robustness (Campi et al., 2023; Kummer et al., 2025),
or privacy. The lack of research on the interplay between privacy and expressivity has also been re-
cently highlighted by Sajadmanesh et al. (2023), who call for more investigation on the expressive
power of DP graph learning algorithms. A line of research in graph privacy focuses specifically on
protecting the structural information in graphs, which is often of sensitive nature. Privacy attacks can
target the edges (Raskhodnikova & Smith, 2016) or the nodes (Kasiviswanathan et al., 2013; Xiang
et al., 2024) of a graph, which can encode sensitive information (Mueller et al., 2022; Li et al., 2023;
Zhang et al., 2024b; Fu et al., 2023). Graph reconstruction attacks can effectively recover private in-
formation from trained models (Zhang et al., 2022; Wu et al., 2024; Zhou et al., 2023; Olatunji et al.,
2023) and a number of DP graph learning approaches have therefore been proposed (Sajadmanesh
& Gatica-Perez, 2024; 2021; Sajadmanesh et al., 2023; Pei et al., 2024; Olatunji et al., 2024). To
address the protection of the edges of graphs, Hidano & Murakami (2024), Xie et al. (2025), and Xu
et al. (2024) focus on edge privacy. In particular, Hidano & Murakami (2024) consider edge-level
privacy for graph-level tasks, which matches the problem setting we focus on. Furthermore, recent
work has considered the problem of private subgraph counting, with a focus on triangle counting
(Ding et al., 2018; Imola et al., 2022; Nguyen et al., 2023). Although expressivity and privacy have

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

been independently studied extensively for graph learning algorithms, their interplay has not been
formally investigated so far. The cited DP graph learning algorithms, in fact, aim to obtain the best
utility under privacy constraints but do not provide expressivity guarantees. We initiate the joint
study of expressivity and privacy in graph representation learning to provide a better theoretical and
practical understanding of the trade-off between the two.

3 PRELIMINARIES

In this section, we introduce the relevant preliminaries on graph theory, expressivity, and differential
privacy. Full details can be found in Appendix A.

3.1 GRAPH THEORY AND EXPRESSIVITY IN GRAPH LEARNING

Let G = (V,E) ∈ G be a simple graph where G is the set of finite graphs. G has node set V (G)
with |V (G)| = n and edge set E(G) with e(G) = |E(G)|. For two sets S, T ⊆ V (G), let eG(S, T)
denote the number of edges with one endpoint in S and one endpoint in T . For a graph G with
n nodes and adjacency matrix AG, let ∥AG∥1 =

∑n
i,j |Aij | denote the ℓ1 norm of AG. A tree

decomposition of a graph G consists of a tree T and a family B = {bi | i ∈ V (T)} of subsets of V
such that (i)

⋃
i bi = V (G), (ii) for every edge uv ∈ E(G),∃bi ∈ B such that u ∈ bi and v ∈ bi,

and (iii) ∀bi, bj , bk such that bj lies on the path from bi to bk, then if node v ∈ bi and v ∈ bk this
implies that v ∈ bj . The treewidth of a tree decomposition is maxi |bi|−1. The treewidth of a graph
G is the minimum treewidth among all possible tree decompositions of G. Intuitively, the treewidth
of a graph measures how tree-like a graph is, e.g., trees have treewidth 1 and cycles have treewidth
2. We refer to a graph F ∈ F ⊆ G as a pattern when we count the homomorphisms from F to
some graph G. Given two graphs F,G, a homomorphism from F to G is an edge-preserving map
ψ : V (F) → V (G). We call ψ an isomorphism in case it is adjacency-preserving and bijective. For
two graphs G,G′ ∈ G, let G ≃ G′ denote that the two graphs are isomorphic.

Definition 3.1 (Homomorphism density). Let hom(F,G) denote the number of homomorphisms
from F to G. Then, we define the homomorphism density as

t(F,G) =
hom(F,G)

|V (G)||V (F)| .

For a given vector of patterns F = (F1, . . . , Fd) we consider the homomorphism density vector
t(F , G) := (t(F1, G), . . . , t(Fd, G)). We now present two common notions of distances on graphs
which are relevant for our investigation, the edge edit distance and the cut distance.

Definition 3.2 (Edge edit distance and cut distance, Lovász 2012; Grohe 2020). For two graphs
G,G′ with the same number of nodes, the edge distance de and the cut distance d□ are defined as

dedge (G,G
′) =

1

2
∥AG −AG′∥1 , d□(G,G

′) = max
S,T⊆V (G)

|eG(S, T)− eG′(S, T)|
n2

.

It holds that d□(G,G′) ≤ 2dedge (G,G
′) /n2 (Lovász, 2012). The counting lemma upper bounds

the absolute difference in the homomorphism densities of two graphs with respect to a pattern.

Lemma 3.1 (Counting Lemma, Lovász 2012). For any three simple graphs F , G, and G′ with
|G| = |G′|, it holds that |t(F,G)− t(F,G′)| ≤ e(F)d□(G,G

′).

As presented by Lovász (2012, Lemma 10.22), the counting lemma relies on a slightly different
notion of cut distance which allows to consider graphs with node sets of different cardinalities,
which are not relevant for our discussion. We provide further details in Appendix A.

The expressive power of graph learning algorithms is commonly measured as their ability to distin-
guish between pairs of non-isomorphic graphs. Let φ : G → Rd be a graph embedding. We assume
φ to be permutation invariant, i.e., for all G,G′ ∈ G, G ≃ G′ implies φ(G) = φ(G′). This is
trivially true for homomorphism counts and homomorphism densities. The ability of an embedding
to distinguish non-isomorphic graphs is referred to as completeness, which we introduce as follows.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Definition 3.3 (Completeness). An embedding φ : G → Rd is complete if for all G,G′ ∈ G,
G ≃ G′ if and only if φ(G) = φ(G′).

A seminal result by Lovász asserts that homomorphism counts enjoy strong distinguishing proper-
ties, as two non-isomorphic graphs can be distinguished by counting homomorphisms.

Theorem 3.4 (Expressivity of homomorphism counts, Lovász 1967). For any two graphs G,G′ it
holds that G ≃ G′ if and only if hom(F,G) = hom(F,G′) for all simple graphs F .

The embedding built from the homomorphism counts for all patterns F ∈ G is therefore complete.
For patterns restricted to some specific graph class F ⊆ G, we introduce the following notion.

Definition 3.5 (F-expressivity). An embedding φ : G → Rd is F-expressive if, for all G,G′ ∈ G
and for all F ∈ F , hom(F,G) = hom(F,G′) if and only if φ(G) = φ(G′).

Consider now a random embedding, parametrized by a random variable X ∼ D for some distribu-
tion D and denote it by φX : G → Rd. We introduce notions of completeness and expressivity in
expectation as follows.

Definition 3.6 (Expectation-completeness, Welke et al. 2023). An embedding φX : G → Rd is
expectation-complete if the embedding EX [φX] is complete.

Definition 3.7 (F-expectation-expressivity). An embedding φX : G → Rd is F-expectation-
expressive if the embedding EX [φX] is F-expressive.

3.2 DIFFERENTIAL PRIVACY

Differential privacy is a formal notion of privacy that protects individual training points. DP is
defined in terms of neighboring databases. A database is a collection of points, where a point in a
database may be, e.g., a row in a table or an edge in a graph. Two databases x, x′ are neighboring if
they differ in a single point, that is, if one single point is present in one database but not in the other.
We denote this as x ∼1 x

′. DP guarantees that an attacker cannot confidently determine from which
of two neighboring databases the output of a DP mechanism has been obtained from. We introduce
two notions of DP and briefly describe how to achieve DP according to these notions.

Definition 3.8 ((ϵ, δ)-DP, Dwork et al. 2006). Let ϵ ≥ 0 and δ ∈ [0, 1). A randomized mechanism
M : X → Y satisfies δ-approximate ϵ-indistinguishability differential privacy, denoted as (ϵ, δ)-
DP, if, for all neighboring x, x′ ∈ X and for any S ∈ Range(M) it holds that Pr[M(x) ∈ S] ≤
eϵ Pr[M(x′) ∈ S] + δ, where probabilities are taken over the randomness of M.

In DP, we refer to ϵ as the privacy budget of a mechanism, with larger values of ϵ providing less
privacy, and a value of ϵ = 0 providing perfect privacy. To make a given function f DP, one can add
noise proportional to its global sensitivity GSf = maxx∼1x′ ∥f(x)− f(x′)∥; see Appendix A.2
for more details. A distributional flavor of DP can be formalized in terms of the divergence of a
randomized mechanism when applied to two neighboring databases.

Definition 3.9 ((ρ, ω)-tCDP, Bun et al. 2018). Let ρ > 0 and ω > 1. LetDα(· ∥ ·) denote the Rényi
divergence of order α (Rényi, 1961; Van Erven & Harremos, 2014). A randomized mechanism
M : X → Y satisfies ω-truncated ρ-concentrated differential privacy, denoted as (ρ, ω)-tCDP, if,
for all neighboring x, x′ ∈ X , for all α ∈ (1, ω) it holds that Dα(M(x) ∥ M(x′)) ≤ ρα.

Definition 3.8 and Definition 3.9 can be formally related as tCDP implies (ϵ, δ)-DP (see Lemma A.2
in Appendix A.2). It is convenient to consider tCDP as, in contrast to the standard mechanisms
described in Appendix A.2, it allows to achieve DP while considering a local notion of sensitivity
for a function f at a point x.

Theorem 3.10. (tCDP with Gaussian noise, Bun et al. 2018) Let f, g : X → R satisfy, for every
pair of neighboring databases x, x′ ∈ X and for ∆f ,∆g ≥ 0,

|f(x)− f(x′)| ≤ ∆f · eg(x)/2, |g(x)− g(x′)| ≤ ∆g.

Let M : X → R be the randomized mechanism defined as M(x) = f(x) +N (0, eg(x)). Then, M
satisfies (∆2

f +∆2
g,

1
2∆g

)-tCDP.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

In Theorem 3.10, ∆f · eg(x)/2 is a smooth upper bound on the local sensitivity of f at x. We extend
this result to the d-dimensional case in Theorem B.6. This is consistent with the smooth sensitivity
framework introduced by Nissim et al. (2007), which we describe in more detail in Section 4.2 and
Appendix A.2.

4 EXPRESSIVITY-PRIVACY TRADE-OFF

In this section, we study the interplay between expressivity and privacy from a theoretical perspec-
tive. As previously discussed (see Figure 1), expressive embeddings can, by definition, not be private
with respect to neighboring graphs. In the other direction, DP requires to add enough noise to mix
the representations of neighboring graphs so that they may not be distinguishable, hindering expres-
sivity. Despite this tension, we can rely on the simple observation that DP noise has mean zero to
note that DP preserves embeddings in expectation. In this context, we take advantage of the fact
that homomorphism counts can be used to obtain embeddings which are, in expectation, complete
(Lovász, 2012; NT & Maehara, 2020; Welke et al., 2023). Expectation-complete embeddings are a
prime candidate for our analysis as they have, in expectation, arbitrary expressive power which can
surpass the limits of, e.g., the WL hierarchy. We show that the noisy homomorphism densities, i.e.,
a private version of the normalized homomorphism counts, retain expressivity in expectation. To
obtain embeddings which are not only private and expressive in theory but also usable in practice,
we then discuss a smooth sensitivity bound that refines the counting lemma to the specifics of our
analysis, and use this to provide formal tCDP guarantees for the embeddings. Our graph embedding
can be used for any downstream graph learning task without incurring further privacy cost, thanks to
the post-processing property of DP (Dwork et al., 2014). Our analysis identifies a key trade-off be-
tween expressivity and privacy: homomorphism densities obtained from patterns which are sampled
from graph classes F that provide stronger distinguishing power require larger amounts of noise to
be DP, which may practically result in worse utility for the embeddings. We defer all missing proofs
to Appendix B.

4.1 EXPRESSIVITY IN EXPECTATION

In this section, we show that homomorphism density vectors with DP noise are, in expectation,
expressive. For now we consider a generic noise term N with mean zero, a condition that DP
noise satisfies, and defer the precise expression for the DP noise to the next section (Section 4.2).
For some graph G and pattern F , we define the noisy homomorphism density embedding as
t̃(F,G) = t(F,G) + N . We define the noisy homomorphism density embedding t̃(F , G) for a
vector of patterns F analogously. It is easy to see that t̃(F , G) is not permutation invariant due to
the added noise, a necessary consequence of the fact that DP requires a randomized mechanism.
This observation does not, however, affect the possibility to obtain expressive or even complete
graph embeddings in expectation.1 For our results, similarly to Welke et al. (2023), we assume that
each pattern is sampled from an appropriate distribution D with full support on the graph class F of
interest.

We first show that for any fixed graph and a single sampled pattern, the noisy homomorphism density
embedding is expressive in expectation.

Theorem 4.1. For any G ∈ G, t̃(F,G) is F-expectation-expressive for F ∼ D if D has full support
on F ⊆ G. If F = G, then t̃(F,G) is expectation-complete.

As we are often interested in a homomorphism density vector obtained from a number of sampled
patterns, we extend Theorem 4.1 to the vector case. We show that the resulting noisy homomorphism
density embedding is not only expressive in expectation, but also remains expressive with high
probability for a large enough number of sampled patterns.

Theorem 4.2. Let D be a distribution on F ⊆ G with full support. Let G ∈ G, F ∼ Dd, and
θ ∈ [0, 1]. For large enough d, t̃(F , G) is F-expressive with probability at least 1 − θ. If F = G,
then, for large enough d, t̃(F , G) is complete with probability at least 1− θ.

1Note that homomorphism densities, in contrast to homomorphism counts, do not distinguish G and a
blowup of G. We discuss this issue and a simple solution to it at the end of this section as well as in more detail
in Appendix B.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 4.1 and Theorem 4.2 demonstrate that, despite the noise required for DP, our homomor-
phism density embeddings retain full discriminative power in expectation and, with enough patterns,
with high probability.

4.2 PRIVACY GUARANTEES

In this section, we provide DP guarantees for the homomorphism density embeddings. To calibrate
an appropriate amount of noise to be added to the homomorphism densities to guarantee DP, we
discuss how to bound the sensitivity of t(F , G). In particular, we choose tCDP as our formal notion
of privacy since it allows us to consider a local notion of sensitivity with Gaussian noise, which often
requires less noise to be added in practical settings. In most of the following discussion, we consider
the pattern F to be fixed, but we remark that to achieve expressivity in expectation (see Section 4.1)
the patterns are sampled from a distribution as F ∼ D. We focus on edge-level privacy and strive to
protect the presence/absence of individual edges in a graph. We thus interpret neighboring graphs,
according to the following definition, as two neighboring databases.
Definition 4.3 (Neighboring graphs). Two graphs G, G′ with the same number of nodes are neigh-
boring graphs, written G ∼1 G

′, if dedge (G,G
′) = 1.

Based on our notion of neighboring graphs, we can leverage the counting lemma to obtain a bound on
the global sensitivity of the homomorphism densities: For any two neighboring graphsG ∼1 G

′ with
n nodes, for any pattern F we get thatGSt,F = |t(F,G)−t(F,G′)| ≤ e(F)d□(G,G

′) = 2e(F)/n2

(see Corollary B.1). SinceGSt,F considers the worst case behavior of t around any graphG, using it
in the standard DP mechanism (Appendix A.2) is likely to result in poor performance2. In contrast,
local sensitivity, defined as LSt,F (G) = maxG′∈G:dedge(G,G′)≤1 |t(F,G)− t(F,G′)| provides an
upper bound on the sensitivity around a specific graph G, and is often much smaller than GSt,F .
Additive noise proportional to the local sensitivity, however, does not guarantee DP. A crucial step
in our analysis is therefore to consider noise calibration under the smooth sensitivity framework
(Nissim et al., 2007), which provides a smooth upper bound to the local sensitivity. For some β > 0
and pattern F , the β-smooth sensitivity of t(F,G) at G is defined as

St,F (G) = max
G′∈G

(
e−βdedge(G,G′) · LSt,F (G′)

)
. (1)

As we consider homomorphism density vectors, we show in our next proposition how to provide an
upper bound to the smooth sensitivity of t(F , G) by considering the individual St,Fi(G) for Fi ∈ F .
Proposition 4.4. Let St,∗(G) = ∥St,F1

(G), . . . , St,Fd(G)∥2 and β > 0. Let

St(G) = max
H∈G

(
e−βdedge(G,H) max

H′∈G:dedge(H,H′)≤1
∥t(F , H)− t(F , H ′)∥2

)
(2)

be the β-smooth sensitivity of t(F , G) at G. Then, it holds that St,∗(G) ≥ St(G).

In many cases, domain knowledge allows to assume that the degree of the graphs is bounded. We
thus derive an even smaller bound on the sensitivity of the homomorphism densities.
Theorem 4.5 (Sensitivity of homomorphism density for bounded degree graphs). Let G ∼1 G

′ be
two neighboring graphs with n nodes and maximum degree ∆max. For any pattern F with m > 1
nodes, it holds that

|t(F,G)− t(F,G′)| ≤ 2e(F)

n2

(
∆max

n

)m−2

. (3)

For large graphs and large patterns
(
∆max

n

)m−2 ≪ 1. Therefore, the bound provided by Equation (3)
is often tighter in practice than the one we could directly obtain from the counting lemma. For
domains where no meaningful public degree bound is available, one could either estimate ∆max

privately or, simply, set ∆max = n to recover the counting lemma. For a private estimate, one
may add, e.g., Laplacian noise to the empirical maximum degree under a small additional privacy
budget. For a given density vector t(F , G), we can now use Theorem 4.5 to upper bound the smooth
sensitivity of each t(F,G) individually and obtain an upper bound St,∗(G) for the entire vector as
shown in Proposition 4.4. With this, we present the main result of this section: a private mechanism
for homomorphism density vectors. More specifically, we derive a tCDP version of t(F , G).

2See the ablation study in Appendix D.3 for empirical evidence supporting this claim.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Theorem 4.6. Let t(F , G) be the homomorphism density vector for graph G and pattern set F
with |F | = d, ρ′ > 0, and St,∗(G) be a β-smooth upper bound to the local sensitivity as per
Proposition 4.4. Then, the mechanism

t̃(F , G) = t(F , G) +N
(
0,

[St,∗(G)]
2

2ρ′
Id

)
(4)

is
(
2ρ′ + d · 4β2, 1

4β

)
-tCDP for neighboring graphs as per Definition 4.3.

Theorem 4.6 enables us to determine the amount of noise needed to guarantee tCDP for the ho-
momorphism densities. The additive noise has mean zero, and thus our results on expectation-
expressivity of the previous section apply: in expectation, the noisy, private homomorphism den-
sities are unbiased with respect to the non-private densities. As smooth sensitivities are upper-
bounded by the global sensitivity, we expect this procedure (Theorem B.6) to yield a significantly
better privacy-utility trade-off compared to the standard Gaussian mechanism; see Table 6 in Ap-
pendix D.3 for empirical evidence.

4.3 PRIVATE AND EXPRESSIVE GRAPH REPRESENTATIONS

We are now able to combine the results of the previous two sections to (i) show how to obtain
provably expressive and private graph representations, and (ii) formally quantify the expressivity-
privacy trade-off. Before we present our main result in Theorem 4.8, we highlight a technicality on
how to distinguish blowup graphs, which we also discuss more thoroughly in Remark B.1.
Remark 4.7 (Completeness of homomorphism density embeddings). A p-blowup of G can be ob-
tained by replacing each node of G by p ≥ 1 twin copies (Lovász, 2012). Two graphs G,G′, where
G′ is a blowup of G, have the same homomorphism density for any pattern F (Lovász, 2012, The-
orem 5.32). Therefore, homomorphism densities cannot be used to distinguish all non-isomorphic
graphs. To resolve this, we append the node count |V (G)| to the homomorphism density embed-
ding of G to distinguish it from all its blowups. This operation is trivially DP with respect to the
neighboring graph notion in Definition 4.3, as any two neighboring graphs have the same number of
nodes, and thus costs no further privacy budget.

Our first result in this section states that we can generate graph embeddings which are provably
private and expressive. We show that for a chosen privacy budget and a chosen graph class F , we
guarantee that our homomorphism density embeddings are tCDP and F-expectation-expressive.

Theorem 4.8. Let D be a distribution on F ⊆ G with full support. Let G ∈ G be a graph and
F = (F1, . . . , Fd) ∼ Dd be a vector of patterns. Then, the graph representation t̃(F , G) =

t(F , G) + N
(
0,

[St,∗(G)]2

2ρ′ Id

)
is F-expectation-expressive and (2ρ′ + d · 4β2, 1

4β)-tCDP, where

ρ′ > 0 and St,∗(G) is a β-smooth upper-bound on the local sensitivity of t(F , G). If Fd = Gd, then
t̃(F , G) is also expectation-complete.

Theorem 4.8 allows us to characterize the expressive power of our embeddings more precisely by
sampling patterns from a graph class F that determines a certain level of expressivity in expectation
(NT & Maehara, 2020). For instance, it is well known that 1-WL serves as upper bound for the
expressive power of a large class of message-passing graph neural networks (MPNNs) (Xu et al.,
2018; Morris et al., 2019). The expressive power of 1-WL, in turn, is equivalent to counting tree
homomorphisms. In other words, two graphs have the same 1-WL color multiset (Xu et al., 2018) if
and only if they have the same homomorphism counts for all trees. This equivalence can be general-
ized for many popular GNN architectures by determining their homomorphism-distinguishing closed
graph class (Neuen, 2024), which corresponds to the pattern graph class in our setting. For instance,
the expressive power of k-GNNs (Morris et al., 2019; 2023) corresponds to the homomorphism-
distinguishing closed graph classes of treewidth k (Neuen, 2024). We refer to Zhang et al. (2024a)
and Xu (2025) for a more in-depth discussion of homomorphism expressivity and general techniques
to obtain homomorphism-distinguishing closed graph classes for given GNN architectures.

Based on our theoretical investigation, we now present our second result and quantify the trade-off
between expressivity and privacy: the choice of the graph class F does not only affect expressivity,
but also the amount of noise that needs to be added to the embeddings to obtain privacy guarantees.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Common GNNs and their homomorphism-distinguishing closed graph classes (see Paolino
et al. 2024 for r-ℓMPNNs, Gai et al. 2025 for spectral invariant GNNs, and Zhang et al. 2022 for the
remaining GNNs). For details on the maximum numbers of edges refer to Appendix B.2.

GNN Graph class F maxF∈F,m=|V (F)| e(F)

MPNNs (1-WL) Trees m− 1

r-ℓMPNNs (r-ℓWL) Fan-cactus graphs 2m− 3

Spectral invariant GNNs Parallel trees 2m− 3

Subgraph k-GNNs {F : ∃U ⊂ V (F) s.t.
|U | ≤ k and F \ U is a forest} m(k + 1)− 1− k2+3k

2

k-FGNNs (k-WL) {F : tw(F) ≤ k} km− k(k+1)
2

Proposition 4.9. Consider a graph G with n nodes and let F be a class of patterns with m nodes.
For a chosen privacy parameter ρ′ > 0, the Gaussian noise necessary to obtain a specific privacy
guarantee in Theorem 4.8 has variance σ2 = O

(
(maxF∈F e(F))

2/n4
)
.

Table 1 provides the homomorphism-distinguishing closed graph class F as well as its maximum
number of edges for some well-known GNN architectures with expressive power precisely charac-
terized by F , i.e., that can distinguish all non-isomorphic graphs in F . With this information, we are
able to generate private graph embeddings that, in expectation, match the expressive power of many
GNN architectures. In general, more expressive GNN architectures often have greater bounds on
e(F) for F ∈ F . From Proposition 4.9 we can therefore conclude that with patterns sampled from
more expressive graph classes, more noise is required to achieve a given privacy guarantee. Thus,
we have identified an explicit trade-off between privacy and expressivity.

5 EXPERIMENTS

We complement our theoretical investigation with a compact empirical study that can be run on a
single commercial GPU. Our goal is not to compete with state-of-the-art approaches, but rather to
probe the trade-off between the desiderata of privacy and expressivity in practice, as well as assess
the utility, i.e., the performance, of our private embeddings on real-world and synthetic datasets. We
organize our experimental evaluation around the following research questions:

Q1. For a fixed privacy budget, do embeddings obtained from more expressive graph classes
offer better performance?

Q2. For a fixed class of patterns, how does performance degrade when we require stronger
privacy guarantees?

Q3. Are the expressive and private embeddings we obtain practically useful?

Experimental setup. We evaluate the private and expressive homomorphism density vectors for
graph-level tasks on real-world as well as synthetic datasets. We run experiments on four commonly
used OGBG molecular benchmark datasets (MOLHIV, MOLBACE, MOLBBBP, and MOLLIPO (Hu
et al., 2020)) and on three network datasets (REDDIT-BINARY and REDDIT-MULTI-5K (Xiang
et al., 2024), and GitHub STARGAZERS (Rozemberczki et al., 2020)). Additionally, we perform
experiments on a synthetic stochastic block model (SBM, see Appendix C.2)). As we focus on how
the graph structure can be privately leveraged to have expressive representations, the core of our
experiments relies on the graph structure only as encoded by the homomorphism density vectors
and does not consider any node or edge features. We experiment with different privacy budgets
ρ′ ∈ [10−8, 1]. To make results more interpretable, we convert our tCDP guarantees into (ϵ, δ)-
DP guarantees using Lemma A.2 in Appendix A.2; (ϵ, δ)-DP guarantees are easier to interpret as
privacy budgets roughly in the range ϵ ∈ (0, 10] are generally understood to provide meaningful
privacy protection in graph machine learning (Wu et al., 2022; Sajadmanesh & Gatica-Perez, 2021).
To evaluate privacy protection empirically, we run the privacy attacks detailed in Appendix D to try
and recover the original graphs. We consider sampled vectors of patterns F with d = 50 for all
experiments. We compare the performance of our embeddings against the Randomized Response

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(RR) and the degree-preserving Randomized Response (DPRR, Hidano & Murakami, 2024) GNN
baselines. For details on the experimental setup, baselines, and additional results, see Appendix D.

Time complexity. While counting homomorphisms is intractable in general, there exist efficient
algorithms for certain graph classes. For instance, homomorphism counts for cycle patterns can
be computed efficiently via powers of the adjacency matrix, see Proposition C.2 in Appendix C.
For bounded treewidth patterns, Dı́az et al. (2002) introduced a polynomial-time algorithm that
computes hom(F,G) in O(|V (F)| |V (G)|tw(F)+1), where tw(F) denotes the treewidth of pattern
F . Based on this result, Welke et al. (2023) propose, for each Gn for fixed n, a sampling strategy
with polynomial runtime in expectation by decreasing the probability mass of patterns with higher
treewidth. The key idea behind their approach is to construct a probability distribution and ensure
that every pattern has a nonzero, but potentially very small probability to be sampled. We refer to
Welke et al. (2023, Thm. 15, App. C) for a more in-depth discussion on the construction of such a
distribution and details on the sampling strategy. We remark that the computation and addition of DP
noise does not introduce any noticeable computational overhead. Furthermore, the computation of
our embeddings can be regarded as a one-time pre-processing step and can subsequently be used for
any downstream analysis. In practice, counting homomorphisms from bounded treewidth patterns,
which matches the expressive power of highly expressive GNNs, can be done on standard consumer-
grade hardware; see Table 8 for detailed runtimes for MOLHIV with increasing maximum treewidth
of tw = {1, 2, 3} and REDDIT-BINARY with tw = 1.

10 3 10 2 10 1 100 101 102

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

SBM - accuracy vs
Cycles
Trees

(a) Classification accuracy vs privacy budget on
SBM with k-NN for tree and cycle patterns.

1 2 3
Maximum treewidth

0.45

0.50

0.55

0.60

0.65

0.70

A
U

C

AUC
Top-1 Atk Acc

2.25

2.50

2.75

3.00

3.25

3.50

3.75

To
p-

1
A

tta
ck

s
A

cc
ur

ac
y

1e 4
MOLHIV - AUC and attack accuracy vs maximum treewidth

(b) Classification AUC and attack accuracy vs max
treewidth on MOLHIV with k-NN. ϵ = 1.

Figure 2: Visualizations for two of our experiments on SBM and MOLHIV. We report average results
with error bars of 2 standard deviations across 9 runs.

Table 2: Utility and attack accuracy for our experiments on OGBG datasets. As utility metric, we
use the regression RMSE for MOLLIPO and the classification AUC for MOLHIV, MOLBBBP, and
MOLBACE. We report average results and standard deviations across 9 runs. Bold marks best results
for the private runs.

t(F , G) MOLHIV ↑ MOLBBBP ↑ MOLBACE ↑ MOLLIPO ↓

Private (ϵ = 1) Utility 0.692 (0.020) 0.602 (0.005) 0.652 (0.069) 1.086 (0.004)

Attack 0.003 (< 0.001) 0.025 (0.003) 0.027 (0.002) 0.011 (0.002)

Non private (ϵ = ∞) Utility 0.745 (< 0.001) 0.644 (0.008) 0.752 (0.002) 1.055 (0.002)

Attack 0.955 (0.020) 1.000 (< 0.001) 0.990 (< 0.001) 0.992 (0.006)

GNN Baseline

Private (ϵ = 1) RR Utility 0.488 (0.008) 0.440 (0.005) 0.457 (0.024) 1.568 (0.248)

Private (ϵ = 1) DPRR Utility 0.595 (0.155) 0.539 (0.019) 0.648 (0.043) 1.499 (0.333)

Non private (ϵ = ∞) Utility 0.672 (0.022) 0.586 (0.027) 0.768 (0.033) 1.033 (0.021)

Results. To answer questions Q1 and Q2 we perform two sets of experiments: In the first set of
experiments (a), we consider a learning task where one pattern class is provably more expressive

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

than another pattern class. In the second set of experiments (b), we instead consider a learning task
where more expressive patterns are not expected to improve performance. For (a), we construct an
SBM dataset, for which cycle patterns have provably stronger distinguishing properties than tree pat-
terns (see Lemma C.1). We observe in Figure 2a that cycle homomorphism densities, a pattern class
that ensures expressivity in expectation, result in drastically better practical performance compared
to tree homomorphism densities. We can further see that the performance for cycles remains good
for reasonable privacy budgets around ϵ = 1. For (b), we use patterns with increasing maximum
treewidth of {1, 2, 3}, and therefore increasing expressive power, on MOLHIV. On this dataset, pat-
terns with maximum treewidth of 1 achieve good performance. In this case, choosing patterns from
more expressive graph classes may not offer a benefit in performance: to obtain the same privacy
guarantee and comparable resilience to privacy attacks, we expect to add more noise to more ex-
pressive patterns according to Proposition 4.9. In fact, in Figure 2b, we observe a downward trend
in the AUC as we increase the maximum treewidth. This confirms that there is indeed a practical
trade-off between expressivity and privacy. Finally, our results in Table 2 and Table 4 positively an-
swer Q3: overall, our private and expressive homomorphism density vectors are useful embeddings
for graph classification and regression tasks. Moreover, the private embeddings offer significantly
better resilience to privacy attacks compared to their non-private counterparts. For a reasonable pri-
vacy budget of ϵ = 1, we always outperform the baseline and MOLHIV, MOLBBBP, and MOLLIPO
stay within 90% of the performance of the non-private homomorphism density embeddings. For
the network datasets, we obtain performances comparable to those in Hidano & Murakami (2024),
despite relying on significantly simpler classifiers, which further confirms the practical usefulness
of our embeddings; see Appendix D for a more in-depth discussion. Indeed, we emphasize that for
all our experiments we use basic machine learning algorithms such as k-nearest neighbor (k-NN)
classifiers, support vector machines and random forests (see Appendix D.1). This suggests that the
private embeddings we obtain are themselves highly informative. We report further experiments
and ablation studies in Appendix D, where we verify the impact of node features on utility, and we
confirm that a straightforward implementation of DP with global sensitivity yields unusably noisy
embeddings, highlighting the necessity for the more refined bounds on sensitivity we discuss in
Section 4.2 to obtain practically usable private embeddings.

6 CONCLUSION

We study the trade-off between expressivity and privacy in graph representation learning. Our re-
sults first address an existing research gap on the interplay between the desiderata of expressivity
and privacy. We propose a noisy version of homomorphism densities as graph embeddings, and
show that our embeddings satisfy formal expressivity and differential privacy guarantees. In our
experiments, we show that our embeddings are also useful in practice and retain high classification
performance with practical protection against privacy attacks.

Limitations. A natural limitation of our approach is that it inherits all the limitations of homo-
morphism counts and densities. As discussed, homomorphism counts can be expensive to compute.
Moreover, homomorphism counts alone may not be sufficient for good practical performance, espe-
cially if node features and their topological arrangements are crucial for the task at hand.

Future work. A promising direction for future work is to refine the noise calibration by more
precisely analyzing the sensitivity of specific graph classes, and to privately encode edge features to
further improve the privacy–utility trade-off.

7 ETHICS STATEMENT

Our work provides formal guarantees that align with the increasing regulatory push toward privacy-
preserving machine learning models. We next detail our usage of LLMs. We use LLMs for the
following use cases: (i) as a coding assistant, (ii) for discussion and suggestions on the experimental
setup, (iii) for retrieval and discovery of related work, and (iv) for feedback on the final draft of
our submission. In all cases, we, the authors, were the last ones to check and modify the content
accordingly. Furthermore, we ensured that the content of this submission was not used for further
training of LLMs to not bias the reviewing process.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

All our theoretical statements are supported by proofs, which can be found in Appendix B, and/or
pointers to existing literature. Our experimental setup is detailed in Appendix D and the code used
to produce our empirical results can be found here: https://anonymous.4open.science/
r/exp-priv-hom-A45D.

REFERENCES

Paul Beaujean, Florian Sikora, and Florian Yger. Scaling up graph homomorphism features with
efficient data structures. In ICLR 2021 Workshop on Geometrical and Topological Representation
Learning, 2021.

Jan Böker. Graph similarity and homomorphism densities. In 48th International Colloquium on
Automata, Languages, and Programming (ICALP 2021), pp. 32–1. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2021.

Mark Bun, Cynthia Dwork, Guy N Rothblum, and Thomas Steinke. Composable and versatile
privacy via truncated cdp. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, pp. 74–86, 2018.

Francesco Campi, Lukas Gosch, Tom Wollschläger, Yan Scholten, and Stephan Günnemann. Ex-
pressivity of graph neural networks through the lens of adversarial robustness. In The Second
Workshop on New Frontiers in Adversarial Machine Learning, 2023.

Josep Dı́az, Maria Serna, and Dimitrios M Thilikos. Counting h-colorings of partial k-trees. Theo-
retical Computer Science, 281(1-2):291–309, 2002.

Xiaofeng Ding, Xiaodong Zhang, Zhifeng Bao, and Hai Jin. Privacy-preserving triangle counting
in large graphs. In Proceedings of the 27th ACM international conference on information and
knowledge management, pp. 1283–1292, 2018.

Cynthia Dwork. Differential privacy. In International colloquium on automata, languages, and
programming, pp. 1–12. Springer, 2006.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data,
ourselves: Privacy via distributed noise generation. In Advances in cryptology-EUROCRYPT
2006: 24th annual international conference on the theory and applications of cryptographic
techniques, st. Petersburg, Russia, May 28-June 1, 2006. proceedings 25, pp. 486–503. Springer,
2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends in Theoretical Computer Science, 9(3–4):211–407, 2014.

European Parliament and Council of the European Union. Regulation (eu) 2016/679 of the european
parliament and of the council of 27 april 2016 on the protection of natural persons with regard to
the processing of personal data and on the free movement of such data, and repealing directive
95/46/ec (general data protection regulation). Official Journal of the European Union L 119, 2016.
URL https://eur-lex.europa.eu/eli/reg/2016/679/oj.

European Parliament and Council of the European Union. Regulation (eu) 2024/1689 of the eu-
ropean parliament and of the council of 13 june 2024 laying down harmonised rules on artificial
intelligence and amending regulations (ec) no 300/2008, (eu) no 167/2013, (eu) no 168/2013, (eu)
2018/858, (eu) 2018/1139 and (eu) 2019/2144 and directives 2014/90/eu, (eu) 2016/797 and (eu)
2016/798 (artificial intelligence act). Official Journal of the European Union L 1689, 2024. URL
https://eur-lex.europa.eu/eli/reg/2024/1689/oj.

Dongqi Fu, Wenxuan Bao, Ross Maciejewski, Hanghang Tong, and Jingrui He. Privacy-preserving
graph machine learning from data to computation: A survey. ACM SIGKDD Explorations
Newsletter, 25(1):54–72, 2023.

11

https://anonymous.4open.science/r/exp-priv-hom-A45D
https://anonymous.4open.science/r/exp-priv-hom-A45D
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2024/1689/oj

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jingchu Gai, Yiheng Du, Bohang Zhang, Haggai Maron, and Liwei Wang. Homomorphism expres-
sivity of spectral invariant graph neural networks. In The Thirteenth International Conference on
Learning Representations, 2025.

Manuel Gil, Fady Alajaji, and Tamas Linder. Rényi divergence measures for commonly used uni-
variate continuous distributions. Information Sciences, 249:124–131, 2013.

Martin Grohe. word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings
of structured data. In proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI symposium on
principles of database systems, pp. 1–16, 2020.

Seira Hidano and Takao Murakami. Degree-preserving randomized response for graph neural net-
works under local differential privacy. Transactions on Data Privacy, 17(2):89–121, 2024.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. {Communication-Efficient} triangle
counting under local differential privacy. In 31st USENIX security symposium (USENIX Secu-
rity 22), pp. 537–554, 2022.

Emily Jin, Michael Bronstein, İsmail İlkan Ceylan, and Matthias Lanzinger. Homomorphism counts
for graph neural networks: all about that basis. In Proceedings of the 41st International Confer-
ence on Machine Learning, pp. 22075–22098, 2024.

Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Analyzing
graphs with node differential privacy. In Theory of Cryptography: 10th Theory of Cryptography
Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings, pp. 457–476. Springer,
2013.

Lorenz Kummer, Wilfried N. Gansterer, and Nils M. Kriege. On the relationship between robustness
and expressivity of graph neural networks, 2025.

Yang Li, Michael Purcell, Thierry Rakotoarivelo, David Smith, Thilina Ranbaduge, and Kee Siong
Ng. Private graph data release: A survey. ACM Computing Surveys, 55(11):1–39, 2023.

László Lovász. Operations with structures. Acta Mathematica Hungarica, 18(3-4):321–328, 1967.

László Lovász. Large networks and graph limits, volume 60. American Mathematical Soc., 2012.

Takanori Maehara and Hoang NT. Deep homomorphism networks. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M Kriege, Martin Grohe,
Matthias Fey, and Karsten Borgwardt. Weisfeiler and leman go machine learning: The story so
far. Journal of Machine Learning Research, 24(333):1–59, 2023.

Christopher Morris, Fabrizio Frasca, Nadav Dym, Haggai Maron, Ismail Ilkan Ceylan, Ron Levie,
Derek Lim, Michael M. Bronstein, Martin Grohe, and Stefanie Jegelka. Position: Future direc-
tions in the theory of graph machine learning. In Ruslan Salakhutdinov, Zico Kolter, Katherine
Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceed-
ings of the 41st International Conference on Machine Learning, volume 235 of Proceedings of
Machine Learning Research, pp. 36294–36307. PMLR, 21–27 Jul 2024.

Tamara T Mueller, Dmitrii Usynin, Johannes C Paetzold, Daniel Rueckert, and Georgios Kaissis.
Sok: Differential privacy on graph-structured data. arXiv preprint arXiv:2203.09205, 2022.

National Institute of Standards and Technology. Artificial intelligence risk management framework
(ai rmf 1.0). Technical Report NIST AI 100-1, U.S. Department of Commerce, 2023. URL
https://doi.org/10.6028/NIST.AI.100-1.

12

https://doi.org/10.6028/NIST.AI.100-1

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Daniel Neuen. Homomorphism-distinguishing closedness for graphs of bounded tree-width. In 41st
International Symposium on Theoretical Aspects of Computer Science (STACS 2024), pp. 53–1.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2024.

Dung Nguyen, Mahantesh Halappanavar, Venkatesh Srinivasan, and Anil Vullikanti. Faster approx-
imate subgraph counts with privacy. Advances in Neural Information Processing Systems, 36:
70402–70432, 2023.

Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sampling in private
data analysis. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing,
pp. 75–84, 2007.

Hoang NT and Takanori Maehara. Graph homomorphism convolution. In International Conference
on Machine Learning, pp. 7306–7316. PMLR, 2020.

Iyiola E Olatunji, Mandeep Rathee, Thorben Funke, and Megha Khosla. Private graph extraction
via feature explanations. Proceedings on Privacy Enhancing Technologies, 2023.

Iyiola Emmanuel Olatunji, Thorben Funke, and Megha Khosla. Releasing graph neural networks
with differential privacy guarantees. Transactions on Machine Learning Research, 2024.

Raffaele Paolino, Sohir Maskey, Pascal Welke, and Gitta Kutyniok. Weisfeiler and Leman go loopy:
A new hierarchy for graph representational learning. Advances in Neural Information Processing
Systems, 37:120780–120831, 2024.

Xinjun Pei, Xiaoheng Deng, Shengwei Tian, Jianqing Liu, and Kaiping Xue. Privacy-enhanced
graph neural network for decentralized local graphs. IEEE Transactions on Information Forensics
and Security, 19:1614–1629, 2024. doi: 10.1109/TIFS.2023.3329971.

Sofya Raskhodnikova and Adam Smith. Differentially private analysis of graphs. Encyclopedia of
Algorithms, 2016.

Alfréd Rényi. On measures of entropy and information. In Proceedings of the fourth Berkeley
symposium on mathematical statistics and probability, volume 1: contributions to the theory of
statistics, volume 4, pp. 547–562. University of California Press, 1961.

Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. Karate club: an api oriented open-source
python framework for unsupervised learning on graphs. In Proceedings of the 29th ACM interna-
tional conference on information & knowledge management, pp. 3125–3132, 2020.

Sina Sajadmanesh and Daniel Gatica-Perez. Locally private graph neural networks. In Proceedings
of the 2021 ACM SIGSAC conference on computer and communications security, pp. 2130–2145,
2021.

Sina Sajadmanesh and Daniel Gatica-Perez. Progap: Progressive graph neural networks with dif-
ferential privacy guarantees. In Proceedings of the 17th ACM International Conference on Web
Search and Data Mining, pp. 596–605, 2024.

Sina Sajadmanesh, Ali Shahin Shamsabadi, Aurélien Bellet, and Daniel Gatica-Perez. GAP: Differ-
entially private graph neural networks with aggregation perturbation. In 32nd USENIX Security
Symposium (USENIX Security 23), pp. 3223–3240, Anaheim, CA, August 2023. USENIX Asso-
ciation. ISBN 978-1-939133-37-3.

Tim Van Erven and Peter Harremos. Rényi divergence and Kullback-Leibler divergence. IEEE
Transactions on Information Theory, 60(7):3797–3820, 2014.

Yue Wang, Xintao Wu, and Donghui Hu. Using randomized response for differential privacy pre-
serving data collection. In EDBT/ICDT Workshops, volume 1558, pp. 0090–6778, 2016.

Pascal Welke, Maximilian Thiessen, Fabian Jogl, and Thomas Gärtner. Expectation-complete graph
representations with homomorphisms. In International Conference on Machine Learning, pp.
36910–36925. PMLR, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Hinrikus Wolf, Luca Oeljeklaus, Pascal Kühner, and Martin Grohe. Structural node embeddings
with homomorphism counts. arXiv preprint arXiv:2308.15283, 2023.

Fan Wu, Yunhui Long, Ce Zhang, and Bo Li. Linkteller: Recovering private edges from graph
neural networks via influence analysis. In 2022 ieee symposium on security and privacy (sp), pp.
2005–2024. IEEE, 2022.

Ruofan Wu, Guanhua Fang, Mingyang Zhang, Qiying Pan, Tengfei Liu, and Weiqiang Wang. On
provable privacy vulnerabilities of graph representations. In A. Globerson, L. Mackey, D. Bel-
grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information
Processing Systems, volume 37, pp. 90891–90933. Curran Associates, Inc., 2024.

Zihang Xiang, Tianhao Wang, and Di Wang. Preserving node-level privacy in graph neural networks.
In 2024 IEEE Symposium on Security and Privacy (SP), pp. 4714–4732. IEEE, 2024.

Yule Xie, Jiaxin Ding, Pengyu Xue, Xin Ding, Haochen Han, Luoyi Fu, and Xinbin Wang. Lever-
aging homophily under local differential privacy for effective graph neural networks. 2025.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Tuo Xu. Towards a complete logical framework for GNN expressiveness. In The Thirteenth Inter-
national Conference on Learning Representations, 2025.

Wanghan Xu, Bin Shi, Ao Liu, Jiqiang Zhang, and Bo Dong. Graphpub: Generation of differential
privacy graph with high availability, 2024.

Bohang Zhang, Jingchu Gai, Yiheng Du, Qiwei Ye, Di He, and Liwei Wang. Beyond Weisfeiler-
Lehman: A quantitative framework for GNN expressiveness. In The Twelfth International Con-
ference on Learning Representations, 2024a.

Yi Zhang, Yuying Zhao, Zhaoqing Li, Xueqi Cheng, Yu Wang, Olivera Kotevska, Philip S Yu, and
Tyler Derr. A survey on privacy in graph neural networks: Attacks, preservation, and applications.
IEEE Transactions on Knowledge and Data Engineering, 2024b.

Zhikun Zhang, Min Chen, Michael Backes, Yun Shen, and Yang Zhang. Inference attacks against
graph neural networks. In 31st USENIX Security Symposium (USENIX Security 22), pp. 4543–
4560, 2022.

Zhanke Zhou, Chenyu Zhou, Xuan Li, Jiangchao Yao, Quanming Yao, and Bo Han. On strengthen-
ing and defending graph reconstruction attack with markov chain approximation. In International
Conference on Machine Learning, pp. 42843–42877. PMLR, 2023.

A ADDITIONAL PRELIMINARIES

In this section we provide additional details on the preliminaries.

A.1 CUT NORM

In our preliminaries we have implicitly assumed that G and G′ are defined on the same node set,
i.e., the nodes of G and G′ have some fixed labeling ∈ [n] which minimizes the cut distance. If two
graphs G and G′ have the same cardinality n but on different node sets, their distance is defined as

δ̂□(G,G
′) = min

Ĝ,Ĝ′
d□(Ĝ, Ĝ′), (5)

with Ĝ and Ĝ′ ranging over all possible labelings of G and G′ by 1, . . . , n.

For two graphs G and G′ with different cardinalities, we define the cut distance using fractional
overlays. A fractional overlay of two graphs G of order n and G′ of order n′ is a nonnegative
n × n′ matrix X = [Xiu]n×n′ such that

∑n′

u=1Xiu = 1
n and

∑n
i=1Xiu = 1

n′ . If n = n′, let

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

σ : V (G) → V (G′) be a bijection. Then, Xiu = 1
n1(σ(i) = u) is a fractional overlay. For a fixed

fractional overlay X , we define the labeled cut distance as

d□(G,G
′, X) = max

Q,R⊆V (G)×V (G′)

∣∣∣ ∑
iu∈Q
jv∈R

XiuXjv

(
1(ij ∈ E(G))− 1(uv ∈ E(G′))

)∣∣∣.
The cut distance between G and G′ is defined over all overlays X (G,G′):

δ□(G,G
′) = min

X∈X (G,G′)
d□(G,G

′, X). (6)

Note that, in general, for two graphs with the same cardinality δ□ may not coincide with δ̂□ and it
holds that δ□(G,G′) ≤ δ̂□(G,G

′) Lovász (2012). We can now re-state the counting lemma with
more precise notation.

Lemma A.1 (Counting Lemma Lovász 2012, Lemma 10.22). For any three simple graphs F , G,
and G′, it holds that:

|t(F,G)− t(F,G′)| ≤ e(F)δ□(G,G
′). (7)

As in our setting we consider pairs of graphs G,G′ with the same number of nodes which share the
same node set, we have that d□(G,G′) = δ□(G,G

′) and we thus do not need to consider the cut
distance defined over fractional overlays.

A.2 DIFFERENTIAL PRIVACY

We provide here additional preliminaries on DP, with a focus on how to achieve DP with additive
noise scaled to the global sensitivity of a function.

Definition A.1 (ϵ-DP, Dwork 2006). Let ϵ > 0. A randomized mechanism M : X → Y satisfies
ϵ-indistinguishability differential privacy, denoted as ϵ-DP, if, for all neighboring x, x′ ∈ X ,

Pr[M(x) ∈ Y] ≤ eϵ Pr[M(x) ∈ Y], (8)

where probabilities are taken over the randomness of M.

Definition A.2 ((ϵ, δ)-DP, Dwork et al. 2006). Let ϵ > 0 and δ ∈ [0, 1). A randomized mechanism
M : X → Y satisfies δ-approximate ϵ-indistinguishability differential privacy, denoted as (ϵ, δ)-DP,
if, for all neighboring x, x′ ∈ X ,

Pr[M(x) ∈ Y] ≤ eϵ Pr[M(x) ∈ Y] + δ, (9)

where probabilities are taken over the randomness of M.

In the literature, ϵ-DP is also referred to as pure DP while (ϵ, δ)-DP is also referred to as approximate
DP. Given a deterministic function f , one can build a private mechanism from f by means of additive
noise calibrated to its global sensitivity GSf,p = maxx∼x′ ∥f(x)− f(x′)∥p, where ∥·∥p is a ℓp-
norm. When p is omitted, we consider ℓ2 norms.

Theorem A.3 (Laplace mechanism for pure DP, Dwork 2006; Dwork et al. 2014). Let f : X → R
have ℓ1 sensitivity GSf,ℓ1 . The randomized mechanism M(x) = f(x) + Lap

(
GSf,ℓ1

ϵ

)
satisfies

ϵ-DP, where Lap(b) denotes Laplacian noise with mean 0 and scale b.

Theorem A.4 (Gaussian mechanism for approximate DP, Dwork et al. 2006; Dwork 2006). Let
f : X → R have ℓ2 sensitivity GSf,ℓ2 . The randomized mechanism M(x) = f(x) + N (0, σ2)

satisfies (ϵ, δ)-DP for σ ≥ GSf,ℓ2

√
2 ln(1.25/δ)

ϵ .

Lemma A.2 (tCDP implies (ϵ, δ)-DP, Bun et al. 2018). Suppose mechanism M satisfies (ρ, ω)-
tCDP with a Rényi divergence of order α. Then, for all δ ∈ [0, 1), 1 < α ≤ ω, M satisfies
(ϵ, δ)-DP with

ϵ =

{
ρ+ 2

√
ρ ln(1/δ) if ln(1/δ) ≤ (ω − 1)2ρ

ρω + ln(1/δ)/(ω − 1) if ln(1/δ) ≥ (ω − 1)2ρ.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Definition A.5 (Smooth Sensitivity, Nissim et al. 2007). For a function f : X → R, let d(x, x′)
measure the distance between x and x′, where d(x, x′) = 1 indicates that x ∼ x′. Define the local
sensitivity of f at x as

LSf (x) = max
x′∈X :d(x,x′)≤1

|f(x)− f(x′)| . (10)

For β > 0, the β-smooth sensitivity of f at x is then defined as

Sf (x) = max
y∈X

e−β d(x,y) LSf (y). (11)

It is immediate to see that for all x ∈ X , it holds that LSf (x) ≤ GSf . Therefore, we expect a
method that relies on smooth sensitivities to provide better utility, compared to one that relies on
global sensitivities.

B MISSING PROOFS

B.1 EXPRESSIVITY

Remark B.1 (On graph blowups). For the following proofs, it is necessary to address the fact that
two graphs G,G′, where G′ is a blowup of G, have the same homomorphism density for any pattern
F (Lovász, 2012, Theorem 5.32). A p-blowup of G can be obtained by replacing each node of
G by p ≥ 1 twin copies (Lovász, 2012). Therefore, homomorphism densities cannot be used to
distinguish all non-isomorphic graphs. This subtlety is not addressed in Welke et al. (2023) who,
in fact, rely on the wrong assumption that homomorphism densities are complete for some of their
results. We can address this in two ways. We can (i) rely on homomorphism counts, which do not
present the same problem and can be used to obtain a complete embedding (Lovász, 1967; Welke
et al., 2023). As our DP statements consider pairs of graphs with the same number of nodes, this
only requires to rescale the definitions of sensitivity and leads to equivalent statements about the
privacy of the embeddings. This does not affect the utility of our embeddings which are, simply,
rescaled. Alternatively, we can (ii) append the node count |V (G)| to the homomorphism density
embedding of G to distinguish it from all its blowups. This operation is trivially DP with respect to
the neighboring graph notion in Definition 4.3 and costs no further privacy budget. As we rely on
the counting lemma to derive our sensitivity bounds, we choose to present our results in terms of
homomorphism densities3. Therefore, we will assume that, if necessary, the node count is appended
to the embedding so that the following statements hold. We stress that this is simply a choice of
presentation, as all our privacy and expressivity statements could be easily rephrased in terms of
homomorphism counts.

Theorem 4.1. For any G ∈ G, t̃(F,G) is F-expectation-expressive for F ∼ D if D has full support
on F ⊆ G. If F = G, then t̃(F,G) is expectation-complete.

Proof. Consider
τ = EF [t(F,G)] =

∑
F ′∈F

Pr
D
(F = F ′)t(F ′, G)eF ′ , (12)

where eF ′ ∈ R|F| is a standard basis unit vector of R|F|. We can write t̃(F,G) = t(F,G) + Y
where Y ∼ N (µY = 0, σ2) for some variance σ2. Note that Y and F are independent random
variables. It then holds that

E[t̃(F,G)] = E[t(F,G) + Y eF] = EF [t(F,G)] + EY [Y eF] (13)
= EF [t(F,G)] + EY [Y]EY [eF] = EF [t(F,G)] + µY EY [eF] (14)
= EF [t(F,G)] = τ. (15)

It remains to show that τ is F-expressive. Let G,G′ be two graphs for which there exists F ′ ∈ F
such that hom(F ′, G) ̸= hom(F ′, G′), and let τ , τ ′ be the corresponding vector representations.
If |V (G)| ≠ |V (G′)| and G′ is a blowup of G or vice-versa, simply append the node counts to
τ, τ ′ to get (τ, |V (G)|) ̸= (τ ′, |V (G′)|). If |V (G)| = |V (G′)|, then hom(F ′, G) ̸= hom(F ′, G′)

3Note that this can also be used to recover the results presented in Welke et al. (2023) that rely on the
completeness of homomorphism densities.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

implies that t(F ′, G) ̸= t(F ′, G′). As D has full support on F , then Pr(F = F ′) > 0 and therefore
Pr(F = F ′)t(F ′, G) ̸= Pr(F = F ′)t(F ′, G′), which implies τ ̸= τ ′. This shows that τ is F-
expressive. If F = G, then τ ̸= τ ′ for any two G ̸≃ G′, with analogous argument. Therefore, τ is
in this case complete.

Theorem 4.2. Let D be a distribution on F ⊆ G with full support. Let G ∈ G, F ∼ Dd, and
θ ∈ [0, 1]. For large enough d, t̃(F , G) is F-expressive with probability at least 1 − θ. If F = G,
then, for large enough d, t̃(F , G) is complete with probability at least 1− θ.

Proof. Let G,G′ be any two graphs for which there exists F ′ ∈ F such that hom(F ′, G) ̸=
hom(F ′, G′). First, we consider the noise-free homomorphism density vectors and want to show
that

t(F , G) = (t(F1, G), . . . , t(Fd, G)) ̸= (t(F1, G
′), . . . , t(Fd, G

′)) = t(F , G′) (16)

with probability at least 1 − θ, where F1, . . . , Fd ∼ D iid. To show this, we adapt the proof of
Lemma 3 by Welke et al. (2023). Since t(F,G) is F-expressive for F ∼ D, then EF [t(F,G)] ̸=
EF [t(F,G′)]. In particular, there exists a set FG,G′ of outcomes of F with Pr(F ∈ FG,G′) = p > 0
such that for all F ∗ ∈ FG,G′ it holds that t(F ∗, G) ̸= t(F ∗, G′). We want that Pr[∃ i ∈ {1, . . . , d} :
Fi ∈ FG,G′] ≥ 1− θ, and thus it must hold that 1− (1− p)d ≥ 1− θ. Solving for d, we obtain that
if d ≥ ⌈ ln(1/θ)

ln(1
1−p)

⌉, then t(F , G) is F-expressive with probability at least 1− θ.

Considering now t̃(F , G), note that if t(F ∗, G) ̸= t(F ∗, G′), then, for any variance σ2, it also holds
that t̃(F ∗, G) = t(F ∗, G) + N (0, σ2) ̸= t(F ∗, G′) + N (0, σ2) = t̃(F ∗, G′) with probability 1.
That is, the patterns for which the noise-free homomorphism densities will distinguish G and G′,
also work with additive noise. Therefore, t̃(F , G) is F-expressive with probability at least 1− θ.

If F = G, then t̃(F , G) ̸= t̃(F , G′) for any two G ̸≃ G′, with analogous argument. Therefore,
t̃(F , G) is in this case complete with probability at least 1− θ.

B.2 HOMOMORPHISM-DISTINGUISHING CLOSED GRAPH CLASSES

In Table 1, we report homomorphism-distinguishing closed graph classes for known GNN architec-
tures Zhang et al. (2024a). For r-ℓMPNNs, we upper bound the number of edges by the maximum
number of edges in outerplanar graphs since fan-cactus graphs are outerplanar Paolino et al. (2024).
For k-FGNNs, we can upper bound the number of edges for graphs of bounded treewidth k by
considering the number of edges in a k-tree, as formalized in the following proposition.

Proposition B.2. Let F = {F : tw(F) ≤ k}. Then, any F ∈ F with |V (F)| = m has at most
km− 1

2k(k + 1) edges.

Proof. A k-tree is a an edge-maximal graph of treewidth k and can be constructed by expanding a
(k + 1)-clique with new nodes such that each new node is connected to exactly k existing nodes.
The initial (k + 1)-clique has 1

2k(k + 1) edges. We add m − (k + 1) new nodes, where each new
node is connected to exactly k existing nodes, thus introducing k(m − (k + 1)) new edges. Thus,
any F ∈ F has at most km− 1

2k(k + 1) edges.

Remark B.3. Maximal outerplanar graphs are 2-trees. Indeed, if we set k = 2, we recover our upper
bound on the number of edges for outerplanar graphs.

Proposition B.4. Let F = {F : ∃U ⊂ V (F) such that |U | ≤ k and F \ U is a forest}. Then, any
F ∈ F with |V (F)| = m has at most m(k + 1)− 1− 1

2 (k
2 + 3k) edges.

Proof. F \ U is a forest and has thus at most m − k − 1 edges. Let F [U] denote the subgraph
induced by vertex set U . F [U] has at most 1

2 (k(k − 1)) edges. Every node in F [U] is connected to
at most every node in F \U . Thus, any F ∈ F has at most m− k− 1+ 1

2 (k(k− 1))+ k(m− k) =

m(k + 1)− 1− 1
2 (3k + k2) many edges.

Proposition B.5. Let F denote the class of parallel trees as defined in Gai et al. (2025). Then, any
F ∈ F with |V (F)| = m nodes has at most 2m− 3 edges.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Proof. Parallel trees, as defined in Gai et al. (2025), can be obtained by considering a tree T and
replacing any edge uv ∈ E(T) with parallel edges, that is, simple paths that share the endpoints
{u, v}. Assume that T has nl leaves, and denote by F a parallel tree obtained from it. If T =
(u, v) = P2, then F is a parallel edge which is a series–parallel graph. Therefore, if nl ∈ [1, 2], i.e.,
T is a path, F is a series–parallel graph as it is obtained via series composition of series–parallel
graphs; then e(F) ≤ 2m − 3. The bound can be matched by picking T = (u, v) = P2 and adding
m − 2 nodes, each of them with an edge to u and one to v. If nl > 2, then pick a leaf l1 and add
edges {l1l2, . . . , l1lnl} from l1 to each of the other leaves. The resulting graph is a series–parallel
graph with m nodes. To show this, let j ∈ [1, . . . , nl] and consider the nl root–leaf paths P(j), of T ,
and each of the nl subgraphs F(j) of F that have been obtained by replacing edges in this path with
parallel edges. Each of the F(j) is a series–parallel graph. With the added edges, l1 is now a sink of
F ′ = (V (F), E(F) ∪ {l1l2, . . . , l1lnl}). With the root as the source, F ′ is a series–parallel graph.
The resulting graph has therefore at most 2m− 3 edges.

B.3 PRIVACY

Corollary B.1. For any two neighboring graphs G ∼1 G
′ with n nodes and for any pattern F it

holds that

|t(F,G)− t(F,G′)| ≤ e(F)d□(G,G
′) =

2e(F)

n2
. (17)

Proof. We consider d□(G,G′) = δ□(G,G
′) as discussed in Appendix A.1. The proof then follows

from Lemma 3.1 and Definition 3.2 by direct computation, with the reminder that eG(S, S) = 2e(S)
for any S ⊆ V (G).

Proposition 4.4. Let St,∗(G) = ∥St,F1(G), . . . , St,Fd(G)∥2 and β > 0. Let

St(G) = max
H∈G

(
e−βdedge(G,H) max

H′∈G:dedge(H,H′)≤1
∥t(F , H)− t(F , H ′)∥2

)
(2)

be the β-smooth sensitivity of t(F , G) at G. Then, it holds that St,∗(G) ≥ St(G).

Proof. Let a(H) be the vector with entries ai(H) defined by

a(H) = (a1(H), . . . , ad(H)) , ai(H) = max
H′′:dedge(H,H′′)≤1

|t(Fi, H)− t(Fi, H
′′)| . (18)

For any H ′ with dedge (H,H
′) ≤ 1,

∥t(F , H)− t(F , H ′)∥2 ≤ ∥a(H)∥2 . (19)

Thus, it holds that

St(G) = max
H∈G

e−βdedge(G,H) max
H′:dedge(H,H′)≤1

∥t(F , H)− t(F , H ′)∥2 (20)

≤ max
H∈G

e−βdedge(G,H) ∥a(H)∥2 (21)

≤
∥∥∥∥max
H∈G

e−βdedge(G,H)a(H)

∥∥∥∥
2

(22)

= ∥St,F1
(G), . . . , St,Fd(G)∥2 = St,∗(G), (23)

which concludes the proof.

Theorem 4.5 (Sensitivity of homomorphism density for bounded degree graphs). Let G ∼1 G
′ be

two neighboring graphs with n nodes and maximum degree ∆max. For any pattern F with m > 1
nodes, it holds that

|t(F,G)− t(F,G′)| ≤ 2e(F)

n2

(
∆max

n

)m−2

. (3)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proof. Without loss of generality, let {u, v} ∈ E(G) and {u, v} ̸∈ E(G′). We can explicitly
compute an upper bound on |t(F,G)− t(F,G′)| by counting how many homomorphisms involve
{u, v}. Note that we do not need to consider homomorphisms that do not involve {u, v} as their
count is equal for both G and G′. First, we can pick any edge of F and map it onto {u, v}. For this
first step, we have a total of 2e(F) choices, as we take into account either order of the endpoints
of each edge of F . We now map the remaining m − 2 nodes of F . A third node of F can now be
mapped in a total of at most ∆max ways, as at most ∆max nodes are adjacent to either u or v. We
can proceed similarly with the remaining nodes. After the first two nodes of F have been mapped,
there are then a total of (∆max)

m−2 ways to map the remaining m − 2 nodes of F . In total, there
are therefore at most 2e(F)(∆max)

m−2 counts which differ for G and G′. Taking the normalization
into account, we get |t(F,G)− t(F,G′)| ≤ 2e(F)(∆max)

m−2

nm = 2e(F)
n2

(
∆max

n

)m−2
.

For the next theorem (Theorem B.6), we first require the following lemma.

Lemma B.1. Consider two multivariate Gaussian distributions N (µ0,Σ0) and N (µ1,Σ1), where
Σ0 = σ2Id and Σ1 = esσ2Id. Then, if αΣ−1

0 + (1− α)Σ−1
1 is positive definite,

Dα(N (µ0,Σ0) ∥ N (µ1,Σ1)) (24)

=
α ∥µ0 − µ1∥22

2 [αes + (1− α)]σ2
− d

2(α− 1)
[αs− ln(αes + 1− α)] (25)

Proof. Let, for shortness, (Σα)
∗ = αΣ1 + (1−α)Σ0. From Gil et al. (2013, Table 2), it holds that

Dα(N (µ0,Σ0) ∥ N (µ1,Σ1)) (26)

=
α

2
(µ0 − µ1)

⊺ [(Σα)
∗]

−1
(µ0 − µ1)︸ ︷︷ ︸

(⋆)

− 1

2(α− 1)
ln

det(Σα)
∗

(detΣ0)1−α(detΣ1)α︸ ︷︷ ︸
(⋆⋆)

. (27)

Note that (Σα)
∗ = [αes + (1− α)]σ2Id, and therefore

(⋆) =
α ∥µ0 − µ1∥22

2 [αes + (1− α)]σ2
and (28)

(⋆⋆) = − 1

2(α− 1)
ln

[αes + (1− α)]
d
σ2d

(σ2d)1−αesdα(σ2d)α
= − 1

2(α− 1)
ln

[αes + (1− α)]
d

esdα
(29)

=
d

2(α− 1)
[αs− ln(αes + 1− α)] , (30)

which concludes the derivation.

As our embeddings are in Rd, we need to derive a d-dimensional version of Theorem 3.10 for the
proof of Theorem 4.6.

Theorem B.6 (tCDP with Gaussian noise in Rd). Let f : X → Rd and g : X → R satisfy, for every
pair of neighboring databases x, x′ ∈ X and for ∆f ,∆g ≥ 0,

∥f(x)− f(x′)∥2 ≤ ∆fe
g(x)/2, |g(x)− g(x′)| ≤ ∆g. (31)

Let M : X → Rd be the randomized mechanism defined as M(x) = f(x)+N
(
0, e g(x) Id

)
. Then,

M satisfies
(
∆2
f + d ·∆2

g,
1

2∆g

)
-tCDP.

Proof. We bound the Rényi divergence of two neighboring databases following Lemma B.1, under
the conditions in Theorem B.6. Similarly to Bun et al. (2018), we consider α, s, γ ∈ R with α(es −
1) + 1 ≥ γ. Note first that s = g(x′) − g(x), as Σ1 = eg(x

′)Id = eg(x
′)−g(x)eg(x)Id = esΣ0.

Due to the ∆g-lipschitzness of g, s > −∆g . We can ensure α(es − 1) + 1 ≥ γ by noting that
es − 1 ≥ e−∆g − 1 ≥ −∆g . Following Bun et al. (2018), we choose γ = 1

2 and can therefore set
α ≤ 1

2∆g
to get α(es − 1) + 1 ≥ 1− α∆g ≥ 1

2 = γ.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The first term in Equation (25) is bounded as
α ∥µ0 − µ1∥22

2 [αes + (1− α)]σ2
≤
α ∥µ0 − µ1∥22

2γσ2
≤ α∆2

f . (32)

The second term in Equation (25) can be bounded via a Taylor expansion of the function h(s) =
ln [αes + (1− α)]. First, compute

h(0) = 0, h′(s) =
αes

αes + (1− α)
, h′(0) = α, h′′(s) =

α(1− α)es

[αes + (1− α)]
2 . (33)

As in Bun et al. (2018), for α > 1 and α(es − 1) + 1 ≥ γ it holds that 0 ≤ h′′(s) ≤ α(α−1)
γ2 .

Considering a Taylor expansion in s = 0, h(s) = αs+ 1
2h

′′(ζ)s2 for some ζ ∈ [0, s], and so

αs− h(s) = −1

2
h′′(ζ)s2 ≤ α(α− 1)s2

2γ2
. (34)

Thus, for γ = 1/2 the second term in Equation (25) reduces to
d

2(α− 1)
[αs− h(s)] ≤ αds2

4γ2
≤ αd∆2

g. (35)

Equation (32) and Equation (35) together complete the proof.

Theorem 4.6. Let t(F , G) be the homomorphism density vector for graph G and pattern set F
with |F | = d, ρ′ > 0, and St,∗(G) be a β-smooth upper bound to the local sensitivity as per
Proposition 4.4. Then, the mechanism

t̃(F , G) = t(F , G) +N
(
0,

[St,∗(G)]
2

2ρ′
Id

)
(4)

is
(
2ρ′ + d · 4β2, 1

4β

)
-tCDP for neighboring graphs as per Definition 4.3.

Proof. Following the notation in Theorem B.6, let eg(G) =
[St,∗(G)]2

2ρ′ and thus g(G) =

ln
(

[St,∗(G)]2

2ρ′

)
= 2 ln(St,∗(G)) − ln(2ρ′). Therefore, for two adjacent graphs G ∼ G′, ∆g =

|g(G)− g(G′)| = 2 |lnSt,∗(G)− lnSt,∗(G
′)| ≤ 2β as St,∗ is β-smooth (Definition A.5). Setting

∥t(F , G)− t(F , G′)∥2 ≤ St,∗(G) = ∆fe
g(G)/2 = ∆f

(
[St,∗(G)]2

2ρ′

)1/2

= ∆f
St,∗(G)√

2ρ′
, it follows

that ∆f =
√
2ρ′.

From Theorem B.6, t̃(F , G) is thus
(
2ρ′ + d · 4β2, 1

4β

)
-tCDP.

B.4 EXPRESSIVE AND PRIVATE GRAPH REPRESENTATIONS

Theorem 4.8. Let D be a distribution on F ⊆ G with full support. Let G ∈ G be a graph and
F = (F1, . . . , Fd) ∼ Dd be a vector of patterns. Then, the graph representation t̃(F , G) =

t(F , G) + N
(
0,

[St,∗(G)]2

2ρ′ Id

)
is F-expectation-expressive and (2ρ′ + d · 4β2, 1

4β)-tCDP, where

ρ′ > 0 and St,∗(G) is a β-smooth upper-bound on the local sensitivity of t(F , G). If Fd = Gd, then
t̃(F , G) is also expectation-complete.

Proof. From Theorem 4.6, t̃(F , G) is (2ρ′ + d · 4β2, 1
4β)-tCDP. From Theorem 4.1, t̃(F , G) is

F-expectation-expressive and expectation-complete if F = G.

Proposition 4.9. Consider a graph G with n nodes and let F be a class of patterns with m nodes.
For a chosen privacy parameter ρ′ > 0, the Gaussian noise necessary to obtain a specific privacy
guarantee in Theorem 4.8 has variance σ2 = O

(
(maxF∈F e(F))

2/n4
)
.

Proof. From Theorem 4.5, the local sensitivity of each pattern is O(e(F)/n2). The vector-wise
smooth sensitivity in Proposition 4.4 is not smaller than the largest local sensitivity and therefore
St,∗(G) = O

(
maxF∈F e(F)/n

2
)
. For a fixed ρ′, the variance of the noise in Theorem 4.6 is

σ2 = O
(
(maxF∈F e(F))

2/n4
)
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C TECHNICAL DETAILS

C.1 EXPECTED BEHAVIOR OF AUC UNDER GAUSSIAN NOISE

For a subset of our experiments, we can describe the expected behavior of the AUC for increasing
amounts of additive Gaussian noise as follows.
Proposition C.1. In a binary classification setting with separable classes, the AUC curve follows
the error function erf for embeddings perturbed with additive Gaussian noise.

Proof. In a binary classification setting, let C0 and C1 be the two classes with means µ0 and µ1.
Assume a one-dimensional setting and that the classes are separated by µ1 − µ0 =

♡

> 0. If the
points in each class are perturbed by additive noise N (0, σ2), the distanceB between points from the
two classes is B ∼ N (

♡

, 2σ2). With these assumptions, the AUC is the probability that points are
not misranked and thus AUC = Pr[B > 0] = Pr[N (

♡

, 2σ2) > 0] = Φ(

♡

σ
√
2
) = 1

2

[
1 + erf

(♡

2σ

)]
,

where Φ is the Gaussian cumulative density function.

As the private mechanism we rely on uses additive Gaussian noise, Proposition C.1 applies. In a
practical setting, even though we may not have perfectly separated classes, we thus expect the AUC
curve to roughly follow the erf function for increasing amounts of noise.

C.2 STOCHASTIC BLOCK MODEL

To highlight how different pattern classes can heavily influence classification performance, we use a
simple two-block stochastic block model (SBM) to generate a dataset where certain pattern classes
are informative while others are not. In the SBM, graphs are sampled according to a fixed, class-
independent mean edge probability q ∈ [0, 1] and a class parameter ζc, which controls the bias
towards same-block edges. In this dataset, up to a O(1/n) factor, tree densities are unaffected by ζc
and do not discriminate between classes. Instead, cycle densities depend on ζmc for a cycle with m
edges and are thus able to effectively distinguish between classes. We thus expect cycles to perform
significantly better than trees on this dataset, as for trees class signal is carried only by a term that
scales with 1/n. In fact, in the large graph limit, the result holds with no O(1/n) term: for graphons
on this SBM dataset, cycles can discriminate between classes while trees cannot (see Lemma C.2).
Lemma C.1 (Homomorphism densities for SBM). Consider a graph G ∈ G sampled from the
stochastic block model (SBM) on n nodes defined as follows. To define the blocks, draw labels
β(v) ∈ {+1,−1} iid with probabilities Pr{β(v) = ±1} = 1/2. The probability of an edge on
distinct, unordered pairs of nodes {u, v} ∈ V (G) is defined as

Pr{uv ∈ E(G) | β} = q + ζcβ(u)β(v) (with u ̸= v), (36)

where q ∈ [0, 1] and |ζc| ≤ min(q, 1− q). We consider the class of G to be determined by the value
of ζc. For any pattern F ∈ F ⊆ G with e(F) edges and m = |V (F)| nodes it holds that

E[t(F,G)] =
∑

S⊆E(F)
∆S(w) is even ∀w∈V (F)

qe(F)−|S|ζ |S|c +O
(
1

n

)
, (37)

where the constants in the O(1/n) term can depend on F , q, and ζc but not on n. In particular, if T
is a tree it holds that E[t(T,G)] = qe(T) +O (1/n), and if Cm is a cycle with m edges it holds that
E[t(Cm, G)] = qm + ζmc +O (1/n), where expectations are taken over the SBM sampling.

Proof. Let ψ : V (F) → V (G) be a map from F to G. Then, the homomorphism density t(F,G)
can be written as

t(F,G) =
1

nm

∑
ψ

Zψ where Zψ =
∏

ab∈E(F)

1{ψ(a)ψ(b) ∈ E(G)}. (38)

The probability of an edge in G is a function of the random variable β. Thus, using the linearity of
expectations and the law of total expectations we can write the expected homomorphism density as
E[t(F,G)] = 1

nm

∑
ψ E[Zψ] = 1

nm

∑
ψ Eβ [E[Zψ | β]].

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Case 1: If ψ is injective on nodes and F is therefore mapped to distinct unordered pairs of nodes,
then the conditional independence of edges on these pairs gives

E[Zψ | β] =
∏

ab∈E(F)

Pr{ψ(a)ψ(b) ∈ E(G) | β} =
∏

ab∈E(F)

(q + ζcβ(ψ(a))β(ψ(b)) . (39)

By the distributive property, we can rewrite

E[Zψ | β] =
∏

ab∈E(F)

(q + ζcβ(ψ(a))β(ψ(b))) =
∑

S⊆E(F)

qe(F)−|S|ζ |S|c

∏
ab∈S

β(ψ(a))β(ψ(b)).

(40)
For each node w ∈ V (F) the term

∏
ab∈S β(ψ(a))β(ψ(b)) appears exactly ∆S(w) times in each

summand, where ∆S(w) is the number of edges in S that are incident to w. It then holds that∏
ab∈S β(ψ(a))β(ψ(b)) =

∏
w∈V (F) β(ψ(w))

∆S(w). As ψ is injective on nodes, the random vari-
ables β(ψ(w)) are independent and the expectation over β can be factorized as

Eβ [E[Zψ | β]] = Eβ

 ∑
S⊆E(F)

qe(F)−|S|ζ |S|c

∏
w∈V (F)

β(ψ(w))∆S(w)

 (41)

=
∑

S⊆E(F)

qe(F)−|S|ζ |S|c

∏
w∈V (F)

Eβ
[
β(ψ(w))∆S(w)

]
. (42)

For any β(ψ(w)) it holds that Eβ [β(ψ(w))∆S(w)] is equal to 0 if ∆S(w) is odd, and to 1 otherwise.
Therefore, each term in the sum is 1 if and only if ∆S(w) is even for every node in the graph
(V (F), S). If ψ is injective on nodes, it therefore holds that

E[Zψ] =
∑

S⊆E(F)
∆S(w) is even ∀w∈V (F)

qe(F)−|S|ζ |S|c . (43)

Case 2: If ψ is not injective on nodes, some edges of F are mapped to the same unordered pair in
G. Therefore, the conditional independence necessary to obtain Equation (39) does not hold. In this
case, we need to consider the image graph Hψ with node set |ψ(V (F))| < |V (F)| and edge set
E(Hψ) induced by the set of distinct, unordered pairs to which ψ maps to. A similar derivation as
above shows that in this case

E[Zψ] =
∑

S⊆E(Hψ)
∆S(w) is even ∀w∈V (Hψ)

qe(Hψ)−|S|ζ |S|c . (44)

Of the possible nm mappings ψ, there are n(n − 1) · · · (n − m + 1) injective mappings. After
normalization by 1/nm, there is therefore at most a fraction of 1 − n(n−1)···(n−m+1)

nm =
(
m
2

)
/n +

O(1/n2) = O(1/n) non-injective maps. Summing over all ψ leads then to the stated expected value
for the homomorphism density.

The results for cycles and trees can be obtained by noting that, except for the empty set, a cycle with
m has a single subset where every node has even degree (itself), while a tree has no other subsets
where every node as even degree.

Lemma C.2 (Homomorphism densities for SBM on graphons). Consider a two-block graphon de-
fined in accordance to the SBM setting in Lemma C.1. Let therefore W be a graphon W : [0, 1]2 →
[0, 1] defined as W (x, y) = q + ζcs(x)s(y), with s = 1[0,1/2] − 1(1/2,1]. For a cycle Cm with m
edges it holds that t(Cm,W) = qm + ζmc . For a tree T it holds that t(T,W) = qe(T).

Proof. Consider the operator associated to the graphon (TW f)(x) =
∫ 1

0
W (x, y)f(y)dy on the

space of square integrable functions between 0 and 1, L2[0, 1]. By direct computation, TW f =
q⟨1, f⟩1 + ζc⟨s, f⟩s, where ⟨·, ·⟩ is the inner product on L2[0, 1]. Thus the operator is spanned by
{1, s} and the only two non-zero eigenfunctions are 1 and s with eigenvalues q and ζc. As the
homomorphism density for a cycle Cm is t(Cm,W) =

∑
k λ

m
k , where λk is the k-th eigenvalue

of the graphon operator (Lovász, 2012, Equation 7.22), we get t(Cm,W) = qm + ζmc . For the

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

result for trees, proceed by induction. Given a tree T , consider a leaf node ℓ with a neighbor u, and
denote the leaf and neighbor variables with xℓ and xu. By direct computation, the integral over dxℓ
is
∫ 1

0
W (xℓ, xu)dxℓ = (TW 1)(xu) = q, as the term corresponding to the eigenfunction s evaluates

to zero. Therefore, t(T,W) = qt(T \ {lv},W) and, taking the induction step and integrating over
the remaining nodes gives the result for trees, t(T,W) = qe(T).

Proposition C.2 (Homomorphism counts for cycles, Lovász 1967, Example 5.11). For a cycle Cm
onm nodes, hom (Cm, G) is the trace of them-th power of the adjacency matrix ofG, and therefore
hom (Cm, G) =

∑n
i=1 λ

m
i , where λ1, . . . , λn are the eigenvalues of the adjacency matrix of G.

D EXPERIMENTS

In this section, we provide details for our experimental evaluation and additional results.

D.1 SETUP AND DETAILS ON EXPERIMENTS

Setup and hyperparameters. For our results, we experiment with values ρ′ ∈ [10−8, 1] and pick
β = ρ′/5. We upper bound smooth sensitivities by evaluating Equation (1) up to dedge (G,G

′) =
6. For visualization purposes, we convert our tCDP guarantees into (ϵ, δ)-DP guarantees using
Lemma A.2 in Appendix A.2; (ϵ, δ)-DP guarantees are easier to interpret. We use δ = 10−6 for
all our guarantees. This choice respects the standard requirement δ ≪ 1/e(G) (Sajadmanesh et al.,
2023) and is a common choice in related literature. Our choice of δ, together with the choice β, and
the range of values of ρ′ we experiment with allow us to obtain meaningful privacy protection and
good performance, for reasonable privacy budgets. In fact, privacy budgets roughly in the range ϵ ∈
(0, 10] are generally understood to provide meaningful privacy protection in graph machine learning
(Wu et al., 2022; Sajadmanesh & Gatica-Perez, 2021). If not differently specified, for each dataset
we sample three pattern vectors F of size d = 50, with the sampling strategy described in Welke
et al. (2023). For each value of ρ′, we perform three runs for each of the sampled pattern vectors
with different seeds, leading to a total of 9 runs. We train our models on the noisy homomorphism
density embeddings, and test on unseen, not noisy embeddings.

Experiments on OGBG data. For the molecular datasets, we take ∆max = 10 for MOLHIV, and
∆max = 6 for MOLBACE, MOLBBBP, and MOLLIPO. For each dataset we sample pattern vectors
F with d = 50 patterns of treewidth 1, with the same sampling strategy as in Welke et al. (2023).
For our classification tasks, we train on the private homomorphism densities to predict the class of
unseen graphs. We consider the 1000 and 100 nearest neighbors in a nearest neighbors classifier
for MOLHIV, MOLBACE, respectively. We consider 200 estimators in a random forest classifier for
MOLBBBP. We compare our results with classifiers trained on the noise-free, non-private homomor-
phism densities. We evaluate the performance of our classifiers and report the classification AUC for
different privacy budgets. For the regression task on MOLLIPO, we use an SVR with linear kernel
and default hyperparameters from scikit-learn, except for epsilon = 0.2.

Experiments on network data. For the network datasets, we take ∆max = n, as there is no
upper bound on the maximum degree of a node that we can infer from domain knowledge. For
each dataset we sample pattern vectors F with d = 50 patterns of treewidth 1, with the same
sampling strategy as in Welke et al. (2023). We train on the private homomorphism densities to
predict the class of unseen graphs. We consider the 300 nearest neighbors in a nearest neighbors
classifier for REDDIT-BINARY. We consider 200 and 50 estimators in a random forest classifier
for REDDIT-MULTI-5K and STARGAZERS, respectively. We compare our results with classifiers
trained on the noise-free, non-private homomorphism densities. We evaluate the performance of our
classifiers and report the classification AUC and accuracy for different privacy budgets.

Experiments on synthetic data. For the SBM dataset, we consider graphs with n = 200 nodes,
and classes defined by ζ ∈ [0.08, 0.16, 0.24, 0.32] as described in Appendix C.2 to generate 100
graphs per class. We use a Chernoff bound to estimate the ∆max with high probability of p =
0.995. We use a nearest neighbor classifier and consider 5 nearest neighbors. For cycle patterns,
the homomorphism densities for a graph G can be quickly computed using the eigenvalues of G

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

as in Proposition C.2. To consider a distribution with full support on the cycle graph patterns, we
sample the number of nodes m with a Poisson distribution and then consider all cycles with number
of nodes up to m.

Treewidth tradeoff experiments. On MOLHIV we additionally consider patterns with maximum
treewidth of 2 and 3. For these results, we ensure that at least 25% of the patterns match the maxi-
mum treewidth.

Privacy attacks. To empirically test our privacy guarantees, we consider the following attack
scenario. We assume a strong attacker that has access to the vector of patterns F and to the original
set of graphs {G1, . . . , GN}. For each Gi ∈ {G1, . . . , GN}, the attacker can compute the true
homomorphism density vector t(F , Gi). The attacker has access to the private homomorphism
densities and their goal is to recover an unknown graph G from the private t̃(F , G) by matching
it with one of the computed t(F , Gi). Concretely, we train a nearest neighbor classifier on the
(noise-free) homomorphism densities and use this classifier to perform the attack. We compute
the Top-1 attack accuracy by recording whether the nearest neighbor of t̃(F , G) is the true graph’s
density t(F , G), which allows the attacker to identify G. We compute the Top-10 attack accuracy
by recording whether the true graph appears in the 10 nearest neighbors. This provides an empirical
lower bound to the attacker’s abilities, but the possibility of a stronger attacker is not excluded.

On node features. To evaluate whether the inclusion of node features can be beneficial, we con-
sider aggregated node features which do not consider the structure of the graph (i.e., which are edge
private). More specifically, we consider the following statistics on node features: mean, standard
deviation, median, maximum, minimum, and sum. We evaluate both the performance of node fea-
tures used as embeddings alone, and appended to the private homomorphism densities, to establish
whether using the private homomorphism densities with node features leads to performance gains.

Ablation experiments. To probe the effectiveness of the homomorphisms density embeddings we
conduct two ablation studies. First, to further justify our choice to rely on smooth sensitivities, we
consider noise scaled to global sensitivities and investigate the performance of the resulting noisy
homomorphisms densities on the OGBG datasets. Second, we consider different values for the num-
ber of sampled homomorphisms densities d, to investigate wether smaller or larger homomorphisms
density vectors can provide better performance.

Comparison with GNN baselines. We compare our results with common approaches to achieve
edge DP for graph classification. As a first baseline, we use Randomized Response (RR) (Wang
et al., 2016) to perturb the structures of graphs and use the perturbed graphs with a GNN. RR
perturbs each entry of the (undirected) adjacency matrix A of a graph as follows: each entry Aij
is independently perturbed from a 0 to a 1 (and vice-versa) with probability 1 − p. That is, RR
leaves an entry in the adjacency matrix unchanged with probability p, and flips it with probability
1 − p. If p = eϵ/(1 + eϵ) the resulting perturbed graph is ϵ-edge-DP (Wang et al., 2016). As an
aditional baseline, we also use the degree-preserving variant of RR (DPRR), recently proposed by
Hidano & Murakami (2024). With DPRR, the nodes of the perturbed graphs keep approximately
the same degree of those of the unperturbed graphs, which results in better performance, as well as
more efficient training (Hidano & Murakami, 2024) when compared to RR. For both the RR and
the DPRR baselines, we thus perturb the training graphs for our OGBG experiments and test the
performance of a GIN (Xu et al., 2018) architecture for ϵ = 1. For these experiments, we rely on the
hyperparameters in Welke et al. (2023), not including dropout layers. Note that the notion of ϵ-edge-
DP obtained via RR/DPRR does not perfectly coincide with the smooth sensitivity framework we
leverage. In addition, our homomorphism density embeddings guarantee expressivity in expectation,
while DP GNNs offer no formal expressivity guarantees. Our experiments on the OGBG datasets thus
serve as a sanity check to confirm that our method considerably outperforms common techniques to
achieve edge DP with GNNs.

D.2 ADDITIONAL RESULTS

Our experiments, which we display in Figure 3, show that our approach successfully obtains a
private embedding which retains discrimination abilities that are comparable to that of a non-private

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

10 3 10 2 10 1 100 101 102
0.45

0.50

0.55

0.60

0.65

0.70

0.75

A
U

C

AUC fit with erf
AUC
Top-10 Atk Acc
Top-1 Atk Acc 10 6

10 5

10 4

10 3

10 2

10 1

100

To
p-

10
 a

nd
 T

op
-1

 A
tta

ck
s

A
cc

ur
ac

y

MOLHIV - AUC and attack accuracy vs

(a) Classification AUC and attack accuracy vs pri-
vacy budget on MOLHIV with k-NN.

10 3 10 2 10 1 100 101 102

0.4

0.5

0.6

0.7

A
U

C

AUC fit with erf
AUC
Top-10 Atk Acc
Top-1 Atk Acc

10 3

10 2

10 1

100

To
p-

10
 a

nd
 T

op
-1

 A
tta

ck
s

A
cc

ur
ac

y

MOLBACE - AUC and attack accuracy vs

(b) Classification AUC and attack accuracy vs pri-
vacy budget on MOLBACE with k-NN.

Figure 3: Visualizations for two of our experiments on MOLHIV and MOLBACE. We report average
results with error bars of 2 standard deviations across 9 runs.

Table 3: Utility and attack accuracy for our experiments on OGBG datasets. As utility metric, we
use the regression RMSE for MOLLIPO and the classification AUC for MOLHIV, MOLBBBP, and
MOLBACE. The arrow indicates whether higher (↑) or lower (↓) values for the utility metric are
preferable. For the attack metric, smaller is always preferable. We include results where we con-
catenate node features (NF) to the private homomorphism density embeddings. We report average
results and standard deviations across 9 runs.

MOLHIV ↑ MOLBBBP ↑ MOLBACE ↑ MOLLIPO ↓
Private
(ϵ = 1)

Utility 0.692 (0.020) 0.602 (0.005) 0.652 (0.069) 1.086 (0.004)

Attack 0.003 (< 0.001) 0.025 (0.003) 0.027 (0.002) 0.011 (0.002)

Non private
(ϵ = ∞)

Utility 0.745 (< 0.001) 0.644 (0.008) 0.752 (0.002) 1.055 (0.002)

Attack 0.955 (0.020) 1.000 (< 0.001) 0.990 (< 0.001) 0.992 (0.006)

Private + NF
(ϵ = 1)

Utility 0.731 (< 0.001) 0.604 (0.005) 0.739 (0.005) 1.086 (0.004)

Attack 0.003 (< 0.001) 0.025 (0.003) 0.027 (0.002) 0.011 (0.002)

Non private + NF
(ϵ = ∞)

Utility 0.750 (0.003) 0.644 (0.010) 0.739 (0.003) 1.053 (0.002)

Attack 0.970 (0.024) 1.000 (< 0.001) 0.990 (< 0.001) 0.992 (0.006)

Features only Utility 0.721 (< 0.001) 0.603 (0.002) 0.730 (< 0.001) 1.085 (< 0.001)

embedding (ϵ = ∞). At the same time, the attacker performance drastically decreases for reasonable
values of ϵ, while being close to 1 for ϵ = ∞. Moreover, the classification AUC closely follows the
error function, empirically confirming the formal connection between privacy and AUC discussed
in Proposition C.1. This result is of great practical utility, as it allows to predictably determine the
maximum privacy budget for a given desired AUC, and vice-versa the predicted AUC for a given
privacy budget. We remark that our private embeddings can be used with any machine learning
algorithm, and are not specifically tailored for the machine learning algorithms we used.

In Table 3, we can see that node features overall achieve reasonable performance. However, com-
bining the node features with our private embeddings with ϵ = 1 provides better performance.
Therefore, we can render the homomorphism density embeddings more informative by additionally
considering node features.

We also perform experiments on the network datasets REDDIT-BINARY, REDDIT-MULTI-5K
(Xiang et al., 2024), and GitHub STARGAZERS (Rozemberczki et al., 2020). We obtain accuracy
and classification AUC comparable to those in Hidano & Murakami (2024, Figure 5), showing
that the noisy homomorphism density embeddings also provide good performance on larger net-
work graphs. Compared to Hidano & Murakami (2024), we rely on significantly simpler and less
resource-expensive classifiers. In fact, we could not reproduce the results in Hidano & Murakami
(2024) due to out-of-memory errors, and we thus refer to Hidano & Murakami (2024) for a compar-
ison.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 4: Utility and attack accuracy for our experiments on network datasets. As utility metric, we
use the classification accuracy and the classification AUC for all datasets. For the utility metrics,
larger is preferable. For the attack metric, smaller is preferable. We report average results and
standard deviations across 9 runs.

REDDIT-BINARY REDDIT-MULTI-5K STARGAZERS

Private
(ϵ = 1)

Accuracy 0.758 (< 0.001) 0.416 (0.021) 0.590 (0.015)

AUC 0.775 (0.009) 0.749 (0.014) 0.609 (0.026)

Attack 0.046 (0.016) 0.018 (0.004) 0.004 (0.001)

Non private
(ϵ = ∞)

Accuracy 0.771 (0.031) 0.508 (0.007) 0.670 (0.003)

AUC 0.844 (0.039) 0.805 (0.002) 0.729 (0.002)

Attack 0.999 (< 0.001) 1.000 (< 0.001) 0.959 (< 0.001)

D.3 ABLATIONS AND COMPARISONS WITH BASELINES

In this section, we perform additional experiments to evaluate the performance of our embeddings
for different values of d, i.e., the number of homomorphism densities we sample. Then, we compare
our results with ones obtained considering a global sensitivity notion, to further motivate our choice
to rely on the smaller smooth sensitivities. Finally, we compare against two DP GNN baselines using
RR and DPRR to perturb the graphs in our datasets before feeding them into a GIN architecture.

Table 5: Utility for our experiments on OGBG using private homomorpshims density embeddings
with varying sizes for d. Results are for ϵ = 1. We report average results and standard deviations
across 9 runs.

d MOLHIV ↑ MOLBBBP ↑ MOLBACE ↑ MOLLIPO ↓
10 0.556 (0.153) 0.503 (0.070) 0.552 (0.156) 1.099 (0.001)

20 0.572 (0.129) 0.547 (0.074) 0.617 (0.134) 1.097 (0.001)

30 0.540 (0.171) 0.554 (0.036) 0.544 (0.098) 1.099 (0.001)

40 0.592 (0.089) 0.570 (0.067) 0.498 (0.134) 1.098 (0.001)

50 0.692 (0.020) 0.602 (0.005) 0.652 (0.069) 1.086 (0.001)

In Table 5, we observe that smaller embeddings, i.e., embeddings which consider fewer patterns,
tend to perform worse. In particular, smaller embeddings have a much higher variance, as their
performance more heavily depends on having sampled patterns which are informative for the task.

Table 6: Utility for our experiments on OGBG using private homomorphism densities obtained with
noise scaled using the global sensitivity of the homomorphism densities, compared to that obtained
with noise scaled with smooth sensitivity. We report average results and standard deviations across
9 runs for ϵ = 1. Bold marks the best results.

MOLHIV ↑ MOLBBBP ↑ MOLBACE ↑ MOLLIPO ↓
Global sensitivity 0.492 (0.023) 0.500 (< 0.001) 0.520 (0.133) 1.199 (< 0.001)

Smooth sensitivity 0.692 (0.020) 0.602 (0.005) 0.652 (0.069) 1.086 (0.004)

In Table 6, we observe that private embeddings obtained relying on global sensitivity perform sig-
nificantly worse than the ones obtained relying on local sensitivity.

In Table 7 we compare the performance obtained with our embeddings against the RR/DPRR GNN
baselines. Our private embeddings consistently outperform the baseline for privacy budget ϵ = 1,
and are competitive with it even in the non-private setting ϵ = ∞.

D.4 RUNTIMES

We measured the time to compute homomorphism density embeddings for MOLHIV with increasing
maximum treewidth of tw = {1, 2, 3} and REDDIT-BINARY with tw = 1. The results presented
in Table 8 are averaged over 3 seeds.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 7: Utility for our experiments on OGBG datasets, compared with the RR baseline and the
DPRR baseline. As utility metric, we use the regression RMSE for MOLLIPO and the classification
AUC for MOLHIV, MOLBBBP, and MOLBACE. We report average results and standard deviations
across 9 runs. Bold marks the best results for the private and non-private runs.

t(F , G) MOLHIV ↑ MOLBBBP ↑ MOLBACE ↑ MOLLIPO ↓
Private (ϵ = 1) 0.692 (0.020) 0.602 (0.005) 0.652 (0.069) 1.086 (0.004)

Non private (ϵ = ∞) 0.745 (< 0.001) 0.644 (0.008) 0.752 (0.002) 1.055 (0.002)

GNN Baseline

Private (ϵ = 1) RR 0.488 (0.008) 0.440 (0.004) 0.457 (0.024) 1.578 (0.248)

Private (ϵ = 1) DPRR 0.595 (0.155) 0.539 (0.019) 0.648 (0.043) 1.499 (0.333)

Non private (ϵ = ∞) 0.672 (0.022) 0.586 (0.027) 0.768 (0.033) 1.033 (0.021)

Table 8: Runtimes for the computation of the homomorphism density embeddings, and for the
training of the GNN baselines for 100 epochs with ϵ = 1. Values reported with a star (∗) for
RR/DPRR are obtained from (Hidano & Murakami, 2024). Values are reported in seconds.

Method MOLHIV REDDIT-BINARY

t(F , G)
tw = 1 tw ≤ 2 tw ≤ 3
2369 (4) 2432 (52) 3916 (1088) 602 (136)

MOLHIV REDDIT-BINARY

RR 1153 (159) > 800∗

DPRR 1214 (101) > 200∗

The runtime of the homomorphism density computation for tw = 1 for MOLHIV is comparable
to training GIN on MOLHIV for 200 epochs with the RR or DPRR baselines. The runtime of our
homomorphism density computation is therefore comparable to that of existing methods, showing
that our approach is also competitive from a runtime perspective. Once the homomorphism density
vectors are computed, the training runtime itself is negligible; the embeddings are informative and
provide competitive performance with simple and efficient approaches such as k-NN or Random
Forest. We finally want to remark that the homomorphism density approach provides expressivity
guarantees which are not provided by the RR/DPRR+GIN baselines.

27

	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Graph theory and expressivity in graph learning
	3.2 Differential privacy

	4 Expressivity-Privacy Trade-Off
	4.1 Expressivity in expectation
	4.2 Privacy guarantees
	4.3 Private and Expressive Graph Representations

	5 Experiments
	6 Conclusion
	7 Ethics statement
	8 Reproducibility statement
	A Additional Preliminaries
	A.1 Cut Norm
	A.2 Differential Privacy

	B Missing Proofs
	B.1 Expressivity
	B.2 Homomorphism-distinguishing closed graph classes
	B.3 Privacy
	B.4 Expressive and Private Graph Representations

	C Technical Details
	C.1 Expected behavior of AUC under Gaussian noise
	C.2 Stochastic block model

	D Experiments
	D.1 Setup and details on experiments
	D.2 Additional results
	D.3 Ablations and comparisons with baselines
	D.4 Runtimes

