Under review as a conference paper at ICLR 2026

COMPUTING EQUILIBRIUM BEYOND UNILATERAL
DEVIATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Most familiar equilibrium concepts, such as Nash and correlated equilibrium,
guarantee only that no single player can improve their utility by deviating uni-
laterally. They offer no guarantees against profitable coordinated deviations by
coalitions. Although the literature proposes notions to address multilateral devi-
ations (e.g., strong Nash and coalition-proof equilibrium), these generally fail to
exist. In this paper, we study a solution concept that accommodates multi-player
deviations and is guaranteed to exist. We prove a fixed-parameter lower bound on
the complexity of computing such an equilibrium and present an algorithm that
matches this bound.

1 INTRODUCTION

Most equilibrium concepts studied so far, such as Nash equilibrium (NE) (Nash Jr,[1950), correlated
equilibrium (CE) (Aumann, [1974), coarse correlated equilibrium (CCE) (Moulin & Vial, |1978)),
and Stackelberg equilibrium (Von Stackelberg, 2010), guarantee only that no individual player can
gain by deviating unilaterally. However, they offer no guarantees when multiple players deviate
simultaneously by forming a coalition. In this paper, we address the following question:

What is an appropriate notion for capturing multilateral deviations, and how can
it be computed?

Previous notions that address coalition deviations, such as strong NE (Aumann, 1959ﬂ and
coalition-proof equilibrium (Bernheim et al.| [1987), mostly fail to exist in general games (unlike
NE). Therefore, instead of searching for a joint strategy immune to all coalition deviations, we focus
on computing a joint strategy that minimizes the maximum average gain achievable by any coalition,
which is the average of improvements over all its members. In other words, we can compute the
most stable strategy profile, even if a perfectly stable one does not exist. We refer to this notion as
the Minimal Average-Strong Equilibrium (MASE).

The difficulty of this optimization problem naturally depends on the complexity of the interactions
between players. To formalize this, we introduce the [Utility Dependency Graphl G(V, £), where
each player is a vertex. An edge connects two players, ¢ and j, if and only if there is some player
k whose utility is affected by the actions of both 7 and j. Intuitively, an edge (¢, j) signifies that
the actions of ¢ and j are linked, as they jointly influence the payoff of some player k. This graph
provides a clear map of the game’s interaction structure, and its properties can help us understand
the computational complexity of finding the MASE. For games with simple interaction structures
(e.g., a sparse [Utility Dependency Graphl), one might expect to compute the MASE efficiently.

However, computing the MASE is computationally challenging in the general case. We establish
two key hardness results that delineate the problem’s complexity.

First, the problem is fundamentally harder than finding equilibria like NE or CE. In those cases, we
are solving a feasibility problem: finding a strategy where the maximum gain from deviating is at
most zero. For MASE, we must solve an optimization problem: minimizing this maximum gain.
This distinction is crucial, and we show that even for the simplest case of single-player deviations

'In this paper, we use the term strong equilibrium to broadly refer to any equilibrium concept that considers
multilateral deviations.
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(i.e., coalitions of size one), approximating the MASE value to within a factor that is inverse poly-
nomial in the number of players is NP-hard. This indicates that even without considering complex
coalitions, the problem is intractable without additional assumptions on the game’s structure.

Second, we show that this complexity is intrinsically tied to the structure of the [Utility Dependency|
Building on the strong exponential time hypothesis (SETH) (Impagliazzo & Paturi, [2001)
(see Theorem |4.3|for details), we prove that solving MASE requires time that is at least exponential
in the treewidth’|of the|Utility Dependency Graph| This holds even when we only consider coalitions
of a constant size. This result demonstrates that the treewidth is a fundamental barrier, and an
exponential dependence on it is unavoidable.

Finally, we present a positive result that matches the lower-bound time complexity, up to exponential
factors. We develop an algorithm that computes the MASE with a time complexity that is exponen-
tial in the treewidth of the [Utility Dependency Graphl This demonstrates that our hardness result
is tight and establishes the treewidth as the definitive parameter characterizing the complexity of
computing the MASE. While the problem is hard in general, it becomes tractable for games where
the underlying interaction structure is not too complex.

To summarize, our contributions are as follows:

1. Complexity characterization: We establish lower bounds on the computational complexity
of computing the minimally deviated equilibrium, showing that the problem is inherently
tied to the treewidth of the[Utility Dependency Graph|

2. Algorithmic contribution: We design an algorithm that efficiently computes the minimally
deviated equilibrium, achieving a running time that matches the established lower bound
up to exponential dependence on treewidth.

2 PRELIMINARIES

For any vector x € R"™, we use z; to denote its i*" element and ||z|| , to denote its p-norm. By
default, ||| refers to the 2-norm. For a positive integer N, let [N] := 1,2,..., N. We denote the
(n — 1)-dimensional probability simplex by A™ := {z € [0,1]": Y | x; = 1}. More generally,
for any discrete set S, we write A° for the probability simplex over S, where each coordinate
is indexed by an element of S. For instance, A™ can also be written as A"}, For a set S, ||
denotes its cardinality, and S; x Ss denotes the Cartesian product of sets S7 and So. Finally, we let
1 (argument) denote the indicator function, which equals 1 if the argument is true and 0 otherwise.

2.1 GAMES

A game is represented as a tuple (N, { A}, , {U;}, ,S), where

* N is the number of players.

* A; is the action set of player ¢. For convenience, let A = vazl A; denote the joint action
set.

* U;: A — [0, 1] is the utility function of player i € [N].

S is the set of coalitions, which is a set of subsets of players. For example, if only unilateral
deviations are allowed (as in Nash equilibrium or coarse correlated equilibrium), then S =

{1342}, {3}
For notational simplicity, for any subset of players S C [N], we write Ag = X, cg Ai. Throughout
the paper, let A := max;c[n] |.A;| denote the size of the largest action set.
For any joint action @ € A, let a; denote the action of player 4, and let a_; =

(a1,a9,...,a;-1,0i+1,...ay) be the joint action of all players except i. More generally, for any
subset S C [N], we write a_g for the joint action of players outside S.

Treewidth can be thought of as a formal measure of how sparse and "tree-like" a graph is.
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Confess (C) | Defect (D)
Confess (C) | (0.6,0.6) (0,1)
Defect (D) (1,0) (0.2,0.2)

Table 1: Utility matrix of the Prisoner’s Dilemma. Each entry (a,b) denotes the payoff of the row
player (a) and the column player (b).

2.2  SUCCINCT REPRESENTATION

This paper focuses on multi-player games with a succinct representation. Specifically, each utility
function U; can be encoded using a number of bits polynomial in the number of players N, rather

than requiring O (N vazl |.Al|> bits as in the general case. Examples of succinctly represented

games include polymatrix games (Howson Jr, |1972; [Eaves,,|1973) and congestion games (Rosenthal,
1973). Throughout the paper, we call an algorithm efficient if its running time is polynomial in IV, as
opposed to polynomial in Hf;l |A;|. We focus on succinct games because MASE can otherwise be
solved by a linear program whose size grows exponentially with N (see Appendix [B). Moreover, the
study of strong equilibrium is particularly compelling in large games, where exponential dependence
on N is computationally prohibitive.

3 MINIMAL AVERAGE-STRONG EQUILIBRIUM (MASE)

Several notions of strong equilibrium have been proposed, including the strong Nash equilibrium
(NE) (Aumann, |[1959)), the sum-strong NE (Hoefer}, 2013)) (no improvement on the total gain of any
coalition), and coalition-proof equilibrium (Bernheim et al.,|1987). However, none of these exist in
general games. To build intuition, we first illustrate why a strong NE does not exist in the Prisoner’s
Dilemma. We further show that the problem persists even when correlated strategies are allowed.

Lemma 3.1. In the Prisoner’s Dilemma, no strong Nash nor strong correlated equilibrium exists
when § = {{1}, {2}, {1,2}} is the set of all non-empty subsets of players.

Since correlated equilibria include all Nash equilibria, it suffices to examine strong correlated equi-
libria. A strong correlated equilibrium is a correlated joint strategy where no subset of players (a
coalition) can jointly deviate in a way that strictly improves the utility of all its members.

As shown in Table[1} any strategy with positive weight on (C, C), (C, D), (D, C) yields a profitable
deviation for at least one singleton coalition, {1} or {2}. Conversely, placing all weight on (D, D)
creates a deviation to (C, C) that benefits the coalition {1,2}. Thus, no strong NE exists.

The failure of strong equilibria arises because coalition objectives may conflict, making it impossible
to find a strategy that simultaneously satisfies all coalitions. Motivated by this, rather than requiring
exact immunity to deviations, we instead seek to minimize the incentive to deviate since a minimizer
always exists by Weierstrass theorem. This leads to the following definition of Minimal Average-
Strong Equilibrium (MASE):

T e argglflln Iélea%( arsneai(s |S\ ZEGN” (as,a_g) —U; (a)]. (MASE)

Intuitively, selects the correlated strategy m € A that minimizes the maximum average
gain attainable by any coalition across all possible coalitions. If this value is less than or equal to
zero, then no coalition can simultaneously deviate in a way that yields a strictly positive total gain.
Note that the algorithm presented in this paper can also be extended to handle any weighted average
over the coalition.

A correlated strategy m € A* is called an e-MASE if

Ean U;
T, I e e Bes) e

< Eg,r- , U .
e 157 3 B W (5,025~ Uy )]+
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A Strong Nash equilibrium requires that for any deviating coalition, at least one member does not
strictly improve their utility. In contrast, e-MASE aims to minimize the average improvement over
all players within any given coalition. From another perspective, e-MASE minimizes the incentive
to deviate, even when coalition members can freely reallocate utility within the coalition.

4 HARDNESS OF SOLVING MASE

Recall that we call an algorithm efficient if it runs in time polynomial in N. In this section, we first
establish the computational hardness of computing e-MASE.

Theorem 4.1. Computing e-MASE is NP-hard, even when S only contains singletons (coalitions
of size one) and 1/¢ is polynomial in the number of players.

The proof is deferred to Appendix [C] Importantly, Theorem . T|highlights a fundamental distinction
from the case of CCE, which can be computed efficiently (Papadimitriou & Roughgarden| [2008).
The reason is that for CCE it suffices to find a correlated strategy m € A such that the deviation gap,
max;ec|y) MaXg, c A, Ea~r [Ui (@i, a_;) —U; (a)], is less or equal to zero, whereas here we must
find a strategy that minimizes the gap. Together with the linear programming characterization in
Appendix [B] this implies that computing e-MASE is actually NP—complete. In fact,[Anagnostides
et al.| (2025)) recently showed that even minimizing the average deviation gap of CCE across all
players (instead of the maximum gap considered here) is also NP-complete.

4.1 FIXED PARAMETER LOWER BOUND

Next, we present a more refined hardness result: a fixed-parameter lower bound for computing
MASE. To do so, we first formalize the notion of dependencies among players’ utilities.

For each player i € [N], define the relevant set A'(i) C [N] consisting of all players j € [N]
(including j = %) such that the action of j can affect the utility of 7. Formally, j € [N] is in N (%)
if and only if there exist a—; € A_; and a;,a}; € A; such thatU;(a;,a—;) # U;(a}, a_;). This
leads to the following graph representation.

Definition 4.2 (Utility Dependency Graph). The utility dependence graph G = (V,€) is an
undirected graph with vertex set ¥V = [N] representing the players, and edge set & =
Ure {(@.9) 14,5 € N (k)i # j}.

Since U; depends only on the actions of players in A/(7), we may equivalently write U;(ac) =
Ui(ac,a’_) for arbitrary a’ . € A_¢, where C' D N (@). It is worth noting that this definition
differs from the graph of a graphical game (Kakade et al., 2003} Kearns et al.,2001). Here, players ¢
and j are connected if both influence the utility of some other player k, even if ¢ and j do not directly
affect each other. Whereas in graphical games, two players ¢ and j are connected if and only if at
least one can influence the other’s utility.

With this graph structure in place, we can connect the hardness of computing MASE to the treewidth
of G. Intuitively, treewidth measures how close a graph is to being a tree: the treewidth of G is one
when G is a tree, and it is N — 1 when G is a complete graph. Throughout this section, let O* denote
asymptotic complexity with factors polynomial in N suppressed.

Theorem 4.3 (Treewidth). Suppose a tree decomposition of the[Utility Dependency Graphlis given.
Under the Strong Exponential Time Hypothesis (SETH) (Impagliazzo & Paturi, 2001)F| (MASE)
cannot be computed in O* ((A — ¢)*(9)) for any ¢ > 0. Moreover, under the additional assumption
that BPP=P gz -approximate MASE cannot be computed in O*((A — ¢)™(9) for any ¢ > 0.

The proof is deferred to Appendix [C.2] For approximate MASEs we assume BPP=P, which is
standard in the literature (Arora & Barak, 2009), because the reduction involves sampling joint

*SETH assumes that SAT cannot be solved in O*((2 — ¢)™) for any ¢ > 0, where 7 is the number of
variables in the SAT instance.

“This assumption implies that any problem with a polynomial-time randomized algorithm also has a
polynomial-time deterministic algorithm.
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actions from the approximate MASE. Since enumerating all a € 4 is computationally infeasible, we
rely on randomized sampling. This yields only a randomized algorithm for the original NP-hard
problem, and the assumption BPP=P ensures that such a randomized algorithm can be derandomized
into a deterministic one, completing the reduction.

Theorem shows that the computational complexity of solving MASE is inherently tied to the
treewidth of the [Utility Dependency Graphl Intuitively, when the treewidth is large, each player’s
utility depends on many others, making even the evaluation of coalition deviations computationally
demanding (enumerating over all as € Ag). In contrast, when the treewidth is small, such as
zero (each player’s utility depends only on their own action), computing MASE becomes trivial,
since each player’s utility can be maximized independently. In polymatrix games (Eaves| |1973),
the treewidth of the [Utility Dependency Graph|can be bounded by that of its corresponding graph.
Further details are provided in Appendix [I|

5 EFFICIENT COMPUTATION OF MASE

Although an (MASE) lives in an exponentially large space (of size |.A4]), it can still be computed
efficiently. This is because the equilibrium always admits a compact representation.

Theorem 5.1 (Efficient Representation). For any € > 0, at least one of the e-MASE can be repre-
sented as a linear combination of ) | . 5 [S] - A™(9) 11 pure strategies, where tw(G) is the treewidth
of Utility Dependency Graphl

The proof is deferred to Appendix [D] Intuitively, Theorem [5.1]shows that there must be an e-MASE
that always has a sparse representation. Since a pure strategy can be encoded by the index of its
unique action with nonzero probability, this compactness makes computation tractable.

5.1 META-GAME BETWEEN THE CORRELATOR AND DEVIATOR

To compute an (MASE), we reformulate the problem as a meta-game between two players: the
correlator and the deviator (Hart & Schmeidler, |1989). The correlator chooses the correlated strat-
egy m € A*, while the deviator selects deviations. The game is zero-sum: the correlator aims to
minimize the coalition’s gain from deviation, and the deviator aims to maximize it. Formally:

min max F(rm,p), 5.1

TEAA pEAXses As

where

Z Z w3 8s) Z]Ewr (@s,a_s) —U;(a)]. (5.2)

SeSascAs €S

Here, we extend the deviator’s decision space from a discrete to a continuous set. This relaxation
does not strengthen the deviator, since the objective is linear in y, and the maximum is always
attained at an extreme point. Therefore, (5.1) is equivalent to the original definition in (MASE).

A natural idea is to apply no-regret learning algorithms simultaneously for the correlator and devi-
ator. However, directly updating the full distributions 7 and p is infeasible, because the underlying
spaces are exponentially large.

Fortunately, Theorem[5.1]implies that maintaining the full distributions is unnecessary: it suffices to
keep track of a polynomial number of pure strategies, and use their convex combination as the ap-
proximate equilibrium. This motivates our use of Follow the Perturbed Leader (FTPL) (Hazan et al.|
2016), where each decision at a timestep is a pure strategy, which can be represented compactly.

Let 7V € A4 and u® € AXsesAs denote the decision variables at timestep ¢t > 1 for the
correlator and the deviator, respectively. The interaction between these two players can be described
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Utility Dependence Graph Tree Decomposition
° Bl ={1,3,4}

° B? ={1,2,4} B3 =(3,5}

Figure 1: An illustration of a tree decomposition of the [Utility Dependency Graph|

by the update rule

) e argmmZF (71' ,u(T)) <ﬁ(t+1),ﬂ'>

TEAA —1

p) e argmax ZF( SR ) <m(t+1),u>,

u®eAXses As 11

(5.3)

where 7t and m(*+1) are noise vectors sampled independently at each timestep from some
distribution, which we will specify later. These noise terms play the role of regularizers in on-
line mirror descent (OMD) (Hazan et al) [2016)), ensuring stability in the updates by controlling
E [[|x*D —x @[] and E ||t = pO]].

Since F'(m, u) is bilinear in (7, u), both the minimization and maximization problems admit solu-
tions at vertices of their respective decision spaces. In other words, the argmin for the correlator
and the argmax for the deviator always contain at least one pure strategy.

In what follows, we will explain in detail how to update 7 efficiently under this framework. The
update of 1 is deferred to Appendix[G]

5.2 EFFICIENT UPDATE OF 7

The key step in updating 7(**1) is to select a pure strategy, i.e., a joint action a**?) € A with
7+ (@) = 1, that minimizes the objective. To gain insight into this update rule, we first
examine how to compute argmin 4 F(m, 1) for a fixed p.

Suppose we want to find a joint action a € A such that the pure strategy 7 with 7(a) = 1 minimizes
F(7m, ). Expanding the definition, we obtain

Z > “TSGS U (@s,a-s) — U (@)

i=1 SES: €S ascAg

(S, a R -
>y ST ) (0 (@ xons) — e (Gxco)
i=1 Se8:ieS agcAg
Therefore, for each candidate a € A, only the local actions a A (7) Matter for the expression above.
If we can evaluate this expression efﬁcientlyﬂ then for each player i € [N] we may search for a ;)
that minimizes it. However, a difficulty arises because A (z) and A/ (j) may overlap across different
players. Hence, we must ensure that the local assignments remain globally consistent.

To address this, we now introduce the concept of a tree decomposition and show how it enables us
to optimize F’ efficiently. Throughout the paper, we assume that a tree decomposition is given, and
analyze the complexity only with respect to this decomposition.

Tree decomposition. A tree decomposition 7 := B!, B2, ... B¥ of the [Utility Dependency|
G = (V,&) is a tree with K nodes (bags), each Bf C V where V = [N], satisfying the
following properties (Diestel, [2025)):

3This is possible since p is a linear combination of pure strategies when updated according to ID
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I. Uie, BY = [N].

2. For every edge (i, 7) € &, there exists k with {i, j} C B*.

3. For any player ¢ € [IV], if i appears in two bags B, B’ € T, then every bag on the path
from B to B’ also contains 7.

As illustrated in Figure [T} the tree decomposition separates the game into overlapping bags. For
example, since B? and B3 only overlap at B!, then B? and B3 can be optimized independently,
with consistency later enforced at B*.

Since any clique in G is contained in some bag (Diestel, [2025)), for every player ¢ € [N] there exists
abag B with A/(i) C B. We arbitrarily assign each player 7 to such a bag.

Dynamic programming on the tree. We begin by choosing an arbitrary bag as the root of the tree
decomposition and denote it by B”. For each bag B € T, let C(B) denote the set of its children.

With this setup, we maintain a vector d(‘T1) € RXse7 A5 defined as

d“) (B, ap) Z Z Z Z (S,as) (Ui ((@snp,ap\s)) —Ui(ap))

=1 SES ascAs
i dss1gned to B

+ Z min  d¥V(B,alz) — nY(B,ap),

!
Agr:
Brec(B) B/ 4B
@pnB'=%pnp’

(5.4)
where n(**1) (B, ap) ~ Exp (n)fis sampled from an exponential distribution. Therefore, in (5.3),
nt*(a) = Y pern*(B,ap). Since each i assigned to B satisfies N'(i) C B, the utility
U;(ap) can be written in terms of ap alone. Moreover, the summation Zas c.A. can be computed
efficiently, since (™) is updated via and is therefore a pure strategy.

Reconstructing the strategy. The optimal joint action a1 ¢ A is then reconstructed recur-
sively from the root B” to the leaves:

agfl) = argmin d**Y(B", apr)
aprE€Apgr (5 5)
VB e C(B"), agté)r = argmin d*Y (B ( ,(ap\pr, aggmlg)r» ) .

ap\pr €A\ B

By [Property 1 of Tree Decomposition, every player’s action will be included.  Since
argminaB\B,, €Ap pr is taken over A\ g, no contradictions arise by |Pr0perty 3 of Tree Decom-l

We then set 7(t+1) (@(t+1) = 1.
The regret bound of this procedure is summarized below.

Theorem 5.2. Consider (5.3)). For any § > 0, with probability at least 1 — 4, the following holds:
T
1 1)log A 1
max F (ﬂ(t),u(t)) - F (71' 1 ) <21T| + (tw(g) + 1) log +2n|T|T + 4/ 2T log —.
reAA n 0

The proof is given in Appendix Iﬂ Importantly, Theorem shows that by setting n = 1/ VT, we

obtain O(v/T) regret. Since the update rule for ;1 mirrors that of 7, the detailed analysis is deferred
to Appendix |G} We now formally state the regret bound for p in the following theorem.

Theorem 5.3. Consider the updates in (5.3). For any 6 > 0, with probability at least 1 — J, the
following holds:

L+ (tw(G) +1)log A 1
F F(x® ,®) <9 9 T 9T low 1
e;??fsASZ (.5) = F (=) <217 ; +20|T|T + /2T log 5

The complete proof is provided in Appendix

SPr(z > w) = exp(—nw) when = ~ Exp ().
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5.3 COMPUTATION OF EQUILIBRIUM

For any 0’ > 0, by setting § = %/ in Theorem and Theorem , and applying the union bound,

we obtain that with probability at least 1 — §’, the following holds:

T T
() _ mi = ,®
max ;F (77 ,u) %IQIAI}A t,lF (W,u )

neAXses As

1 1)log A 2
<a|T] —|—(tw(gz7+ ) log +477|T|T+2\/%'

We now connect this bound to the convergence of the average strategy profile. Let 7*, u* be the

solution to 1} and define the average strategies 7 = % 23:1 7® and fi == % 23:1 . The
left-hand side of || corresponds to the duality gap: max_ _ .. s F(7,n)—minzcpa F(7, I).

)
Since 7*, u* are optimal solutions to (5.6), they satisfy

(5.6)

min F(7,0) < F(r*, u*) < max F(7, ).
Jnin, (7, ) < F( u)_ﬁeAxsesAS (7, 1)

Combining these pieces, we arrive at the following finite-time convergence guarantee:

Theorem 5.4. Let 7*, 1* be the solution of ll and define 7 := L 37 7@, = L ST u®.
Then, for any § > 0, with probability at least T — J, we have

2log 2
+4n|T|+2 Tga_

i L+ (¢ 1) log A
max  F(7,u) < F(r, p*) +4|T] + (tw(g) +1)log
neAXses As T

VT

running time is O (T - S| - |T|- A™(@)+1). Hence, the exponential dependence aligns with the
lower bound in Theorem [4.3]

tw /log 2
Withn = ﬁ, the average strategy 7 constitutes an O (lT tw(g)log Aty/log ; >—MASE. The overall

6 EXPERIMENTS

In this section, we compare our algorithm against several baselines: Follow the Regularized Leader
with a Euclidean regularizer ( ), Hedge, Follow the Perturbed Leader with an exponential noise
distribution (FTPL; all players run FTPL independently), and Online Mirror Descent with a Eu-
clidean regularizer (OMD) (Hazan et al.l 2016). We also plot the ground-truth MASE computed via
linear programming (LP) in Appendix [B] The code can be found in the supplementary materials.

We evaluate the algorithms on three criteria:

* Exploitability. (max;c|y)maxg,ca; Ea~r[Ui(@i, a_;) —U;(a)]): the maximum gain a
single player can obtain by deviating unilaterally. Exploitability < 0 indicate a Nash equi-
librium (or a correlated equilibrium if 7 is correlated).

* Coalition exploitability. (maxu caXses4s F (m, 1)): the maximum average gain when a

coalition deviates simultaneously. We take S to be the set of all non-empty player subsets.
 Social welfare. (Zﬁil Ea~r [Ui(a)]): the sum of all players’ utilities.

Utility definitions and additional details are provided in Appendix [H] In the Prisoner’s Dilemma
(Luce & Raiffa, |1957), the MASE corresponds to players choosing (C, D) and (D, C') with prob-
ability 0.5 each, yielding a social welfare of 1.0. In contrast, because the unique NE/CCE in this
game is (D, D), the baselines converge to that outcome, with a lower social welfare of 0.4. Thus, in
the Prisoner’s Dilemma, MASE promotes cooperation and achieves higher utility.

In the Stag Hunt, there are two Nash equilibria, one of which attains higher utility. As shown in
Figure [2] all baselines converge to the worse equilibrium, whereas MASE converges to the better
one. Finally, in terms of exploitability (unilateral deviations), MASE remains close to the baselines,
while the baselines are substantially more fragile to multilateral deviations.
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Prisoner’s Dilemma

k) I}
£ g =
= h] =
[ 3 k)
»
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Stag Hunt
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o s o0z2 = 14
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0 5000 0 5000
Timestep (t) Timestep (t) Timestep (t)
—f— MASE FTRL —#— Hedge =H- Maximum

—e— FTPL —A— OMD -&- LP

Figure 2: LP denotes the linear programming solution from Appendix |B| and Maximum denotes
the maximum achievable social welfare. The baselines are comparatively fragile to multilateral
deviations, while MASE is more robust and achieves higher social welfare. At the same time,
MASE’s exploitability is close to that of the baselines.

6.1 TRADE-OFF BETWEEN EXPLOITABILITY AND SOCIAL WELFARE

In Figure[2] we can see that by allowing exploitability to increase from 0.0 to 0.1, the social welfare
of MASE increases from 0.4 to 1.0. This raises a natural question:

Given a tolerance ¢ > 0, what is the maximum social welfare achievable by an
equilibrium with exploitability at most €?

In other words, if we are willing to sacrifice equilibrium robustness, how much can we improve
social welfare? Interestingly, this trade-off can be computed efficiently using a variant of our MASE
framework. Specifically, we solve the following weighted objective:

. ws ~
ECLNTF ul s b— 71/{1 ) 6.1
argminmax max 1g ZES i (@s, a—s) ~ Ui () ©D

where w € R is a vector of non-negative weights. We have the following lemma.

Lemma 6.1. For any € > 0, computing the CCE with exploitability no more than e that maximizes
social welfare is equivalent to (6.1) by setting S = {{i}};cy) U {[V]} and using the weights:

e d® if S| =1
ST -w ifS=I[N]

for some w € [0, 1). Conversely, solving (6.1)) with these parameters corresponds to finding a point
on the Pareto frontier of social welfare and exploitability.

The proof is postponed to Appendix With Lemma 6.1 we can compute the Pareto frontier by
solving (6.1) for different values of w. The results are shown in Figure 3] In the Stag Hunt, since
one of the Nash equilibria already maximizes social welfare, the social welfare remains fixed at its
optimal value for all w € [0, 1).
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Trade-off between Exploitability and Social Welfare

0.4 0.05 | 2.1
F 1.0 ¢
0.00 1 F 2.0

Exploitability
'C
L

Social Welfare

Social Welfare

T
o

0.0 15 . S I ~0.05 15 : 4 1.9
0.0 0.5 1.0 0.0 0.5 1.0
‘Weight on Individual Rationality (w) Weight on Individual Rationality (w)

Prisoner’s Dilemma Stag Hunt

Figure 3: The trade-off between exploitability and social welfare in the Prisoner’s Dilemma and the
Stag Hunt.
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Figure 4: The coalition exploitability of random polymatrix games of different sizes when coalitions
with no more than two players are considered. A larger expected number of interactions per player
(c) generally corresponds to a larger treewidth of the|Utility Dependency Graphl

6.2 COALITION EXPLOITABILITY IN LARGER GAMES

As shown in Figure ] the coalition exploitability of the average strategy generated by classical no-
regret learning algorithms increases as the game size grows. Note that we only consider coalitions of
size no more than two. This trend underscores the importance of minimizing coalition exploitability.
As games become larger, the equilibria to which these algorithms converge become increasingly
fragile to coalition deviations, necessitating approaches that explicitly account for such multilateral
deviations. Further details are provided in Appendix [I}

7 CONCLUSION

In this work, we introduced the Minimal Average-Strong Equilibrium (MASE), a tractable solution
concept that accounts for multilateral deviations by minimizing each coalition’s average incentive
to deviate. We established that computing an approximate MASE is NP-hard even with singleton
coalitions and proved a fixed-parameter lower bound showing unavoidable exponential dependence
on the treewidth of the [Utility Dependency Graphl We then designed an algorithm—combining a
correlator—deviator meta-game with FTPL updates and dynamic programming over a tree decompo-
sition, whose running time matches this lower bound up to the treewidth factor. Empirically, MASE
is substantially more robust to coalition deviations than standard baselines while improving social
welfare in canonical games, all without materially worsening unilateral exploitability.

In the future, it is natural to move beyond uniform averaging within coalitions. A compelling open
direction is to characterize lower and upper bounds for objectives that minimize the minimal incen-
tive within each coalition. More broadly, extending these ideas to richer coalition objectives would
mature the strong-equilibrium framework and yield more solution concepts that go beyond unilateral
deviations.

10
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8 ETHICS STATEMENT

This paper presents work that aims to advance the field of game theory. There are many potential
societal consequences of our work, none of which we feel must be specifically highlighted here.

9 REPRODUCIBILITY STATEMENT

The code is provided in the supplementary material. The proof and assumptions are stated in Ap-

pendices|C] [D] [ and

10 USE OF LARGE LANGUAGE MODELS

In this paper, we use large language models (LLMs) to improve writing, e.g., by correcting gram-
matical errors, to search for related work so that no relevant papers are overlooked, and to assist with
coding.

REFERENCES

Naman Agarwal, Alon Gonen, and Elad Hazan. Learning in non-convex games with an optimization
oracle. In Conference on Learning Theory (COLT), 2019.

Ioannis Anagnostides, Gabriele Farina, Tuomas Sandholm, and Brian Hu Zhang. A polynomial-time
algorithm for variational inequalities under the minty condition. arXiv preprint arXiv:2504.03432,
2025.

Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge Uni-
versity Press, 2009.

Robert Aumann. Acceptable points in General Cooperative n-person Games, pp. 287-324. Prince-
ton University Press, 01 1959. doi: 10.1090/fic/023/01.

Robert J Aumann. Subjectivity and correlation in randomized strategies. Journal of mathematical
Economics, 1(1):67-96, 1974.

Carl T Bergstrom and Peter Godfrey-Smith. On the evolution of behavioral heterogeneity in indi-
viduals and populations. Biology and Philosophy, 13(2):205-231, 1998.

B Douglas Bernheim, Bezalel Peleg, and Michael D Whinston. Coalition-proof Nash equilibria i.
concepts. Journal of economic theory, 42(1):1-12, 1987.

Marie Louisa Tglbgll Berthelsen and Kristoffer Arnsfelt Hansen. On the computational complexity
of decision problems about multi-player Nash equilibria. Theory of Computing Systems, 66(3):
519-545, 2022.

Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Xi Chen and Xiaotie Deng. Settling the complexity of two-player Nash equilibrium. In Symposium
on Foundations of Computer Science (FOCS), 2006.

Vincent Conitzer and Tuomas Sandholm. New complexity results about Nash equilibria. Games
and Economic Behavior, 63(2):621-641, 2008.

Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The complexity of
computing a Nash equilibrium. Communications of the ACM, 52(2):89-97, 2009.

Reinhard Diestel. Graph theory, volume 173. Springer Nature, 2025.
B Curtis Eaves. Polymatrix games with joint constraints. SIAM Journal on Applied Mathematics,

24(3):418-423, 1973.

11



Under review as a conference paper at ICLR 2026

Barig Can Esmer, Jacob Focke, Déaniel Marx, and Pawetl Rzazewski. Fundamental problems on
bounded-treewidth graphs: The real source of hardness. In International Colloquium on Au-
tomata, Languages and Programming (ICALP), 2024.

Nicola Gatti, Marco Rocco, and Tuomas Sandholm. On the verification and computation of strong
Nash equilibrium. In International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS), 2013.

Sergiu Hart and David Schmeidler. Existence of correlated equilibria. Mathematics of Operations
Research, 14(1):18-25, 1989.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in Opti-
mization, 2(3-4):157-325, 2016.

Martin Hoefer. Strategic cooperation in cost sharing games. International Journal of Game Theory,
42(1):29-53, 2013.

Ron Holzman and Nissan Law-Yone. Strong equilibrium in congestion games. Games and economic
behavior, 21(1-2):85-101, 1997.

Joseph T Howson Jr. Equilibria of polymatrix games. Management Science, 18(5-part-1):312-318,
1972.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of Computer
and System Sciences, 62(2):367-375, 2001.

Sham Kakade, Michael Kearns, John Langford, and Luis Ortiz. Correlated equilibria in graphical
games. In ACM Conference on Electronic Commerce, 2003.

Yasushi Kawase and Hanna Sumita. On the max-min fair stochastic allocation of indivisible goods.
In AAAI Conference on Artificial Intelligence (AAAI), 2020.

Michael J. Kearns, Michael L. Littman, and Satinder Singh. Graphical models for game theory. In
Conference on Uncertainty in Artificial Intelligence (UAI), 2001.

Daniel Lokshtanov, Daniel Marx, and Saket Saurabh. Known algorithms on graphs of bounded
treewidth are probably optimal. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2011.

Duncan R.. Luce and Howard Raiffa. Games and Decisions. wiley, 1957.

Hervé Moulin and J-P Vial. Strategically zero-sum games: the class of games whose completely
mixed equilibria cannot be improved upon. International Journal of Game Theory, 7(3-4):201—
221, 1978.

John F Nash Jr. Equilibrium points in n-person games. Proceedings of the national academy of
sciences, 36(1):48-49, 1950.

Rabia Nessah and Guogiang Tian. On the existence of strong Nash equilibria. Journal of Mathe-
matical Analysis and Applications, 414(2):871-885, 2014.

Christos H Papadimitriou and Tim Roughgarden. Computing correlated equilibria in multi-player
games. Journal of the ACM (JACM), 55(3):1-29, 2008.

AC Pigou. The economics of welfare macmillan. New York, 1920.

Mona Rahn and Guido Schéfer. Efficient equilibria in polymatrix coordination games. In Interna-
tional Symposium on Mathematical Foundations of Computer Science (MFCS), 2015.

Robert W Rosenthal. A class of games possessing pure-strategy Nash equilibria. International
Journal of Game Theory, 2(1):65-67, 1973.

Ola Rozenfeld and Moshe Tennenholtz. Strong and correlated strong equilibria in monotone conges-
tion games. In International Workshop on Internet and Network Economics, pp. 74-86. Springer,
2006.

12



Under review as a conference paper at ICLR 2026

Arun Sai Suggala and Praneeth Netrapalli. Online non-convex learning: Following the perturbed
leader is optimal. In Algorithmic Learning Theory (ALT), 2020.

Heinrich Von Stackelberg. Market structure and equilibrium. Springer Science & Business Media,
2010.

13



Under review as a conference paper at ICLR 2026

A RELATED WORK

In this section, we review the literature on strong equilibrium from three perspectives: existence,
time complexity, and computation.

Existence of Strong Equilibrium. |Aumann/(1959)) introduced the strong NE, where no coalition
(a nonempty subset of players) can deviate in a way that strictly improves the utility of all its mem-
bers. However, even in simple two-player games such as the Prisoner’s Dilemma (Luce & Raiffa,
1957), a strong NE does not exist when players can coordinate. To address this, Bernheim et al.
(1987) proposed the coalition-proof equilibrium, which restricts the set of deviations. Yet, this con-
cept also fails to guarantee existence, already in three-player games (Bernheim et al., |1987)). More
recently, Rahn & Schifer|(2015) studied the notion of a-approximate k-equilibrium, where no coali-
tion of size at most k can deviate to improve each member’s utility by at least a factor of o > 1.
They further showed that such equilibria exist in graph coordination games only under specific con-
ditions, for instance, when v > 2. Motivated by these non-existence results, we instead focus on
minimizing the maximum average gain from coalition deviations (MASE]), a quantity that is always
well defined.

Complexity of Strong Equilibrium. Since a strong NE degenerates to an NE when only sin-
gleton coalitions are considered, computing a strong NE is PPAD-hard in general (Daskalakis
et al.,|2009; Chen & Deng| [2006)). Beyond computation, |(Conitzer & Sandholm| (2008)) showed that
even deciding whether a strong NE exists is NP-complete in two-player symmetric games, and
Berthelsen & Hansen|(2022)) further established that the problem is IR-complete for three-player
games. Similarly, Rahn & Schifer| (2015) proved that determining the existence of a strong NE is
NP-complete in graph coordination games, even when restricting attention to coalitions of con-
stant size. To the best of our knowledge, however, no hardness results are known for computing
strong equilibria when correlation on the joint strategy is allowed, i.e., a correlated strategy immune
to coalition deviations. In this paper, we show that computing a correlated strategy that minimizes
the average gain from coalition deviations is NP-hard. Moreover, we establish a fixed-parameter
lower bound based on the treewidth of the [Utility Dependency Graph] demonstrating an inherent
computational barrier in solving the MASE considered here.

Computation of Strong Equilibrium. Holzman & Law-Yone| (1997) and Rozenfeld & Tennen-
holtz| (2006) developed algorithms to compute strong NE and correlated strong equilibria in con-
gestion games under certain conditions in polynomial time. Rahn & Schifer] (2015) showed that a
strong NE can also be computed in polynomial time when the graph coordination game is defined
on a tree. In contrast, |Gatti et al.|(2013)) proposed a spatial branch-and-bound algorithm for comput-
ing strong NE more generally, but its runtime is exponential. Along the same lines, |Nessah & Tian
(2014) also provided a computationally intractable algorithm. Of independent interest, Papadim-
itriou & Roughgarden| (2008) introduced an efficient algorithm for computing optimal CE—e.g., a
CE that maximizes the social welfare—in graphical games (Kearns et al.,2001; |Kakade et al., [2003))
with bounded treewidth, using linear programming. In this paper, we develop a new algorithm for
computing MASE based on no-regret learning, with a time complexity that matches the lower bound
dictated by the treewidth of the [Utility Dependency Graph|

B LINEAR PROGRAMMING FOR SOLVING (MASE)

(MASE) can be solved by the following linear programming

min w
W

w Z r]s-,| ZE(LNTr [ul <657 a*S) - u’b (a)] VS € S’ aS € AS
€S

m(a) >0 Vae A

Z m(a) = 1.

acA

14
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Since

Eqmr U (as,a—_g)] = Z m(a)U;(as,a_s)
acA
Eqnnr [ui (a)] = Z ﬂ'(a)bli(a)
acA

are linear in 7, the linear programming above is valid. Note that the linear program contains expo-
nentially many variables (7 € A%), so its complexity is necessarily exponential in N.

C OMITTED PROOFS IN SECTION 4]
This section presents the omitted proofs in Section 4]

C.1 PROOF OF THEOREM [4.1]

Theorem 4.1. Computing e-MASE is NP-hard, even when S only contains singletons (coalitions
of size one) and 1/¢ is polynomial in the number of players.

Proof. We will introduce the allocation problem (NP-hard) and show that it can be reduced to
computing the correlated strong equilibrium.

Definition C.1 (Allocation Problem). There are n agents and m goods. An assignment X : [m] —

[n] is a mapping from each good to an agent. Agent 4’s utility is u;(X) for an assignment X. A
[n]

stochastic allocation p € Al™™ is a distribution over all possible assignments. The egalitarian
social welfare (ESW) maximization is defined as

max _min Z p(X)u; (X). (C.1DH
peAlml i€n] Xemin]

For any allocation problem, we can create a game with N = n + m players. The action set of player
i <nis A; = {0,1}, while the action set of player j > n is A; = [n]. For any joint action a € A,
Ui(a) = ui(a_p,) fori < n whenay = ay = -+ = ay, otherwise U;(a) = —u;(a_,). For
j > n,U;(a) = 0. Moreover, let S = {{1},{2},...,{n}}. We further define

a = Z m(a)u; (a_py)

acA:

az=az=-:-=a,=0
b= Z m(a)u; (a_jy))
acA:
as=az=:-=a,=1

c=— Z m(a)u; (a_py)) -

acA:
Fi,je€n\{1},a:#a;
Then, the gap of player 1 is lower bounded by

Am{a(u)xl}IEI,w7T U; (@1,a_1) —U; (@)] > max (a,b) + ¢ — (a+ b+ ¢) = —min (a,b).
a1 €10,

The equation holds when a; is always equal to as when ay = a3z = - - - = a,,. Therefore, the optimal
strategy 7 should satisfy m,,)((0,...0)) = mp,((1,...1)) = 3

5-
Then, (MASE) is equivalent to

min - max y  —w(@)uia_fy) = min max Y 7w gy (@ p)uila),
7‘.[m]EA[m][n] i€[n] e Tr[m]EA[m]["] i€[n] a,[n]e[m] (]
which is equivalent to (C.1). Finally, according to [Kawase & Sumita (2020, Corollary 1), it is
NP-hard to approximate 1j uptol — é
The hard instance constructed in Kawase & Sumita (2020) satisfies that max; max y ¢{]] ui(X) =

Poly(n,m) and the solution to (C.1) is 1. Therefore, Poly(IV, ) algorithm does not exist unless
P=NP for solving an e-MASE. O

15
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C.2 PROOF OF THEOREM [4.3]

Proof. According to [Lokshtanov et al| (2011), under SETH, g¢-coloring cannot be solved in
O((q — ¢)*™ - Poly(|1|)) for arbitrary graph G, when a tree decomposition of width tw is glvenE]
In the sequel, we construct a game such that computing —-appr0x1mate is equivalent to
determining the g-coloring.

For any g-coloring problem on G = (V, E), we will construct a game with N = |V| + | E| players.
For each player ¢ < |V|, the action set A; = {1,2,...,q} and the utility function &; = 0 is
a constant function equal to zero. For each player j > |V, the action set is {1} and the utility
function is Uj(a) = 1 (ac,_,,,, # e, v, ,)» Where (e;_jv| .1, €;_jv|2) is the (j — [V])"" edge in
E and 1 is the indicator function (equals one when the argument is true and otherwise zero). In this
game, S= {{il,iz,j + |V|} |€j = (i17i2)}.

Firstly, for any proper coloring ¢ € [g ]‘V| the associated pure strategy is 7¢, where 7f(a;) = 1 if
and only ifa; = cZ and 0 otherwise. It satisfies (MASE). Because for any S 9 S = (il, 12,5 +|V)),
the maximum of % il > ies Ui(m) is &, which is attamed when the colors of node i1, i are different.

Therefore, 7€ obtains the maxunum for every coalition S € S, which implies the satisfaction of

Secondly, for any joint strategy m € A satisfying (MASE), we have

ZzGSU ZzGS ZlGS
BT s |:>‘|Z |S| ‘Z |:>‘\Z |S|

ses G.A ses

*5 3E| E| Z a[y| is not a proper coloring) .

Because there must exist at least one edge with both of its nodes in the same color for any improper
coloring. On the other hand, let 7 = 7 for some proper coloring c. Then, for any S € S, we have

SiesUil®) 1
/I

Therefore, the approximation error of (MASE] is at least
a is not a proper colorin
3] E‘ Z vy prop g)
for any joint strategy m. When we get 9# approximation, since |E| < N2, we have

Z m(a) 1 (@ is not a proper coloring) <
acA

wl

Therefore, when sampling @ ~ 7, we will get a proper coloring with probability at least 2, which
is in complexity class RP. As a result, when P=RP, the time complexity of computing (MASE) is at
least O* (A**(%)), where G is the trust graph and A is the size of the maximal action set. O

D PROOF OF THEOREM[5.1]

Theorem 5.1 (Efficient Representation). For any € > 0, at least one of the e-MASE can be repre-
sented as a linear combination of ) | 4. 5 [S] - A™(9) 11 pure strategies, where tw(G) is the treewidth
of Utility Dependency Graphl

"As summarized in|[Esmer et al.| (2024), the proof of the g-coloring complexity implicitly implies that the
complexity is lower bounded by O(q*" - Poly(|I|)), even though a tree decomposition of width tw is given.
In other words, aside from computing a tree decomposition, the g-coloring itself has an intrinsic computational
barrier.
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Proof. Let D = 3 g 5D ics |.ASﬁ N () ] For any joint strategy 7 € A“, consider the vector
v™ € RP, where

0™ (S, i, asrn () = Banr [Us(@sani), a—(sovay) — Us(a)]

forany S € S and agn N (i) € Asn A (#)- By definition of v™, it is linear in 7. Therefore, the vertex
set of {v“ |7 e AA} should correspond to a subset of A“’s vertex set, which is the set of all pure
strategies.

By Carathéodory’s theorem, for any 7* € A“, v™ can be represented as the linear combination of
D + 1 vertices, which further implies it can be written as a linear combination of D + 1 vectors in
{v™ | is a pure strategy}. Then, when v™ = ,?:11 Mey™ with A € AP+ and 7!, 72, ... are
pure strategies, due to the linearity of v™, we have

D+1
* D+1 ko k
o™ E Ak ok 7,02 A
k=1

Finally,

Eq~r (as,a_ U; (a
réleagagneaiis |S| Z a S S) ( )]

:gleag ar;leajis |S| ZEGNW aSﬁN( ), @ (SﬁN(z))) —U; (a)]

=ma a (S,i,a
glegaglejl(s |S|Zv ), SmN())

D+1 Aok N
=max max Z 22 (S,i,a ).
SES GacAs |S| ) Oy SﬂN(Z))

Hence, once 7* satisfies (MASE]), there exists a linear combination of D + 1 pure strategies also
satisfying (MASE). Given V(i) < tw(G), we have D < Y~ 5 |S| - A™(9). O

E THE OPTIMALITY OF DYNAMIC PROGRAMMING ON TREE
DECOMPOSITION

This section shows that the dynamic programmlng (e.g., (5.4)) will compute the optimality. Let
ui(a N(z)) be the contribution of player i’s utility to the final objective. Recall that N° := N (i) N S.

Then, in (5.4),

ui(an (i) Z Z Z >, u” (57 aNf) (Uz- (aN,.SvaN(mS) —Ui(aNm))

T= 1S€S ’LES G‘NSE‘ANS

at timestep ¢. We consider the following update rule in this section, which generalizes (5.4) and
(G.1) (see the proof of Lemma[F3]and Lemmal[G.I)),

hB,ag)= > ulaym)+ >,  max  h(Bap). (E.1)
i€[N]: prec(p) mEAB
4 assigned to B apnB/=%pnp!

In the following, we will show that (E.T)) is optimal.

Lemma E.1. For any bag B € T, let st(B) = {i},; ignedto 5 Y Uprec(p) st(B) be the set of
players assigned to B and bags in its subtree. Then, for any bag B € T and ap € Ap, we have

h(B,ap)= max Y wui(ang)- (E2)

a_pEA_pg i
i€st(B)
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The proof is postponed to the end of this section. Note that for the root bag B”, since st(B") = [N],
Lemmamimplies that maxg . c 45 R(B",apr) = maxqca Zfil ui(@ans(;y). Therefore, we find
the maximum of Zfil ui(@pr(;)), and the optimal joint action @ € A can be extracted recursively.

Specifically, let
a’y- = argmax h(B",apr)
aprcApr 3
(E.3)
VB € C(B"), appr= argmax d (B, (ap\pBr, ag:gr)) .
ap\pr eAB\BT
We will do this recursively until we find the whole a* € A. The tie-breaking rule can be arbitrary,
and we use the lexicographic order of joint actions for simplicity. Hence, we prove the optimality of
the update rule (E-T).
Lemma E.1. For any bag B € T, let st(B) = {i},; ignearo 5 Y Uprec(p) st(B’') be the set of
players assigned to B and bags in its subtree. Then, for any bag B € 7 and ap € Apg, we have
h(B,ap) = max Z ui(@p(iy)- (E.2)

a_pEA_p
iest(B)

Proof. For leaf bags B (C(B) = (), for any joint action ap € Ap, we have
Q]
WB,ap)= > ulaym)= Y uilaym) = max > wilan)-

i€[N]: iest(B) a-n€A-s LB
4 assigned to B
(z) is because N'(i) C B for any ¢ assigned to B by definition. Additionally, since B is a leaf bag,
st(B) = {i € B: i assigned to B}.

Then, for any bag B with all of its children B’ € C(B) satisfying , we have

h(BvaB) = Z ul(aN(l))+ Z ,mix ) h(B/valB’)
~i€[N]: B/EC(B)aaB'/e:aEf'
4 assigned to B BNB BNB/
@)
DY wlave)r Y macma Y wlah)
i€[N]: BreC(B) “B'STBY S T-BIETEB (B
. . a r=a
4 assigned to B BNB BNB/
= Y vt Y e Y )
1€[N]: B’eC(B) aBmB,:a}BnB/ 1€st(B’)

i assigned to B
(i) uses the induction hypothesis. By [Property 3 of Tree Decomposition| for any B’ € C'(B) and
i € st(B'), N(i) N (B\ B’) = 0. Because for any : € st(B’), there must be a bag B” in the
subtree of B’ such that N'(1) C B”, and [Property 3 of Tree Decomposition| will be violated if
N (i) N B\ B’ # (. Then, modifying the constraint agnp = @’z to ap = a’g will not change
the value of u;(a)y ;) for any i € st(B’). Hence,

h(B, aB) = Z ui(aN(i)) + Z I/Ilaj( Z ui(aj\;(i)).
i€[N]: B'eC(B) o, ) icst(B")
4 assigned to B B
Furthermore, by [Property 3 of Tree Decomposition| for any B’, B” € C(B) and i’ € st(B’),i" €
st(B"), we have N (i') N N (:"") C B. Finally,

h(B,ag)= > Ui(aN(i))Jra{naX SN wilahy)

A:
i€[N]: aBE:a’ B’eC(B) iest(B’)
4 assigned to B B

= max Z ui(an(y) + Z Z ui(@ ()
TEEAE i€[N]: B'eC(B)iest(B’)
% assigned to B

“a R, 2 wlevo)
i€st(B)
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This completes the induction. O

F PROOF OF THEOREM[5.2]

Theorem 5.2. Consider (5.3). For any § > 0, with probability at least 1 — §, the following holds:

T
max F (w(t),u(t)) - F (%,u(t)> <2]T| L+ (tw(g) +1)log 4 +2n|T|T+ \/2Tlog§.
t=1

n

Proof. The proof of Theorem[5.2]can be decomposed into three steps.

Firstly, we show that without loss of generality, if FTPL with a fixed noise . for all timesteps
t =1,2,... attains sublinear regret when the adversary is oblivious then FTPL with independent
noise vectors 2(*) also attains the same regret confronting an adaptive adversary. The reduction to
the oblivious setting is common in the literature (Agarwal et al.| 2019 [Suggala & Netrapalli, |[2020),
and we include it here for completeness.

Secondly, we will show that the regret of a fictitious algorithm m(t+1) €
argmin_ .4 Z“LU F (7r, u(T)) + <7~L(t+1), 7T> is sublinear.

T

Finally, we will show that the regret of (5.3)) and that of the fictitious algorithm are close.

F.1 FI1XED NOISE VECTOR

In this section, for completeness, we will show a reduction from an adaptive adversary to an obliv-
ious adversary. For ease of representation, we will take correlator (7) as the no-regret learner, and
the deviator (1) as the adversary.

An adaptive adversary determines the utility function at timestep ¢, which is ® in this section,
according to our past strategies, (1), ..., 7(*=1) In contrast, an oblivious adversary determines
all utility functions, i.e., ), ..., u(™T), at the beginning (timestep 0), such that (") is irrelevant
to 7D, ..., 7= In the following, we will show that a sublinear regret against an oblivious
adversary implies a sublinear regret against an adaptive adversary.

Intuitively, when the random noise 71 ..., 7("T) are independent, = only depends on
pM =D which is known to both the oblivious and adaptive adversary, due to the update

rule (5.3). Hence, an additional observation on 7(1), ... 7(*=1) does not make adversary more
powerful. Formally, we have the following lemma (Cesa-Bianchi & Lugosi, 2006, Lemma 4.1).

Lemma F.1 (Reformulation of Lemma 4.1 in |Cesa-Bianchi & Lugosi| (2006)). Consider any ran-
domized no-regret learner and the distribution of the decision variable 7(*) is fully determined by
pM o =1 Assume the no-regret learner’s regret against any sequence of p1) ..., (™) gen-
erated by an oblivious adversary satisfies that

T
E,ﬁ(l),_“’ﬁ(T) [%gi)i ;F (W(t),/i(t)) _F (%,u(t)> < R.
Expected Regret
Then, for any sequence of (1), ..., u(T) generated by an adaptive adversary and § > 0, with

probability at least 1 — §, we have

%11612}:(4 :1 F (W(t),,u(t)) —F (%, u(t)> < R+4/2Tlog %

8 An oblivious adversary will choose all the utility functions at timestep 0, while an adaptive adversary will
choose the utility functions at timestep ¢ according to a® 7@ pED,
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It is easy to see that the distribution of 7(*) generated by (5.3)), whose randomness is induced by 7(*),
is fully determined by (1), ..., u(*=1), given (") is generated by a fixed distribution independently
at each timestep.

Then, we will show that the expected regret of FTPL using independent noise vectors and FTPL
with a fixed noise vector is the same, while facing an oblivious adversary.

tziF (W(t),u(t))] :iEﬁ(1)7.._,ﬁ(T) [F (W(t),ﬂ(t))}
)Z]En(f){ <7r (t))}

(i) uses the fact that both 7(*) and ;(*) are independent of (1), ... 7~ when the adversary
controlling /: is oblivious. Finally, the expectation Ezo [F (70, u®)] of

2D ¢ argmanF (77 ur )) _ <ﬁ(1),7T>

TEAA T

Ezo . s

is equal to Ex [F (7®, n®)], when n®) and n(!) are sampled from an identical distribution. In
summary,

fixed noise and an oblivious adversary (Expectation)
=-independent noise and an oblivious adversary (Expectation)
=-independent noise and an adaptive adversary (High Probability Bound).

Hence, the problem reduces to proving sublinear regret against an oblivious adversary with a fixed
noise vector for all timesteps.

F.2 Low REGRET WITH ACCURATE PREDICTION

The discussion above suggests that we only need to show the sublinear regret against an oblivious
adversary, when all timesteps share the same noise vector. In other words, we consider the following
update rule,

) ¢ argmanF (7r N(T)) —(n, ), (F.1)

TEAA —1

where 1, 71 ..., 7(T) are identically distributed.

Next, we will show that if the regret minimizer can make the decision 7(t+1) with an accurate
prediction of x(**1) then we can achieve sublinear regret. In particular, the decision variable at
timestep ¢ + 1 is chosen according to (F.2).
t+1
D) ¢ argmanF (7r ,u(T)) —(n,m). (F.2)

TEAA =1

Actually, we can see that (F.2) is exactly the original update rule of 7(**2)_ Therefore, we will prove
the following lemma in the sequel.

Lemma F.2. Consider (E.2). For any timestep t = 1,2,..., u™, @ ... and any 7 € A4, we
have
t
S o) ra (e n)
T=1

Proof. We will prove the lemma by induction. When ¢t = 1, we have

F (7r<2),u<”) _F (%,u(”)
(P (200) = (15) (2 () - 7)) - 5)

0 <ﬁ 7 %> .
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(i) is because (2 € argmin a4 F' (m, uV) — (n, ).

Next, we will show that when (F3) holds for ¢t = ¢, then it also holds for ¢ = ¢, + 1. For any
TE AA we have

= (r+1) () (7)
T+1 T _ ~ T

Tz:; (F (7r s ) F (7T7N ))
R (e <r>) _ (th (% (ﬂ) —(n %>> — (n,7)

Z F (71— )y ] ) M ) ’
(é tonr:l ( (r+1) M(T)) _ <tﬂz+:1F (ﬂ_(to-ﬁ-?) M(T)) _ <ﬁ 7r(to+2)>> _ <ﬁ 7

7 =1 ’ 7 7

3 (7 () () ).

(i) is because 70+ € argmin, cpa 32000 F (m, u(D) — (71, 7). Next, by setting 7 = 7(f0+2) in
the induction hypothesis, we have

i (F (W(T“)M(T)) _F (W(to+2)7u(r))) n <ﬁ,7f(t°+2) B %>

< <,~,,’ 22 _ 7r<to+2)> n <,~L7 altot2) _ %>

= (R, 7). O

F.3 SUBLINEAR VARIATION

In this section, we will show that the regret of FTPL with/without a prediction of p(**1) is close.
Formally, for any 7 € A“, we have

ET: (F (W(t),p(t)) _F (ﬁ’u(t))>
( ( (t+1) u(t)) ( ,u“))) T i (F (W@),u(ﬂ) _F (ﬂ”“,;ﬁ”))

p“qﬂ

t=1 t=1
©) T
< (n® &)+ 30 (F (x0,u®) = F (r+0,40))
t=1
(i) uses Lemma

Moreover, since U;(a) € [0, 1] for any i € [N] and a € A, we have
max  |F (mp)| < 1.
TEAA,
pEAXses As

Then,
E [F (W(t)’u(t)) _F (W(t+1)“u(t))} <Pr (W(t) 4 7T(t+1)) .

Hence, we only need to lower bound Pry (7() = 7(**1) in the sequel. Recall that 7(*) is a pure
strategy with 7(*) (a(t)) = 1 for some joint action a'*) € A. For any bag B € T, let fa(B) denote
its father (fa(B) = () if B is the root). Then,

Pr (w(t) — 71,(t+1)) =Pr (a(t) _ a(t+1))
n n

(i) ® ) o ()
=[] (aB\fa(B) B\ fa(B) | Cfap) = afa(B))
BeT
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According to (5.5), each bag B € 7T only determines alt) . Since n(Y)(B, ) is sampled inde-
B\fa(B)

pendently for every bag B, it follows that ag?\ B ag?,\  are independent for B', B” € C(B) with
B’ # B”, by|Property 3 of Tree Decomposition| Hence, () holds.

For any B € T, to lower bound Prz (a(B)\fa( B = agtflg(B) ] a%(B) = a;t(:zg)), we will first get

its lower bound while further conditioning on ag)u fa(B) ’s value and n(B, -)’s value.

Then, Pry (ag)\ fa(B) = agtfi( B) | ;2( B) = S‘HE}S))) is equal to this conditioned probability in-

tegrating over all possible values of a§3)u fa(B) and n(B, -). Formally, we want to lower bound

() — (t+1) ) _ (t+1) (t)
Pp (a’/BUfa(B)vm) =Pr (aB\fa(B) a/B\fa(B) 'afa(B) =0y CBufa(B) — a’BUfa( B) s

and Vap\ q(B) € AB\fa(B) \ {a,B\fa(B)} )
n(B, (a’Bmfa(B), ap\fa(B))) = x((a/Bﬂfa(B)7 aB\fa(B))))

for any a’BUfa(B) € Apufa(p) and T € RA5 . Then,

(t) _ o t+D) @  _ @+ : (t)
Pr (a’B\fa(B) AR\ fa(B) ’afa(B) a’fa(B)) 2, inf Pp (aBufa(B) ),
n apysa(B)EABUSA(B)
xERAB
since Pry (ag)\fa(B) = agffl@w) ‘ afa(B) Efj(g)) is equal to pg)(a’BUfa(B),:c) integrating

over a’BUfa(B) and x.
: (t) _
Since ap ;) = a%\fa(B), for any ap\ to(B) € AB\fa(B) \ {ajg\fa(B)}, we have

d¥ (B,ajp) < d (B, (@lsr ju(sy amsas)) -

This can be equivalently written as
n(B,ap) > (d( ) (B,als) +n(B, G’B)) —d® (B, (a'/Bﬂfa(B)aaB\fa(B))) .

t+ . .
Then, a%\fi( B) = a’B\fa(B) is equivalent to

n(B,aly) > (d<t+1> (B,a'y) + n (B, ajg)) _ gt (B, (@ o) aB\fa(B))) (F4)
= (d(t) (B,as) +n (B, a%)) —d® (37 (@Bnfa(m): aB\fa(B)))
+ (d(t) (Bv (alefa(B)’aB\fa(B))> — d ) (Bv (alefa(B)>aB\fa(B))>)
+ (d<t+1> (B,ap) —d (B, ap)) .

for any ap\ o8y € Ap\fa(B)- In Lemma EI, we show that the variation of d is bounded by 1.
Therefore,

n(B,ap) = (49 (B,aj) +n (B,a%)) = d® (B, (@pnjuis) am o)) +2

implies (F.4).

Lemma F.3. Consider the update rule . For any timestep ¢t = 1,2,...,T, bag B € T, joint
action ag € Ap, and noise 7n € RX5e7 A5 we have

’d(t“)(B,aB) —dY(B,ap)| < 1.
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The proof is postponed to the end of this section. Let

w= max (4 (B.alp) + n (B.alp)) — ¥ (B. (@pyepa(y. amsam))
aB\fa(B)€AB\fa<B>\{a§5\fa<B)
Note that w only depends on (V) ..., u*=1) and x. Then,

P (@l pagm) ®) > Pr(n (B, aly) > w+2|n(B,a}) > w)

_Pr(n(B,az) >w+2)
~ Pr(n(B,ay) >w)
exp (=1 (w+ 2))
exp (—nw)
=exp (—27).
(1) is because n (B, a’z) ~ Exp(n). Finally, by union bound,

t
f;r (W(t) = 7r(t+1)) >1— Z (1 - psg)(a%zufa(B)’ 33))

BeT

>1— ) (1—exp(—2n))
BeT

>1- Y 2
BeT

=1-2n|T]|.

Therefore,

E -ZF (W(t),,u(t)> _F (% u(”)]

~+
=

< (. 2)] + B [ (0.40) - £ (0,0
- t=1

<E [(#,7® = 7)] + 20 |TI T.
Since exp(z) > 1+ x forany z € R, (1 — exp (—21|7T1)) < 2n|T|. Additionally,

S

2 -5)] L8[l [ 7] <2ep

<2 max n(B,ag)
BETGBE B

(@)
BeT "
(i) is by Holder’s Inequality. (i¢) is because the expectation of the maximum of n i.i.d. random

variable sampled from Exp(7n) is upper bounded by H'l% (Agarwal et al., 2019). Furthermore,

log |Ap| < |B|-log A < (tw(G) + 1) log A. Hence,

T
SF(xO,u0) ~ F (?r,u“))] <27~ (tw(g27+ Dioed oy,
t=1

E

F.4 PROOF OF AUXILIARY LEMMAS

Lemma F.3. Consider the update rule (5.3). For any timestep ¢t = 1,2,...,7, bag B € T, joint
action ap € Ap, and noise . € RXBe7T B we have

’d(t“)(B,aB) —dY(B,ap)| < 1.
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Proof. Recall Lemma We can add |T| players as the noise player, each assigned to a bag in T,
with u;(ap) = n(B,ap) so that V(i) = B. Recall that u; is the contribution of player ¢ to the
objective function F'. Then, by LemmalE;fL forany B € T and ap € Ap, we have

d(t)(B,aB) = min Z (t)(a_/\[( ))

e Py
where
t
(t)(a/\/’(z)) = — Z Z T;| Z M(T) (S, a/\/'is) (ul (aNis,aN(i)\s) - Z/[i(a_/\f(i))) fori € [N]
=1 Sq%%: aN{S E‘ANZS

ugt) (apnr)) = n(B, an(;)) for i as the noise player assigned to bag B.

For any noise player, we can see that ugt)(aN(i)) - uEtH)(aN(i)) = 0. For any 7 € [N],

t t+1
ul (an) — ul )(a/\/(i))‘

>, %| >ty (57 af\/;) (Z/[i (aNf’aJ\/(i)\S) *Ui(aN(i)))

R A e
< Z E Z N(H_l) (S7 aNis> ; (&Ms,aN(i)\S) —Z/{i(aN(l-))‘
S s
@ > 1 S W (sa
> |S| 1% ) ,/\/15 .
& Maden

(¢) is because U;(apr(;)) € [0, 1] for any an ) € An).-
Recall that by definition, a(_t}g =argmax, ,cA_ 5 Dicw(B) ugt)(aN(i)). Then,
d® (B, aB)

= Z ( aN(iHnB: a(N)m\B))

( AN (i)NB> aN(z)\B))

M

1 1 1 1
= Z (H_ ) ( AN (i )ﬂBaaj(\[( ))\B)) + <u§t+ ) ((aN(i)ﬂB7a'§\tf-&))\B)) - uz(‘t) ((a/\/'(i)vaaj(\t[E))\B)))

w1 (t+1) 1 N
Z ((a/\/( INB> Apr(; )\B)) Z E R Z U(H_ ) (S, aMs>
el R e
I (Buag) =Y Y Y (say)
SeS zeSﬁsl(B) NS E.ANS /

>d*Y(B,ap) — 1.

Similarly, we can get the upper bound that d*) (B, ag) < d**Y(B,ap) + 1. Hence, the proof is
completed. O

G EFFICIENT UPDATE OF p

This section provides the omitted details regarding the update procedure for y and presents the
complete proof of Theorem 5.3]
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G.1 EFFICIENT UPDATE OF p

The procedure for updating . closely parallels that of 7. Specifically, we iterate over all coalitions
S € § and, for each S, determine the optimal action ag € Ag. To achieve this, we maintain a
dynamic programming vector gg € RXs<7 A5 for each S € S, which is updated according to

KBan) =g Y X r @) (U (@ns.ams) - s (an)

i€S: acA
4 assigned to B

+ 0y max  ¢gUTV(Bal) +m (B ag).
a/B/ G.AB/ H
B'eC(B) . 5
apnB'=%pnp’
At first sight, the ), _ , appears computationally prohibitive, since A is exponentially large. For-

tunately, the update becomes tractable once we recall that 7(7) is always a pure strategy for 7 > 1.
Denote by a(™) the joint action selected by (7). Then (G.1) simplifies to

B 53 T () - (o)

% assigned to B (G. 1)
+ 3 max gUTV(BL @) +mi T (Bag).
prec(p) . Aw€AB
ABnB/=Apnp/

After completing the dynamic programming updates, we focus on the root bag B of the tree de-

composition. The selected coalition is then S+ = argmaxgeg maxa . c4,- ggﬂ)(BT7 agr).

Next, we apply the reconstruction procedure in (5.5) on g(St(fjﬁ to extract a joint action a(**1) ¢ A.
Finally, we update p(t+1 (St+D gt+1)) = 1,

This procedure ensures that i can be updated efficiently while maintaining consistency with the tree
decomposition structure. Analogous to the update of 7, the regret of this process can be bounded.

G.2 PROOF OF THEOREM[3.3]

Theorem 5.3. Consider the updates in (5.3). For any 6 > 0, with probability at least 1 — J, the
following holds:

T
~ 14 (t 1)log A 1
max ZF (W(t), u) - F (W(t), u(t)) <21T]| *( W(g;Jr )log +2n|T| T+ 1/2T log 5

peaXses s T

Proof. The proof of Theorem [5.3]is similar to that of Theorem[5.2] By using a similar argument as
the proof of Theorem for any ji € AXsesAs we have

3 (1 () = ()

t=1
T
(=) 3 (0 () s04)).
t=1

Next, by introducing the counterpart of Lemma [F3]in the following, the rest of the proof follows
that of Theorem[3.2]

Lemma G.1. Consider the update rule (5.3). For any timestep t = 1,2,...,7, bag B € T, joint
action ap € Ap, coalition S € S, and noise m € RXse7 A5 we have

98V (Bas) - o) (B.as)| < 1.
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The proof is postponed to the end of this section. Let S*), @*) denote the coalition and action the
deviator picks at timestep t, i.e., u(*) (S(t)7 a(t)) =1. Then,

E [F (W(t)7/l(t+1)) _F (W(t)“u(t))}

<Pr () 2 )

_ _ gt =Gt |80, g = 3l 1
_%(Sm = st )) [I b (aB\fa(B) A5\ o) | @faip) = Bragpy S = ST ))

BeT m

(i)
<1—exp(29|T]).

(1) is because choosing S(*) is equivalent to adding a new player in the root bag B", whose action
is to select the coalition. Finally, for any § > 0, with probability at least 1 — d,

3 (7 (:) -+ (s.)

t=1

1 1)log A 1
ol OO i o =

G.3 PROOF OF AUXILIARY LEMMAS

Lemma G.1. Consider the update rule (5.3). For any timestep t = 1,2,...,7T, bag B € T, joint
action ap € Ap, coalition S € S, and noise m € RXseT A5 we have

98" (B.an) — g (B.ap)| < 1.

Proof. Forany S € S, the upper bound of ‘ ggﬂ) (B,ag) — gg) (B,a B)‘ can be obtained similarly
to the proof of Lemma [F:3|by choosing

u (an N ) \SIZ Z Z Ui (a@pns,ap\s) — U (ap)) fori € [N]

1€S: acA
i assigned to B

(t) (anr(iy) = ms(B,apr) for i as the noise player assigned to bag B.
Then,

1
ugt)(a/\/(z’))—ugtH)(aN(z))‘ [Ell Y. > "(a) (U (@pns. aps) — Ui (ap))

1€S: acA
4 assigned to B

@ 1
< 7+ (g
BRI
i asslgned to B
(i) is by the fact that U; (@pns,ap\s) ,U; (ap) € [0,1]. The rest of the proof follows that of
Lemma[F3] and thus we complete the proof. O

H ADDITIONAL EXPERIMENTAL RESULTS

In this section, we detail our experimental setup and report additional results for two further games:
the Chicken game (Bergstrom & Godfrey-Smith, [1998) and Pigou’s network (Pigou, [1920). All
experiments are conducted on a 13th Gen Intel(R) Core(TM) i7-13700K @ 3.40 GHz. Error bars
for MASE and FTPL indicate +1¢ over 100 random seeds (0, 1,...,99). Across all experiments,
we set the learning rate to = 0.01 and run for 7" = 10, 000 timesteps.
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H.1 EXPERIMENTAL DETAILS

For all baselines, we run each algorithm independently for each player, thus the average strategy
converges to a CCE (Hazan et al., 2016). For , Hedge, and OMD, each player i € [N] is
initialized with a uniform distribution 7751) over all actions. MASE and FTPL are initialized with a
pure strategy chosen uniformly at random from all pure strategies.

H.2 UTILITY FUNCTIONS

This subsection specifies the utility functions for all four games.

Prisoner’s Dilemma. The utility matrix is shown in Table[2] If both prisoners confess, they receive
reduced sentences. If one confesses while the other defects, the confessor is imprisoned and the
defector is released immediately. If both defect, both are imprisoned for longer than in the mutual-
confession case to penalize dishonesty.

Confess (C) | Defect (D)
Confess (C) | (0.6,0.6) 0,1)
Defect (D) (1,0) (0.2,0.2)

Table 2: Utility matrix of the Prisoner’s Dilemma. Each entry (a, b) denotes the payoffs to the row
player (a) and the column player (b).

Stag Hunt. The utility matrix is shown in Table[3] A stag yields a higher reward, but it can only be
hunted successfully if both players choose Stag; a solo stag attempt yields nothing. A hare provides
a smaller payoff but can be secured by a single player.

Stag (S) | Hare (H)
Stag(S) | (1,1) | (0.1,0.8)
Hare (H) | (0.8,0.1) | (0.5,0.5)

Table 3: Utility matrix of the Stag Hunt. Each entry (a, b) denotes the payoff of the row player (a)
and the column player (b).

Chicken Game. Two drivers head toward each other and can either swerve or go straight. If one
goes straight while the other swerves, the swerving player "loses." If both go straight, they crash.

Swerve (Sw) | Straight (St)
Swerve (Sw) | (5/6,5/6) (2/3,1)
Straight (St) (1,2/3) (0,0)

Table 4: Utility matrix of the Chicken game. Each entry (a, b) denotes the payoff of the row player
(a) and the column player (b).

Pigou Network. We use a three-player variant of Pigou’s network. Each player chooses a fast or
slow route. The slow route yields a constant utility of 0.25. The fast route yields utility 1.5 — 0.5 -
(number of players choosing the fast route), reflecting congestion.

H.3 ADDITIONAL EXPERIMENTAL RESULTS

Figure [5 reports additional experiments on the Chicken game and Pigou’s network. MASE con-
sistently outperforms the baselines in both coalition exploitability and social welfare. In Pigou’s
network, purely self-interested players overuse the fast route, which in equilibrium becomes slow.
By contrast, when players form coalitions and consider average utility within a coalition, they share
the routes so that everyone is better off.
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Figure 5: LP refers to the linear program in Appendix [B| Maximum marks the maximum social
welfare. MASE outperforms the baselines in both games in terms of coalition exploitability and
social welfare.
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Figure 6: The trade-off between exploitability and social welfare in the Chicken game and the
Pigou’s network.

Figure [6] shows the trade-off between exploitability and social welfare in the Chicken game and
Pigou’s network.

Figure[7]reports the runtime of the algorithm for polymatrix games with varying numbers of players,
action set sizes, and interaction densities.

H.4 PROOF OF LEMMA [6.1]

Lemma 6.1. For any € > 0, computing the CCE with exploitability no more than e that maximizes
social welfare is equivalent to (6.1) by setting S = {{i}};cn) U {[V]} and using the weights:

w
wsz{l—w

if S| =1
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Figure 7: The runtime of the algorithm in different polymatrix games.

for some w € [0, 1). Conversely, solving (6.1)) with these parameters corresponds to finding a point
on the Pareto frontier of social welfare and exploitability.

Proof. Forany € > 0, let 7* be the strategy that maximizes social welfare subject to its exploitability

being at most €. Let g* = maxaeA ~ va 1 Eamr+ [Us; (@) —U; (a)] be the maximum gain for the
. Then, by construction, the objective value for 7* under |i is:

grand coalition [N]. Letw = =

max max oy |S| ZIEaNW ..] = max (w - (exploitability), (1 — w) - g*)

< max (we, (1 — w)g") = Gfg*-

Any strategy 7 with exploitability > ¢ would have an objective value > we = + -, which is worse
than the value 7* achieves. Therefore, any optimal solution to @ must have exploitability at most
€. Since 7* by definition maximizes social welfare (i.e., minimizes the coalition gain ¢g*) among all
strategies in this set, it must also be an optimal solution to (©:1).

Conversely, for any w € [0, 1), let 7* be the corresponding strategy that optimizes (6.1). Let its
exploitability be
= E ~T* L{z Ai,a_i —L{i .
¢ = max max Fq [t4; (ai, a—;) (a)]
We will show by contradiction that no strategy 7’ exists such that exploitability(7') < e and
SW(x") > SW(n*) (which implies ¢’ < g*, where ¢’ is the gain for the grand coalition under
7).

Suppose such a 7’ exists. We analyze two cases:

Case 1: exploitability(7') < e. Since 7’ has both strictly lower exploitability than 7* and ¢’ < ¢*
(higher social welfare), its objective value is max(w - exploitability(7’), (1 — w)g’). This is strictly
less than max(we, (1 —w)g*), which is the objective value of 7*. This contradicts the optimality of

*

™.

Case 2: exploitability(7') = e. If € > 0, choose a small § > 0 and consider the mixed strategy
Tnew = (1—38)7’ + 7", where 7 is an arbitrary CCE, which is guaranteed to exist (Nash Jr}[1950).
For any i € [N] and a; € A;, we have:
Eanmyen Ui (@i, a—;) — Ui (a)]
(1 = 0)Bamn [ty (@1, @—:) — U (@)] + OB g [t (@1, @—5) — Uy ()]
i)

—
<

(1 = 0)Eanm [Us (a5, a—i) — Ui (a)]
(I—-0)e.

IA IA
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Step (i) holds because "’ is a CCE, so its exploitability E.~[...] is < 0. Since € > 0, the new
strategy e has exploitability(m,ey) < €. By continuity, for sufficiently small §, SW (7ew)
remains strictly higher than SW(7*) (since SW(n’) > SW (n*)). This puts us in Case 1, which
leads to a contradiction.

If ¢ < 0, then exploitability(7*) < 0. The objective value for 7* is max(we, (1 — w)g*) =
(1 — w)g* (since we < 0 and (1 — w)g* > 0 by definition). The hypothetical strategy =’ has
exploitability(n’) = € < 0 and ¢’ < g*. Its objective value is max(we, (1 — w)g’) = (1 — w)g’.
Since ¢’ < g* and w < 1, the objective value of 7’ is strictly less than that of 7*, which contradicts
the optimality of 7*.

In all cases, the existence of such a 7’ leads to a contradiction. Thus, 7* must be a solution that
maximizes social welfare for a given exploitability e. O

I POLYMATRIX GAMES

In this section, we present experimental details for MASE on games with a larger number of players.
We select polymatrix games as the benchmark for these large-scale experiments. This choice is
motivated by their inherent graphical structure, which allows for the efficient generation of instances
with a low treewidth of their [Utility Dependency Graph}

We begin with the formal definition. A polymatrix game has a corresponding undirected graph
GY = (WY, &Y), with VU = [N]. For any joint action a € A, the utility of any player i is defined
as:

Ui(a):= Y U(a;,a;), (L.1)
(i,§)€EV

where U; ;: A; x A; — [0,1] represents the interaction between players ¢ and j. In other words,
only players who are connected in GU interact, and a player’s total utility is the summation of these
pairwise interactions.

If we construct the |Utility Dependency Graph| directly, then the tree decomposition may explode
unwillingly, e.g., Figure[§] (a). We can see that the treewidth of G is one while the treewidth of the
[Utility Dependency Graphlis three.

Constructing the [Utility Dependency Graph| directly from the polymatrix game can cause its
treewidth to explode. For example, in Figure E] (a), the original graph GY has a treewidth of one,
while the resulting [Utility Dependency Graph|has a treewidth of three.

To prevent this, we construct a strategically equivalent game (note that this new game is not a
polymatrix game). This construction explicitly models the pairwise interactions as new players:

« For any original edge (i, j) € £V, we introduce two edge players, e; ; and e; ;.

» Each edge player ¢; ; has a singleton action set, !Aei) i | = 1, meaning it has only a single
strategy.

* The utility function of an edge player e; ; is defined as the original interaction utility:
Ue,, = Ui .

* The utility function of an original vertex player i (one of the original IV players) is now a
constant zero: U; = 0.

This transformation is illustrated in Figure[§](b). The [Utility Dependency Graph|for this new game,
shown on the right of Figure|8|(b), now has a treewidth of max (tw(G"), 2). This method effectively
bounds the treewidth and avoids the undesirable explosion.

Next, we show that the new game and the original polymatrix game are strategically equivalent.
In other words, for any joint strategy 7 € A, the maximum average deviation gain, maxges
MaXgeAg ﬁ > ics Ba~r [Ui (as,a_s) —U; (a)], does not change. Recall that since the edge

players have only a single action, 7 € A (a distribution over the original players’ joint actions) is
sufficient to specify the joint strategy in both games.
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Figure 8: (a) The original graph GY corresponding to the polymatrix game (left) and the [Utility|
[Dependency Graphl (b) The strategically equivalent game and its Utility Dependency Graphl

Lemma I.1. The new game described above is equivalent to the original polymatrix game, when

S = {S U {e, J}zeS/\ (i./)€EV }S . Formally, for any joint strategy 7 € A, we have
€s

Eq~ U;
B, |s|Z el (@sams) i)

5es aneds |§m ZE‘M [N (@snia @iy - th (@)

The proof is postponed to the end of this section. This equivalence allows us to solve the new
game instead of the original one. Our algorithm can minimize a more general objective, maxges
MaxggseAs WS Y ics Ba~r Ui (@s,a_s) —U; (a)], for any weight vector w € Rsﬂ We can
therefore apply our algorithm to this new, strategically equivalent game.

I.1 EXPERIMENTAL DETAILS
We generate random polymatrix games using the following procedure:

* Each pair of players (i, j) is connected independently with probability where N is

N-1°
the total number of players. This results in an expected degree of ¢ for each player in GV.
* For each connected pair (7, 7), the interaction utilities U; ;(a;,a;) are sampled indepen-
dently and uniformly from [0, 1] for all action pairs a; € A;,a; € A;. These pairwise
utilities are then normalized according to the formula:
Ui j(ai, a;) — mingen) aca Uk(@)
maxge(N),aeA Uk (@) — mingen) aca Ur(a)

This process ensures that the final total utility I/; (a) for any player ¢ € [IV] and joint action
a € A falls within the within the range [0, 1].

Consistent with the experiments on small games, we average the results over /00 runs for each
hyper-parameter setting (using seeds 0-99). All algorithms use a learning rate of = 0.01, and
error bars represent 1 o. For these larger games, we set the number of timesteps to 7' = 100, 000
and a uniform action set size |.A;| = A for all players i € [N].

The hyper-parameters for the ablation studies are as follows:

e Ablationon N: A =2andc=1.
e Ablationon A: N =30and c = 1.

“Both the implementation and the proof only use the linearity of the objective. Hence, any weighted-sum
can fit into the framework.
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* Ablationonc: N =30and A = 2.
Furthermore, to accelerate the algorithm, without loss of generality, we only need to consider
S ={{it}iem Y {{i,7} |i,5 € [N],(i,5) € GV} to minimize the coalition exploitability for any
coalitions with no more than two players. In other words, for coalitions of two players, we only
need to consider the case when they are connected in GV. As shown in the following lemma.
Lemma I.2. For any joint strategy = € A#, by letting S = {{i}}ie[N] U
{{i,5} 4,4 € [IN] A (i,4) € GY}, we have

EN .
o e Ty X e i) )

= max Eo~r [U; (@s,a_s) —U; (a)].
Se{{i}}ie[N] asEAs |S| Z S S) ( )]

U{{i,g} [ i,5€[N]Ni# }
The proof is postponed to the end of this section.

1.2 PROOF OF THE AUXILIARY LEMMA

Lemma I.1. The new game described above is equivalent to the original polymatrix game, when
S = {S U {ew}zeS/\ (i J)GSU} . Formally, for any joint strategy = € A“*, we have
Ses

Ea~ U;
9, |s|2 e i)

= max ZEaNW [N (aSm[N]’ (§0[N])> Ui (a)] '

§e§ |S N[N

Proof. Forany S € S, let S be its correspondence in S. Then,

a3eAs \§m EE“N” r (“Snw] —(§ﬁ[ND) U, (‘1)}
—arsneazs \S| Z anT [~ as,a_g) — 1/7 (a)]
ies

u)
B aseAs \S| Z Z Earm [Z/le” (@s,a_s) - Z/{e” (a )}

€S j: (i,5)€EV

(iiz)
\S| Zan (@s,a_s) —U;(a)].

ng;EE,lls

(i) uses the fact that [ A, ;| = 1 and SN[N] = S. (ii) is because U; = 0 for any i € [N]. (iii) is
by the definition of /,, , and S. O

Lemma L2. For any joint strategy 7= € A“, by letting S = Hitliem Y
{{i,j} |i,j € [IN]A(i,5) € GV}, we have

Eqan U;
B, I 2o e Bves) e

= max Eq~r (as,a_ U; (a)l.
Se{{i}}ie[N] asE.As |S| Z a S S) ( )]

U{{i,g} [ i,de[NINi# }
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Proof. For any disconnected players 4, j and S = {4, j}, we can see that

1
max — Egmr [Ux (@s,a_s) — Ui (a
aseASISII;S a~r Uk (@s,a_g) — Uy (a)]
< ECLNTF U a s — -U
< e, e Banr U (85, 0-s) = Ly (a)
= E AT Z/l a s — _u
R 2, B Ui (@, 09) e ()
:Il?eaé( Amaj‘( Ear Z Up i (Gg,a_g) — Uk 1 (a)
asEAas | K E[N]: (kk')EGY
(%) a
— ey Jray Bavn > Urw (@rak) ~ Uik (a)
as€Aas | K E[N]: (kk')EGY

= Eamr Uk (Gr a—r) — U, :
max max Barr Uy (@r, a—r) — Us (a)]
(i) is because k' ¢ S since k € S = {i,j} and i, j are not connected. Therefore, since the coalition
exploitability of .S is upper bounded by the maximum of that of coalitions {7} and {j}, we do not
need to consider {1, j}.

Actually, the argument can be generalized to coalitions of any size M. If we want to consider
the coalition exploitability for coalitions no more than size M, then we only need to consider all
connected coalitions of size no more than size M by an induction similar to the proof above. O
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