
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COMPUTING EQUILIBRIUM BEYOND UNILATERAL
DEVIATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Most familiar equilibrium concepts, such as Nash and correlated equilibrium,
guarantee only that no single player can improve their utility by deviating uni-
laterally. They offer no guarantees against profitable coordinated deviations by
coalitions. Although the literature proposes notions to address multilateral devi-
ations (e.g., strong Nash and coalition-proof equilibrium), these generally fail to
exist. In this paper, we study a solution concept that accommodates multi-player
deviations and is guaranteed to exist. We prove a fixed-parameter lower bound on
the complexity of computing such an equilibrium and present an algorithm that
matches this bound.

1 INTRODUCTION

Most equilibrium concepts studied so far, such as Nash equilibrium (NE) (Nash Jr, 1950), correlated
equilibrium (CE) (Aumann, 1974), coarse correlated equilibrium (CCE) (Moulin & Vial, 1978),
and Stackelberg equilibrium (Von Stackelberg, 2010), guarantee only that no individual player can
gain by deviating unilaterally. However, they offer no guarantees when multiple players deviate
simultaneously by forming a coalition. In this paper, we address the following question:

What is an appropriate notion for capturing multilateral deviations, and how can
it be computed?

Previous notions that address coalition deviations, such as strong NE (Aumann, 1959)1 and
coalition-proof equilibrium (Bernheim et al., 1987), mostly fail to exist in general games (unlike
NE). Therefore, instead of searching for a joint strategy immune to all coalition deviations, we focus
on computing a joint strategy that minimizes the maximum average gain achievable by any coalition,
which is the average of improvements over all its members. In other words, we can compute the
most stable strategy profile, even if a perfectly stable one does not exist. We refer to this notion as
the Minimal Average-Strong Equilibrium (MASE).

The difficulty of this optimization problem naturally depends on the complexity of the interactions
between players. To formalize this, we introduce the Utility Dependency Graph, G(V, E), where
each player is a vertex. An edge connects two players, i and j, if and only if there is some player
k whose utility is affected by the actions of both i and j. Intuitively, an edge (i, j) signifies that
the actions of i and j are linked, as they jointly influence the payoff of some player k. This graph
provides a clear map of the game’s interaction structure, and its properties can help us understand
the computational complexity of finding the MASE. For games with simple interaction structures
(e.g., a sparse Utility Dependency Graph), one might expect to compute the MASE efficiently.

However, computing the MASE is computationally challenging in the general case. We establish
two key hardness results that delineate the problem’s complexity.

First, the problem is fundamentally harder than finding equilibria like NE or CE. In those cases, we
are solving a feasibility problem: finding a strategy where the maximum gain from deviating is at
most zero. For MASE, we must solve an optimization problem: minimizing this maximum gain.
This distinction is crucial, and we show that even for the simplest case of single-player deviations

1In this paper, we use the term strong equilibrium to broadly refer to any equilibrium concept that considers
multilateral deviations.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(i.e., coalitions of size one), approximating the MASE value to within a factor that is inverse poly-
nomial in the number of players is NP-hard. This indicates that even without considering complex
coalitions, the problem is intractable without additional assumptions on the game’s structure.

Second, we show that this complexity is intrinsically tied to the structure of the Utility Dependency
Graph. Building on the strong exponential time hypothesis (SETH) (Impagliazzo & Paturi, 2001)
(see Theorem 4.3 for details), we prove that solving MASE requires time that is at least exponential
in the treewidth2 of the Utility Dependency Graph. This holds even when we only consider coalitions
of a constant size. This result demonstrates that the treewidth is a fundamental barrier, and an
exponential dependence on it is unavoidable.

Finally, we present a positive result that matches the lower-bound time complexity, up to exponential
factors. We develop an algorithm that computes the MASE with a time complexity that is exponen-
tial in the treewidth of the Utility Dependency Graph. This demonstrates that our hardness result
is tight and establishes the treewidth as the definitive parameter characterizing the complexity of
computing the MASE. While the problem is hard in general, it becomes tractable for games where
the underlying interaction structure is not too complex.

To summarize, our contributions are as follows:

1. Complexity characterization: We establish lower bounds on the computational complexity
of computing the minimally deviated equilibrium, showing that the problem is inherently
tied to the treewidth of the Utility Dependency Graph.

2. Algorithmic contribution: We design an algorithm that efficiently computes the minimally
deviated equilibrium, achieving a running time that matches the established lower bound
up to exponential dependence on treewidth.

2 PRELIMINARIES

For any vector x ∈ Rn, we use xi to denote its ith element and ∥x∥p to denote its p-norm. By
default, ∥x∥ refers to the 2-norm. For a positive integer N , let [N] := 1, 2, . . . , N . We denote the
(n − 1)-dimensional probability simplex by ∆n := {x ∈ [0, 1]n :

∑n
i=1 xi = 1}. More generally,

for any discrete set S, we write ∆S for the probability simplex over S, where each coordinate
is indexed by an element of S. For instance, ∆n can also be written as ∆[n]. For a set S, |S|
denotes its cardinality, and S1 × S2 denotes the Cartesian product of sets S1 and S2. Finally, we let
1(argument) denote the indicator function, which equals 1 if the argument is true and 0 otherwise.

2.1 GAMES

A game is represented as a tuple (N, {Ai}Ni=1 , {Ui}Ni=1 ,S), where

• N is the number of players.
• Ai is the action set of player i. For convenience, let A :=×N

i=1
Ai denote the joint action

set.
• Ui : A → [0, 1] is the utility function of player i ∈ [N].
• S is the set of coalitions, which is a set of subsets of players. For example, if only unilateral

deviations are allowed (as in Nash equilibrium or coarse correlated equilibrium), then S =
{{1} , {2} , . . . , {N}}.

For notational simplicity, for any subset of players S ⊆ [N], we write AS :=×i∈S
Ai. Throughout

the paper, let A := maxi∈[N] |Ai| denote the size of the largest action set.

For any joint action a ∈ A, let ai denote the action of player i, and let a−i =
(a1, a2, . . . , ai−1, ai+1, . . . aN) be the joint action of all players except i. More generally, for any
subset S ⊆ [N], we write a−S for the joint action of players outside S.

2Treewidth can be thought of as a formal measure of how sparse and "tree-like" a graph is.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Confess (C) Defect (D)
Confess (C) (0.6, 0.6) (0, 1)
Defect (D) (1, 0) (0.2, 0.2)

Table 1: Utility matrix of the Prisoner’s Dilemma. Each entry (a, b) denotes the payoff of the row
player (a) and the column player (b).

2.2 SUCCINCT REPRESENTATION

This paper focuses on multi-player games with a succinct representation. Specifically, each utility
function Ui can be encoded using a number of bits polynomial in the number of players N , rather
than requiring O

(
N
∏N

i=1 |Ai|
)

bits as in the general case. Examples of succinctly represented
games include polymatrix games (Howson Jr, 1972; Eaves, 1973) and congestion games (Rosenthal,
1973). Throughout the paper, we call an algorithm efficient if its running time is polynomial in N , as
opposed to polynomial in

∏N
i=1 |Ai|. We focus on succinct games because MASE can otherwise be

solved by a linear program whose size grows exponentially with N (see Appendix B). Moreover, the
study of strong equilibrium is particularly compelling in large games, where exponential dependence
on N is computationally prohibitive.

3 MINIMAL AVERAGE-STRONG EQUILIBRIUM (MASE)

Several notions of strong equilibrium have been proposed, including the strong Nash equilibrium
(NE) (Aumann, 1959), the sum-strong NE (Hoefer, 2013) (no improvement on the total gain of any
coalition), and coalition-proof equilibrium (Bernheim et al., 1987). However, none of these exist in
general games. To build intuition, we first illustrate why a strong NE does not exist in the Prisoner’s
Dilemma. We further show that the problem persists even when correlated strategies are allowed.

Lemma 3.1. In the Prisoner’s Dilemma, no strong Nash nor strong correlated equilibrium exists
when S = {{1} , {2} , {1, 2}} is the set of all non-empty subsets of players.

Since correlated equilibria include all Nash equilibria, it suffices to examine strong correlated equi-
libria. A strong correlated equilibrium is a correlated joint strategy where no subset of players (a
coalition) can jointly deviate in a way that strictly improves the utility of all its members.

As shown in Table 1, any strategy with positive weight on (C,C), (C,D), (D,C) yields a profitable
deviation for at least one singleton coalition, {1} or {2}. Conversely, placing all weight on (D,D)
creates a deviation to (C,C) that benefits the coalition {1, 2}. Thus, no strong NE exists.

The failure of strong equilibria arises because coalition objectives may conflict, making it impossible
to find a strategy that simultaneously satisfies all coalitions. Motivated by this, rather than requiring
exact immunity to deviations, we instead seek to minimize the incentive to deviate since a minimizer
always exists by Weierstrass theorem. This leads to the following definition of Minimal Average-
Strong Equilibrium (MASE):

π∗ ∈ argmin
π∈∆A

max
S∈S

max
âS∈AS

1

|S|
∑
i∈S

Ea∼π [Ui (âS ,a−S)− Ui (a)] . (MASE)

Intuitively, (MASE) selects the correlated strategy π ∈ ∆A that minimizes the maximum average
gain attainable by any coalition across all possible coalitions. If this value is less than or equal to
zero, then no coalition can simultaneously deviate in a way that yields a strictly positive total gain.
Note that the algorithm presented in this paper can also be extended to handle any weighted average
over the coalition.

A correlated strategy π ∈ ∆A is called an ϵ-MASE if

max
S∈S

max
âS∈AS

1

|S|
∑
i∈S

Ea∼π [Ui (âS ,a−S)− Ui (a)]

≤max
S∈S

max
âS∈AS

1

|S|
∑
i∈S

Ea∼π∗ [Ui (âS ,a−S)− Ui (a)] + ϵ.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

A Strong Nash equilibrium requires that for any deviating coalition, at least one member does not
strictly improve their utility. In contrast, ϵ-MASE aims to minimize the average improvement over
all players within any given coalition. From another perspective, ϵ-MASE minimizes the incentive
to deviate, even when coalition members can freely reallocate utility within the coalition.

4 HARDNESS OF SOLVING MASE

Recall that we call an algorithm efficient if it runs in time polynomial in N . In this section, we first
establish the computational hardness of computing ϵ-MASE.

Theorem 4.1. Computing ϵ-MASE is NP-hard, even when S only contains singletons (coalitions
of size one) and 1/ϵ is polynomial in the number of players.

The proof is deferred to Appendix C. Importantly, Theorem 4.1 highlights a fundamental distinction
from the case of CCE, which can be computed efficiently (Papadimitriou & Roughgarden, 2008).
The reason is that for CCE it suffices to find a correlated strategy π ∈ ∆A such that the deviation gap,
maxi∈[N] maxâi∈Ai

Ea∼π [Ui (âi,a−i)− Ui (a)], is less or equal to zero, whereas here we must
find a strategy that minimizes the gap. Together with the linear programming characterization in
Appendix B, this implies that computing ϵ-MASE is actually NP-complete. In fact, Anagnostides
et al. (2025) recently showed that even minimizing the average deviation gap of CCE across all
players (instead of the maximum gap considered here) is also NP-complete.

4.1 FIXED PARAMETER LOWER BOUND

Next, we present a more refined hardness result: a fixed-parameter lower bound for computing
MASE. To do so, we first formalize the notion of dependencies among players’ utilities.

For each player i ∈ [N], define the relevant set N (i) ⊆ [N] consisting of all players j ∈ [N]
(including j = i) such that the action of j can affect the utility of i. Formally, j ∈ [N] is in N (i)
if and only if there exist a−j ∈ A−j and aj , a

′
j ∈ Aj such that Ui(aj ,a−j) ̸= Ui(a

′
j ,a−j). This

leads to the following graph representation.

Definition 4.2 (Utility Dependency Graph). The utility dependence graph G = (V, E) is an
undirected graph with vertex set V = [N] representing the players, and edge set E =⋃

k∈[N] {(i, j) | i, j ∈ N (k), i ̸= j}.

Since Ui depends only on the actions of players in N (i), we may equivalently write Ui(aC) =
Ui(aC ,a

′
−C) for arbitrary a′

−C ∈ A−C , where C ⊇ N (i). It is worth noting that this definition
differs from the graph of a graphical game (Kakade et al., 2003; Kearns et al., 2001). Here, players i
and j are connected if both influence the utility of some other player k, even if i and j do not directly
affect each other. Whereas in graphical games, two players i and j are connected if and only if at
least one can influence the other’s utility.

With this graph structure in place, we can connect the hardness of computing MASE to the treewidth
of G. Intuitively, treewidth measures how close a graph is to being a tree: the treewidth of G is one
when G is a tree, and it is N −1 when G is a complete graph. Throughout this section, let O∗ denote
asymptotic complexity with factors polynomial in N suppressed.

Theorem 4.3 (Treewidth). Suppose a tree decomposition of the Utility Dependency Graph is given.
Under the Strong Exponential Time Hypothesis (SETH) (Impagliazzo & Paturi, 2001),3 (MASE)
cannot be computed in O∗((A− ζ)tw(G)) for any ζ > 0. Moreover, under the additional assumption
that BPP=P,4 1

9N2 -approximate MASE cannot be computed in O∗((A− ζ)tw(G)) for any ζ > 0.

The proof is deferred to Appendix C.2. For approximate MASEs we assume BPP=P, which is
standard in the literature (Arora & Barak, 2009), because the reduction involves sampling joint

3SETH assumes that SAT cannot be solved in O∗((2 − ζ)n) for any ζ > 0, where n is the number of
variables in the SAT instance.

4This assumption implies that any problem with a polynomial-time randomized algorithm also has a
polynomial-time deterministic algorithm.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

actions from the approximate MASE. Since enumerating all a ∈ A is computationally infeasible, we
rely on randomized sampling. This yields only a randomized algorithm for the original NP-hard
problem, and the assumption BPP=P ensures that such a randomized algorithm can be derandomized
into a deterministic one, completing the reduction.

Theorem 4.3 shows that the computational complexity of solving MASE is inherently tied to the
treewidth of the Utility Dependency Graph. Intuitively, when the treewidth is large, each player’s
utility depends on many others, making even the evaluation of coalition deviations computationally
demanding (enumerating over all âS ∈ AS). In contrast, when the treewidth is small, such as
zero (each player’s utility depends only on their own action), computing MASE becomes trivial,
since each player’s utility can be maximized independently. In polymatrix games (Eaves, 1973),
the treewidth of the Utility Dependency Graph can be bounded by that of its corresponding graph.
Further details are provided in Appendix I.

5 EFFICIENT COMPUTATION OF MASE

Although an (MASE) lives in an exponentially large space (of size |A|), it can still be computed
efficiently. This is because the equilibrium always admits a compact representation.

Theorem 5.1 (Efficient Representation). For any ϵ ≥ 0, at least one of the ϵ-MASE can be repre-
sented as a linear combination of

∑
S∈S |S|·Atw(G)+1 pure strategies, where tw(G) is the treewidth

of Utility Dependency Graph.

The proof is deferred to Appendix D. Intuitively, Theorem 5.1 shows that there must be an ϵ-MASE
that always has a sparse representation. Since a pure strategy can be encoded by the index of its
unique action with nonzero probability, this compactness makes computation tractable.

5.1 META-GAME BETWEEN THE CORRELATOR AND DEVIATOR

To compute an (MASE), we reformulate the problem as a meta-game between two players: the
correlator and the deviator (Hart & Schmeidler, 1989). The correlator chooses the correlated strat-
egy π ∈ ∆A, while the deviator selects deviations. The game is zero-sum: the correlator aims to
minimize the coalition’s gain from deviation, and the deviator aims to maximize it. Formally:

min
π∈∆A

max
µ∈∆×S∈S AS

F (π, µ), (5.1)

where

F (π, µ) :=
∑
S∈S

∑
âS∈AS

µ(S, âS)

|S|
∑
i∈S

Ea∼π [Ui (âS ,a−S)− Ui (a)] . (5.2)

Here, we extend the deviator’s decision space from a discrete to a continuous set. This relaxation
does not strengthen the deviator, since the objective is linear in µ, and the maximum is always
attained at an extreme point. Therefore, (5.1) is equivalent to the original definition in (MASE).

A natural idea is to apply no-regret learning algorithms simultaneously for the correlator and devi-
ator. However, directly updating the full distributions π and µ is infeasible, because the underlying
spaces are exponentially large.

Fortunately, Theorem 5.1 implies that maintaining the full distributions is unnecessary: it suffices to
keep track of a polynomial number of pure strategies, and use their convex combination as the ap-
proximate equilibrium. This motivates our use of Follow the Perturbed Leader (FTPL) (Hazan et al.,
2016), where each decision at a timestep is a pure strategy, which can be represented compactly.

Let π(t) ∈ ∆A and µ(t) ∈ ∆×S∈S AS denote the decision variables at timestep t ≥ 1 for the
correlator and the deviator, respectively. The interaction between these two players can be described

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

2
1

3

5

4

31 4

21 4 3 5

Utility Dependence Graph Tree Decomposition
𝑩𝑩𝟏𝟏 = {𝟏𝟏,𝟑𝟑,𝟒𝟒}

𝑩𝑩𝟑𝟑 = {𝟑𝟑,𝟓𝟓}𝑩𝑩𝟐𝟐 = {𝟏𝟏,𝟐𝟐,𝟒𝟒}

Figure 1: An illustration of a tree decomposition of the Utility Dependency Graph.

by the update rule

π(t+1) ∈ argmin
π∈∆A

t∑
τ=1

F
(
π, µ(τ)

)
−
〈
ñ(t+1), π

〉
µ(t+1) ∈ argmax

µ(t)∈∆×S∈S AS

t∑
τ=1

F
(
π(τ), µ

)
+
〈
m̃(t+1), µ

〉
,

(5.3)

where ñ(t+1) and m̃(t+1) are noise vectors sampled independently at each timestep from some
distribution, which we will specify later. These noise terms play the role of regularizers in on-
line mirror descent (OMD) (Hazan et al., 2016), ensuring stability in the updates by controlling
E
[∥∥π(t+1) − π(t)

∥∥] and E
[∥∥µ(t+1) − µ(t)

∥∥].
Since F (π, µ) is bilinear in (π, µ), both the minimization and maximization problems admit solu-
tions at vertices of their respective decision spaces. In other words, the argmin for the correlator
and the argmax for the deviator always contain at least one pure strategy.

In what follows, we will explain in detail how to update π efficiently under this framework. The
update of µ is deferred to Appendix G.

5.2 EFFICIENT UPDATE OF π

The key step in updating π(t+1) is to select a pure strategy, i.e., a joint action a(t+1) ∈ A with
π(t+1)(a(t+1)) = 1, that minimizes the objective. To gain insight into this update rule, we first
examine how to compute argminπ∈∆A F (π, µ) for a fixed µ.

Suppose we want to find a joint action ã ∈ A such that the pure strategy π̃ with π̃(ã) = 1 minimizes
F (π̃, µ). Expanding the definition, we obtain

F (π̃, µ) =

N∑
i=1

∑
S∈S : i∈S

∑
âS∈AS

µ(S, âS)

|S| (Ui (âS , ã−S)− Ui (ã))

=

N∑
i=1

∑
S∈S : i∈S

∑
âS∈AS

µ(S, âS)

|S|
(
Ui

(
âS∩N (i), ãN (i)\S

)
− Ui

(
ãN (i)

))
.

Therefore, for each candidate ã ∈ A, only the local actions ãN (i) matter for the expression above.
If we can evaluate this expression efficiently,5 then for each player i ∈ [N] we may search for ãN (i)

that minimizes it. However, a difficulty arises because N (i) and N (j) may overlap across different
players. Hence, we must ensure that the local assignments remain globally consistent.

To address this, we now introduce the concept of a tree decomposition and show how it enables us
to optimize F efficiently. Throughout the paper, we assume that a tree decomposition is given, and
analyze the complexity only with respect to this decomposition.

Tree decomposition. A tree decomposition T := B1, B2, . . . , BK of the Utility Dependency
Graph G = (V, E) is a tree with K nodes (bags), each Bk ⊆ V where V = [N], satisfying the
following properties (Diestel, 2025):

5This is possible since µ is a linear combination of pure strategies when updated according to (5.3).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1.
⋃K

k=1 B
k = [N].

2. For every edge (i, j) ∈ E , there exists k with {i, j} ⊆ Bk.
3. For any player i ∈ [N], if i appears in two bags B,B′ ∈ T , then every bag on the path

from B to B′ also contains i.

As illustrated in Figure 1, the tree decomposition separates the game into overlapping bags. For
example, since B2 and B3 only overlap at B1, then B2 and B3 can be optimized independently,
with consistency later enforced at B1.

Since any clique in G is contained in some bag (Diestel, 2025), for every player i ∈ [N] there exists
a bag B with N (i) ⊆ B. We arbitrarily assign each player i to such a bag.

Dynamic programming on the tree. We begin by choosing an arbitrary bag as the root of the tree
decomposition and denote it by Br. For each bag B ∈ T , let C(B) denote the set of its children.
With this setup, we maintain a vector d(t+1) ∈ R×B∈T AB , defined as

d(t+1)(B,aB) =

t∑
τ=1

∑
S∈S

1

|S|
∑
i∈S :

i assigned to B

∑
âS∈AS

µ(τ) (S, âS)
(
Ui

(
(âS∩B ,aB\S)

)
− Ui(aB)

)
+

∑
B′∈C(B)

min
a′

B′∈AB′ :

aB∩B′=a′
B∩B′

d(t+1)(B′,a′
B′)− n(t+1)(B,aB),

(5.4)

where n(t+1)(B,aB) ∼ Exp (η)6 is sampled from an exponential distribution. Therefore, in (5.3),
ñ(t+1)(a) =

∑
B∈T n(t+1)(B,aB). Since each i assigned to B satisfies N (i) ⊆ B, the utility

Ui(aB) can be written in terms of aB alone. Moreover, the summation
∑

âS∈AS
can be computed

efficiently, since µ(τ) is updated via (5.3) and is therefore a pure strategy.

Reconstructing the strategy. The optimal joint action a(t+1) ∈ A is then reconstructed recur-
sively from the root Br to the leaves:

a
(t+1)
Br = argmin

aBr∈ABr

d(t+1)(Br,aBr)

∀B ∈ C(Br), a
(t+1)
B\Br = argmin

aB\Br∈AB\Br

d(t+1)
(
B, (aB\Br ,a

(t+1)
B∩Br)

)
.

(5.5)

By Property 1 of Tree Decomposition, every player’s action will be included. Since
argminaB\Br∈AB\Br is taken over AB\Br , no contradictions arise by Property 3 of Tree Decom-
position. We then set π(t+1)(a(t+1)) = 1.

The regret bound of this procedure is summarized below.

Theorem 5.2. Consider (5.3). For any δ > 0, with probability at least 1− δ, the following holds:

max
π̂∈∆A

T∑
t=1

F
(
π(t), µ(t)

)
− F

(
π̂, µ(t)

)
≤ 2 |T | 1 + (tw(G) + 1) logA

η
+ 2η |T |T +

√
2T log

1

δ
.

The proof is given in Appendix F. Importantly, Theorem 5.2 shows that by setting η = 1/
√
T , we

obtain O(
√
T) regret. Since the update rule for µ mirrors that of π, the detailed analysis is deferred

to Appendix G. We now formally state the regret bound for µ in the following theorem.

Theorem 5.3. Consider the updates in (5.3). For any δ > 0, with probability at least 1 − δ, the
following holds:

max
µ̂∈∆×S∈S AS

T∑
t=1

F
(
π(t), µ̂

)
− F

(
π(t), µ(t)

)
≤2 |T | 1 + (tw(G) + 1) logA

η
+ 2η |T |T +

√
2T log

1

δ
.

The complete proof is provided in Appendix G.
6Pr(x ≥ w) = exp(−ηw) when x ∼ Exp (η).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.3 COMPUTATION OF EQUILIBRIUM

For any δ′ > 0, by setting δ = δ′

2 in Theorem 5.2 and Theorem 5.3, and applying the union bound,
we obtain that with probability at least 1− δ′, the following holds:

max
µ̂∈∆×S∈S AS

T∑
t=1

F
(
π(t), µ

)
− min

π̂∈∆A

T∑
t=1

F
(
π̂, µ(t)

)
≤4 |T | 1 + (tw(G) + 1) logA

η
+ 4η |T |T + 2

√
2T log

2

δ′
.

(5.6)

We now connect this bound to the convergence of the average strategy profile. Let π∗, µ∗ be the
solution to (5.1), and define the average strategies π := 1

T

∑T
t=1 π

(t) and µ := 1
T

∑T
t=1 µ

(t). The
left-hand side of (5.6) corresponds to the duality gap: max

µ̂∈∆×S∈S AS
F (π, µ̂)−minπ̂∈∆A F (π̂, µ).

Since π∗, µ∗ are optimal solutions to (5.6), they satisfy

min
π̂∈∆A

F (π̂, µ) ≤ F (π∗, µ∗) ≤ max
µ̂∈∆×S∈S AS

F (π, µ̂).

Combining these pieces, we arrive at the following finite-time convergence guarantee:

Theorem 5.4. Let π∗, µ∗ be the solution of (5.1), and define π := 1
T

∑T
t=1 π

(t), µ := 1
T

∑T
t=1 µ

(t).
Then, for any δ > 0, with probability at least 1− δ, we have

max
µ̂∈∆×S∈S AS

F (π, µ̂) ≤ F (π∗, µ∗) + 4 |T | 1 + (tw(G) + 1) logA

ηT
+ 4η |T |+ 2

√
2 log 2

δ

T
.

With η = 1√
T

, the average strategy π constitutes an O
(

|T |·tw(G) logA+
√

log 2
δ√

T

)
-MASE. The overall

running time is O
(
T · |S| · |T | ·Atw(G)+1

)
. Hence, the exponential dependence aligns with the

lower bound in Theorem 4.3.

6 EXPERIMENTS

In this section, we compare our algorithm against several baselines: Follow the Regularized Leader
with a Euclidean regularizer (FTRL), Hedge, Follow the Perturbed Leader with an exponential noise
distribution (FTPL; all players run FTPL independently), and Online Mirror Descent with a Eu-
clidean regularizer (OMD) (Hazan et al., 2016). We also plot the ground-truth MASE computed via
linear programming (LP) in Appendix B. The code can be found in the supplementary materials.

We evaluate the algorithms on three criteria:

• Exploitability. (maxi∈[N] maxâi∈Ai
Ea∼π[Ui(âi,a−i)− Ui(a)]): the maximum gain a

single player can obtain by deviating unilaterally. Exploitability ≤ 0 indicate a Nash equi-
librium (or a correlated equilibrium if π is correlated).

• Coalition exploitability. (max
µ∈∆×S∈S AS

F (π, µ)): the maximum average gain when a
coalition deviates simultaneously. We take S to be the set of all non-empty player subsets.

• Social welfare. (
∑N

i=1 Ea∼π [Ui(a)]): the sum of all players’ utilities.

Utility definitions and additional details are provided in Appendix H. In the Prisoner’s Dilemma
(Luce & Raiffa, 1957), the MASE corresponds to players choosing (C,D) and (D,C) with prob-
ability 0.5 each, yielding a social welfare of 1.0. In contrast, because the unique NE/CCE in this
game is (D,D), the baselines converge to that outcome, with a lower social welfare of 0.4. Thus, in
the Prisoner’s Dilemma, MASE promotes cooperation and achieves higher utility.

In the Stag Hunt, there are two Nash equilibria, one of which attains higher utility. As shown in
Figure 2, all baselines converge to the worse equilibrium, whereas MASE converges to the better
one. Finally, in terms of exploitability (unilateral deviations), MASE remains close to the baselines,
while the baselines are substantially more fragile to multilateral deviations.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 5000

Timestep (t)

0.00

0.05

0.10

0.15

E
xp

lo
ita

bi
lit

y

0 5000

Timestep (t)

0.1

0.2

0.3

0.4

C
oa

lit
io

n
E

xp
l.

0 5000

Timestep (t)

0.4

0.6

0.8

1.0

1.2

So
ci

al
W

el
fa

re

Prisoner’s Dilemma

1

0 5000

Timestep (t)

−0.025

0.000

0.025

0.050

0.075

E
xp

lo
ita

bi
lit

y

0 5000

Timestep (t)

0.0

0.1

0.2

0.3

0.4

0.5

C
oa

lit
io

n
E

xp
l.

0 5000

Timestep (t)

1.0

1.2

1.4

1.6

1.8

2.0

So
ci

al
W

el
fa

re

Stag Hunt

MASE
FTPL

FTRL
OMD

Hedge
LP

Maximum

1Figure 2: LP denotes the linear programming solution from Appendix B, and Maximum denotes
the maximum achievable social welfare. The baselines are comparatively fragile to multilateral
deviations, while MASE is more robust and achieves higher social welfare. At the same time,
MASE’s exploitability is close to that of the baselines.

6.1 TRADE-OFF BETWEEN EXPLOITABILITY AND SOCIAL WELFARE

In Figure 2, we can see that by allowing exploitability to increase from 0.0 to 0.1, the social welfare
of MASE increases from 0.4 to 1.0. This raises a natural question:

Given a tolerance ϵ ≥ 0, what is the maximum social welfare achievable by an
equilibrium with exploitability at most ϵ?

In other words, if we are willing to sacrifice equilibrium robustness, how much can we improve
social welfare? Interestingly, this trade-off can be computed efficiently using a variant of our MASE
framework. Specifically, we solve the following weighted objective:

argmin
π∈∆A

max
S∈S

max
âS∈AS

wS

|S|
∑
i∈S

Ea∼π [Ui (âS ,a−S)− Ui (a)] , (6.1)

where w ∈ RS is a vector of non-negative weights. We have the following lemma.

Lemma 6.1. For any ϵ > 0, computing the CCE with exploitability no more than ϵ that maximizes
social welfare is equivalent to (6.1) by setting S = {{i}}i∈[N] ∪ {[N]} and using the weights:

wS =

{
w if |S| = 1

1− w if S = [N]

for some w ∈ [0, 1). Conversely, solving (6.1) with these parameters corresponds to finding a point
on the Pareto frontier of social welfare and exploitability.

The proof is postponed to Appendix H.4. With Lemma 6.1, we can compute the Pareto frontier by
solving (6.1) for different values of w. The results are shown in Figure 3. In the Stag Hunt, since
one of the Nash equilibria already maximizes social welfare, the social welfare remains fixed at its
optimal value for all w ∈ [0, 1).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0

Weight on Individual Rationality (w)

0.0

0.2

0.4

E
xp

lo
ita

bi
lit

y

Prisoner’s Dilemma

0.0 0.5 1.0

Weight on Individual Rationality (w)

−0.05

0.00

0.05

E
xp

lo
ita

bi
lit

y

Stag Hunt

0.5

1.0

So
ci

al
W

el
fa

re

1.9

2.0

2.1

So
ci

al
W

el
fa

re

Trade-off between Exploitability and Social Welfare

1Figure 3: The trade-off between exploitability and social welfare in the Prisoner’s Dilemma and the
Stag Hunt.

50 100

Number of Players (N)

0.0

0.1

0.2

0.3

0.4

C
oa

lit
io

n
E

xp
l.

2 3 4 5

Action Size (A)

0.1

0.2

0.3

0.4

1 2 3

Expected Interactions per Player (c)

0.1

0.2

0.3

0.4

Coalition Exploitability

MASE
FTPL

FTRL
OMD

Hedge
LP

1Figure 4: The coalition exploitability of random polymatrix games of different sizes when coalitions
with no more than two players are considered. A larger expected number of interactions per player
(c) generally corresponds to a larger treewidth of the Utility Dependency Graph.

6.2 COALITION EXPLOITABILITY IN LARGER GAMES

As shown in Figure 4, the coalition exploitability of the average strategy generated by classical no-
regret learning algorithms increases as the game size grows. Note that we only consider coalitions of
size no more than two. This trend underscores the importance of minimizing coalition exploitability.
As games become larger, the equilibria to which these algorithms converge become increasingly
fragile to coalition deviations, necessitating approaches that explicitly account for such multilateral
deviations. Further details are provided in Appendix I.

7 CONCLUSION

In this work, we introduced the Minimal Average-Strong Equilibrium (MASE), a tractable solution
concept that accounts for multilateral deviations by minimizing each coalition’s average incentive
to deviate. We established that computing an approximate MASE is NP-hard even with singleton
coalitions and proved a fixed-parameter lower bound showing unavoidable exponential dependence
on the treewidth of the Utility Dependency Graph. We then designed an algorithm—combining a
correlator–deviator meta-game with FTPL updates and dynamic programming over a tree decompo-
sition, whose running time matches this lower bound up to the treewidth factor. Empirically, MASE
is substantially more robust to coalition deviations than standard baselines while improving social
welfare in canonical games, all without materially worsening unilateral exploitability.

In the future, it is natural to move beyond uniform averaging within coalitions. A compelling open
direction is to characterize lower and upper bounds for objectives that minimize the minimal incen-
tive within each coalition. More broadly, extending these ideas to richer coalition objectives would
mature the strong-equilibrium framework and yield more solution concepts that go beyond unilateral
deviations.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

This paper presents work that aims to advance the field of game theory. There are many potential
societal consequences of our work, none of which we feel must be specifically highlighted here.

9 REPRODUCIBILITY STATEMENT

The code is provided in the supplementary material. The proof and assumptions are stated in Ap-
pendices C, D, F and G.2.

10 USE OF LARGE LANGUAGE MODELS

In this paper, we use large language models (LLMs) to improve writing, e.g., by correcting gram-
matical errors, to search for related work so that no relevant papers are overlooked, and to assist with
coding.

REFERENCES

Naman Agarwal, Alon Gonen, and Elad Hazan. Learning in non-convex games with an optimization
oracle. In Conference on Learning Theory (COLT), 2019.

Ioannis Anagnostides, Gabriele Farina, Tuomas Sandholm, and Brian Hu Zhang. A polynomial-time
algorithm for variational inequalities under the minty condition. arXiv preprint arXiv:2504.03432,
2025.

Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge Uni-
versity Press, 2009.

Robert Aumann. Acceptable points in General Cooperative n-person Games, pp. 287–324. Prince-
ton University Press, 01 1959. doi: 10.1090/fic/023/01.

Robert J Aumann. Subjectivity and correlation in randomized strategies. Journal of mathematical
Economics, 1(1):67–96, 1974.

Carl T Bergstrom and Peter Godfrey-Smith. On the evolution of behavioral heterogeneity in indi-
viduals and populations. Biology and Philosophy, 13(2):205–231, 1998.

B Douglas Bernheim, Bezalel Peleg, and Michael D Whinston. Coalition-proof Nash equilibria i.
concepts. Journal of economic theory, 42(1):1–12, 1987.

Marie Louisa Tølbøll Berthelsen and Kristoffer Arnsfelt Hansen. On the computational complexity
of decision problems about multi-player Nash equilibria. Theory of Computing Systems, 66(3):
519–545, 2022.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Xi Chen and Xiaotie Deng. Settling the complexity of two-player Nash equilibrium. In Symposium
on Foundations of Computer Science (FOCS), 2006.

Vincent Conitzer and Tuomas Sandholm. New complexity results about Nash equilibria. Games
and Economic Behavior, 63(2):621–641, 2008.

Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The complexity of
computing a Nash equilibrium. Communications of the ACM, 52(2):89–97, 2009.

Reinhard Diestel. Graph theory, volume 173. Springer Nature, 2025.

B Curtis Eaves. Polymatrix games with joint constraints. SIAM Journal on Applied Mathematics,
24(3):418–423, 1973.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski. Fundamental problems on
bounded-treewidth graphs: The real source of hardness. In International Colloquium on Au-
tomata, Languages and Programming (ICALP), 2024.

Nicola Gatti, Marco Rocco, and Tuomas Sandholm. On the verification and computation of strong
Nash equilibrium. In International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS), 2013.

Sergiu Hart and David Schmeidler. Existence of correlated equilibria. Mathematics of Operations
Research, 14(1):18–25, 1989.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in Opti-
mization, 2(3-4):157–325, 2016.

Martin Hoefer. Strategic cooperation in cost sharing games. International Journal of Game Theory,
42(1):29–53, 2013.

Ron Holzman and Nissan Law-Yone. Strong equilibrium in congestion games. Games and economic
behavior, 21(1-2):85–101, 1997.

Joseph T Howson Jr. Equilibria of polymatrix games. Management Science, 18(5-part-1):312–318,
1972.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of Computer
and System Sciences, 62(2):367–375, 2001.

Sham Kakade, Michael Kearns, John Langford, and Luis Ortiz. Correlated equilibria in graphical
games. In ACM Conference on Electronic Commerce, 2003.

Yasushi Kawase and Hanna Sumita. On the max-min fair stochastic allocation of indivisible goods.
In AAAI Conference on Artificial Intelligence (AAAI), 2020.

Michael J. Kearns, Michael L. Littman, and Satinder Singh. Graphical models for game theory. In
Conference on Uncertainty in Artificial Intelligence (UAI), 2001.

Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of bounded
treewidth are probably optimal. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2011.

Duncan R.. Luce and Howard Raiffa. Games and Decisions. wiley, 1957.

Hervé Moulin and J-P Vial. Strategically zero-sum games: the class of games whose completely
mixed equilibria cannot be improved upon. International Journal of Game Theory, 7(3-4):201–
221, 1978.

John F Nash Jr. Equilibrium points in n-person games. Proceedings of the national academy of
sciences, 36(1):48–49, 1950.

Rabia Nessah and Guoqiang Tian. On the existence of strong Nash equilibria. Journal of Mathe-
matical Analysis and Applications, 414(2):871–885, 2014.

Christos H Papadimitriou and Tim Roughgarden. Computing correlated equilibria in multi-player
games. Journal of the ACM (JACM), 55(3):1–29, 2008.

AC Pigou. The economics of welfare macmillan. New York, 1920.

Mona Rahn and Guido Schäfer. Efficient equilibria in polymatrix coordination games. In Interna-
tional Symposium on Mathematical Foundations of Computer Science (MFCS), 2015.

Robert W Rosenthal. A class of games possessing pure-strategy Nash equilibria. International
Journal of Game Theory, 2(1):65–67, 1973.

Ola Rozenfeld and Moshe Tennenholtz. Strong and correlated strong equilibria in monotone conges-
tion games. In International Workshop on Internet and Network Economics, pp. 74–86. Springer,
2006.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Arun Sai Suggala and Praneeth Netrapalli. Online non-convex learning: Following the perturbed
leader is optimal. In Algorithmic Learning Theory (ALT), 2020.

Heinrich Von Stackelberg. Market structure and equilibrium. Springer Science & Business Media,
2010.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A RELATED WORK

In this section, we review the literature on strong equilibrium from three perspectives: existence,
time complexity, and computation.

Existence of Strong Equilibrium. Aumann (1959) introduced the strong NE, where no coalition
(a nonempty subset of players) can deviate in a way that strictly improves the utility of all its mem-
bers. However, even in simple two-player games such as the Prisoner’s Dilemma (Luce & Raiffa,
1957), a strong NE does not exist when players can coordinate. To address this, Bernheim et al.
(1987) proposed the coalition-proof equilibrium, which restricts the set of deviations. Yet, this con-
cept also fails to guarantee existence, already in three-player games (Bernheim et al., 1987). More
recently, Rahn & Schäfer (2015) studied the notion of α-approximate k-equilibrium, where no coali-
tion of size at most k can deviate to improve each member’s utility by at least a factor of α ≥ 1.
They further showed that such equilibria exist in graph coordination games only under specific con-
ditions, for instance, when α ≥ 2. Motivated by these non-existence results, we instead focus on
minimizing the maximum average gain from coalition deviations (MASE), a quantity that is always
well defined.

Complexity of Strong Equilibrium. Since a strong NE degenerates to an NE when only sin-
gleton coalitions are considered, computing a strong NE is PPAD-hard in general (Daskalakis
et al., 2009; Chen & Deng, 2006). Beyond computation, Conitzer & Sandholm (2008) showed that
even deciding whether a strong NE exists is NP-complete in two-player symmetric games, and
Berthelsen & Hansen (2022) further established that the problem is ∃R-complete for three-player
games. Similarly, Rahn & Schäfer (2015) proved that determining the existence of a strong NE is
NP-complete in graph coordination games, even when restricting attention to coalitions of con-
stant size. To the best of our knowledge, however, no hardness results are known for computing
strong equilibria when correlation on the joint strategy is allowed, i.e., a correlated strategy immune
to coalition deviations. In this paper, we show that computing a correlated strategy that minimizes
the average gain from coalition deviations is NP-hard. Moreover, we establish a fixed-parameter
lower bound based on the treewidth of the Utility Dependency Graph, demonstrating an inherent
computational barrier in solving the MASE considered here.

Computation of Strong Equilibrium. Holzman & Law-Yone (1997) and Rozenfeld & Tennen-
holtz (2006) developed algorithms to compute strong NE and correlated strong equilibria in con-
gestion games under certain conditions in polynomial time. Rahn & Schäfer (2015) showed that a
strong NE can also be computed in polynomial time when the graph coordination game is defined
on a tree. In contrast, Gatti et al. (2013) proposed a spatial branch-and-bound algorithm for comput-
ing strong NE more generally, but its runtime is exponential. Along the same lines, Nessah & Tian
(2014) also provided a computationally intractable algorithm. Of independent interest, Papadim-
itriou & Roughgarden (2008) introduced an efficient algorithm for computing optimal CE—e.g., a
CE that maximizes the social welfare—in graphical games (Kearns et al., 2001; Kakade et al., 2003)
with bounded treewidth, using linear programming. In this paper, we develop a new algorithm for
computing MASE based on no-regret learning, with a time complexity that matches the lower bound
dictated by the treewidth of the Utility Dependency Graph.

B LINEAR PROGRAMMING FOR SOLVING (MASE)

(MASE) can be solved by the following linear programming

min
π,w

w

w ≥ 1

|S|
∑
i∈S

Ea∼π [Ui (âS ,a−S)− Ui (a)] ∀S ∈ S, âS ∈ AS

π(a) ≥ 0 ∀a ∈ A∑
a∈A

π(a) = 1.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Since
Ea∼π [Ui (âS ,a−S)] =

∑
a∈A

π(a)Ui(âS ,a−S)

Ea∼π [Ui (a)] =
∑
a∈A

π(a)Ui(a)

are linear in π, the linear programming above is valid. Note that the linear program contains expo-
nentially many variables (π ∈ ∆A), so its complexity is necessarily exponential in N .

C OMITTED PROOFS IN SECTION 4

This section presents the omitted proofs in Section 4.

C.1 PROOF OF THEOREM 4.1

Theorem 4.1. Computing ϵ-MASE is NP-hard, even when S only contains singletons (coalitions
of size one) and 1/ϵ is polynomial in the number of players.

Proof. We will introduce the allocation problem (NP-hard) and show that it can be reduced to
computing the correlated strong equilibrium.

Definition C.1 (Allocation Problem). There are n agents and m goods. An assignment X : [m] →
[n] is a mapping from each good to an agent. Agent i’s utility is ui(X) for an assignment X . A
stochastic allocation p ∈ ∆[m][n]

is a distribution over all possible assignments. The egalitarian
social welfare (ESW) maximization is defined as

max
p∈∆[m][n]

min
i∈[n]

∑
X∈[m][n]

p(X)ui(X). (C.1)

For any allocation problem, we can create a game with N = n+m players. The action set of player
i ≤ n is Ai = {0, 1}, while the action set of player j > n is Aj = [n]. For any joint action a ∈ A,
Ui(a) = ui(a−[n]) for i ≤ n when a1 = a2 = · · · = an, otherwise Ui(a) = −ui(a−[n]). For
j > n, Uj(a) = 0. Moreover, let S = {{1} , {2} , . . . , {n}}. We further define

a :=
∑

a∈A :
a2=a3=···=an=0

π(a)ui

(
a−[n]

)
b :=

∑
a∈A :

a2=a3=···=an=1

π(a)ui

(
a−[n]

)
c :=−

∑
a∈A :

∃i,j∈[n]\{1},ai ̸=aj

π(a)ui

(
a−[n]

)
.

Then, the gap of player 1 is lower bounded by
max

â1∈{0,1}
Ea∼π [Ui (â1,a−1)− Ui (a)] ≥max (a, b) + c− (a+ b+ c) = −min (a, b) .

The equation holds when a1 is always equal to a2 when a2 = a3 = · · · = an. Therefore, the optimal
strategy π should satisfy π[n]((0, . . . 0)) = π[n]((1, . . . 1)) =

1
2 .

Then, (MASE) is equivalent to

min
π[m]∈∆[m][n]

max
i∈[n]

∑
a∈A

−π(a)ui(a−[n]) = min
π[m]∈∆[m][n]

max
i∈[n]

∑
a−[n]∈[m][n]

−π−[n](a−[n])ui(a−[n]),

which is equivalent to (C.1). Finally, according to Kawase & Sumita (2020, Corollary 1), it is
NP-hard to approximate (C.1) up to 1− 1

e .

The hard instance constructed in Kawase & Sumita (2020) satisfies that maxi maxX∈[m][n] ui(X) =

Poly(n,m) and the solution to (C.1) is 1. Therefore, Poly(N, 1
ϵ) algorithm does not exist unless

P=NP for solving an ϵ-MASE.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C.2 PROOF OF THEOREM 4.3

Proof. According to Lokshtanov et al. (2011), under SETH, q-coloring cannot be solved in
O((q − ζ)tw · Poly(|I|)) for arbitrary graph G, when a tree decomposition of width tw is given.7
In the sequel, we construct a game such that computing 1

N -approximate (MASE) is equivalent to
determining the q-coloring.

For any q-coloring problem on G = (V,E), we will construct a game with N = |V |+ |E| players.
For each player i ≤ |V |, the action set Ai = {1, 2, . . . , q} and the utility function Ui ≡ 0 is
a constant function equal to zero. For each player j > |V |, the action set is {1} and the utility
function is Uj(a) = 1

(
aej−|V |,1 ̸= aej−|V |,2

)
, where (ej−|V |,1, ej−|V |,2) is the (j − |V |)th edge in

E and 1 is the indicator function (equals one when the argument is true and otherwise zero). In this
game, S = {{i1, i2, j + |V |} | ej = (i1, i2)}.

Firstly, for any proper coloring c ∈ [q]|V |, the associated pure strategy is πc, where πc
i (ai) = 1 if

and only if ai = ci and 0 otherwise. It satisfies (MASE). Because for any S ∋ S = (i1, i2, j+ |V |),
the maximum of 1

|S|
∑

i∈S Ui(π) is 1
3 , which is attained when the colors of node i1, i2 are different.

Therefore, πc obtains the maximum for every coalition S ∈ S , which implies the satisfaction of
(MASE).

Secondly, for any joint strategy π ∈ ∆A satisfying (MASE), we have

min
S∈S

∑
i∈S Ui(π)

|S| ≤ 1

|S|
∑
S∈S

∑
i∈S Ui(π)

|S| =
∑
a∈A

π(a)
1

|S|
∑
S∈S

∑
i∈S Ui(a)

|S|

≤1

3
− 1

3|E|
∑
a∈A

π(a)1
(
a[|V |] is not a proper coloring

)
.

Because there must exist at least one edge with both of its nodes in the same color for any improper
coloring. On the other hand, let π̂ = πc for some proper coloring c. Then, for any S ∈ S, we have∑

i∈S Ui(π̂)

|S| =
1

3
.

Therefore, the approximation error of (MASE) is at least

1

3|E|
∑
a∈A

π(a)1
(
a[|V |] is not a proper coloring

)
for any joint strategy π. When we get 1

9N2 approximation, since |E| ≤ N2, we have∑
a∈A

π(a)1
(
a[|V |] is not a proper coloring

)
≤ 1

3
.

Therefore, when sampling a ∼ π, we will get a proper coloring with probability at least 2
3 , which

is in complexity class RP. As a result, when P=RP, the time complexity of computing (MASE) is at
least O∗(Atw(G)), where G is the trust graph and A is the size of the maximal action set.

D PROOF OF THEOREM 5.1

Theorem 5.1 (Efficient Representation). For any ϵ ≥ 0, at least one of the ϵ-MASE can be repre-
sented as a linear combination of

∑
S∈S |S|·Atw(G)+1 pure strategies, where tw(G) is the treewidth

of Utility Dependency Graph.

7As summarized in Esmer et al. (2024), the proof of the q-coloring complexity implicitly implies that the
complexity is lower bounded by O(qtw · Poly(|I|)), even though a tree decomposition of width tw is given.
In other words, aside from computing a tree decomposition, the q-coloring itself has an intrinsic computational
barrier.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. Let D :=
∑

S∈S
∑

i∈S

∣∣AS∩N (i)

∣∣. For any joint strategy π ∈ ∆A, consider the vector
vπ ∈ RD, where

vπ(S, i, âS∩N (i)) = Ea∼π

[
Ui(âS∩N (i),a−(S∩N (i)))− Ui(a)

]
,

for any S ∈ S and âS∩N (i) ∈ AS∩N (i). By definition of vπ , it is linear in π. Therefore, the vertex
set of

{
vπ |π ∈ ∆A} should correspond to a subset of ∆A’s vertex set, which is the set of all pure

strategies.

By Carathéodory’s theorem, for any π∗ ∈ ∆A, vπ∗
can be represented as the linear combination of

D + 1 vertices, which further implies it can be written as a linear combination of D + 1 vectors in
{vπ |π is a pure strategy}. Then, when vπ∗

=
∑D+1

k=1 λkvπk

with λ ∈ ∆D+1 and π1, π2, . . . are
pure strategies, due to the linearity of vπ , we have

vπ∗
=

D+1∑
k=1

λkvπk

= v
∑D+1

k=1 λkπk

.

Finally,

max
S∈S

max
âS∈AS

1

|S|
∑
i∈S

Ea∼π [Ui (âS ,a−S)− Ui (a)]

=max
S∈S

max
âS∈AS

1

|S|
∑
i∈S

Ea∼π

[
Ui

(
âS∩N (i),a−(S∩N (i))

)
− Ui (a)

]
=max

S∈S
max

âS∈AS

1

|S|
∑
i∈S

vπ
∗
(S, i, âS∩N (i))

=max
S∈S

max
âS∈AS

1

|S|
∑
i∈S

v
∑D+1

k=1 λkπk

(S, i, âS∩N (i)).

Hence, once π∗ satisfies (MASE), there exists a linear combination of D + 1 pure strategies also
satisfying (MASE). Given N (i) ≤ tw(G), we have D ≤∑S∈S |S| ·Atw(G).

E THE OPTIMALITY OF DYNAMIC PROGRAMMING ON TREE
DECOMPOSITION

This section shows that the dynamic programming (e.g., (5.4)) will compute the optimality. Let
ui(aN (i)) be the contribution of player i’s utility to the final objective. Recall that N S

i := N (i)∩S.
Then, in (5.4),

ui(aN (i)) = −
t∑

τ=1

∑
S∈S

1

|S|
∑
i∈S

∑
âNS

i
∈ANS

i

µ(τ)
(
S, âNS

i

)(
Ui

(
âNS

i
,aN (i)\S

)
− Ui(aN (i))

)
at timestep t. We consider the following update rule in this section, which generalizes (5.4) and
(G.1) (see the proof of Lemma F.3 and Lemma G.1),

h(B,aB) =
∑

i∈[N] :
i assigned to B

ui(aN (i)) +
∑

B′∈C(B)

max
a′

B′∈AB′ :

aB∩B′=a′
B∩B′

h(B′,a′
B′). (E.1)

In the following, we will show that (E.1) is optimal.

Lemma E.1. For any bag B ∈ T , let st(B) := {i}i assigned to B ∪ ⋃B′∈C(B) st(B′) be the set of
players assigned to B and bags in its subtree. Then, for any bag B ∈ T and aB ∈ AB , we have

h(B,aB) = max
a−B∈A−B

∑
i∈st(B)

ui(aN (i)). (E.2)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

The proof is postponed to the end of this section. Note that for the root bag Br, since st(Br) = [N],
Lemma E.1 implies that maxaBr∈ABr h(Br,aBr) = maxa∈A

∑N
i=1 ui(aN (i)). Therefore, we find

the maximum of
∑N

i=1 ui(aN (i)), and the optimal joint action a ∈ A can be extracted recursively.

Specifically, let
a∗
Br = argmax

aBr∈ABr

h(Br,aBr)

∀B ∈ C(Br), a∗
B\Br = argmax

aB\Br∈AB\Br

d
(
B, (aB\Br ,a

(t+1)
B∩Br)

)
.

(E.3)

We will do this recursively until we find the whole a∗ ∈ A. The tie-breaking rule can be arbitrary,
and we use the lexicographic order of joint actions for simplicity. Hence, we prove the optimality of
the update rule (E.1).

Lemma E.1. For any bag B ∈ T , let st(B) := {i}i assigned to B ∪ ⋃B′∈C(B) st(B′) be the set of
players assigned to B and bags in its subtree. Then, for any bag B ∈ T and aB ∈ AB , we have

h(B,aB) = max
a−B∈A−B

∑
i∈st(B)

ui(aN (i)). (E.2)

Proof. For leaf bags B (C(B) = ∅), for any joint action aB ∈ AB , we have

h(B,aB) =
∑

i∈[N] :
i assigned to B

ui(aN (i)) =
∑

i∈st(B)

ui(aN (i))
(i)
= max

a−B∈A−B

∑
i∈st(B)

ui(aN (i)).

(i) is because N (i) ⊆ B for any i assigned to B by definition. Additionally, since B is a leaf bag,
st(B) = {i ∈ B : i assigned to B}.

Then, for any bag B with all of its children B′ ∈ C(B) satisfying (E.2), we have

h(B,aB) =
∑

i∈[N] :
i assigned to B

ui(aN (i)) +
∑

B′∈C(B)

max
a′

B′∈AB′ :

aB∩B′=a′
B∩B′

h(B′,a′
B′)

(i)
=

∑
i∈[N] :

i assigned to B

ui(aN (i)) +
∑

B′∈C(B)

max
a′

B′∈AB′ :

aB∩B′=a′
B∩B′

max
a′

−B′∈A−B′

∑
i∈st(B′)

ui(a
′
N (i))

=
∑

i∈[N] :
i assigned to B

ui(aN (i)) +
∑

B′∈C(B)

max
a′∈A :

aB∩B′=a′
B∩B′

∑
i∈st(B′)

ui(a
′
N (i)).

(i) uses the induction hypothesis. By Property 3 of Tree Decomposition, for any B′ ∈ C(B) and
i ∈ st(B′), N (i) ∩ (B \B′) = ∅. Because for any i ∈ st(B′), there must be a bag B′′ in the
subtree of B′ such that N (i) ⊆ B′′, and Property 3 of Tree Decomposition will be violated if
N (i) ∩B \B′ ̸= ∅. Then, modifying the constraint aB∩B′ = a′

B∩B′ to aB = a′
B will not change

the value of ui(a
′
N (i)) for any i ∈ st(B′). Hence,

h(B,aB) =
∑

i∈[N] :
i assigned to B

ui(aN (i)) +
∑

B′∈C(B)

max
a′∈A :
aB=a′

B

∑
i∈st(B′)

ui(a
′
N (i)).

Furthermore, by Property 3 of Tree Decomposition, for any B′, B′′ ∈ C(B) and i′ ∈ st(B′), i′′ ∈
st(B′′), we have N (i′) ∩N (i′′) ⊆ B. Finally,

h(B,aB) =
∑

i∈[N] :
i assigned to B

ui(aN (i)) + max
a′∈A :
aB=a′

B

∑
B′∈C(B)

∑
i∈st(B′)

ui(a
′
N (i))

= max
a−B∈A−B

 ∑
i∈[N] :

i assigned to B

ui(aN (i)) +
∑

B′∈C(B)

∑
i∈st(B′)

ui(a
′
N (i))


= max

a−B∈A−B

∑
i∈st(B)

ui(aN (i)).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

This completes the induction.

F PROOF OF THEOREM 5.2

Theorem 5.2. Consider (5.3). For any δ > 0, with probability at least 1− δ, the following holds:

max
π̂∈∆A

T∑
t=1

F
(
π(t), µ(t)

)
− F

(
π̂, µ(t)

)
≤ 2 |T | 1 + (tw(G) + 1) logA

η
+ 2η |T |T +

√
2T log

1

δ
.

Proof. The proof of Theorem 5.2 can be decomposed into three steps.

Firstly, we show that without loss of generality, if FTPL with a fixed noise ñ for all timesteps
t = 1, 2, . . . attains sublinear regret when the adversary is oblivious,8 then FTPL with independent
noise vectors ñ(t) also attains the same regret confronting an adaptive adversary. The reduction to
the oblivious setting is common in the literature (Agarwal et al., 2019; Suggala & Netrapalli, 2020),
and we include it here for completeness.

Secondly, we will show that the regret of a fictitious algorithm π(t+1) ∈
argminπ∈∆A

∑(t+1)
τ=1 F

(
π, µ(τ)

)
+
〈
ñ(t+1), π

〉
is sublinear.

Finally, we will show that the regret of (5.3) and that of the fictitious algorithm are close.

F.1 FIXED NOISE VECTOR

In this section, for completeness, we will show a reduction from an adaptive adversary to an obliv-
ious adversary. For ease of representation, we will take correlator (π) as the no-regret learner, and
the deviator (µ) as the adversary.

An adaptive adversary determines the utility function at timestep t, which is µ(t) in this section,
according to our past strategies, π(1), . . . , π(t−1). In contrast, an oblivious adversary determines
all utility functions, i.e., µ(1), . . . , µ(T), at the beginning (timestep 0), such that µ(t) is irrelevant
to π(1), . . . , π(t−1). In the following, we will show that a sublinear regret against an oblivious
adversary implies a sublinear regret against an adaptive adversary.

Intuitively, when the random noise ñ(1), . . . , ñ(T) are independent, π(t) only depends on
µ(1), . . . , µ(t−1), which is known to both the oblivious and adaptive adversary, due to the update
rule (5.3). Hence, an additional observation on π(1), . . . , π(t−1) does not make adversary more
powerful. Formally, we have the following lemma (Cesa-Bianchi & Lugosi, 2006, Lemma 4.1).

Lemma F.1 (Reformulation of Lemma 4.1 in Cesa-Bianchi & Lugosi (2006)). Consider any ran-
domized no-regret learner and the distribution of the decision variable π(t) is fully determined by
µ(1), . . . , µ(t−1). Assume the no-regret learner’s regret against any sequence of µ(1), . . . , µ(T) gen-
erated by an oblivious adversary satisfies that

Eñ(1),...,ñ(T)

[
max
π̂∈∆A

T∑
t=1

F
(
π(t), µ(t)

)
− F

(
π̂, µ(t)

)]
︸ ︷︷ ︸

Expected Regret

≤ R.

Then, for any sequence of µ(1), . . . , µ(T) generated by an adaptive adversary and δ > 0, with
probability at least 1− δ, we have

max
π̂∈∆A

T∑
t=1

F
(
π(t), µ(t)

)
− F

(
π̂, µ(t)

)
≤ R+

√
2T log

1

δ
.

8An oblivious adversary will choose all the utility functions at timestep 0, while an adaptive adversary will
choose the utility functions at timestep t according to π(1), π(2), . . . , π(t−1).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

It is easy to see that the distribution of π(t) generated by (5.3), whose randomness is induced by ñ(t),
is fully determined by µ(1), . . . , µ(t−1), given ñ(t) is generated by a fixed distribution independently
at each timestep.

Then, we will show that the expected regret of FTPL using independent noise vectors and FTPL
with a fixed noise vector is the same, while facing an oblivious adversary.

Eñ(1),...,ñ(T)

[
T∑

t=1

F
(
π(t), µ(t)

)]
=

T∑
t=1

Eñ(1),...,ñ(T)

[
F
(
π(t), µ(t)

)]
(i)
=

T∑
t=1

Eñ(t)

[
F
(
π(t), µ(t)

)]
.

(i) uses the fact that both π(t) and µ(t) are independent of ñ(1), . . . , ñ(t−1), when the adversary
controlling µ is oblivious. Finally, the expectation Eñ(1)

[
F
(
π(t), µ(t)

)]
of

π(t+1) ∈ argmin
π∈∆A

t∑
τ=1

F
(
π, µ(τ)

)
−
〈
ñ(1), π

〉
is equal to Eñ(t)

[
F
(
π(t), µ(t)

)]
, when n(t) and n(1) are sampled from an identical distribution. In

summary,
fixed noise and an oblivious adversary (Expectation)

⇒independent noise and an oblivious adversary (Expectation)
⇒independent noise and an adaptive adversary (High Probability Bound).

Hence, the problem reduces to proving sublinear regret against an oblivious adversary with a fixed
noise vector for all timesteps.

F.2 LOW REGRET WITH ACCURATE PREDICTION

The discussion above suggests that we only need to show the sublinear regret against an oblivious
adversary, when all timesteps share the same noise vector. In other words, we consider the following
update rule,

π(t+1) ∈ argmin
π∈∆A

t∑
τ=1

F
(
π, µ(τ)

)
− ⟨ñ, π⟩ , (F.1)

where ñ, ñ(1), . . . , ñ(T) are identically distributed.

Next, we will show that if the regret minimizer can make the decision π(t+1) with an accurate
prediction of µ(t+1), then we can achieve sublinear regret. In particular, the decision variable at
timestep t+ 1 is chosen according to (F.2).

π(t+1) ∈ argmin
π∈∆A

t+1∑
τ=1

F
(
π, µ(τ)

)
− ⟨ñ, π⟩ . (F.2)

Actually, we can see that (F.2) is exactly the original update rule of π(t+2). Therefore, we will prove
the following lemma in the sequel.

Lemma F.2. Consider (F.2). For any timestep t = 1, 2, . . . , µ(1), µ(2), . . . , and any π̂ ∈ ∆A, we
have

t∑
τ=1

(
F
(
π(τ+1), µ(τ)

)
− F

(
π̂, µ(τ)

))
≤
〈
ñ, π(2) − π̂

〉
. (F.3)

Proof. We will prove the lemma by induction. When t = 1, we have

F
(
π(2), µ(1)

)
− F

(
π̂, µ(1)

)
=
(
F
(
π(2), µ(1)

)
−
〈
ñ, π(2)

〉)
−
(
F
(
π̂, µ(1)

)
− ⟨ñ, π̂⟩

)
+
〈
ñ, π(2) − π̂

〉
(i)

≤
〈
ñ, π(2) − π̂

〉
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(i) is because π(2) ∈ argminπ∈∆A F
(
π, µ(1)

)
− ⟨ñ, π⟩.

Next, we will show that when (F.3) holds for t = t0, then it also holds for t = t0 + 1. For any
π̂ ∈ ∆A, we have

t0+1∑
τ=1

(
F
(
π(τ+1), µ(τ)

)
− F

(
π̂, µ(τ)

))
=

t0+1∑
τ=1

F
(
π(τ+1), µ(τ)

)
−
(

t0+1∑
τ=1

F
(
π̂, µ(τ)

)
− ⟨ñ, π̂⟩

)
− ⟨ñ, π̂⟩

(i)

≤
t0+1∑
τ=1

F
(
π(τ+1), µ(τ)

)
−
(

t0+1∑
τ=1

F
(
π(t0+2), µ(τ)

)
−
〈
ñ, π(t0+2)

〉)
− ⟨ñ, π̂⟩

=

t0∑
τ=1

(
F
(
π(τ+1), µ(τ)

)
− F

(
π(t0+2), µ(τ)

))
+
〈
ñ, π(t0+2) − π̂

〉
.

(i) is because π(t0+2) ∈ argminπ∈∆A
∑t0+1

τ=1 F
(
π, µ(τ)

)
−⟨ñ, π⟩. Next, by setting π̂ = π(t0+2) in

the induction hypothesis, we have
t0∑

τ=1

(
F
(
π(τ+1), µ(τ)

)
− F

(
π(t0+2), µ(τ)

))
+
〈
ñ, π(t0+2) − π̂

〉
≤
〈
ñ, π(2) − π(t0+2)

〉
+
〈
ñ, π(t0+2) − π̂

〉
=
〈
ñ, π(2) − π̂

〉
.

F.3 SUBLINEAR VARIATION

In this section, we will show that the regret of FTPL with/without a prediction of µ(t+1) is close.
Formally, for any π̂ ∈ ∆A, we have

T∑
t=1

(
F
(
π(t), µ(t)

)
− F

(
π̂, µ(t)

))
=

T∑
t=1

(
F
(
π(t+1), µ(t)

)
− F

(
π̂, µ(t)

))
+

T∑
t=1

(
F
(
π(t), µ(t)

)
− F

(
π(t+1), µ(t)

))
(i)

≤
〈
ñ, π(2) − π̂

〉
+

T∑
t=1

(
F
(
π(t), µ(t)

)
− F

(
π(t+1), µ(t)

))
.

(i) uses Lemma F.2.

Moreover, since Ui(a) ∈ [0, 1] for any i ∈ [N] and a ∈ A, we have

max
π∈∆A,

µ∈∆×S∈S AS

|F (π, µ)| ≤ 1.

Then,

E
[
F
(
π(t), µ(t)

)
− F

(
π(t+1), µ(t)

)]
≤ Pr

ñ

(
π(t) ̸= π(t+1)

)
.

Hence, we only need to lower bound Prñ
(
π(t) = π(t+1)

)
in the sequel. Recall that π(t) is a pure

strategy with π(t)
(
a(t)

)
= 1 for some joint action a(t) ∈ A. For any bag B ∈ T , let fa(B) denote

its father (fa(B) = ∅ if B is the root). Then,

Pr
ñ

(
π(t) = π(t+1)

)
=Pr

ñ

(
a(t) = a(t+1)

)
(i)
=
∏
B∈T

Pr
ñ

(
a
(t)
B\fa(B) = a

(t+1)
B\fa(B)

∣∣a(t)
fa(B) = a

(t+1)
fa(B)

)
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

According to (5.5), each bag B ∈ T only determines a(t)
B\fa(B). Since n(t)(B, ·) is sampled inde-

pendently for every bag B, it follows that a(t)
B′\B ,a

(t)
B′′\B are independent for B′, B′′ ∈ C(B) with

B′ ̸= B′′, by Property 3 of Tree Decomposition. Hence, (i) holds.

For any B ∈ T , to lower bound Prñ

(
a
(t)
B\fa(B) = a

(t+1)
B\fa(B)

∣∣a(t)
fa(B) = a

(t+1)
fa(B)

)
, we will first get

its lower bound while further conditioning on a
(t)
B∪fa(B)’s value and n(B, ·)’s value.

Then, Prñ
(
a
(t)
B\fa(B) = a

(t+1)
B\fa(B)

∣∣a(t)
fa(B) = a

(t+1)
fa(B)

)
is equal to this conditioned probability in-

tegrating over all possible values of a(t)
B∪fa(B) and n(B, ·). Formally, we want to lower bound

p
(t)
B (a′

B∪fa(B),x) := Pr
(
a
(t+1)
B\fa(B) = a′

B\fa(B)

∣∣∣a(t)
fa(B) = a

(t+1)
fa(B) , a

(t)
B∪fa(B) = a′

B∪fa(B) ,

and ∀aB\fa(B) ∈ AB\fa(B) \
{
a′
B\fa(B)

}
,

n(B, (a′
B∩fa(B),aB\fa(B))) = x((a′

B∩fa(B),aB\fa(B)))
)

for any a′
B∪fa(B) ∈ AB∪fa(B) and x ∈ RAB . Then,

Pr
ñ

(
a
(t)
B\fa(B) = a

(t+1)
B\fa(B)

∣∣a(t)
fa(B) = a

(t+1)
fa(B)

)
≥ inf

a′
B∪fa(B)∈AB∪fa(B),

x∈RAB

p
(t)
B (a′

B∪fa(B),x),

since Prñ

(
a
(t)
B\fa(B) = a

(t+1)
B\fa(B)

∣∣a(t)
fa(B) = a

(t+1)
fa(B)

)
is equal to p

(t)
B (a′

B∪fa(B),x) integrating
over a′

B∪fa(B) and x.

Since a
(t)
B\fa(B) = a′

B\fa(B), for any aB\fa(B) ∈ AB\fa(B) \
{
a′
B\fa(B)

}
, we have

d(t) (B,a′
B) ≤ d(t)

(
B, (a′

B∩fa(B),aB\fa(B))
)
.

This can be equivalently written as

n (B,a′
B) ≥

(
d(t) (B,a′

B) + n (B,a′
B)
)
− d(t)

(
B, (a′

B∩fa(B),aB\fa(B))
)
.

Then, a(t+1)
B\fa(B) = a′

B\fa(B) is equivalent to

n (B,a′
B) ≥

(
d(t+1) (B,a′

B) + n (B,a′
B)
)
− d(t+1)

(
B, (a′

B∩fa(B),aB\fa(B))
)

(F.4)

=
(
d(t) (B,a′

B) + n (B,a′
B)
)
− d(t)

(
B, (a′

B∩fa(B),aB\fa(B))
)

+
(
d(t)

(
B, (a′

B∩fa(B),aB\fa(B))
)
− d(t+1)

(
B, (a′

B∩fa(B),aB\fa(B))
))

+
(
d(t+1) (B,a′

B)− d(t) (B,a′
B)
)
.

for any aB\fa(B) ∈ AB\fa(B). In Lemma F.3, we show that the variation of d is bounded by 1.
Therefore,

n (B,a′
B) ≥

(
d(t) (B,a′

B) + n (B,a′
B)
)
− d(t)

(
B, (a′

B∩fa(B),aB\fa(B))
)
+ 2

implies (F.4).

Lemma F.3. Consider the update rule (5.3). For any timestep t = 1, 2, . . . , T , bag B ∈ T , joint
action aB ∈ AB , and noise ñ ∈ R×B∈T AB , we have∣∣∣d(t+1)(B,aB)− d(t)(B,aB)

∣∣∣ ≤ 1.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

The proof is postponed to the end of this section. Let

w = max
aB\fa(B)∈AB\fa(B)\

{
a′

B\fa(B)

}
(
d(t) (B,a′

B) + n (B,a′
B)
)
− d(t)

(
B, (a′

B∩fa(B),aB\fa(B))
)
.

Note that w only depends on µ(1), . . . , µ(t−1) and x. Then,

p
(t)
B (a′

B∪fa(B),x) ≥Pr (n (B,a′
B) ≥ w + 2 |n (B,a′

B) ≥ w)

=
Pr (n (B,a′

B) ≥ w + 2)

Pr (n (B,a′
B) ≥ w)

(i)
=
exp (−η (w + 2))

exp (−ηw)

= exp (−2η) .

(i) is because n (B,a′
B) ∼ Exp(η). Finally, by union bound,

Pr
ñ

(
π(t) = π(t+1)

)
≥1−

∑
B∈T

(
1− p

(t)
B (a′

B∪fa(B),x)
)

≥1−
∑
B∈T

(1− exp (−2η))

≥1−
∑
B∈T

2η

=1− 2η |T | .
Therefore,

E

[
T∑

t=1

F
(
π(t), µ(t)

)
− F

(
π̂, µ(t)

)]

≤E
[〈

ñ, π(2) − π̂
〉]

+

T∑
t=1

E
[
F
(
π(t), µ(t)

)
− F

(
π(t+1), µ(t)

)]
≤E

[〈
ñ, π(2) − π̂

〉]
+ 2η |T |T.

Since exp(x) ≥ 1 + x for any x ∈ R, (1− exp (−2η |T |)) ≤ 2η |T |. Additionally,

E
[〈

ñ, π(2) − π̂
〉] (i)

≤ E
[
∥ñ∥∞ ·

∥∥∥π(2) − π̂
∥∥∥
1

]
≤2E [∥ñ∥∞]

≤2
∑
B∈T

max
aB∈AB

n(B,aB)

(i)

≤2
∑
B∈T

1 + log |AB |
η

.

(i) is by Hölder’s Inequality. (ii) is because the expectation of the maximum of n i.i.d. random
variable sampled from Exp(η) is upper bounded by 1+logn

η (Agarwal et al., 2019). Furthermore,
log |AB | ≤ |B| · logA ≤ (tw(G) + 1) logA. Hence,

E

[
T∑

t=1

F
(
π(t), µ(t)

)
− F

(
π̂, µ(t)

)]
≤ 2 |T | 1 + (tw(G) + 1) logA

η
+ 2η |T |T.

F.4 PROOF OF AUXILIARY LEMMAS

Lemma F.3. Consider the update rule (5.3). For any timestep t = 1, 2, . . . , T , bag B ∈ T , joint
action aB ∈ AB , and noise ñ ∈ R×B∈T AB , we have∣∣∣d(t+1)(B,aB)− d(t)(B,aB)

∣∣∣ ≤ 1.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Proof. Recall Lemma E.1. We can add |T | players as the noise player, each assigned to a bag in T ,
with ui(aB) = n(B,aB) so that N (i) = B. Recall that ui is the contribution of player i to the
objective function F . Then, by Lemma E.1, for any B ∈ T and aB ∈ AB , we have

d(t)(B,aB) = min
a−B∈A−B

∑
i∈st(B)

u
(t)
i (aN (i)),

where

u
(t)
i (aN (i)) = −

t∑
τ=1

∑
S∈S :
i∈S

1

|S|
∑

âNS
i
∈ANS

i

µ(τ)
(
S, âNS

i

)(
Ui

(
âNS

i
,aN (i)\S

)
− Ui(aN (i))

)
for i ∈ [N]

u
(t)
i (aN (i)) = n(B,aN (i)) for i as the noise player assigned to bag B.

For any noise player, we can see that u(t)
i (aN (i))− u

(t+1)
i (aN (i)) = 0. For any i ∈ [N],∣∣∣u(t)

i (aN (i))− u
(t+1)
i (aN (i))

∣∣∣
=

∣∣∣∣∣∣∣
∑

S∈S :
i∈S

1

|S|
∑

âNS
i
∈ANS

i

µ(t+1)
(
S, âNS

i

)(
Ui

(
âNS

i
,aN (i)\S

)
− Ui(aN (i))

)∣∣∣∣∣∣∣
≤
∑

S∈S :
i∈S

1

|S|
∑

âNS
i
∈ANS

i

µ(t+1)
(
S, âNS

i

) ∣∣∣Ui

(
âNS

i
,aN (i)\S

)
− Ui(aN (i))

∣∣∣
(i)

≤
∑

S∈S :
i∈S

1

|S|
∑

âNS
i
∈ANS

i

µ(t+1)
(
S, âNS

i

)
.

(i) is because Ui(aN (i)) ∈ [0, 1] for any aN (i) ∈ AN (i).

Recall that by definition, a(t)
−B = argmaxa−B∈A−B

∑
i∈st(B) u

(t)
i (aN (i)). Then,

d(t)(B,aB)

=
∑

i∈st(B)

u
(t)
i

(
(aN (i)∩B ,a

(t)
N (i)\B)

)
≥
∑

i∈st(B)

u
(t)
i

(
(aN (i)∩B ,a

(t+1)
N (i)\B)

)
=
∑

i∈st(B)

u
(t+1)
i

(
(aN (i)∩B ,a

(t+1)
N (i)\B)

)
+
(
u
(t+1)
i

(
(aN (i)∩B ,a

(t+1)
N (i)\B)

)
− u

(t)
i

(
(aN (i)∩B ,a

(t+1)
N (i)\B)

))

≥
∑

i∈st(B)

u
(t+1)
i

(
(aN (i)∩B ,a

(t+1)
N (i)\B)

)
−
∑

S∈S :
i∈S

1

|S|
∑

âNS
i
∈ANS

i

µ(t+1)
(
S, âNS

i

)
=d(t+1)(B,aB)−

∑
S∈S

1

|S|
∑

i∈S∩st(B)

∑
âNS

i
∈ANS

i

µ(t+1)
(
S, âNS

i

)
≥d(t+1)(B,aB)− 1.

Similarly, we can get the upper bound that d(t)(B,aB) ≤ d(t+1)(B,aB) + 1. Hence, the proof is
completed.

G EFFICIENT UPDATE OF µ

This section provides the omitted details regarding the update procedure for µ and presents the
complete proof of Theorem 5.3.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G.1 EFFICIENT UPDATE OF µ

The procedure for updating µ closely parallels that of π. Specifically, we iterate over all coalitions
S ∈ S and, for each S, determine the optimal action aS ∈ AS . To achieve this, we maintain a
dynamic programming vector gS ∈ R×B∈T AB for each S ∈ S, which is updated according to

g
(t+1)
S (B, âB) =

1

|S|
t∑

τ=1

∑
i∈S :

i assigned to B

∑
a∈A

π(τ)(a)
(
Ui

(
âB∩S ,aB\S

)
− Ui (aB)

)
+

∑
B′∈C(B)

max
â′

B′∈AB′ :

âB∩B′=â′
B∩B′

g(t+1)(B′, â′
B′) +m(t+1)(B, âB).

At first sight, the
∑

a∈A appears computationally prohibitive, since A is exponentially large. For-
tunately, the update becomes tractable once we recall that π(τ) is always a pure strategy for τ ≥ 1.
Denote by a(τ) the joint action selected by π(τ). Then (G.1) simplifies to

g
(t+1)
S (B, âB) =

1

|S|
t∑

τ=1

∑
i∈S :

i assigned to B

(
Ui

(
âB∩S ,a

(τ)
B\S

)
− Ui

(
a
(τ)
B

))
+

∑
B′∈C(B)

max
â′

B′∈AB′ :

âB∩B′=â′
B∩B′

g(t+1)(B′, â′
B′) +m

(t+1)
S (B, âB).

(G.1)

After completing the dynamic programming updates, we focus on the root bag Br of the tree de-
composition. The selected coalition is then S(t+1) = argmaxS∈S maxâBr∈ABr g

(t+1)
S (Br, âBr).

Next, we apply the reconstruction procedure in (5.5) on g
(t+1)

S(t+1) to extract a joint action â(t+1) ∈ A.
Finally, we update µ(t+1)

(
S(t+1), â(t+1)

)
= 1.

This procedure ensures that µ can be updated efficiently while maintaining consistency with the tree
decomposition structure. Analogous to the update of π, the regret of this process can be bounded.

G.2 PROOF OF THEOREM 5.3

Theorem 5.3. Consider the updates in (5.3). For any δ > 0, with probability at least 1 − δ, the
following holds:

max
µ̂∈∆×S∈S AS

T∑
t=1

F
(
π(t), µ̂

)
− F

(
π(t), µ(t)

)
≤2 |T | 1 + (tw(G) + 1) logA

η
+ 2η |T |T +

√
2T log

1

δ
.

Proof. The proof of Theorem 5.3 is similar to that of Theorem 5.2. By using a similar argument as
the proof of Theorem 5.2, for any µ̂ ∈ ∆×S∈S AS , we have

T∑
t=1

(
F
(
π(t), µ̂

)
− F

(
π(t), µ(t)

))
≤
〈
m̃, µ̂− µ(2)

〉
+

T∑
t=1

(
F
(
π(t), µ(t+1)

)
− F

(
π(t), µ(t)

))
.

Next, by introducing the counterpart of Lemma F.3 in the following, the rest of the proof follows
that of Theorem 5.2.

Lemma G.1. Consider the update rule (5.3). For any timestep t = 1, 2, . . . , T , bag B ∈ T , joint
action âB ∈ AB , coalition S ∈ S, and noise m̃ ∈ R×B∈T AB , we have∣∣∣g(t+1)

S (B, âB)− g
(t)
S (B, âB)

∣∣∣ ≤ 1.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

The proof is postponed to the end of this section. Let S(t), â(t) denote the coalition and action the
deviator picks at timestep t, i.e., µ(t)

(
S(t), â(t)

)
= 1. Then,

E
[
F
(
π(t), µ(t+1)

)
− F

(
π(t), µ(t)

)]
≤Pr

m̃

(
µ(t+1) ̸= µ(t)

)
=Pr

m̃

(
S(t) = S(t+1)

) ∏
B∈T

Pr
m̃

(
â
(t)
B\fa(B) = â

(t+1)
B\fa(B)

∣∣ â(t)
fa(B) = â

(t+1)
fa(B), S

(t) = S(t+1)
)

(i)

≤1− exp (2η|T |) .

(i) is because choosing S(t) is equivalent to adding a new player in the root bag Br, whose action
is to select the coalition. Finally, for any δ > 0, with probability at least 1− δ,

T∑
t=1

(
F
(
π(t), µ̂

)
− F

(
π(t), µ(t)

))
≤2 |T | 1 + (tw(G) + 1) logA

η
+ 2η |T |T +

√
2T log

1

δ
.

G.3 PROOF OF AUXILIARY LEMMAS

Lemma G.1. Consider the update rule (5.3). For any timestep t = 1, 2, . . . , T , bag B ∈ T , joint
action âB ∈ AB , coalition S ∈ S, and noise m̃ ∈ R×B∈T AB , we have∣∣∣g(t+1)

S (B, âB)− g
(t)
S (B, âB)

∣∣∣ ≤ 1.

Proof. For any S ∈ S, the upper bound of
∣∣∣g(t+1)

S (B, âB)− g
(t)
S (B, âB)

∣∣∣ can be obtained similarly
to the proof of Lemma F.3 by choosing

u
(t)
i (aN (i)) =

1

|S|
t∑

τ=1

∑
i∈S :

i assigned to B

∑
a∈A

π(τ)(a)
(
Ui

(
âB∩S ,aB\S

)
− Ui (aB)

)
for i ∈ [N]

u
(t)
i (aN (i)) = mS(B,aN (i)) for i as the noise player assigned to bag B.

Then,

∣∣∣u(t)
i (aN (i))− u

(t+1)
i (aN (i))

∣∣∣ =
∣∣∣∣∣∣∣
1

|S|
∑
i∈S :

i assigned to B

∑
a∈A

π(t+1)(a)
(
Ui

(
âB∩S ,aB\S

)
− Ui (aB)

)∣∣∣∣∣∣∣
(i)

≤ 1

|S|
∑
i∈S :

i assigned to B

∑
a∈A

π(t+1)(a).

(i) is by the fact that Ui

(
âB∩S ,aB\S

)
,Ui (aB) ∈ [0, 1]. The rest of the proof follows that of

Lemma F.3, and thus we complete the proof.

H ADDITIONAL EXPERIMENTAL RESULTS

In this section, we detail our experimental setup and report additional results for two further games:
the Chicken game (Bergstrom & Godfrey-Smith, 1998) and Pigou’s network (Pigou, 1920). All
experiments are conducted on a 13th Gen Intel(R) Core(TM) i7-13700K @ 3.40 GHz. Error bars
for MASE and FTPL indicate ±1σ over 100 random seeds (0, 1, . . . , 99). Across all experiments,
we set the learning rate to η = 0.01 and run for T = 10, 000 timesteps.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

H.1 EXPERIMENTAL DETAILS

For all baselines, we run each algorithm independently for each player, thus the average strategy
converges to a CCE (Hazan et al., 2016). For FTRL, Hedge, and OMD, each player i ∈ [N] is
initialized with a uniform distribution π

(1)
i over all actions. MASE and FTPL are initialized with a

pure strategy chosen uniformly at random from all pure strategies.

H.2 UTILITY FUNCTIONS

This subsection specifies the utility functions for all four games.

Prisoner’s Dilemma. The utility matrix is shown in Table 2. If both prisoners confess, they receive
reduced sentences. If one confesses while the other defects, the confessor is imprisoned and the
defector is released immediately. If both defect, both are imprisoned for longer than in the mutual-
confession case to penalize dishonesty.

Confess (C) Defect (D)
Confess (C) (0.6, 0.6) (0, 1)
Defect (D) (1, 0) (0.2, 0.2)

Table 2: Utility matrix of the Prisoner’s Dilemma. Each entry (a, b) denotes the payoffs to the row
player (a) and the column player (b).

Stag Hunt. The utility matrix is shown in Table 3. A stag yields a higher reward, but it can only be
hunted successfully if both players choose Stag; a solo stag attempt yields nothing. A hare provides
a smaller payoff but can be secured by a single player.

Stag (S) Hare (H)
Stag (S) (1, 1) (0.1, 0.8)
Hare (H) (0.8, 0.1) (0.5, 0.5)

Table 3: Utility matrix of the Stag Hunt. Each entry (a, b) denotes the payoff of the row player (a)
and the column player (b).

Chicken Game. Two drivers head toward each other and can either swerve or go straight. If one
goes straight while the other swerves, the swerving player "loses." If both go straight, they crash.

Swerve (Sw) Straight (St)
Swerve (Sw) (5/6, 5/6) (2/3, 1)
Straight (St) (1, 2/3) (0, 0)

Table 4: Utility matrix of the Chicken game. Each entry (a, b) denotes the payoff of the row player
(a) and the column player (b).

Pigou Network. We use a three-player variant of Pigou’s network. Each player chooses a fast or
slow route. The slow route yields a constant utility of 0.25. The fast route yields utility 1.5 − 0.5 ·
(number of players choosing the fast route), reflecting congestion.

H.3 ADDITIONAL EXPERIMENTAL RESULTS

Figure 5 reports additional experiments on the Chicken game and Pigou’s network. MASE con-
sistently outperforms the baselines in both coalition exploitability and social welfare. In Pigou’s
network, purely self-interested players overuse the fast route, which in equilibrium becomes slow.
By contrast, when players form coalitions and consider average utility within a coalition, they share
the routes so that everyone is better off.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 5000

Timestep (t)

−0.05

0.00

0.05

0.10

E
xp

lo
ita

bi
lit

y

0 5000

Timestep (t)

0.00

0.05

0.10

0.15

0.20

C
oa

lit
io

n
E

xp
l.

0 5000

Timestep (t)

1.3

1.4

1.5

1.6

So
ci

al
W

el
fa

re

Chicken Game

1

0 5000

Timestep (t)

0.00

0.05

0.10

0.15

E
xp

lo
ita

bi
lit

y

0 5000

Timestep (t)

0.05

0.10

0.15

0.20

0.25

C
oa

lit
io

n
E

xp
l.

0 5000

Timestep (t)

0.8

1.0

1.2

1.4

So
ci

al
W

el
fa

re

Pigou’s Network

MASE
FTPL

FTRL
OMD

Hedge
LP

Maximum

1Figure 5: LP refers to the linear program in Appendix B. Maximum marks the maximum social
welfare. MASE outperforms the baselines in both games in terms of coalition exploitability and
social welfare.

0.0 0.5 1.0

Weight on Individual Rationality (w)

0.0

0.1

E
xp

lo
ita

bi
lit

y

Chicken Game

0.0 0.5 1.0

Weight on Individual Rationality (w)

0.0

0.1

0.2

E
xp

lo
ita

bi
lit

y

Pigou’s Network

1.6

1.7

So
ci

al
W

el
fa

re

1.4

1.5

So
ci

al
W

el
fa

re

Trade-off between Exploitability and Social Welfare

1
Figure 6: The trade-off between exploitability and social welfare in the Chicken game and the
Pigou’s network.

Figure 6 shows the trade-off between exploitability and social welfare in the Chicken game and
Pigou’s network.

Figure 7 reports the runtime of the algorithm for polymatrix games with varying numbers of players,
action set sizes, and interaction densities.

H.4 PROOF OF LEMMA 6.1

Lemma 6.1. For any ϵ > 0, computing the CCE with exploitability no more than ϵ that maximizes
social welfare is equivalent to (6.1) by setting S = {{i}}i∈[N] ∪ {[N]} and using the weights:

wS =

{
w if |S| = 1

1− w if S = [N]

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

50 100

Number of Players (N)

0

200

400

600

R
un

tim
e

(s
ec

on
ds

).

2 3 4 5

Action Size (A)

0

100

200

300

1 2 3

Expected Interactions per Player (c)

−500

0

500

1000

Runtime (seconds).

MASE
FTPL

FTRL
OMD

Hedge
LP

1Figure 7: The runtime of the algorithm in different polymatrix games.

for some w ∈ [0, 1). Conversely, solving (6.1) with these parameters corresponds to finding a point
on the Pareto frontier of social welfare and exploitability.

Proof. For any ϵ > 0, let π∗ be the strategy that maximizes social welfare subject to its exploitability
being at most ϵ. Let g∗ = maxâ∈A

1
N

∑N
i=1 Ea∼π∗ [Ui (â)− Ui (a)] be the maximum gain for the

grand coalition [N]. Let w = g∗

ϵ+g∗ . Then, by construction, the objective value for π∗ under (6.1) is:

max
S∈S

max
âS∈AS

wS

|S|
∑
i∈S

Ea∼π∗ [. . .] = max (w · (exploitability), (1− w) · g∗)

≤ max (wϵ, (1− w)g∗) =
ϵg∗

ϵ+ g∗
.

Any strategy π̂ with exploitability > ϵ would have an objective value > wϵ = ϵg∗

ϵ+g∗ , which is worse
than the value π∗ achieves. Therefore, any optimal solution to (6.1) must have exploitability at most
ϵ. Since π∗ by definition maximizes social welfare (i.e., minimizes the coalition gain g∗) among all
strategies in this set, it must also be an optimal solution to (6.1).

Conversely, for any w ∈ [0, 1), let π∗ be the corresponding strategy that optimizes (6.1). Let its
exploitability be

ϵ = max
i∈[N]

max
âi∈Ai

Ea∼π∗ [Ui (âi,a−i)− Ui (a)] .

We will show by contradiction that no strategy π′ exists such that exploitability(π′) ≤ ϵ and
SW (π′) > SW (π∗) (which implies g′ < g∗, where g′ is the gain for the grand coalition under
π′).

Suppose such a π′ exists. We analyze two cases:

Case 1: exploitability(π′) < ϵ. Since π′ has both strictly lower exploitability than π∗ and g′ < g∗

(higher social welfare), its objective value is max(w · exploitability(π′), (1− w)g′). This is strictly
less than max(wϵ, (1−w)g∗), which is the objective value of π∗. This contradicts the optimality of
π∗.

Case 2: exploitability(π′) = ϵ. If ϵ > 0, choose a small δ > 0 and consider the mixed strategy
πnew = (1−δ)π′+δπ′′, where π′′ is an arbitrary CCE, which is guaranteed to exist (Nash Jr, 1950).
For any i ∈ [N] and âi ∈ Ai, we have:

Ea∼πnew
[Ui (âi,a−i)− Ui (a)]

=(1− δ)Ea∼π′ [Ui (âi,a−i)− Ui (a)] + δEa∼π′′ [Ui (âi,a−i)− Ui (a)]

(i)

≤(1− δ)Ea∼π′ [Ui (âi,a−i)− Ui (a)]

≤(1− δ)ϵ.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Step (i) holds because π′′ is a CCE, so its exploitability Eπ′′ [. . .] is ≤ 0. Since ϵ > 0, the new
strategy πnew has exploitability(πnew) < ϵ. By continuity, for sufficiently small δ, SW (πnew)
remains strictly higher than SW (π∗) (since SW (π′) > SW (π∗)). This puts us in Case 1, which
leads to a contradiction.

If ϵ ≤ 0, then exploitability(π∗) ≤ 0. The objective value for π∗ is max(wϵ, (1 − w)g∗) =
(1 − w)g∗ (since wϵ ≤ 0 and (1 − w)g∗ ≥ 0 by definition). The hypothetical strategy π′ has
exploitability(π′) = ϵ ≤ 0 and g′ < g∗. Its objective value is max(wϵ, (1 − w)g′) = (1 − w)g′.
Since g′ < g∗ and w < 1, the objective value of π′ is strictly less than that of π∗, which contradicts
the optimality of π∗.

In all cases, the existence of such a π′ leads to a contradiction. Thus, π∗ must be a solution that
maximizes social welfare for a given exploitability ϵ.

I POLYMATRIX GAMES

In this section, we present experimental details for MASE on games with a larger number of players.
We select polymatrix games as the benchmark for these large-scale experiments. This choice is
motivated by their inherent graphical structure, which allows for the efficient generation of instances
with a low treewidth of their Utility Dependency Graph.

We begin with the formal definition. A polymatrix game has a corresponding undirected graph
GU = (VU , EU), with VU = [N]. For any joint action a ∈ A, the utility of any player i is defined
as:

Ui(a) :=
∑

(i,j)∈EU

Ui,j(ai, aj), (I.1)

where Ui,j : Ai × Aj → [0, 1] represents the interaction between players i and j. In other words,
only players who are connected in GU interact, and a player’s total utility is the summation of these
pairwise interactions.

If we construct the Utility Dependency Graph directly, then the tree decomposition may explode
unwillingly, e.g., Figure 8 (a). We can see that the treewidth of GU is one while the treewidth of the
Utility Dependency Graph is three.

Constructing the Utility Dependency Graph directly from the polymatrix game can cause its
treewidth to explode. For example, in Figure 8 (a), the original graph GU has a treewidth of one,
while the resulting Utility Dependency Graph has a treewidth of three.

To prevent this, we construct a strategically equivalent game (note that this new game is not a
polymatrix game). This construction explicitly models the pairwise interactions as new players:

• For any original edge (i, j) ∈ EU , we introduce two edge players, ei,j and ej,i.

• Each edge player ei,j has a singleton action set,
∣∣Aei,j

∣∣ = 1, meaning it has only a single
strategy.

• The utility function of an edge player ei,j is defined as the original interaction utility:
Ũei,j = Ui,j .

• The utility function of an original vertex player i (one of the original N players) is now a
constant zero: Ũi ≡ 0.

This transformation is illustrated in Figure 8 (b). The Utility Dependency Graph for this new game,
shown on the right of Figure 8 (b), now has a treewidth of max

(
tw(GU), 2

)
. This method effectively

bounds the treewidth and avoids the undesirable explosion.

Next, we show that the new game and the original polymatrix game are strategically equivalent.
In other words, for any joint strategy π ∈ ∆A, the maximum average deviation gain, maxS∈S
maxâS∈AS

1
|S|
∑

i∈S Ea∼π [Ui (âS ,a−S)− Ui (a)], does not change. Recall that since the edge
players have only a single action, π ∈ ∆A (a distribution over the original players’ joint actions) is
sufficient to specify the joint strategy in both games.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

2

1

3 4

𝒢𝒢𝑼𝑼 Utility Dependence Graph

2

1

3 4

(a)

2

1

3 4

(b)

𝒆𝒆𝟏𝟏𝟏𝟏

𝒆𝒆𝟑𝟑𝟑𝟑

𝒆𝒆𝟏𝟏𝟏𝟏 𝒆𝒆𝟐𝟐𝟐𝟐

𝒆𝒆𝟏𝟏𝟏𝟏

𝒆𝒆𝟒𝟒𝟒𝟒

2

1

3 4

𝒆𝒆𝟏𝟏𝟏𝟏

𝒆𝒆𝟑𝟑𝟑𝟑

𝒆𝒆𝟏𝟏𝟏𝟏 𝒆𝒆𝟐𝟐𝟐𝟐

𝒆𝒆𝟏𝟏𝟏𝟏

𝒆𝒆𝟒𝟒𝟒𝟒

Figure 8: (a) The original graph GU corresponding to the polymatrix game (left) and the Utility
Dependency Graph. (b) The strategically equivalent game and its Utility Dependency Graph.

Lemma I.1. The new game described above is equivalent to the original polymatrix game, when
S̃ =

{
S ∪ {ei,j}i∈S∧(i,j)∈EU

}
S∈S

. Formally, for any joint strategy π ∈ ∆A, we have

max
S∈S

max
âS∈AS

1

|S|
∑
i∈S

Ea∼π [Ui (âS ,a−S)− Ui (a)]

=max
S̃∈S̃

max
âS̃∈AS̃

1

|S̃ ∩ [N]|
∑
i∈S̃

Ea∼π

[
Ũi

(
âS̃∩[N],a−(S̃∩[N])

)
− Ũi (a)

]
.

The proof is postponed to the end of this section. This equivalence allows us to solve the new
game instead of the original one. Our algorithm can minimize a more general objective, maxS∈S
maxâS∈AS

wS

∑
i∈S Ea∼π [Ui (âS ,a−S)− Ui (a)], for any weight vector w ∈ RS .9 We can

therefore apply our algorithm to this new, strategically equivalent game.

I.1 EXPERIMENTAL DETAILS

We generate random polymatrix games using the following procedure:

• Each pair of players (i, j) is connected independently with probability c
N−1 , where N is

the total number of players. This results in an expected degree of c for each player in GU .
• For each connected pair (i, j), the interaction utilities Ui,j(ai, aj) are sampled indepen-

dently and uniformly from [0, 1] for all action pairs ai ∈ Ai, aj ∈ Aj . These pairwise
utilities are then normalized according to the formula:

Ui,j(ai, aj)−mink∈[N],â∈A Uk(â)

maxk∈[N],â∈A Uk(â)−mink∈[N],â∈A Uk(â)
.

This process ensures that the final total utility Ui(a) for any player i ∈ [N] and joint action
a ∈ A falls within the within the range [0, 1].

Consistent with the experiments on small games, we average the results over 100 runs for each
hyper-parameter setting (using seeds 0–99). All algorithms use a learning rate of η = 0.01, and
error bars represent 1 σ. For these larger games, we set the number of timesteps to T = 100, 000
and a uniform action set size |Ai| = A for all players i ∈ [N].

The hyper-parameters for the ablation studies are as follows:

• Ablation on N : A = 2 and c = 1.
• Ablation on A: N = 30 and c = 1.

9Both the implementation and the proof only use the linearity of the objective. Hence, any weighted-sum
can fit into the framework.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

• Ablation on c: N = 30 and A = 2.

Furthermore, to accelerate the algorithm, without loss of generality, we only need to consider
S = {{i}}i∈[N] ∪

{
{i, j} | i, j ∈ [N], (i, j) ∈ GU

}
to minimize the coalition exploitability for any

coalitions with no more than two players. In other words, for coalitions of two players, we only
need to consider the case when they are connected in GU . As shown in the following lemma.

Lemma I.2. For any joint strategy π ∈ ∆A, by letting S = {{i}}i∈[N] ∪{
{i, j} | i, j ∈ [N] ∧ (i, j) ∈ GU

}
, we have

max
S∈S

max
âS∈AS

1

|S|
∑
i∈S

Ea∼π [Ui (âS ,a−S)− Ui (a)]

= max
S∈{{i}}i∈[N]

∪{{i,j} | i,j∈[N]∧i ̸=j}

max
âS∈AS

1

|S|
∑
i∈S

Ea∼π [Ui (âS ,a−S)− Ui (a)] .

The proof is postponed to the end of this section.

I.2 PROOF OF THE AUXILIARY LEMMA

Lemma I.1. The new game described above is equivalent to the original polymatrix game, when
S̃ =

{
S ∪ {ei,j}i∈S∧(i,j)∈EU

}
S∈S

. Formally, for any joint strategy π ∈ ∆A, we have

max
S∈S

max
âS∈AS

1

|S|
∑
i∈S

Ea∼π [Ui (âS ,a−S)− Ui (a)]

=max
S̃∈S̃

max
âS̃∈AS̃

1

|S̃ ∩ [N]|
∑
i∈S̃

Ea∼π

[
Ũi

(
âS̃∩[N],a−(S̃∩[N])

)
− Ũi (a)

]
.

Proof. For any S ∈ S, let S̃ be its correspondence in S̃. Then,

max
âS̃∈AS̃

1

|S̃ ∩ [N]|
∑
i∈S̃

Ea∼π

[
Ũi

(
âS̃∩[N],a−(S̃∩[N])

)
− Ũi (a)

]
(i)
= max

âS∈AS

1

|S|
∑
i∈S̃

Ea∼π

[
Ũi (âS ,a−S)− Ũi (a)

]
(ii)
= max

âS∈AS

1

|S|
∑
i∈S

∑
j : (i,j)∈EU

Ea∼π

[
Ũei,j (âS ,a−S)− Ũei,j (a)

]
(iii)
= max

âS∈AS

1

|S|
∑
i∈S

Ea∼π [Ui (âS ,a−S)− Ui (a)] .

(i) uses the fact that |Aei,j | = 1 and S̃ ∩ [N] = S. (ii) is because Ui ≡ 0 for any i ∈ [N]. (iii) is
by the definition of Ũei,j and S̃.

Lemma I.2. For any joint strategy π ∈ ∆A, by letting S = {{i}}i∈[N] ∪{
{i, j} | i, j ∈ [N] ∧ (i, j) ∈ GU

}
, we have

max
S∈S

max
âS∈AS

1

|S|
∑
i∈S

Ea∼π [Ui (âS ,a−S)− Ui (a)]

= max
S∈{{i}}i∈[N]

∪{{i,j} | i,j∈[N]∧i ̸=j}

max
âS∈AS

1

|S|
∑
i∈S

Ea∼π [Ui (âS ,a−S)− Ui (a)] .

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Proof. For any disconnected players i, j and S = {i, j}, we can see that

max
âS∈AS

1

|S|
∑
k∈S

Ea∼π [Uk (âS ,a−S)− Uk (a)]

≤ max
âS∈AS

max
k∈S

Ea∼π [Uk (âS ,a−S)− Uk (a)]

=max
k∈S

max
âS∈AS

Ea∼π [Uk (âS ,a−S)− Uk (a)]

=max
k∈S

max
âS∈AS

Ea∼π

 ∑
k′∈[N] : (k,k′)∈GU

Uk,k′ (âS ,a−S)− Uk,k′ (a)


(i)
=max

k∈S
max

âS∈AS

Ea∼π

 ∑
k′∈[N] : (k,k′)∈GU

Uk,k′ (âk,a−k)− Uk,k′ (a)


=max

k∈S
max

âS∈AS

Ea∼π [Uk (âk,a−k)− Uk (a)] .

(i) is because k′ ̸∈ S since k ∈ S = {i, j} and i, j are not connected. Therefore, since the coalition
exploitability of S is upper bounded by the maximum of that of coalitions {i} and {j}, we do not
need to consider {i, j}.

Actually, the argument can be generalized to coalitions of any size M . If we want to consider
the coalition exploitability for coalitions no more than size M , then we only need to consider all
connected coalitions of size no more than size M by an induction similar to the proof above.

33

