

000 COMPUTING EQUILIBRIUM BEYOND UNILATERAL 001 DEVIAITON

002 **Anonymous authors**

003 Paper under double-blind review

004 ABSTRACT

005 Most familiar equilibrium concepts, such as Nash and correlated equilibrium,
006 guarantee only that no single player can improve their utility by deviating unilat-
007 erally. They offer no guarantees against profitable coordinated deviations by
008 coalitions. Although the literature proposes notions to address multilateral devi-
009 tions (e.g., strong Nash and coalition-proof equilibrium), these generally fail to
010 exist. In this paper, we study a solution concept that accommodates multi-player
011 deviations and is guaranteed to exist. We prove a fixed-parameter lower bound on
012 the complexity of computing such an equilibrium and present an algorithm that
013 matches this bound.

014 1 INTRODUCTION

015 Most equilibrium concepts studied so far, such as Nash equilibrium (NE) (Nash Jr, 1950), correlated
016 equilibrium (CE) (Aumann, 1974), coarse correlated equilibrium (CCE) (Moulin & Vial, 1978),
017 and Stackelberg equilibrium (Von Stackelberg, 2010), guarantee only that *no individual player* can
018 gain by deviating unilaterally. However, they offer no guarantees when multiple players deviate
019 simultaneously by forming a coalition. In this paper, we address the following question:

020 *021 What is an appropriate notion for capturing multilateral deviations, and how can
022 it be computed?*

023 Previous notions that address coalition deviations, such as strong NE (Aumann, 1959)¹ and
024 coalition-proof equilibrium (Bernheim et al., 1987), mostly fail to exist in general games (unlike
025 NE). Therefore, instead of searching for a joint strategy immune to all coalition deviations, we focus
026 on computing a joint strategy that *minimizes* the maximum average gain achievable by any coalition,
027 which is the average of improvements over all its members. In other words, we can compute the
028 most stable strategy profile, even if a perfectly stable one does not exist. We refer to this notion as
029 the *Minimal Average-Strong Equilibrium* (MASE).

030 The difficulty of this optimization problem naturally depends on the complexity of the interactions
031 between players. To formalize this, we introduce the Utility Dependency Graph, $\mathcal{G}(\mathcal{V}, \mathcal{E})$, where
032 each player is a vertex. An edge connects two players, i and j , if and only if there is some player
033 k whose utility is affected by the actions of both i and j . Intuitively, an edge (i, j) signifies that
034 the actions of i and j are linked, as they jointly influence the payoff of some player k . This graph
035 provides a clear map of the game's interaction structure, and its properties can help us understand
036 the computational complexity of finding the MASE. For games with simple interaction structures
037 (e.g., a sparse Utility Dependency Graph), one might expect to compute the MASE efficiently.

038 However, computing the MASE is computationally challenging in the general case. We establish
039 two key hardness results that delineate the problem's complexity.

040 First, the problem is fundamentally harder than finding equilibria like NE or CE. In those cases, we
041 are solving a feasibility problem: finding a strategy where the maximum gain from deviating is at
042 most zero. For MASE, we must solve an optimization problem: minimizing this maximum gain.
043 This distinction is crucial, and we show that even for the simplest case of single-player deviations

044 ¹In this paper, we use the term *strong equilibrium* to broadly refer to any equilibrium concept that considers
045 multilateral deviations.

(i.e., coalitions of size one), approximating the MASE value to within a factor that is inverse polynomial in the number of players is NP-hard. This indicates that even without considering complex coalitions, the problem is intractable without additional assumptions on the game's structure.

Second, we show that this complexity is intrinsically tied to the structure of the Utility Dependency Graph. Building on the strong exponential time hypothesis (SETH) (Impagliazzo & Paturi, 2001) (see Theorem 4.3 for details), we prove that solving MASE requires time that is at least exponential in the treewidth² of the Utility Dependency Graph. This holds even when we only consider coalitions of a constant size. This result demonstrates that the treewidth is a fundamental barrier, and an exponential dependence on it is unavoidable.

Finally, we present a positive result that matches the lower-bound time complexity, up to exponential factors. We develop an algorithm that computes the MASE with a time complexity that is exponential in the treewidth of the Utility Dependency Graph. This demonstrates that our hardness result is tight and establishes the treewidth as the definitive parameter characterizing the complexity of computing the MASE. While the problem is hard in general, it becomes tractable for games where the underlying interaction structure is not too complex.

To summarize, our contributions are as follows:

1. Complexity characterization: We establish lower bounds on the computational complexity of computing the minimally deviated equilibrium, showing that the problem is inherently tied to the treewidth of the Utility Dependency Graph.
2. Algorithmic contribution: We design an algorithm that efficiently computes the minimally deviated equilibrium, achieving a running time that matches the established lower bound up to exponential dependence on treewidth.

2 PRELIMINARIES

For any vector $\mathbf{x} \in \mathbb{R}^n$, we use x_i to denote its i^{th} element and $\|\mathbf{x}\|_p$ to denote its p -norm. By default, $\|\mathbf{x}\|$ refers to the 2-norm. For a positive integer N , let $[N] := 1, 2, \dots, N$. We denote the $(n - 1)$ -dimensional probability simplex by $\Delta^n := \{\mathbf{x} \in [0, 1]^n : \sum_{i=1}^n x_i = 1\}$. More generally, for any discrete set S , we write Δ^S for the probability simplex over S , where each coordinate is indexed by an element of S . For instance, Δ^n can also be written as $\Delta^{[n]}$. For a set S , $|S|$ denotes its cardinality, and $S_1 \times S_2$ denotes the Cartesian product of sets S_1 and S_2 . Finally, we let $\mathbb{1}(\text{argument})$ denote the indicator function, which equals 1 if the argument is true and 0 otherwise.

2.1 GAMES

A game is represented as a tuple $(N, \{\mathcal{A}_i\}_{i=1}^N, \{\mathcal{U}_i\}_{i=1}^N, \mathcal{S})$, where

- N is the number of players.
- \mathcal{A}_i is the action set of player i . For convenience, let $\mathcal{A} := \bigtimes_{i=1}^N \mathcal{A}_i$ denote the joint action set.
- $\mathcal{U}_i: \mathcal{A} \rightarrow [0, 1]$ is the utility function of player $i \in [N]$.
- \mathcal{S} is the set of coalitions, which is a set of subsets of players. For example, if only unilateral deviations are allowed (as in Nash equilibrium or coarse correlated equilibrium), then $\mathcal{S} = \{\{1\}, \{2\}, \dots, \{N\}\}$.

For notational simplicity, for any subset of players $S \subseteq [N]$, we write $\mathcal{A}_S := \bigtimes_{i \in S} \mathcal{A}_i$. Throughout the paper, let $A := \max_{i \in [N]} |\mathcal{A}_i|$ denote the size of the largest action set.

For any joint action $\mathbf{a} \in \mathcal{A}$, let a_i denote the action of player i , and let $\mathbf{a}_{-i} = (a_1, a_2, \dots, a_{i-1}, a_{i+1}, \dots, a_N)$ be the joint action of all players except i . More generally, for any subset $S \subseteq [N]$, we write \mathbf{a}_{-S} for the joint action of players outside S .

²Treewidth can be thought of as a formal measure of how sparse and "tree-like" a graph is.

	Confess (C)	Defect (D)
Confess (C)	(0.6, 0.6)	(0, 1)
Defect (D)	(1, 0)	(0.2, 0.2)

Table 1: Utility matrix of the Prisoner’s Dilemma. Each entry (a, b) denotes the payoff of the row player (a) and the column player (b) .

2.2 SUCCINCT REPRESENTATION

This paper focuses on multi-player games with a succinct representation. Specifically, each utility function \mathcal{U}_i can be encoded using a number of bits polynomial in the number of players N , rather than requiring $\mathcal{O}\left(N \prod_{i=1}^N |\mathcal{A}_i|\right)$ bits as in the general case. Examples of succinctly represented games include polymatrix games (Howson Jr, 1972; Eaves, 1973) and congestion games (Rosenthal, 1973). Throughout the paper, we call an algorithm *efficient* if its running time is polynomial in N , as opposed to polynomial in $\prod_{i=1}^N |\mathcal{A}_i|$. We focus on succinct games because MASE can otherwise be solved by a linear program whose size grows exponentially with N (see Appendix B). Moreover, the study of strong equilibrium is particularly compelling in large games, where exponential dependence on N is computationally prohibitive.

3 MINIMAL AVERAGE-STRONG EQUILIBRIUM (MASE)

Several notions of strong equilibrium have been proposed, including the strong Nash equilibrium (NE) (Aumann, 1959), the sum-strong NE (Hoefer, 2013) (no improvement on the total gain of any coalition), and coalition-proof equilibrium (Bernheim et al., 1987). However, none of these exist in general games. To build intuition, we first illustrate why a strong NE does not exist in the Prisoner’s Dilemma. We further show that the problem persists even when correlated strategies are allowed.

Lemma 3.1. In the Prisoner’s Dilemma, no strong Nash nor strong correlated equilibrium exists when $\mathcal{S} = \{\{1\}, \{2\}, \{1, 2\}\}$ is the set of all non-empty subsets of players.

Since correlated equilibria include all Nash equilibria, it suffices to examine strong correlated equilibria. A strong correlated equilibrium is a correlated joint strategy where no subset of players (a coalition) can jointly deviate in a way that strictly improves the utility of all its members.

As shown in Table 1, any strategy with positive weight on (C, C) , (C, D) , (D, C) yields a profitable deviation for at least one singleton coalition, $\{1\}$ or $\{2\}$. Conversely, placing all weight on (D, D) creates a deviation to (C, C) that benefits the coalition $\{1, 2\}$. Thus, no strong NE exists.

The failure of strong equilibria arises because coalition objectives may conflict, making it impossible to find a strategy that simultaneously satisfies all coalitions. Motivated by this, rather than requiring exact immunity to deviations, we instead seek to minimize the incentive to deviate [since a minimizer always exists by Weierstrass theorem](#). This leads to the following definition of *Minimal Average-Strong Equilibrium* (MASE):

$$\pi^* \in \operatorname{argmin}_{\pi \in \Delta^{\mathcal{A}}} \max_{S \in \mathcal{S}} \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \frac{1}{|S|} \sum_{i \in S} \mathbb{E}_{\mathbf{a} \sim \pi} [\mathcal{U}_i(\hat{\mathbf{a}}_S, \mathbf{a}_{-S}) - \mathcal{U}_i(\mathbf{a})]. \quad (\text{MASE})$$

Intuitively, (MASE) selects the correlated strategy $\pi \in \Delta^{\mathcal{A}}$ that minimizes the maximum average gain attainable by any coalition across all possible coalitions. If this value is less than or equal to zero, then no coalition can simultaneously deviate in a way that yields a strictly positive total gain. Note that the algorithm presented in this paper can also be extended to handle any weighted average over the coalition.

A correlated strategy $\pi \in \Delta^{\mathcal{A}}$ is called an ϵ -MASE if

$$\begin{aligned} & \max_{S \in \mathcal{S}} \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \frac{1}{|S|} \sum_{i \in S} \mathbb{E}_{\mathbf{a} \sim \pi} [\mathcal{U}_i(\hat{\mathbf{a}}_S, \mathbf{a}_{-S}) - \mathcal{U}_i(\mathbf{a})] \\ & \leq \max_{S \in \mathcal{S}} \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \frac{1}{|S|} \sum_{i \in S} \mathbb{E}_{\mathbf{a} \sim \pi^*} [\mathcal{U}_i(\hat{\mathbf{a}}_S, \mathbf{a}_{-S}) - \mathcal{U}_i(\mathbf{a})] + \epsilon. \end{aligned}$$

162 A Strong Nash equilibrium requires that for any deviating coalition, at least one member does not
 163 strictly improve their utility. In contrast, ϵ -MASE aims to minimize the average improvement over
 164 all players within any given coalition. From another perspective, ϵ -MASE minimizes the incentive
 165 to deviate, even when coalition members can freely reallocate utility within the coalition.
 166

167 4 HARDNESS OF SOLVING MASE

169 Recall that we call an algorithm *efficient* if it runs in time polynomial in N . In this section, we first
 170 establish the computational hardness of computing ϵ -MASE.
 171

172 **Theorem 4.1.** Computing ϵ -MASE is NP-hard, even when \mathcal{S} only contains singletons (coalitions
 173 of size one) and $1/\epsilon$ is polynomial in the number of players.

174 The proof is deferred to Appendix C. Importantly, Theorem 4.1 highlights a fundamental distinction
 175 from the case of CCE, which can be computed efficiently (Papadimitriou & Roughgarden, 2008).
 176 The reason is that for CCE it suffices to find a correlated strategy $\pi \in \Delta^{\mathcal{A}}$ such that the deviation gap,
 177 $\max_{i \in [N]} \max_{\hat{a}_i \in \mathcal{A}_i} \mathbb{E}_{\mathbf{a} \sim \pi} [\mathcal{U}_i(\hat{a}_i, \mathbf{a}_{-i}) - \mathcal{U}_i(\mathbf{a})]$, is less or equal to zero, whereas here we must
 178 find a strategy that minimizes the gap. Together with the linear programming characterization in
 179 Appendix B, this implies that computing ϵ -MASE is actually NP-complete. In fact, Anagnostides
 180 et al. (2025) recently showed that even minimizing the *average* deviation gap of CCE across all
 181 players (instead of the maximum gap considered here) is also NP-complete.
 182

183 4.1 FIXED PARAMETER LOWER BOUND

185 Next, we present a more refined hardness result: a fixed-parameter lower bound for computing
 186 MASE. To do so, we first formalize the notion of dependencies among players' utilities.

187 For each player $i \in [N]$, define the relevant set $\mathcal{N}(i) \subseteq [N]$ consisting of all players $j \in [N]$
 188 (including $j = i$) such that the action of j can affect the utility of i . Formally, $j \in [N]$ is in $\mathcal{N}(i)$
 189 if and only if there exist $\mathbf{a}_{-j} \in \mathcal{A}_{-j}$ and $a_j, a'_j \in \mathcal{A}_j$ such that $\mathcal{U}_i(a_j, \mathbf{a}_{-j}) \neq \mathcal{U}_i(a'_j, \mathbf{a}_{-j})$. This
 190 leads to the following graph representation.

191 **Definition 4.2** (Utility Dependency Graph). The utility dependence graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is an
 192 undirected graph with vertex set $\mathcal{V} = [N]$ representing the players, and edge set $\mathcal{E} =$
 193 $\bigcup_{k \in [N]} \{(i, j) \mid i, j \in \mathcal{N}(k), i \neq j\}$.
 194

195 Since \mathcal{U}_i depends only on the actions of players in $\mathcal{N}(i)$, we may equivalently write $\mathcal{U}_i(\mathbf{a}_C) =$
 196 $\mathcal{U}_i(\mathbf{a}_C, \mathbf{a}'_{-C})$ for arbitrary $\mathbf{a}'_{-C} \in \mathcal{A}_{-C}$, where $C \supseteq \mathcal{N}(i)$. It is worth noting that this definition
 197 differs from the graph of a graphical game (Kakade et al., 2003; Kearns et al., 2001). Here, players i
 198 and j are connected if both influence the utility of some other player k , even if i and j do not directly
 199 affect each other. Whereas in graphical games, two players i and j are connected if and only if at
 200 least one can influence the other's utility.

201 With this graph structure in place, we can connect the hardness of computing MASE to the treewidth
 202 of \mathcal{G} . Intuitively, treewidth measures how close a graph is to being a tree: the treewidth of \mathcal{G} is one
 203 when \mathcal{G} is a tree, and it is $N - 1$ when \mathcal{G} is a complete graph. Throughout this section, let \mathcal{O}^* denote
 204 asymptotic complexity with factors polynomial in N suppressed.

206 **Theorem 4.3** (Treewidth). Suppose a tree decomposition of the Utility Dependency Graph is given.
 207 Under the Strong Exponential Time Hypothesis (SETH) (Impagliazzo & Paturi, 2001),³ (MASE)
 208 cannot be computed in $\mathcal{O}^*((A - \zeta)^{\text{tw}(\mathcal{G})})$ for any $\zeta > 0$. Moreover, under the additional assumption
 209 that $\text{BPP} = \text{P}$,⁴ $\frac{1}{9N^2}$ -approximate MASE cannot be computed in $\mathcal{O}^*((A - \zeta)^{\text{tw}(\mathcal{G})})$ for any $\zeta > 0$.

210 The proof is deferred to Appendix C.2. For approximate MASEs we assume $\text{BPP} = \text{P}$, which is
 211 standard in the literature (Arora & Barak, 2009), because the reduction involves sampling joint

213 ³SETH assumes that SAT cannot be solved in $\mathcal{O}^*((2 - \zeta)^n)$ for any $\zeta > 0$, where n is the number of
 214 variables in the SAT instance.

215 ⁴This assumption implies that any problem with a polynomial-time randomized algorithm also has a
 216 polynomial-time deterministic algorithm.

actions from the approximate MASE. Since enumerating all $\mathbf{a} \in \mathcal{A}$ is computationally infeasible, we rely on randomized sampling. This yields only a randomized algorithm for the original NP-hard problem, and the assumption $\text{BPP}=\text{P}$ ensures that such a randomized algorithm can be derandomized into a deterministic one, completing the reduction.

Theorem 4.3 shows that the computational complexity of solving MASE is inherently tied to the treewidth of the Utility Dependency Graph. Intuitively, when the treewidth is large, each player’s utility depends on many others, making even the evaluation of coalition deviations computationally demanding (enumerating over all $\hat{\mathbf{a}}_S \in \mathcal{A}_S$). In contrast, when the treewidth is small, such as zero (each player’s utility depends only on their own action), computing MASE becomes trivial, since each player’s utility can be maximized independently. In polymatrix games (Eaves, 1973), the treewidth of the Utility Dependency Graph can be bounded by that of its corresponding graph. Further details are provided in Appendix I.

5 EFFICIENT COMPUTATION OF MASE

Although an (MASE) lives in an exponentially large space (of size $|\mathcal{A}|$), it can still be computed efficiently. This is because the equilibrium always admits a compact representation.

Theorem 5.1 (Efficient Representation). For any $\epsilon \geq 0$, at least one of the ϵ -MASE can be represented as a linear combination of $\sum_{S \in \mathcal{S}} |S| \cdot A^{\text{tw}(\mathcal{G})} + 1$ pure strategies, where $\text{tw}(\mathcal{G})$ is the treewidth of Utility Dependency Graph.

The proof is deferred to Appendix D. Intuitively, Theorem 5.1 shows that there must be an ϵ -MASE that always has a sparse representation. Since a pure strategy can be encoded by the index of its unique action with nonzero probability, this compactness makes computation tractable.

5.1 META-GAME BETWEEN THE CORRELATOR AND DEVIATOR

To compute an (MASE), we reformulate the problem as a *meta-game* between two players: the *correlator* and the *deviator* (Hart & Schmeidler, 1989). The correlator chooses the correlated strategy $\pi \in \Delta^{\mathcal{A}}$, while the deviator selects deviations. The game is zero-sum: the correlator aims to minimize the coalition’s gain from deviation, and the deviator aims to maximize it. Formally:

$$\min_{\pi \in \Delta^{\mathcal{A}}} \max_{\mu \in \Delta^{\times_{S \in \mathcal{S}} \mathcal{A}_S}} F(\pi, \mu), \quad (5.1)$$

where

$$F(\pi, \mu) := \sum_{S \in \mathcal{S}} \sum_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \frac{\mu(S, \hat{\mathbf{a}}_S)}{|S|} \sum_{i \in S} \mathbb{E}_{\mathbf{a} \sim \pi} [\mathcal{U}_i(\hat{\mathbf{a}}_S, \mathbf{a}_{-S}) - \mathcal{U}_i(\mathbf{a})]. \quad (5.2)$$

Here, we extend the deviator’s decision space from a discrete to a continuous set. This relaxation does not strengthen the deviator, since the objective is linear in μ , and the maximum is always attained at an extreme point. Therefore, (5.1) is equivalent to the original definition in (MASE).

A natural idea is to apply no-regret learning algorithms simultaneously for the correlator and deviator. However, directly updating the full distributions π and μ is infeasible, because the underlying spaces are exponentially large.

Fortunately, Theorem 5.1 implies that maintaining the full distributions is unnecessary: it suffices to keep track of a polynomial number of pure strategies, and use their convex combination as the approximate equilibrium. This motivates our use of *Follow the Perturbed Leader* (FTPL) (Hazan et al., 2016), where each decision at a timestep is a pure strategy, which can be represented compactly.

Let $\pi^{(t)} \in \Delta^{\mathcal{A}}$ and $\mu^{(t)} \in \Delta^{\times_{S \in \mathcal{S}} \mathcal{A}_S}$ denote the decision variables at timestep $t \geq 1$ for the correlator and the deviator, respectively. The interaction between these two players can be described

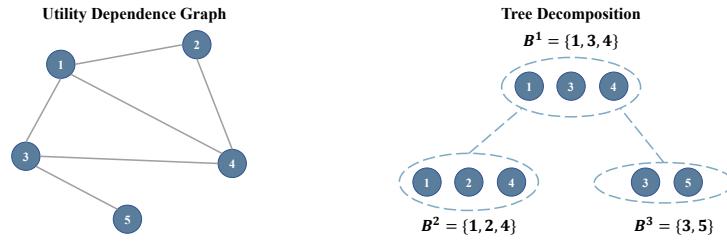


Figure 1: An illustration of a tree decomposition of the Utility Dependency Graph.

281 by the update rule

$$\begin{aligned}
 \pi^{(t+1)} &\in \operatorname{argmin}_{\pi \in \Delta^{\mathcal{A}}} \sum_{\tau=1}^t F(\pi, \mu^{(\tau)}) - \langle \tilde{\mathbf{n}}^{(t+1)}, \pi \rangle \\
 \mu^{(t+1)} &\in \operatorname{argmax}_{\mu^{(t)} \in \Delta^{\times_{S \in \mathcal{S}} \mathcal{A}_S}} \sum_{\tau=1}^t F(\pi^{(\tau)}, \mu) + \langle \tilde{\mathbf{m}}^{(t+1)}, \mu \rangle,
 \end{aligned} \tag{5.3}$$

288 where $\tilde{\mathbf{n}}^{(t+1)}$ and $\tilde{\mathbf{m}}^{(t+1)}$ are noise vectors sampled independently at each timestep from some
289 distribution, which we will specify later. These noise terms play the role of regularizers in on-
290 line mirror descent (OMD) (Hazan et al., 2016), ensuring stability in the updates by controlling
291 $\mathbb{E} [\|\pi^{(t+1)} - \pi^{(t)}\|]$ and $\mathbb{E} [\|\mu^{(t+1)} - \mu^{(t)}\|]$.

292 Since $F(\pi, \mu)$ is bilinear in (π, μ) , both the minimization and maximization problems admit solu-
293 tions at vertices of their respective decision spaces. In other words, the argmin for the correlator
294 and the argmax for the deviator always contain at least one pure strategy.

296 In what follows, we will explain in detail how to update π efficiently under this framework. The
297 update of μ is deferred to Appendix G.

299 5.2 EFFICIENT UPDATE OF π

300 The key step in updating $\pi^{(t+1)}$ is to select a pure strategy, *i.e.*, a joint action $\mathbf{a}^{(t+1)} \in \mathcal{A}$ with
301 $\pi^{(t+1)}(\mathbf{a}^{(t+1)}) = 1$, that minimizes the objective. To gain insight into this update rule, we first
302 examine how to compute $\operatorname{argmin}_{\pi \in \Delta^{\mathcal{A}}} F(\pi, \mu)$ for a fixed μ .

304 Suppose we want to find a joint action $\tilde{\mathbf{a}} \in \mathcal{A}$ such that the pure strategy $\tilde{\pi}$ with $\tilde{\pi}(\tilde{\mathbf{a}}) = 1$ minimizes
305 $F(\tilde{\pi}, \mu)$. Expanding the definition, we obtain

$$\begin{aligned}
 F(\tilde{\pi}, \mu) &= \sum_{i=1}^N \sum_{S \in \mathcal{S}: i \in S} \sum_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \frac{\mu(S, \hat{\mathbf{a}}_S)}{|S|} (\mathcal{U}_i(\hat{\mathbf{a}}_S, \tilde{\mathbf{a}}_{-S}) - \mathcal{U}_i(\tilde{\mathbf{a}})) \\
 &= \sum_{i=1}^N \sum_{S \in \mathcal{S}: i \in S} \sum_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \frac{\mu(S, \hat{\mathbf{a}}_S)}{|S|} (\mathcal{U}_i(\hat{\mathbf{a}}_{S \cap \mathcal{N}(i)}, \tilde{\mathbf{a}}_{\mathcal{N}(i) \setminus S}) - \mathcal{U}_i(\tilde{\mathbf{a}}_{\mathcal{N}(i)})). \tag{red}
 \end{aligned}$$

312 Therefore, for each candidate $\tilde{\mathbf{a}} \in \mathcal{A}$, only the local actions $\tilde{\mathbf{a}}_{\mathcal{N}(i)}$ matter for the **expression** above.
313 If we can evaluate this **expression** efficiently,⁵ then for each player $i \in [N]$ we may search for $\tilde{\mathbf{a}}_{\mathcal{N}(i)}$
314 that minimizes it. However, a difficulty arises because $\mathcal{N}(i)$ and $\mathcal{N}(j)$ may overlap across different
315 players. Hence, we must ensure that the local assignments remain globally consistent.

316 To address this, we now introduce the concept of a tree decomposition and show how it enables us
317 to optimize F efficiently. **Throughout the paper, we assume that a tree decomposition is given, and**
318 **analyze the complexity only with respect to this decomposition.**

320 **Tree decomposition.** A tree decomposition $\mathcal{T} := B^1, B^2, \dots, B^K$ of the Utility Dependency
321 Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a tree with K nodes (bags), each $B^k \subseteq \mathcal{V}$ where $\mathcal{V} = [N]$, satisfying the
322 following properties (Diestel, 2025):

323 ⁵This is possible since μ is a linear combination of pure strategies when updated according to (5.3).

324 1. $\bigcup_{k=1}^K B^k = [N]$.
 325 2. For every edge $(i, j) \in \mathcal{E}$, there exists k with $\{i, j\} \subseteq B^k$.
 326 3. For any player $i \in [N]$, if i appears in two bags $B, B' \in \mathcal{T}$, then every bag on the path
 327 from B to B' also contains i .

328 As illustrated in Figure 1, the tree decomposition separates the game into overlapping bags. For
 329 example, since B^2 and B^3 only overlap at B^1 , then B^2 and B^3 can be optimized independently,
 330 with consistency later enforced at B^1 .
 331

332 Since any clique in \mathcal{G} is contained in some bag (Diestel, 2025), for every player $i \in [N]$ there exists
 333 a bag B with $\mathcal{N}(i) \subseteq B$. We arbitrarily assign each player i to such a bag.

334 **Dynamic programming on the tree.** We begin by choosing an arbitrary bag as the root of the tree
 335 decomposition and denote it by B^r . For each bag $B \in \mathcal{T}$, let $C(B)$ denote the set of its children.
 336 With this setup, we maintain a vector $\mathbf{d}^{(t+1)} \in \mathbb{R}^{\times_{B \in \mathcal{T}} \mathcal{A}_B}$, defined as

$$338 \quad d^{(t+1)}(B, \mathbf{a}_B) = \sum_{\tau=1}^t \sum_{S \in \mathcal{S}} \frac{1}{|S|} \sum_{\substack{i \in S: \\ i \text{ assigned to } B}} \sum_{\widehat{\mathbf{a}}_S \in \mathcal{A}_S} \mu^{(\tau)}(S, \widehat{\mathbf{a}}_S) (\mathcal{U}_i((\widehat{\mathbf{a}}_{S \cap B}, \mathbf{a}_{B \setminus S})) - \mathcal{U}_i(\mathbf{a}_B)) \\ 340 \quad + \sum_{B' \in C(B)} \min_{\substack{\mathbf{a}'_{B'} \in \mathcal{A}_{B'}: \\ \mathbf{a}_{B \cap B'} = \mathbf{a}'_{B \cap B'}}} d^{(t+1)}(B', \mathbf{a}'_{B'}) - n^{(t+1)}(B, \mathbf{a}_B), \\ 344 \quad (5.4)$$

345 where $n^{(t+1)}(B, \mathbf{a}_B) \sim \text{Exp}(\eta)$ ⁶ is sampled from an exponential distribution. Therefore, in (5.3),
 346 $\tilde{n}^{(t+1)}(\mathbf{a}) = \sum_{B \in \mathcal{T}} n^{(t+1)}(B, \mathbf{a}_B)$. Since each i assigned to B satisfies $\mathcal{N}(i) \subseteq B$, the utility
 347 $\mathcal{U}_i(\mathbf{a}_B)$ can be written in terms of \mathbf{a}_B alone. Moreover, the summation $\sum_{\widehat{\mathbf{a}}_S \in \mathcal{A}_S}$ can be computed
 348 efficiently, since $\mu^{(\tau)}$ is updated via (5.3) and is therefore a pure strategy.
 349

350 **Reconstructing the strategy.** The optimal joint action $\mathbf{a}^{(t+1)} \in \mathcal{A}$ is then reconstructed recursively
 351 from the root B^r to the leaves:

$$353 \quad \mathbf{a}_{B^r}^{(t+1)} = \underset{\mathbf{a}_{B^r} \in \mathcal{A}_{B^r}}{\text{argmin}} d^{(t+1)}(B^r, \mathbf{a}_{B^r}) \\ 355 \quad \forall B \in C(B^r), \quad \mathbf{a}_{B \setminus B^r}^{(t+1)} = \underset{\mathbf{a}_{B \setminus B^r} \in \mathcal{A}_{B \setminus B^r}}{\text{argmin}} d^{(t+1)}(B, (\mathbf{a}_{B \setminus B^r}, \mathbf{a}_{B \cap B^r}^{(t+1)})). \\ 356 \quad (5.5)$$

357 By **Property 1 of Tree Decomposition**, every player's action will be included. Since
 358 $\text{argmin}_{\mathbf{a}_{B \setminus B^r} \in \mathcal{A}_{B \setminus B^r}}$ is taken over $\mathcal{A}_{B \setminus B^r}$, no contradictions arise by **Property 3 of Tree Decomposition**. We then set $\pi^{(t+1)}(\mathbf{a}^{(t+1)}) = 1$.

361 The regret bound of this procedure is summarized below.

362 **Theorem 5.2.** Consider (5.3). For any $\delta > 0$, with probability at least $1 - \delta$, the following holds:

$$364 \quad \max_{\widehat{\pi} \in \Delta^{\mathcal{A}}} \sum_{t=1}^T F(\pi^{(t)}, \mu^{(t)}) - F(\widehat{\pi}, \mu^{(t)}) \leq 2|\mathcal{T}| \frac{1 + (\text{tw}(\mathcal{G}) + 1) \log A}{\eta} + 2\eta |\mathcal{T}| T + \sqrt{2T \log \frac{1}{\delta}}.$$

367 The proof is given in Appendix F. Importantly, Theorem 5.2 shows that by setting $\eta = 1/\sqrt{T}$, we
 368 obtain $\mathcal{O}(\sqrt{T})$ regret. Since the update rule for μ mirrors that of π , the detailed analysis is deferred
 369 to Appendix G. We now formally state the regret bound for μ in the following theorem.

370 **Theorem 5.3.** Consider the updates in (5.3). For any $\delta > 0$, with probability at least $1 - \delta$, the
 371 following holds:

$$373 \quad \max_{\widehat{\mu} \in \Delta^{\times_{S \in \mathcal{S}} \mathcal{A}_S}} \sum_{t=1}^T F(\pi^{(t)}, \widehat{\mu}) - F(\pi^{(t)}, \mu^{(t)}) \leq 2|\mathcal{T}| \frac{1 + (\text{tw}(\mathcal{G}) + 1) \log A}{\eta} + 2\eta |\mathcal{T}| T + \sqrt{2T \log \frac{1}{\delta}}.$$

376 The complete proof is provided in Appendix G.

377 ⁶ $\Pr(x \geq w) = \exp(-\eta w)$ when $x \sim \text{Exp}(\eta)$.

378 5.3 COMPUTATION OF EQUILIBRIUM
379380 For any $\delta' > 0$, by setting $\delta = \frac{\delta'}{2}$ in Theorem 5.2 and Theorem 5.3, and applying the union bound,
381 we obtain that with probability at least $1 - \delta'$, the following holds:
382

383
$$\max_{\hat{\mu} \in \Delta^{\times_{S \in \mathcal{S}} \mathcal{A}_S}} \sum_{t=1}^T F(\pi^{(t)}, \mu) - \min_{\hat{\pi} \in \Delta^{\mathcal{A}}} \sum_{t=1}^T F(\hat{\pi}, \mu^{(t)})$$

384
$$\leq 4|\mathcal{T}| \frac{1 + (\text{tw}(\mathcal{G}) + 1) \log A}{\eta} + 4\eta |\mathcal{T}| T + 2\sqrt{2T \log \frac{2}{\delta'}}.$$

385 (5.6)

386 We now connect this bound to the convergence of the average strategy profile. Let π^*, μ^* be the
387 solution to (5.1), and define the average strategies $\bar{\pi} := \frac{1}{T} \sum_{t=1}^T \pi^{(t)}$ and $\bar{\mu} := \frac{1}{T} \sum_{t=1}^T \mu^{(t)}$. The
388 left-hand side of (5.6) corresponds to the duality gap: $\max_{\hat{\mu} \in \Delta^{\times_{S \in \mathcal{S}} \mathcal{A}_S}} F(\bar{\pi}, \hat{\mu}) - \min_{\hat{\pi} \in \Delta^{\mathcal{A}}} F(\hat{\pi}, \bar{\mu})$.
389 Since π^*, μ^* are optimal solutions to (5.6), they satisfy
390

391
$$\min_{\hat{\pi} \in \Delta^{\mathcal{A}}} F(\hat{\pi}, \bar{\mu}) \leq F(\pi^*, \mu^*) \leq \max_{\hat{\mu} \in \Delta^{\times_{S \in \mathcal{S}} \mathcal{A}_S}} F(\bar{\pi}, \hat{\mu}).$$

392

393 Combining these pieces, we arrive at the following finite-time convergence guarantee:
394395 **Theorem 5.4.** Let π^*, μ^* be the solution of (5.1), and define $\bar{\pi} := \frac{1}{T} \sum_{t=1}^T \pi^{(t)}$, $\bar{\mu} := \frac{1}{T} \sum_{t=1}^T \mu^{(t)}$.
396 Then, for any $\delta > 0$, with probability at least $1 - \delta$, we have
397

398
$$\max_{\hat{\mu} \in \Delta^{\times_{S \in \mathcal{S}} \mathcal{A}_S}} F(\bar{\pi}, \hat{\mu}) \leq F(\pi^*, \mu^*) + 4|\mathcal{T}| \frac{1 + (\text{tw}(\mathcal{G}) + 1) \log A}{\eta T} + 4\eta |\mathcal{T}| + 2\sqrt{\frac{2 \log \frac{2}{\delta}}{T}}.$$

399

400 With $\eta = \frac{1}{\sqrt{T}}$, the average strategy $\bar{\pi}$ constitutes an $\mathcal{O}\left(\frac{|\mathcal{T}| \cdot \text{tw}(\mathcal{G}) \log A + \sqrt{\log \frac{2}{\delta}}}{\sqrt{T}}\right)$ -MASE. The overall
401 running time is $\mathcal{O}(T \cdot |\mathcal{S}| \cdot |\mathcal{T}| \cdot A^{\text{tw}(\mathcal{G})+1})$. Hence, the exponential dependence aligns with the
402 lower bound in Theorem 4.3.
403404 6 EXPERIMENTS
405406 In this section, we compare our algorithm against several baselines: Follow the Regularized Leader
407 with a Euclidean regularizer (FTRL), Hedge, Follow the Perturbed Leader with an exponential noise
408 distribution (FTPL; all players run FTPL independently), and Online Mirror Descent with a
409 Euclidean regularizer (OMD) (Hazan et al., 2016). We also plot the ground-truth MASE computed via
410 linear programming (LP) in Appendix B. The code can be found in the supplementary materials.
411412 We evaluate the algorithms on three criteria:
413414

- 415 • **Exploitability.** ($\max_{i \in [N]} \max_{\hat{a}_i \in \mathcal{A}_i} \mathbb{E}_{a \sim \pi} [\mathcal{U}_i(\hat{a}_i, a_{-i}) - \mathcal{U}_i(a)]$): the maximum gain a
416 single player can obtain by deviating unilaterally. Exploitability ≤ 0 indicate a Nash equilibrium
417 (or a correlated equilibrium if π is correlated).
- 418 • **Coalition exploitability.** ($\max_{\mu \in \Delta^{\times_{S \in \mathcal{S}} \mathcal{A}_S}} F(\pi, \mu)$): the maximum average gain when a
419 coalition deviates simultaneously. We take \mathcal{S} to be the set of all non-empty player subsets.
- 420 • **Social welfare.** ($\sum_{i=1}^N \mathbb{E}_{a \sim \pi} [\mathcal{U}_i(a)]$): the sum of all players’ utilities.

421422 Utility definitions and additional details are provided in Appendix H. In the Prisoner’s Dilemma
423 (Luce & Raiffa, 1957), the MASE corresponds to players choosing (C, D) and (D, C) with prob-
424 ability 0.5 each, yielding a social welfare of 1.0. In contrast, because the unique NE/CCE in this
425 game is (D, D) , the baselines converge to that outcome, with a lower social welfare of 0.4. Thus, in
426 the Prisoner’s Dilemma, MASE promotes cooperation and achieves higher utility.
427428 In the Stag Hunt, there are two Nash equilibria, one of which attains higher utility. As shown in
429 Figure 2, all baselines converge to the worse equilibrium, whereas MASE converges to the better
430 one. Finally, in terms of exploitability (unilateral deviations), MASE remains close to the baselines,
431 while the baselines are substantially more fragile to multilateral deviations.
432

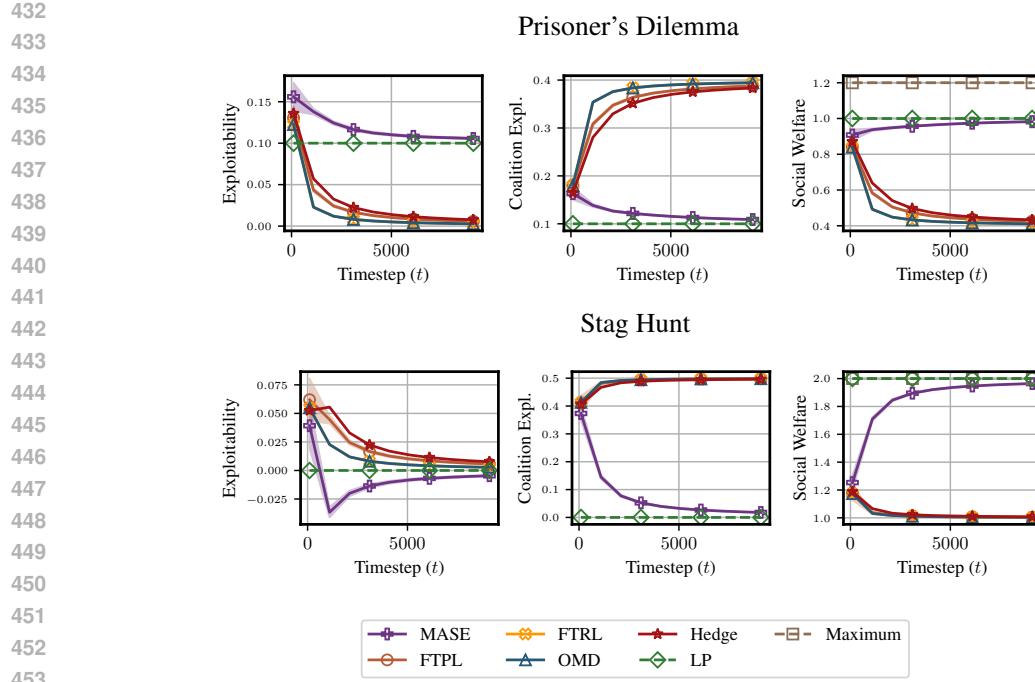


Figure 2: LP denotes the linear programming solution from Appendix B, and Maximum denotes the maximum achievable social welfare. The baselines are comparatively fragile to multilateral deviations, while MASE is more robust and achieves higher social welfare. At the same time, MASE’s exploitability is close to that of the baselines.

6.1 TRADE-OFF BETWEEN EXPLOITABILITY AND SOCIAL WELFARE

In Figure 2, we can see that by allowing exploitability to increase from 0.0 to 0.1, the social welfare of MASE increases from 0.4 to 1.0. This raises a natural question:

Given a tolerance $\epsilon \geq 0$, what is the maximum social welfare achievable by an equilibrium with exploitability at most ϵ ?

In other words, if we are willing to sacrifice equilibrium robustness, how much can we improve social welfare? Interestingly, this trade-off can be computed efficiently using a variant of our MASE framework. Specifically, we solve the following weighted objective:

$$\operatorname{argmin}_{\pi \in \Delta^{\mathcal{A}}} \max_{S \in \mathcal{S}} \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \frac{w_S}{|S|} \sum_{i \in S} \mathbb{E}_{\mathbf{a} \sim \mathcal{A}} [\mathcal{U}_i(\hat{\mathbf{a}}_S, \mathbf{a}_{-S}) - \mathcal{U}_i(\mathbf{a})], \quad (6.1)$$

where $w \in \mathbb{R}^{\mathcal{S}}$ is a vector of non-negative weights. We have the following lemma.

Lemma 6.1. For any $\epsilon > 0$, computing the CCE with exploitability no more than ϵ that maximizes social welfare is equivalent to (6.1) by setting $\mathcal{S} = \{\{i\}\}_{i \in [N]} \cup \{[N]\}$ and using the weights:

$$w_S = \begin{cases} w & \text{if } |S| = 1 \\ 1-w & \text{if } S = [N] \end{cases}$$

for some $w \in [0, 1]$. Conversely, solving (6.1) with these parameters corresponds to finding a point on the Pareto frontier of social welfare and exploitability.

The proof is postponed to Appendix H.4. With Lemma 6.1, we can compute the Pareto frontier by solving (6.1) for different values of w . The results are shown in Figure 3. In the Stag Hunt, since one of the Nash equilibria already maximizes social welfare, the social welfare remains fixed at its optimal value for all $w \in [0, 1]$.

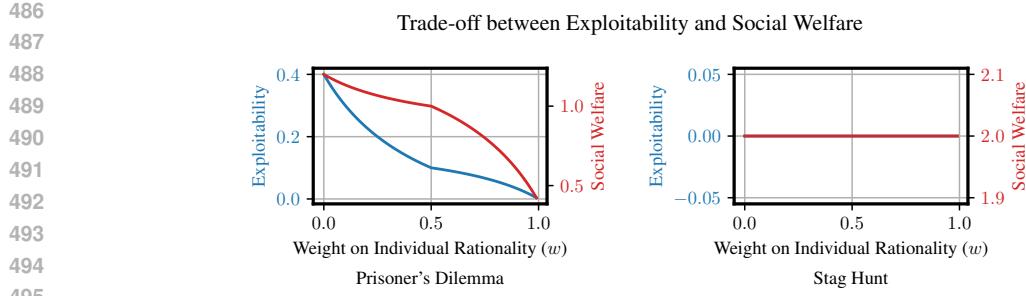


Figure 3: The trade-off between exploitability and social welfare in the Prisoner’s Dilemma and the Stag Hunt.

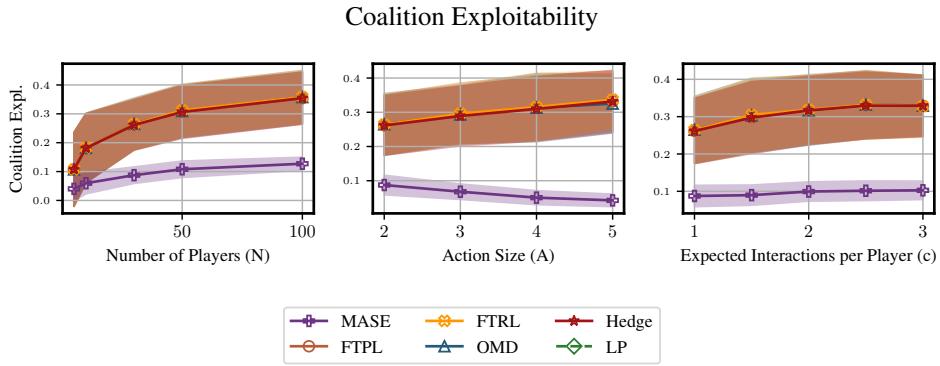


Figure 4: The coalition exploitability of random polymatrix games of different sizes when coalitions with no more than two players are considered. A larger expected number of interactions per player (c) generally corresponds to a larger treewidth of the Utility Dependency Graph.

6.2 COALITION EXPLOITABILITY IN LARGER GAMES

As shown in Figure 4, the coalition exploitability of the average strategy generated by classical no-regret learning algorithms increases as the game size grows. Note that we only consider coalitions of size no more than two. This trend underscores the importance of minimizing coalition exploitability. As games become larger, the equilibria to which these algorithms converge become increasingly fragile to coalition deviations, necessitating approaches that explicitly account for such multilateral deviations. Further details are provided in Appendix I.

7 CONCLUSION

In this work, we introduced the Minimal Average-Strong Equilibrium (MASE), a tractable solution concept that accounts for multilateral deviations by minimizing each coalition’s average incentive to deviate. We established that computing an approximate MASE is NP-hard even with singleton coalitions and proved a fixed-parameter lower bound showing unavoidable exponential dependence on the treewidth of the Utility Dependency Graph. We then designed an algorithm—combining a correlator–deviator meta-game with FTPL updates and dynamic programming over a tree decomposition, whose running time matches this lower bound up to the treewidth factor. Empirically, MASE is substantially more robust to coalition deviations than standard baselines while improving social welfare in canonical games, all without materially worsening unilateral exploitability.

In the future, it is natural to move beyond uniform averaging within coalitions. A compelling open direction is to characterize lower and upper bounds for objectives that minimize the minimal incentive within each coalition. More broadly, extending these ideas to richer coalition objectives would mature the strong-equilibrium framework and yield more solution concepts that go beyond unilateral deviations.

540 **8 ETHICS STATEMENT**
541542 This paper presents work that aims to advance the field of game theory. There are many potential
543 societal consequences of our work, none of which we feel must be specifically highlighted here.
544545 **9 REPRODUCIBILITY STATEMENT**
546547 The code is provided in the supplementary material. The proof and assumptions are stated in Ap-
548 pendices C, D, F and G.2.
549550 **10 USE OF LARGE LANGUAGE MODELS**
551553 In this paper, we use large language models (LLMs) to improve writing, *e.g.*, by correcting gram-
554 matical errors, to search for related work so that no relevant papers are overlooked, and to assist with
555 coding.
556557 **REFERENCES**
558559 Naman Agarwal, Alon Gonen, and Elad Hazan. Learning in non-convex games with an optimization
560 oracle. In *Conference on Learning Theory (COLT)*, 2019.561 Ioannis Anagnostides, Gabriele Farina, Tuomas Sandholm, and Brian Hu Zhang. A polynomial-time
562 algorithm for variational inequalities under the minty condition. *arXiv preprint arXiv:2504.03432*,
563 2025.564 Sanjeev Arora and Boaz Barak. *Computational complexity: a modern approach*. Cambridge Uni-
565 versity Press, 2009.566 Robert Aumann. *Acceptable points in General Cooperative n-person Games*, pp. 287–324. Prince-
567 ton University Press, 01 1959. doi: 10.1090/fic/023/01.568 Robert J Aumann. Subjectivity and correlation in randomized strategies. *Journal of mathematical*
569 *Economics*, 1(1):67–96, 1974.570 Carl T Bergstrom and Peter Godfrey-Smith. On the evolution of behavioral heterogeneity in indi-
571 viduals and populations. *Biology and Philosophy*, 13(2):205–231, 1998.572 B Douglas Bernheim, Bezalel Peleg, and Michael D Whinston. Coalition-proof Nash equilibria i.
573 concepts. *Journal of economic theory*, 42(1):1–12, 1987.574 Marie Louisa Tølbøll Berthelsen and Kristoffer Arnsfelt Hansen. On the computational complexity
575 of decision problems about multi-player Nash equilibria. *Theory of Computing Systems*, 66(3):
576 519–545, 2022.577 Nicolo Cesa-Bianchi and Gábor Lugosi. *Prediction, learning, and games*. Cambridge university
578 press, 2006.579 Xi Chen and Xiaotie Deng. Settling the complexity of two-player Nash equilibrium. In *Symposium*
580 *on Foundations of Computer Science (FOCS)*, 2006.581 Vincent Conitzer and Tuomas Sandholm. New complexity results about Nash equilibria. *Games*
582 *and Economic Behavior*, 63(2):621–641, 2008.583 Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The complexity of
584 computing a Nash equilibrium. *Communications of the ACM*, 52(2):89–97, 2009.585 Reinhard Diestel. *Graph theory*, volume 173. Springer Nature, 2025.586 B Curtis Eaves. Polymatrix games with joint constraints. *SIAM Journal on Applied Mathematics*,
587 24(3):418–423, 1973.

594 Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski. Fundamental problems on
 595 bounded-treewidth graphs: The real source of hardness. In *International Colloquium on Au-*
 596 *tomata, Languages and Programming (ICALP)*, 2024.

597

598 Nicola Gatti, Marco Rocco, and Tuomas Sandholm. On the verification and computation of strong
 599 Nash equilibrium. In *International Conference on Autonomous Agents and MultiAgent Systems*
 600 (AAMAS), 2013.

601 Sergiu Hart and David Schmeidler. Existence of correlated equilibria. *Mathematics of Operations*
 602 *Research*, 14(1):18–25, 1989.

603

604 Elad Hazan et al. Introduction to online convex optimization. *Foundations and Trends® in Opti-*
 605 *mization*, 2(3-4):157–325, 2016.

606 Martin Hoefer. Strategic cooperation in cost sharing games. *International Journal of Game Theory*,
 607 42(1):29–53, 2013.

608

609 Ron Holzman and Nissan Law-Yone. Strong equilibrium in congestion games. *Games and economic*
 610 *behavior*, 21(1-2):85–101, 1997.

611 Joseph T Howson Jr. Equilibria of polymatrix games. *Management Science*, 18(5-part-1):312–318,
 612 1972.

613

614 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. *Journal of Computer*
 615 *and System Sciences*, 62(2):367–375, 2001.

616 Sham Kakade, Michael Kearns, John Langford, and Luis Ortiz. Correlated equilibria in graphical
 617 games. In *ACM Conference on Electronic Commerce*, 2003.

618

619 Yasushi Kawase and Hanna Sumita. On the max-min fair stochastic allocation of indivisible goods.
 620 In *AAAI Conference on Artificial Intelligence (AAAI)*, 2020.

621

622 Michael J. Kearns, Michael L. Littman, and Satinder Singh. Graphical models for game theory. In
 623 *Conference on Uncertainty in Artificial Intelligence (UAI)*, 2001.

624 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of bounded
 625 treewidth are probably optimal. In *ACM-SIAM Symposium on Discrete Algorithms (SODA)*, 2011.

626

627 Duncan R.. Luce and Howard Raiffa. *Games and Decisions*. wiley, 1957.

628

629 Hervé Moulin and J-P Vial. Strategically zero-sum games: the class of games whose completely
 630 mixed equilibria cannot be improved upon. *International Journal of Game Theory*, 7(3-4):201–
 221, 1978.

631

632 John F Nash Jr. Equilibrium points in n-person games. *Proceedings of the national academy of*
 633 *sciences*, 36(1):48–49, 1950.

634

635 Rabia Nessah and Guoqiang Tian. On the existence of strong Nash equilibria. *Journal of Mathe-*
 636 *matical Analysis and Applications*, 414(2):871–885, 2014.

637

638 Christos H Papadimitriou and Tim Roughgarden. Computing correlated equilibria in multi-player
 639 games. *Journal of the ACM (JACM)*, 55(3):1–29, 2008.

640

641 AC Pigou. The economics of welfare macmillan. *New York*, 1920.

642

643 Mona Rahn and Guido Schäfer. Efficient equilibria in polymatrix coordination games. In *Inter-*
 644 *national Symposium on Mathematical Foundations of Computer Science (MFCS)*, 2015.

645

646 Robert W Rosenthal. A class of games possessing pure-strategy Nash equilibria. *International*
 647 *Journal of Game Theory*, 2(1):65–67, 1973.

648

649 Ola Rozenfeld and Moshe Tennenholtz. Strong and correlated strong equilibria in monotone conges-

650 *tion games*. In *International Workshop on Internet and Network Economics*, pp. 74–86. Springer,
 651 2006.

648 Arun Sai Suggala and Praneeth Netrapalli. Online non-convex learning: Following the perturbed
649 leader is optimal. In *Algorithmic Learning Theory (ALT)*, 2020.
650

651 Heinrich Von Stackelberg. *Market structure and equilibrium*. Springer Science & Business Media,
652 2010.

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A RELATED WORK
703704 In this section, we review the literature on strong equilibrium from three perspectives: existence,
705 time complexity, and computation.
706707 **Existence of Strong Equilibrium.** Aumann (1959) introduced the strong NE, where no coalition
708 (a nonempty subset of players) can deviate in a way that strictly improves the utility of all its mem-
709 bers. However, even in simple two-player games such as the Prisoner’s Dilemma (Luce & Raiffa,
710 1957), a strong NE does not exist when players can coordinate. To address this, Bernheim et al.
711 (1987) proposed the coalition-proof equilibrium, which restricts the set of deviations. Yet, this con-
712 cept also fails to guarantee existence, already in three-player games (Bernheim et al., 1987). More
713 recently, Rahn & Schäfer (2015) studied the notion of α -approximate k -equilibrium, where no coalition
714 of size at most k can deviate to improve each member’s utility by at least a factor of $\alpha \geq 1$.
715 They further showed that such equilibria exist in graph coordination games only under specific con-
716 ditions, for instance, when $\alpha \geq 2$. Motivated by these non-existence results, we instead focus on
717 minimizing the maximum average gain from coalition deviations (MASE), a quantity that is always
718 well defined.
719720 **Complexity of Strong Equilibrium.** Since a strong NE degenerates to an NE when only sin-
721 gleton coalitions are considered, computing a strong NE is PPAD-hard in general (Daskalakis
722 et al., 2009; Chen & Deng, 2006). Beyond computation, Conitzer & Sandholm (2008) showed that
723 even deciding whether a strong NE exists is NP-complete in two-player symmetric games, and
724 Berthelsen & Hansen (2022) further established that the problem is $\exists\mathbb{R}$ -complete for three-player
725 games. Similarly, Rahn & Schäfer (2015) proved that determining the existence of a strong NE is
726 NP-complete in graph coordination games, even when restricting attention to coalitions of con-
727 stant size. To the best of our knowledge, however, no hardness results are known for computing
728 strong equilibria when correlation on the joint strategy is allowed, *i.e.*, a correlated strategy immune
729 to coalition deviations. In this paper, we show that computing a correlated strategy that minimizes
730 the average gain from coalition deviations is NP-hard. Moreover, we establish a fixed-parameter
731 lower bound based on the treewidth of the Utility Dependency Graph, demonstrating an inherent
732 computational barrier in solving the MASE considered here.
733734 **Computation of Strong Equilibrium.** Holzman & Law-Yone (1997) and Rozenfeld & Tennen-
735 holtz (2006) developed algorithms to compute strong NE and correlated strong equilibria in con-
736 gestion games under certain conditions in polynomial time. Rahn & Schäfer (2015) showed that a
737 strong NE can also be computed in polynomial time when the graph coordination game is defined
738 on a tree. In contrast, Gatti et al. (2013) proposed a spatial branch-and-bound algorithm for comput-
739 ing strong NE more generally, but its runtime is exponential. Along the same lines, Nessah & Tian
740 (2014) also provided a computationally intractable algorithm. Of independent interest, Papadim-
741 itriou & Roughgarden (2008) introduced an efficient algorithm for computing optimal CE—*e.g.*, a
742 CE that maximizes the social welfare—in graphical games (Kearns et al., 2001; Kakade et al., 2003)
743 with bounded treewidth, using linear programming. In this paper, we develop a new algorithm for
744 computing MASE based on no-regret learning, with a time complexity that matches the lower bound
745 dictated by the treewidth of the Utility Dependency Graph.
746747 B LINEAR PROGRAMMING FOR SOLVING (MASE)
748749 (MASE) can be solved by the following linear programming
750

751
$$\begin{aligned} & \min_{\pi, w} w \\ & w \geq \frac{1}{|S|} \sum_{i \in S} \mathbb{E}_{\mathbf{a} \sim \pi} [\mathcal{U}_i(\hat{\mathbf{a}}_S, \mathbf{a}_{-S}) - \mathcal{U}_i(\mathbf{a})] \quad \forall S \in \mathcal{S}, \hat{\mathbf{a}}_S \in \mathcal{A}_S \\ & \pi(\mathbf{a}) \geq 0 \quad \forall \mathbf{a} \in \mathcal{A} \\ & \sum_{\mathbf{a} \in \mathcal{A}} \pi(\mathbf{a}) = 1. \end{aligned}$$

756 Since

$$\begin{aligned} \mathbb{E}_{\mathbf{a} \sim \pi} [\mathcal{U}_i(\hat{\mathbf{a}}_S, \mathbf{a}_{-S})] &= \sum_{\mathbf{a} \in \mathcal{A}} \pi(\mathbf{a}) \mathcal{U}_i(\hat{\mathbf{a}}_S, \mathbf{a}_{-S}) \\ \mathbb{E}_{\mathbf{a} \sim \pi} [\mathcal{U}_i(\mathbf{a})] &= \sum_{\mathbf{a} \in \mathcal{A}} \pi(\mathbf{a}) \mathcal{U}_i(\mathbf{a}) \end{aligned}$$

762 are linear in π , the linear programming above is valid. Note that the linear program contains exponentially many variables ($\pi \in \Delta^{\mathcal{A}}$), so its complexity is necessarily exponential in N .
763

765 C OMITTED PROOFS IN SECTION 4

767 This section presents the omitted proofs in Section 4.

769 C.1 PROOF OF THEOREM 4.1

771 **Theorem 4.1.** Computing ϵ -MASE is NP-hard, even when \mathcal{S} only contains singletons (coalitions
772 of size one) and $1/\epsilon$ is polynomial in the number of players.

774 *Proof.* We will introduce the allocation problem (NP-hard) and show that it can be reduced to
775 computing the correlated strong equilibrium.

776 **Definition C.1** (Allocation Problem). There are n agents and m goods. An assignment $X: [m] \rightarrow$
777 $[n]$ is a mapping from each good to an agent. Agent i 's utility is $u_i(X)$ for an assignment X . A
778 stochastic allocation $\mathbf{p} \in \Delta^{[m]^{[n]}}$ is a distribution over all possible assignments. The egalitarian
779 social welfare (ESW) maximization is defined as

$$\max_{\mathbf{p} \in \Delta^{[m]^{[n]}}} \min_{i \in [n]} \sum_{X \in [m]^{[n]}} \mathbf{p}(X) u_i(X). \quad (\text{C.1})$$

783 For any allocation problem, we can create a game with $N = n + m$ players. The action set of player
784 $i \leq n$ is $\mathcal{A}_i = \{0, 1\}$, while the action set of player $j > n$ is $\mathcal{A}_j = [n]$. For any joint action $\mathbf{a} \in \mathcal{A}$,
785 $\mathcal{U}_i(\mathbf{a}) = u_i(\mathbf{a}_{-[n]})$ for $i \leq n$ when $a_1 = a_2 = \dots = a_n$, otherwise $\mathcal{U}_i(\mathbf{a}) = -u_i(\mathbf{a}_{-[n]})$. For
786 $j > n$, $\mathcal{U}_j(\mathbf{a}) = 0$. Moreover, let $\mathcal{S} = \{\{1\}, \{2\}, \dots, \{n\}\}$. We further define

$$\begin{aligned} a &:= \sum_{\substack{\mathbf{a} \in \mathcal{A}: \\ a_2 = a_3 = \dots = a_n = 0}} \pi(\mathbf{a}) u_i(\mathbf{a}_{-[n]}) \\ b &:= \sum_{\substack{\mathbf{a} \in \mathcal{A}: \\ a_2 = a_3 = \dots = a_n = 1}} \pi(\mathbf{a}) u_i(\mathbf{a}_{-[n]}) \\ c &:= - \sum_{\substack{\mathbf{a} \in \mathcal{A}: \\ \exists i, j \in [n] \setminus \{1\}, a_i \neq a_j}} \pi(\mathbf{a}) u_i(\mathbf{a}_{-[n]}). \end{aligned}$$

796 Then, the gap of player 1 is lower bounded by

$$\max_{\hat{a}_1 \in \{0, 1\}} \mathbb{E}_{\mathbf{a} \sim \pi} [\mathcal{U}_i(\hat{a}_1, \mathbf{a}_{-1}) - \mathcal{U}_i(\mathbf{a})] \geq \max(a, b) + c - (a + b + c) = -\min(a, b).$$

799 The equation holds when a_1 is always equal to a_2 when $a_2 = a_3 = \dots = a_n$. Therefore, the optimal
800 strategy π should satisfy $\pi_{[n]}((0, \dots, 0)) = \pi_{[n]}((1, \dots, 1)) = \frac{1}{2}$.

801 Then, (MASE) is equivalent to

$$\min_{\pi_{[m]} \in \Delta^{[m]^{[n]}}} \max_{\mathbf{a} \in \mathcal{A}} \sum_{i \in [n]} -\pi(\mathbf{a}) u_i(\mathbf{a}_{-[n]}) = \min_{\pi_{[m]} \in \Delta^{[m]^{[n]}}} \max_{i \in [n]} \sum_{\mathbf{a}_{-[n]} \in [m]^{[n]}} -\pi_{-[n]}(\mathbf{a}_{-[n]}) u_i(\mathbf{a}_{-[n]}),$$

805 which is equivalent to (C.1). Finally, according to Kawase & Sumita (2020, Corollary 1), it is
806 NP-hard to approximate (C.1) up to $1 - \frac{1}{e}$.

808 The hard instance constructed in Kawase & Sumita (2020) satisfies that $\max_i \max_{X \in [m]^{[n]}} u_i(X) =$
809 $\text{Poly}(n, m)$ and the solution to (C.1) is 1. Therefore, $\text{Poly}(N, \frac{1}{\epsilon})$ algorithm does not exist unless
P=NP for solving an ϵ -MASE. \square

810 C.2 PROOF OF THEOREM 4.3
811

812 *Proof.* According to Lokshtanov et al. (2011), under SETH, q -coloring cannot be solved in
813 $\mathcal{O}((q - \zeta)^{\text{tw}} \cdot \text{Poly}(|I|))$ for arbitrary graph G , when a tree decomposition of width tw is given.⁷
814 In the sequel, we construct a game such that computing $\frac{1}{N}$ -approximate (MASE) is equivalent to
815 determining the q -coloring.

816 For any q -coloring problem on $G = (V, E)$, we will construct a game with $N = |V| + |E|$ players.
817 For each player $i \leq |V|$, the action set $\mathcal{A}_i = \{1, 2, \dots, q\}$ and the utility function $\mathcal{U}_i \equiv 0$ is
818 a constant function equal to zero. For each player $j > |V|$, the action set is $\{1\}$ and the utility
819 function is $\mathcal{U}_j(\mathbf{a}) = \mathbb{1}(a_{e_{j-|V|,1}} \neq a_{e_{j-|V|,2}})$, where $(e_{j-|V|,1}, e_{j-|V|,2})$ is the $(j - |V|)^{\text{th}}$ edge in
820 E and $\mathbb{1}$ is the indicator function (equals one when the argument is true and otherwise zero). In this
821 game, $\mathcal{S} = \{(i_1, i_2, j + |V|) \mid e_j = (i_1, i_2)\}$.

822 Firstly, for any proper coloring $\mathbf{c} \in [q]^{|V|}$, the associated pure strategy is $\pi^{\mathbf{c}}$, where $\pi_i^{\mathbf{c}}(a_i) = 1$ if
823 and only if $a_i = c_i$ and 0 otherwise. It satisfies (MASE). Because for any $\mathcal{S} \ni S = (i_1, i_2, j + |V|)$,
824 the maximum of $\frac{1}{|S|} \sum_{i \in S} \mathcal{U}_i(\pi)$ is $\frac{1}{3}$, which is attained when the colors of node i_1, i_2 are different.
825 Therefore, $\pi^{\mathbf{c}}$ obtains the maximum for every coalition $S \in \mathcal{S}$, which implies the satisfaction of
826 (MASE).

827 Secondly, for any joint strategy $\pi \in \Delta^{\mathcal{A}}$ satisfying (MASE), we have

$$\begin{aligned} \min_{S \in \mathcal{S}} \frac{\sum_{i \in S} \mathcal{U}_i(\pi)}{|S|} &\leq \frac{1}{|\mathcal{S}|} \sum_{S \in \mathcal{S}} \frac{\sum_{i \in S} \mathcal{U}_i(\pi)}{|S|} = \sum_{\mathbf{a} \in \mathcal{A}} \pi(\mathbf{a}) \frac{1}{|\mathcal{S}|} \sum_{S \in \mathcal{S}} \frac{\sum_{i \in S} \mathcal{U}_i(\mathbf{a})}{|S|} \\ &\leq \frac{1}{3} - \frac{1}{3|E|} \sum_{\mathbf{a} \in \mathcal{A}} \pi(\mathbf{a}) \mathbb{1}(\mathbf{a}_{[|V|]} \text{ is not a proper coloring}). \end{aligned}$$

835 Because there must exist at least one edge with both of its nodes in the same color for any improper
836 coloring. On the other hand, let $\hat{\pi} = \pi^{\mathbf{c}}$ for some proper coloring \mathbf{c} . Then, for any $S \in \mathcal{S}$, we have

$$\frac{\sum_{i \in S} \mathcal{U}_i(\hat{\pi})}{|S|} = \frac{1}{3}.$$

840 Therefore, the approximation error of (MASE) is at least

$$\frac{1}{3|E|} \sum_{\mathbf{a} \in \mathcal{A}} \pi(\mathbf{a}) \mathbb{1}(\mathbf{a}_{[|V|]} \text{ is not a proper coloring})$$

845 for any joint strategy π . When we get $\frac{1}{9N^2}$ approximation, since $|E| \leq N^2$, we have

$$\sum_{\mathbf{a} \in \mathcal{A}} \pi(\mathbf{a}) \mathbb{1}(\mathbf{a}_{[|V|]} \text{ is not a proper coloring}) \leq \frac{1}{3}.$$

850 Therefore, when sampling $\mathbf{a} \sim \pi$, we will get a proper coloring with probability at least $\frac{2}{3}$, which
851 is in complexity class RP. As a result, when P=RP, the time complexity of computing (MASE) is at
852 least $O^*(A^{\text{tw}(G)})$, where G is the trust graph and A is the size of the maximal action set. \square

855 D PROOF OF THEOREM 5.1
856

857 **Theorem 5.1** (Efficient Representation). For any $\epsilon \geq 0$, at least one of the ϵ -MASE can be repre-
858 sented as a linear combination of $\sum_{S \in \mathcal{S}} |S| \cdot A^{\text{tw}(\mathcal{G})} + 1$ pure strategies, where $\text{tw}(\mathcal{G})$ is the treewidth
859 of Utility Dependency Graph.

861 ⁷As summarized in Esmer et al. (2024), the proof of the q -coloring complexity implicitly implies that the
862 complexity is lower bounded by $\mathcal{O}(q^{\text{tw}} \cdot \text{Poly}(|I|))$, even though a tree decomposition of width tw is given.
863 In other words, aside from computing a tree decomposition, the q -coloring itself has an intrinsic computational
864 barrier.

864 *Proof.* Let $D := \sum_{S \in \mathcal{S}} \sum_{i \in S} |\mathcal{A}_{S \cap \mathcal{N}(i)}|$. For any joint strategy $\pi \in \Delta^{\mathcal{A}}$, consider the vector
865 $\mathbf{v}^\pi \in \mathbb{R}^D$, where
866

$$867 \quad v^\pi(S, i, \hat{\mathbf{a}}_{S \cap \mathcal{N}(i)}) = \mathbb{E}_{\mathbf{a} \sim \pi} [\mathcal{U}_i(\hat{\mathbf{a}}_{S \cap \mathcal{N}(i)}, \mathbf{a}_{-(S \cap \mathcal{N}(i))}) - \mathcal{U}_i(\mathbf{a})],$$

868 for any $S \in \mathcal{S}$ and $\hat{\mathbf{a}}_{S \cap \mathcal{N}(i)} \in \mathcal{A}_{S \cap \mathcal{N}(i)}$. By definition of \mathbf{v}^π , it is linear in π . Therefore, the vertex
869 set of $\{\mathbf{v}^\pi \mid \pi \in \Delta^{\mathcal{A}}\}$ should correspond to a subset of $\Delta^{\mathcal{A}}$'s vertex set, which is the set of all pure
870 strategies.
871

872 By Carathéodory's theorem, for any $\pi^* \in \Delta^{\mathcal{A}}$, \mathbf{v}^{π^*} can be represented as the linear combination of
873 $D + 1$ vertices, which further implies it can be written as a linear combination of $D + 1$ vectors in
874 $\{\mathbf{v}^\pi \mid \pi \text{ is a pure strategy}\}$. Then, when $\mathbf{v}^{\pi^*} = \sum_{k=1}^{D+1} \lambda^k \mathbf{v}^{\pi^k}$ with $\lambda \in \Delta^{D+1}$ and π^1, π^2, \dots are
875 pure strategies, due to the linearity of \mathbf{v}^π , we have

$$876 \quad \mathbf{v}^{\pi^*} = \sum_{k=1}^{D+1} \lambda^k \mathbf{v}^{\pi^k} = \mathbf{v}^{\sum_{k=1}^{D+1} \lambda^k \pi^k}.$$

877 Finally,

$$\begin{aligned} 878 \quad & \max_{S \in \mathcal{S}} \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \frac{1}{|S|} \sum_{i \in S} \mathbb{E}_{\mathbf{a} \sim \pi} [\mathcal{U}_i(\hat{\mathbf{a}}_S, \mathbf{a}_{-S}) - \mathcal{U}_i(\mathbf{a})] \\ 879 \quad & = \max_{S \in \mathcal{S}} \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \frac{1}{|S|} \sum_{i \in S} \mathbb{E}_{\mathbf{a} \sim \pi} [\mathcal{U}_i(\hat{\mathbf{a}}_{S \cap \mathcal{N}(i)}, \mathbf{a}_{-(S \cap \mathcal{N}(i))}) - \mathcal{U}_i(\mathbf{a})] \\ 880 \quad & = \max_{S \in \mathcal{S}} \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \frac{1}{|S|} \sum_{i \in S} v^{\pi^*}(S, i, \hat{\mathbf{a}}_{S \cap \mathcal{N}(i)}) \\ 881 \quad & = \max_{S \in \mathcal{S}} \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \frac{1}{|S|} \sum_{i \in S} v^{\sum_{k=1}^{D+1} \lambda^k \pi^k}(S, i, \hat{\mathbf{a}}_{S \cap \mathcal{N}(i)}). \end{aligned}$$

882 Hence, once π^* satisfies (MASE), there exists a linear combination of $D + 1$ pure strategies also
883 satisfying (MASE). Given $\mathcal{N}(i) \leq \text{tw}(\mathcal{G})$, we have $D \leq \sum_{S \in \mathcal{S}} |S| \cdot A^{\text{tw}(\mathcal{G})}$. \square
884

885 E THE OPTIMALITY OF DYNAMIC PROGRAMMING ON TREE 886 DECOMPOSITION

887 This section shows that the dynamic programming (e.g., (5.4)) will compute the optimality. Let
888 $u_i(\mathbf{a}_{\mathcal{N}(i)})$ be the contribution of player i 's utility to the final objective. Recall that $\mathcal{N}_i^S := \mathcal{N}(i) \cap S$.
889 Then, in (5.4),

$$890 \quad u_i(\mathbf{a}_{\mathcal{N}(i)}) = - \sum_{\tau=1}^t \sum_{S \in \mathcal{S}} \frac{1}{|S|} \sum_{i \in S} \sum_{\hat{\mathbf{a}}_{\mathcal{N}_i^S} \in \mathcal{A}_{\mathcal{N}_i^S}} \mu^{(\tau)}(S, \hat{\mathbf{a}}_{\mathcal{N}_i^S}) (\mathcal{U}_i(\hat{\mathbf{a}}_{\mathcal{N}_i^S}, \mathbf{a}_{\mathcal{N}(i) \setminus S}) - \mathcal{U}_i(\mathbf{a}_{\mathcal{N}(i)}))$$

891 at timestep t . We consider the following update rule in this section, which generalizes (5.4) and
892 (G.1) (see the proof of Lemma F.3 and Lemma G.1),

$$893 \quad h(B, \mathbf{a}_B) = \sum_{\substack{i \in [N]: \\ i \text{ assigned to } B}} u_i(\mathbf{a}_{\mathcal{N}(i)}) + \sum_{B' \in C(B)} \max_{\substack{\mathbf{a}'_{B'} \in \mathcal{A}_{B'}: \\ \mathbf{a}_{B \cap B'} = \mathbf{a}'_{B \cap B'}}} h(B', \mathbf{a}'_{B'}). \quad (\text{E.1})$$

894 In the following, we will show that (E.1) is optimal.
895

896 **Lemma E.1.** For any bag $B \in \mathcal{T}$, let $\text{st}(B) := \{i\}_{i \text{ assigned to } B} \cup \bigcup_{B' \in C(B)} \text{st}(B')$ be the set of
897 players assigned to B and bags in its subtree. Then, for any bag $B \in \mathcal{T}$ and $\mathbf{a}_B \in \mathcal{A}_B$, we have

$$898 \quad h(B, \mathbf{a}_B) = \max_{\mathbf{a}_{-B} \in \mathcal{A}_{-B}} \sum_{i \in \text{st}(B)} u_i(\mathbf{a}_{\mathcal{N}(i)}). \quad (\text{E.2})$$

The proof is postponed to the end of this section. Note that for the root bag B^r , since $\text{st}(B^r) = [N]$, Lemma E.1 implies that $\max_{\mathbf{a}_{B^r} \in \mathcal{A}_{B^r}} h(B^r, \mathbf{a}_{B^r}) = \max_{\mathbf{a} \in \mathcal{A}} \sum_{i=1}^N u_i(\mathbf{a}_{\mathcal{N}(i)})$. Therefore, we find the maximum of $\sum_{i=1}^N u_i(\mathbf{a}_{\mathcal{N}(i)})$, and the optimal joint action $\mathbf{a} \in \mathcal{A}$ can be extracted recursively.

Specifically, let

$$\begin{aligned} \mathbf{a}_{B^r}^* &= \underset{\mathbf{a}_{B^r} \in \mathcal{A}_{B^r}}{\operatorname{argmax}} h(B^r, \mathbf{a}_{B^r}) \\ \forall B \in C(B^r), \quad \mathbf{a}_{B \setminus B^r}^* &= \underset{\mathbf{a}_{B \setminus B^r} \in \mathcal{A}_{B \setminus B^r}}{\operatorname{argmax}} d\left(B, (\mathbf{a}_{B \setminus B^r}, \mathbf{a}_{B \cap B^r}^{(t+1)})\right). \end{aligned} \quad (\text{E.3})$$

We will do this recursively until we find the whole $\mathbf{a}^* \in \mathcal{A}$. The tie-breaking rule can be arbitrary, and we use the lexicographic order of joint actions for simplicity. Hence, we prove the optimality of the update rule (E.1). \square

Lemma E.1. For any bag $B \in \mathcal{T}$, let $\text{st}(B) := \{i\}_{i \text{ assigned to } B} \cup \bigcup_{B' \in C(B)} \text{st}(B')$ be the set of players assigned to B and bags in its subtree. Then, for any bag $B \in \mathcal{T}$ and $\mathbf{a}_B \in \mathcal{A}_B$, we have

$$h(B, \mathbf{a}_B) = \max_{\mathbf{a}_{-B} \in \mathcal{A}_{-B}} \sum_{i \in \text{st}(B)} u_i(\mathbf{a}_{\mathcal{N}(i)}). \quad (\text{E.2})$$

Proof. For leaf bags B ($C(B) = \emptyset$), for any joint action $\mathbf{a}_B \in \mathcal{A}_B$, we have

$$h(B, \mathbf{a}_B) = \sum_{\substack{i \in [N]: \\ i \text{ assigned to } B}} u_i(\mathbf{a}_{\mathcal{N}(i)}) = \sum_{i \in \text{st}(B)} u_i(\mathbf{a}_{\mathcal{N}(i)}) \stackrel{(i)}{=} \max_{\mathbf{a}_{-B} \in \mathcal{A}_{-B}} \sum_{i \in \text{st}(B)} u_i(\mathbf{a}_{\mathcal{N}(i)}).$$

(i) is because $\mathcal{N}(i) \subseteq B$ for any i assigned to B by definition. Additionally, since B is a leaf bag, $\text{st}(B) = \{i \in B: i \text{ assigned to } B\}$.

Then, for any bag B with all of its children $B' \in C(B)$ satisfying (E.2), we have

$$\begin{aligned} h(B, \mathbf{a}_B) &= \sum_{\substack{i \in [N]: \\ i \text{ assigned to } B}} u_i(\mathbf{a}_{\mathcal{N}(i)}) + \sum_{B' \in C(B)} \max_{\substack{\mathbf{a}'_{B'} \in \mathcal{A}_{B'}: \\ \mathbf{a}_{B \cap B'} = \mathbf{a}'_{B \cap B'}}} h(B', \mathbf{a}'_{B'}) \\ &\stackrel{(i)}{=} \sum_{\substack{i \in [N]: \\ i \text{ assigned to } B}} u_i(\mathbf{a}_{\mathcal{N}(i)}) + \sum_{B' \in C(B)} \max_{\substack{\mathbf{a}'_{B'} \in \mathcal{A}_{B'}: \\ \mathbf{a}_{B \cap B'} = \mathbf{a}'_{B \cap B'}}} \max_{\mathbf{a}'_{-B'} \in \mathcal{A}_{-B'}} \sum_{i \in \text{st}(B')} u_i(\mathbf{a}'_{\mathcal{N}(i)}) \\ &= \sum_{\substack{i \in [N]: \\ i \text{ assigned to } B}} u_i(\mathbf{a}_{\mathcal{N}(i)}) + \sum_{B' \in C(B)} \max_{\substack{\mathbf{a}' \in \mathcal{A}: \\ \mathbf{a}_{B \cap B'} = \mathbf{a}'_{B \cap B'}}} \sum_{i \in \text{st}(B')} u_i(\mathbf{a}'_{\mathcal{N}(i)}). \end{aligned}$$

(i) uses the induction hypothesis. By **Property 3 of Tree Decomposition**, for any $B' \in C(B)$ and $i \in \text{st}(B')$, $\mathcal{N}(i) \cap (B \setminus B') = \emptyset$. Because for any $i \in \text{st}(B')$, there must be a bag B'' in the subtree of B' such that $\mathcal{N}(i) \subseteq B''$, and **Property 3 of Tree Decomposition** will be violated if $\mathcal{N}(i) \cap B \setminus B' \neq \emptyset$. Then, modifying the constraint $\mathbf{a}_{B \cap B'} = \mathbf{a}'_{B \cap B'}$ to $\mathbf{a}_B = \mathbf{a}'_B$ will not change the value of $u_i(\mathbf{a}'_{\mathcal{N}(i)})$ for any $i \in \text{st}(B')$. Hence,

$$h(B, \mathbf{a}_B) = \sum_{\substack{i \in [N]: \\ i \text{ assigned to } B}} u_i(\mathbf{a}_{\mathcal{N}(i)}) + \sum_{B' \in C(B)} \max_{\substack{\mathbf{a}' \in \mathcal{A}: \\ \mathbf{a}_B = \mathbf{a}'_B}} \sum_{i \in \text{st}(B')} u_i(\mathbf{a}'_{\mathcal{N}(i)}).$$

Furthermore, by **Property 3 of Tree Decomposition**, for any $B', B'' \in C(B)$ and $i' \in \text{st}(B'), i'' \in \text{st}(B'')$, we have $\mathcal{N}(i') \cap \mathcal{N}(i'') \subseteq B$. Finally,

$$\begin{aligned} h(B, \mathbf{a}_B) &= \sum_{\substack{i \in [N]: \\ i \text{ assigned to } B}} u_i(\mathbf{a}_{\mathcal{N}(i)}) + \max_{\substack{\mathbf{a}' \in \mathcal{A}: \\ \mathbf{a}_B = \mathbf{a}'_B}} \sum_{B' \in C(B)} \sum_{i \in \text{st}(B')} u_i(\mathbf{a}'_{\mathcal{N}(i)}) \\ &= \max_{\mathbf{a}_{-B} \in \mathcal{A}_{-B}} \left(\sum_{\substack{i \in [N]: \\ i \text{ assigned to } B}} u_i(\mathbf{a}_{\mathcal{N}(i)}) + \sum_{B' \in C(B)} \sum_{i \in \text{st}(B')} u_i(\mathbf{a}'_{\mathcal{N}(i)}) \right) \\ &= \max_{\mathbf{a}_{-B} \in \mathcal{A}_{-B}} \sum_{i \in \text{st}(B)} u_i(\mathbf{a}_{\mathcal{N}(i)}). \end{aligned}$$

972 This completes the induction. □
 973

974
 975 **F PROOF OF THEOREM 5.2**
 976

977 **Theorem 5.2.** Consider (5.3). For any $\delta > 0$, with probability at least $1 - \delta$, the following holds:
 978

$$979 \max_{\hat{\pi} \in \Delta^{\mathcal{A}}} \sum_{t=1}^T F(\pi^{(t)}, \mu^{(t)}) - F(\hat{\pi}, \mu^{(t)}) \leq 2|\mathcal{T}| \frac{1 + (\text{tw}(\mathcal{G}) + 1) \log A}{\eta} + 2\eta |\mathcal{T}| T + \sqrt{2T \log \frac{1}{\delta}}.$$

980
 981

982 *Proof.* The proof of Theorem 5.2 can be decomposed into three steps.
 983

984 Firstly, we show that without loss of generality, if FTPL with a fixed noise $\tilde{\mathbf{n}}$ for all timesteps
 985 $t = 1, 2, \dots$ attains sublinear regret when the adversary is oblivious,⁸ then FTPL with independent
 986 noise vectors $\tilde{\mathbf{n}}^{(t)}$ also attains the same regret confronting an adaptive adversary. The reduction to
 987 the oblivious setting is common in the literature (Agarwal et al., 2019; Suggala & Netrapalli, 2020),
 988 and we include it here for completeness.
 989

990 Secondly, we will show that the regret of a fictitious algorithm $\pi^{(t+1)} \in \arg\min_{\pi \in \Delta^{\mathcal{A}}} \sum_{\tau=1}^{(t+1)} F(\pi, \mu^{(\tau)}) + \langle \tilde{\mathbf{n}}^{(t+1)}, \pi \rangle$ is sublinear.
 991

992 Finally, we will show that the regret of (5.3) and that of the fictitious algorithm are close.
 993

994 **F.1 FIXED NOISE VECTOR**
 995

996 In this section, for completeness, we will show a reduction from an adaptive adversary to an oblivious
 997 adversary. For ease of representation, we will take correlator (π) as the *no-regret learner*, and
 998 the deviator (μ) as the *adversary*.
 999

1000 An adaptive adversary determines the utility function at timestep t , which is $\mu^{(t)}$ in this section,
 1001 according to our past strategies, $\pi^{(1)}, \dots, \pi^{(t-1)}$. In contrast, an oblivious adversary determines
 1002 all utility functions, *i.e.*, $\mu^{(1)}, \dots, \mu^{(T)}$, at the beginning (timestep 0), such that $\mu^{(t)}$ is irrelevant
 1003 to $\pi^{(1)}, \dots, \pi^{(t-1)}$. In the following, we will show that a sublinear regret against an oblivious
 1004 adversary implies a sublinear regret against an adaptive adversary.
 1005

1006 Intuitively, when the random noise $\tilde{\mathbf{n}}^{(1)}, \dots, \tilde{\mathbf{n}}^{(T)}$ are independent, $\pi^{(t)}$ only depends on
 1007 $\mu^{(1)}, \dots, \mu^{(t-1)}$, which is known to both the oblivious and adaptive adversary, due to the update
 1008 rule (5.3). Hence, an additional observation on $\pi^{(1)}, \dots, \pi^{(t-1)}$ does not make adversary more
 1009 powerful. Formally, we have the following lemma (Cesa-Bianchi & Lugosi, 2006, Lemma 4.1).
 1010

1011 **Lemma F.1** (Reformulation of Lemma 4.1 in Cesa-Bianchi & Lugosi (2006)). Consider any ran-
 1012 domized no-regret learner and the *distribution* of the decision variable $\pi^{(t)}$ is fully determined by
 1013 $\mu^{(1)}, \dots, \mu^{(t-1)}$. Assume the no-regret learner's regret against any sequence of $\mu^{(1)}, \dots, \mu^{(T)}$ gen-
 1014 erated by an oblivious adversary satisfies that

$$1015 \underbrace{\mathbb{E}_{\tilde{\mathbf{n}}^{(1)}, \dots, \tilde{\mathbf{n}}^{(T)}} \left[\max_{\hat{\pi} \in \Delta^{\mathcal{A}}} \sum_{t=1}^T F(\pi^{(t)}, \mu^{(t)}) - F(\hat{\pi}, \mu^{(t)}) \right]}_{\text{Expected Regret}} \leq R.$$

1016
 1017
 1018

1019 Then, for any sequence of $\mu^{(1)}, \dots, \mu^{(T)}$ generated by an adaptive adversary and $\delta > 0$, with
 1020 probability at least $1 - \delta$, we have
 1021

$$1022 \max_{\hat{\pi} \in \Delta^{\mathcal{A}}} \sum_{t=1}^T F(\pi^{(t)}, \mu^{(t)}) - F(\hat{\pi}, \mu^{(t)}) \leq R + \sqrt{2T \log \frac{1}{\delta}}.$$

1023
 1024

1025 ⁸An oblivious adversary will choose all the utility functions at timestep 0, while an adaptive adversary will
 1026 choose the utility functions at timestep t according to $\pi^{(1)}, \pi^{(2)}, \dots, \pi^{(t-1)}$.
 1027

1026 It is easy to see that the distribution of $\pi^{(t)}$ generated by (5.3), whose randomness is induced by $\tilde{\mathbf{n}}^{(t)}$,
 1027 is fully determined by $\mu^{(1)}, \dots, \mu^{(t-1)}$, given $\tilde{\mathbf{n}}^{(t)}$ is generated by a fixed distribution independently
 1028 at each timestep.

1029 Then, we will show that the expected regret of FTPL using independent noise vectors and FTPL
 1030 with a fixed noise vector is the same, while facing an oblivious adversary.

$$\begin{aligned} \mathbb{E}_{\tilde{\mathbf{n}}^{(1)}, \dots, \tilde{\mathbf{n}}^{(T)}} \left[\sum_{t=1}^T F(\pi^{(t)}, \mu^{(t)}) \right] &= \sum_{t=1}^T \mathbb{E}_{\tilde{\mathbf{n}}^{(1)}, \dots, \tilde{\mathbf{n}}^{(T)}} [F(\pi^{(t)}, \mu^{(t)})] \\ &\stackrel{(i)}{=} \sum_{t=1}^T \mathbb{E}_{\tilde{\mathbf{n}}^{(t)}} [F(\pi^{(t)}, \mu^{(t)})]. \end{aligned}$$

1031 (i) uses the fact that both $\pi^{(t)}$ and $\mu^{(t)}$ are independent of $\tilde{\mathbf{n}}^{(1)}, \dots, \tilde{\mathbf{n}}^{(t-1)}$, when the adversary
 1032 controlling μ is oblivious. Finally, the expectation $\mathbb{E}_{\tilde{\mathbf{n}}^{(1)}} [F(\pi^{(t)}, \mu^{(t)})]$ of

$$\pi^{(t+1)} \in \operatorname{argmin}_{\pi \in \Delta^{\mathcal{A}}} \sum_{\tau=1}^t F(\pi, \mu^{(\tau)}) - \langle \tilde{\mathbf{n}}^{(1)}, \pi \rangle$$

1033 is equal to $\mathbb{E}_{\tilde{\mathbf{n}}^{(t)}} [F(\pi^{(t)}, \mu^{(t)})]$, when $\mathbf{n}^{(t)}$ and $\mathbf{n}^{(1)}$ are sampled from an identical distribution. In
 1034 summary,

1035 fixed noise and an oblivious adversary (Expectation)
 1036 \Rightarrow independent noise and an oblivious adversary (Expectation)
 1037 \Rightarrow independent noise and an adaptive adversary (High Probability Bound).

1038 Hence, the problem reduces to proving sublinear regret against an oblivious adversary with a fixed
 1039 noise vector for all timesteps.

1040 F.2 LOW REGRET WITH ACCURATE PREDICTION

1041 The discussion above suggests that we only need to show the sublinear regret against an oblivious
 1042 adversary, when all timesteps share the same noise vector. In other words, we consider the following
 1043 update rule,

$$\pi^{(t+1)} \in \operatorname{argmin}_{\pi \in \Delta^{\mathcal{A}}} \sum_{\tau=1}^t F(\pi, \mu^{(\tau)}) - \langle \tilde{\mathbf{n}}, \pi \rangle, \quad (\text{F.1})$$

1044 where $\tilde{\mathbf{n}}, \tilde{\mathbf{n}}^{(1)}, \dots, \tilde{\mathbf{n}}^{(T)}$ are identically distributed.

1045 Next, we will show that if the regret minimizer can make the decision $\pi^{(t+1)}$ with an accurate
 1046 prediction of $\mu^{(t+1)}$, then we can achieve sublinear regret. In particular, the decision variable at
 1047 timestep $t+1$ is chosen according to (F.2).

$$\pi^{(t+1)} \in \operatorname{argmin}_{\pi \in \Delta^{\mathcal{A}}} \sum_{\tau=1}^{t+1} F(\pi, \mu^{(\tau)}) - \langle \tilde{\mathbf{n}}, \pi \rangle. \quad (\text{F.2})$$

1048 Actually, we can see that (F.2) is exactly the original update rule of $\pi^{(t+2)}$. Therefore, we will prove
 1049 the following lemma in the sequel.

1050 **Lemma F.2.** Consider (F.2). For any timestep $t = 1, 2, \dots, \mu^{(1)}, \mu^{(2)}, \dots$, and any $\hat{\pi} \in \Delta^{\mathcal{A}}$, we
 1051 have

$$\sum_{\tau=1}^t (F(\pi^{(\tau+1)}, \mu^{(\tau)}) - F(\hat{\pi}, \mu^{(\tau)})) \leq \langle \tilde{\mathbf{n}}, \pi^{(2)} - \hat{\pi} \rangle. \quad (\text{F.3})$$

1052 *Proof.* We will prove the lemma by induction. When $t = 1$, we have

$$\begin{aligned} &F(\pi^{(2)}, \mu^{(1)}) - F(\hat{\pi}, \mu^{(1)}) \\ &= (F(\pi^{(2)}, \mu^{(1)}) - \langle \tilde{\mathbf{n}}, \pi^{(2)} \rangle) - (F(\hat{\pi}, \mu^{(1)}) - \langle \tilde{\mathbf{n}}, \hat{\pi} \rangle) + \langle \tilde{\mathbf{n}}, \pi^{(2)} - \hat{\pi} \rangle \\ &\stackrel{(i)}{\leq} \langle \tilde{\mathbf{n}}, \pi^{(2)} - \hat{\pi} \rangle. \end{aligned}$$

1080 (i) is because $\pi^{(2)} \in \operatorname{argmin}_{\pi \in \Delta^{\mathcal{A}}} F(\pi, \mu^{(1)}) - \langle \tilde{\mathbf{n}}, \pi \rangle$.
1081

1082 Next, we will show that when (F.3) holds for $t = t_0$, then it also holds for $t = t_0 + 1$. For any
1083 $\hat{\pi} \in \Delta^{\mathcal{A}}$, we have

$$\begin{aligned} & \sum_{\tau=1}^{t_0+1} \left(F(\pi^{(\tau+1)}, \mu^{(\tau)}) - F(\hat{\pi}, \mu^{(\tau)}) \right) \\ &= \sum_{\tau=1}^{t_0+1} F(\pi^{(\tau+1)}, \mu^{(\tau)}) - \left(\sum_{\tau=1}^{t_0+1} F(\hat{\pi}, \mu^{(\tau)}) - \langle \tilde{\mathbf{n}}, \hat{\pi} \rangle \right) - \langle \tilde{\mathbf{n}}, \hat{\pi} \rangle \\ &\stackrel{(i)}{\leq} \sum_{\tau=1}^{t_0+1} F(\pi^{(\tau+1)}, \mu^{(\tau)}) - \left(\sum_{\tau=1}^{t_0+1} F(\pi^{(t_0+2)}, \mu^{(\tau)}) - \langle \tilde{\mathbf{n}}, \pi^{(t_0+2)} \rangle \right) - \langle \tilde{\mathbf{n}}, \hat{\pi} \rangle \\ &= \sum_{\tau=1}^{t_0} \left(F(\pi^{(\tau+1)}, \mu^{(\tau)}) - F(\pi^{(t_0+2)}, \mu^{(\tau)}) \right) + \langle \tilde{\mathbf{n}}, \pi^{(t_0+2)} - \hat{\pi} \rangle. \end{aligned}$$

1095 (i) is because $\pi^{(t_0+2)} \in \operatorname{argmin}_{\pi \in \Delta^{\mathcal{A}}} \sum_{\tau=1}^{t_0+1} F(\pi, \mu^{(\tau)}) - \langle \tilde{\mathbf{n}}, \pi \rangle$. Next, by setting $\hat{\pi} = \pi^{(t_0+2)}$ in
1096 the induction hypothesis, we have

$$\begin{aligned} & \sum_{\tau=1}^{t_0} \left(F(\pi^{(\tau+1)}, \mu^{(\tau)}) - F(\pi^{(t_0+2)}, \mu^{(\tau)}) \right) + \langle \tilde{\mathbf{n}}, \pi^{(t_0+2)} - \hat{\pi} \rangle \\ &\leq \langle \tilde{\mathbf{n}}, \pi^{(2)} - \pi^{(t_0+2)} \rangle + \langle \tilde{\mathbf{n}}, \pi^{(t_0+2)} - \hat{\pi} \rangle \\ &= \langle \tilde{\mathbf{n}}, \pi^{(2)} - \hat{\pi} \rangle. \end{aligned}$$

□

1105 F.3 SUBLINEAR VARIATION

1107 In this section, we will show that the regret of FTPL with/without a prediction of $\mu^{(t+1)}$ is close.
1108 Formally, for any $\hat{\pi} \in \Delta^{\mathcal{A}}$, we have

$$\begin{aligned} & \sum_{t=1}^T \left(F(\pi^{(t)}, \mu^{(t)}) - F(\hat{\pi}, \mu^{(t)}) \right) \\ &= \sum_{t=1}^T \left(F(\pi^{(t+1)}, \mu^{(t)}) - F(\hat{\pi}, \mu^{(t)}) \right) + \sum_{t=1}^T \left(F(\pi^{(t)}, \mu^{(t)}) - F(\pi^{(t+1)}, \mu^{(t)}) \right) \\ &\stackrel{(i)}{\leq} \langle \tilde{\mathbf{n}}, \pi^{(2)} - \hat{\pi} \rangle + \sum_{t=1}^T \left(F(\pi^{(t)}, \mu^{(t)}) - F(\pi^{(t+1)}, \mu^{(t)}) \right). \end{aligned}$$

1118 (i) uses Lemma F.2.

1119 Moreover, since $\mathcal{U}_i(\mathbf{a}) \in [0, 1]$ for any $i \in [N]$ and $\mathbf{a} \in \mathcal{A}$, we have

$$\max_{\substack{\pi \in \Delta^{\mathcal{A}}, \\ \mu \in \Delta^{\times_{S \in \mathcal{S}} \mathcal{A}_S}}} |F(\pi, \mu)| \leq 1.$$

1123 Then,

$$\mathbb{E} \left[F(\pi^{(t)}, \mu^{(t)}) - F(\pi^{(t+1)}, \mu^{(t)}) \right] \leq \Pr_{\tilde{\mathbf{n}}} \left(\pi^{(t)} \neq \pi^{(t+1)} \right).$$

1127 Hence, we only need to lower bound $\Pr_{\tilde{\mathbf{n}}} (\pi^{(t)} = \pi^{(t+1)})$ in the sequel. Recall that $\pi^{(t)}$ is a pure
1128 strategy with $\pi^{(t)}(\mathbf{a}^{(t)}) = 1$ for some joint action $\mathbf{a}^{(t)} \in \mathcal{A}$. For any bag $B \in \mathcal{T}$, let $fa(B)$ denote
1129 its father ($fa(B) = \emptyset$ if B is the root). Then,

$$\begin{aligned} \Pr_{\tilde{\mathbf{n}}} \left(\pi^{(t)} = \pi^{(t+1)} \right) &= \Pr_{\tilde{\mathbf{n}}} \left(\mathbf{a}^{(t)} = \mathbf{a}^{(t+1)} \right) \\ &\stackrel{(i)}{=} \prod_{B \in \mathcal{T}} \Pr_{\tilde{\mathbf{n}}} \left(\mathbf{a}_{B \setminus fa(B)}^{(t)} = \mathbf{a}_{B \setminus fa(B)}^{(t+1)} \mid \mathbf{a}_{fa(B)}^{(t)} = \mathbf{a}_{fa(B)}^{(t+1)} \right). \end{aligned}$$

1134 According to (5.5), each bag $B \in \mathcal{T}$ only determines $\mathbf{a}_{B \setminus fa(B)}^{(t)}$. Since $\mathbf{n}^{(t)}(B, \cdot)$ is sampled independently for every bag B , it follows that $\mathbf{a}_{B' \setminus B}^{(t)}, \mathbf{a}_{B'' \setminus B}^{(t)}$ are independent for $B', B'' \in C(B)$ with $B' \neq B''$, by **Property 3 of Tree Decomposition**. Hence, (i) holds.

1138 For any $B \in \mathcal{T}$, to lower bound $\Pr_{\tilde{\mathbf{n}}} \left(\mathbf{a}_{B \setminus fa(B)}^{(t)} = \mathbf{a}_{B \setminus fa(B)}^{(t+1)} \mid \mathbf{a}_{fa(B)}^{(t)} = \mathbf{a}_{fa(B)}^{(t+1)} \right)$, we will first get
1139 its lower bound while further conditioning on $\mathbf{a}_{B \cup fa(B)}^{(t)}$'s value and $\mathbf{n}(B, \cdot)$'s value.
1140

1142 Then, $\Pr_{\tilde{\mathbf{n}}} \left(\mathbf{a}_{B \setminus fa(B)}^{(t)} = \mathbf{a}_{B \setminus fa(B)}^{(t+1)} \mid \mathbf{a}_{fa(B)}^{(t)} = \mathbf{a}_{fa(B)}^{(t+1)} \right)$ is equal to this conditioned probability integrating over all possible values of $\mathbf{a}_{B \cup fa(B)}^{(t)}$ and $\mathbf{n}(B, \cdot)$. Formally, we want to lower bound
1143

$$1145 \quad p_B^{(t)}(\mathbf{a}'_{B \cup fa(B)}, \mathbf{x}) := \Pr \left(\mathbf{a}_{B \setminus fa(B)}^{(t+1)} = \mathbf{a}'_{B \setminus fa(B)} \mid \mathbf{a}_{fa(B)}^{(t)} = \mathbf{a}_{fa(B)}^{(t+1)}, \mathbf{a}_{B \cup fa(B)}^{(t)} = \mathbf{a}'_{B \cup fa(B)}, \right. \\ 1146 \quad \left. \text{and } \forall \mathbf{a}_{B \setminus fa(B)} \in \mathcal{A}_{B \setminus fa(B)} \setminus \left\{ \mathbf{a}'_{B \setminus fa(B)} \right\}, \right. \\ 1147 \quad \left. n(B, (\mathbf{a}'_{B \cap fa(B)}, \mathbf{a}_{B \setminus fa(B)})) = x((\mathbf{a}'_{B \cap fa(B)}, \mathbf{a}_{B \setminus fa(B)})) \right)$$

1151 for any $\mathbf{a}'_{B \cup fa(B)} \in \mathcal{A}_{B \cup fa(B)}$ and $\mathbf{x} \in \mathbb{R}^{\mathcal{A}_B}$. Then,

$$1153 \quad \Pr_{\tilde{\mathbf{n}}} \left(\mathbf{a}_{B \setminus fa(B)}^{(t)} = \mathbf{a}_{B \setminus fa(B)}^{(t+1)} \mid \mathbf{a}_{fa(B)}^{(t)} = \mathbf{a}_{fa(B)}^{(t+1)} \right) \geq \inf_{\substack{\mathbf{a}'_{B \cup fa(B)} \in \mathcal{A}_{B \cup fa(B)}, \\ \mathbf{x} \in \mathbb{R}^{\mathcal{A}_B}}} p_B^{(t)}(\mathbf{a}'_{B \cup fa(B)}, \mathbf{x}),$$

1156 since $\Pr_{\tilde{\mathbf{n}}} \left(\mathbf{a}_{B \setminus fa(B)}^{(t)} = \mathbf{a}_{B \setminus fa(B)}^{(t+1)} \mid \mathbf{a}_{fa(B)}^{(t)} = \mathbf{a}_{fa(B)}^{(t+1)} \right)$ is equal to $p_B^{(t)}(\mathbf{a}'_{B \cup fa(B)}, \mathbf{x})$ integrating
1157 over $\mathbf{a}'_{B \cup fa(B)}$ and \mathbf{x} .
1158

1159 Since $\mathbf{a}_{B \setminus fa(B)}^{(t)} = \mathbf{a}'_{B \setminus fa(B)}$, for any $\mathbf{a}_{B \setminus fa(B)} \in \mathcal{A}_{B \setminus fa(B)} \setminus \left\{ \mathbf{a}'_{B \setminus fa(B)} \right\}$, we have

$$1160 \quad d^{(t)}(B, \mathbf{a}'_B) \leq d^{(t)} \left(B, (\mathbf{a}'_{B \cap fa(B)}, \mathbf{a}_{B \setminus fa(B)}) \right).$$

1161 This can be equivalently written as

$$1166 \quad n(B, \mathbf{a}'_B) \geq \left(d^{(t)}(B, \mathbf{a}'_B) + n(B, \mathbf{a}'_B) \right) - d^{(t)} \left(B, (\mathbf{a}'_{B \cap fa(B)}, \mathbf{a}_{B \setminus fa(B)}) \right).$$

1168 Then, $\mathbf{a}_{B \setminus fa(B)}^{(t+1)} = \mathbf{a}'_{B \setminus fa(B)}$ is equivalent to

$$1171 \quad n(B, \mathbf{a}'_B) \geq \left(d^{(t+1)}(B, \mathbf{a}'_B) + n(B, \mathbf{a}'_B) \right) - d^{(t+1)} \left(B, (\mathbf{a}'_{B \cap fa(B)}, \mathbf{a}_{B \setminus fa(B)}) \right) \quad (\text{F.4}) \\ 1172 \quad = \left(d^{(t)}(B, \mathbf{a}'_B) + n(B, \mathbf{a}'_B) \right) - d^{(t)} \left(B, (\mathbf{a}'_{B \cap fa(B)}, \mathbf{a}_{B \setminus fa(B)}) \right) \\ 1173 \quad + \left(d^{(t)} \left(B, (\mathbf{a}'_{B \cap fa(B)}, \mathbf{a}_{B \setminus fa(B)}) \right) - d^{(t+1)} \left(B, (\mathbf{a}'_{B \cap fa(B)}, \mathbf{a}_{B \setminus fa(B)}) \right) \right) \\ 1174 \quad + \left(d^{(t+1)}(B, \mathbf{a}'_B) - d^{(t)}(B, \mathbf{a}'_B) \right).$$

1178 for any $\mathbf{a}_{B \setminus fa(B)} \in \mathcal{A}_{B \setminus fa(B)}$. In Lemma F.3, we show that the variation of \mathbf{d} is bounded by 1.
1179 Therefore,
1180

$$1181 \quad n(B, \mathbf{a}'_B) \geq \left(d^{(t)}(B, \mathbf{a}'_B) + n(B, \mathbf{a}'_B) \right) - d^{(t)} \left(B, (\mathbf{a}'_{B \cap fa(B)}, \mathbf{a}_{B \setminus fa(B)}) \right) + 2$$

1183 implies (F.4).

1184 **Lemma F.3.** Consider the update rule (5.3). For any timestep $t = 1, 2, \dots, T$, bag $B \in \mathcal{T}$, joint
1185 action $\mathbf{a}_B \in \mathcal{A}_B$, and noise $\tilde{\mathbf{n}} \in \mathbb{R}^{\times_{B \in \mathcal{T}} \mathcal{A}_B}$, we have
1186

$$1187 \quad \left| d^{(t+1)}(B, \mathbf{a}_B) - d^{(t)}(B, \mathbf{a}_B) \right| \leq 1.$$

1188 The proof is postponed to the end of this section. Let
 1189

$$1190 w = \max_{\mathbf{a}_{B \setminus fa(B)} \in \mathcal{A}_{B \setminus fa(B)} \setminus \{\mathbf{a}'_{B \setminus fa(B)}\}} \left(d^{(t)}(B, \mathbf{a}'_B) + n(B, \mathbf{a}'_B) \right) - d^{(t)} \left(B, (\mathbf{a}'_{B \cap fa(B)}, \mathbf{a}_{B \setminus fa(B)}) \right).$$

1192 Note that w only depends on $\mu^{(1)}, \dots, \mu^{(t-1)}$ and \mathbf{x} . Then,
 1193

$$\begin{aligned} 1194 p_B^{(t)}(\mathbf{a}'_{B \cup fa(B)}, \mathbf{x}) &\geq \Pr(n(B, \mathbf{a}'_B) \geq w + 2 \mid n(B, \mathbf{a}'_B) \geq w) \\ 1195 &= \frac{\Pr(n(B, \mathbf{a}'_B) \geq w + 2)}{\Pr(n(B, \mathbf{a}'_B) \geq w)} \\ 1196 &\stackrel{(i)}{=} \frac{\exp(-\eta(w + 2))}{\exp(-\eta w)} \\ 1197 &= \exp(-2\eta). \end{aligned}$$

1201 (i) is because $n(B, \mathbf{a}'_B) \sim \text{Exp}(\eta)$. Finally, by union bound,
 1202

$$\begin{aligned} 1203 \Pr_{\tilde{\mathbf{n}}} \left(\pi^{(t)} = \pi^{(t+1)} \right) &\geq 1 - \sum_{B \in \mathcal{T}} \left(1 - p_B^{(t)}(\mathbf{a}'_{B \cup fa(B)}, \mathbf{x}) \right) \\ 1204 &\geq 1 - \sum_{B \in \mathcal{T}} (1 - \exp(-2\eta)) \\ 1205 &\geq 1 - \sum_{B \in \mathcal{T}} 2\eta \\ 1206 &= 1 - 2\eta |\mathcal{T}|. \end{aligned}$$

1211 Therefore,

$$\begin{aligned} 1212 \mathbb{E} \left[\sum_{t=1}^T F \left(\pi^{(t)}, \mu^{(t)} \right) - F \left(\hat{\pi}, \mu^{(t)} \right) \right] \\ 1213 &\leq \mathbb{E} \left[\langle \tilde{\mathbf{n}}, \pi^{(2)} - \hat{\pi} \rangle \right] + \sum_{t=1}^T \mathbb{E} \left[F \left(\pi^{(t)}, \mu^{(t)} \right) - F \left(\pi^{(t+1)}, \mu^{(t)} \right) \right] \\ 1214 &\leq \mathbb{E} \left[\langle \tilde{\mathbf{n}}, \pi^{(2)} - \hat{\pi} \rangle \right] + 2\eta |\mathcal{T}| T. \end{aligned}$$

1220 Since $\exp(x) \geq 1 + x$ for any $x \in \mathbb{R}$, $(1 - \exp(-2\eta |\mathcal{T}|)) \leq 2\eta |\mathcal{T}|$. Additionally,

$$\begin{aligned} 1221 \mathbb{E} \left[\langle \tilde{\mathbf{n}}, \pi^{(2)} - \hat{\pi} \rangle \right] &\stackrel{(i)}{\leq} \mathbb{E} \left[\|\tilde{\mathbf{n}}\|_\infty \cdot \|\pi^{(2)} - \hat{\pi}\|_1 \right] \leq 2\mathbb{E} [\|\tilde{\mathbf{n}}\|_\infty] \\ 1222 &\leq 2 \sum_{B \in \mathcal{T}} \max_{\mathbf{a}_B \in \mathcal{A}_B} n(B, \mathbf{a}_B) \\ 1223 &\stackrel{(ii)}{\leq} 2 \sum_{B \in \mathcal{T}} \frac{1 + \log |\mathcal{A}_B|}{\eta}. \end{aligned}$$

1228 (i) is by Hölder's Inequality. (ii) is because the expectation of the maximum of n i.i.d. random
 1229 variable sampled from $\text{Exp}(\eta)$ is upper bounded by $\frac{1 + \log n}{\eta}$ (Agarwal et al., 2019). Furthermore,
 1230 $\log |\mathcal{A}_B| \leq |B| \cdot \log A \leq (\text{tw}(\mathcal{G}) + 1) \log A$. Hence,
 1231

$$\mathbb{E} \left[\sum_{t=1}^T F \left(\pi^{(t)}, \mu^{(t)} \right) - F \left(\hat{\pi}, \mu^{(t)} \right) \right] \leq 2 |\mathcal{T}| \frac{1 + (\text{tw}(\mathcal{G}) + 1) \log A}{\eta} + 2\eta |\mathcal{T}| T.$$

1235 \square
 1236

1237 F.4 PROOF OF AUXILIARY LEMMAS

1238 **Lemma F.3.** Consider the update rule (5.3). For any timestep $t = 1, 2, \dots, T$, bag $B \in \mathcal{T}$, joint
 1239 action $\mathbf{a}_B \in \mathcal{A}_B$, and noise $\tilde{\mathbf{n}} \in \mathbb{R}^{\times_{B \in \mathcal{T}} |\mathcal{A}_B|}$, we have

$$1241 \left| d^{(t+1)}(B, \mathbf{a}_B) - d^{(t)}(B, \mathbf{a}_B) \right| \leq 1.$$

1242 *Proof.* Recall Lemma E.1. We can add $|\mathcal{T}|$ players as the noise player, each assigned to a bag in \mathcal{T} ,
1243 with $u_i(\mathbf{a}_B) = n(B, \mathbf{a}_B)$ so that $\mathcal{N}(i) = B$. Recall that u_i is the contribution of player i to the
1244 objective function F . Then, by Lemma E.1, for any $B \in \mathcal{T}$ and $\mathbf{a}_B \in \mathcal{A}_B$, we have

$$1246 \quad d^{(t)}(B, \mathbf{a}_B) = \min_{\mathbf{a}_{-B} \in \mathcal{A}_{-B}} \sum_{i \in \text{st}(B)} u_i^{(t)}(\mathbf{a}_{\mathcal{N}(i)}),$$

1248 where

$$1250 \quad u_i^{(t)}(\mathbf{a}_{\mathcal{N}(i)}) = - \sum_{\tau=1}^t \sum_{\substack{S \in \mathcal{S}: \\ i \in S}} \frac{1}{|S|} \sum_{\widehat{\mathbf{a}}_{\mathcal{N}_i^S} \in \mathcal{A}_{\mathcal{N}_i^S}} \mu^{(\tau)}(S, \widehat{\mathbf{a}}_{\mathcal{N}_i^S}) (\mathcal{U}_i(\widehat{\mathbf{a}}_{\mathcal{N}_i^S}, \mathbf{a}_{\mathcal{N}(i) \setminus S}) - \mathcal{U}_i(\mathbf{a}_{\mathcal{N}(i)})) \text{ for } i \in [N]$$

$$1253 \quad u_i^{(t)}(\mathbf{a}_{\mathcal{N}(i)}) = n(B, \mathbf{a}_{\mathcal{N}(i)}) \text{ for } i \text{ as the noise player assigned to bag } B.$$

1254 For any noise player, we can see that $u_i^{(t)}(\mathbf{a}_{\mathcal{N}(i)}) - u_i^{(t+1)}(\mathbf{a}_{\mathcal{N}(i)}) = 0$. For any $i \in [N]$,

$$\begin{aligned} 1256 \quad & \left| u_i^{(t)}(\mathbf{a}_{\mathcal{N}(i)}) - u_i^{(t+1)}(\mathbf{a}_{\mathcal{N}(i)}) \right| \\ 1257 \quad &= \left| \sum_{\substack{S \in \mathcal{S}: \\ i \in S}} \frac{1}{|S|} \sum_{\widehat{\mathbf{a}}_{\mathcal{N}_i^S} \in \mathcal{A}_{\mathcal{N}_i^S}} \mu^{(t+1)}(S, \widehat{\mathbf{a}}_{\mathcal{N}_i^S}) (\mathcal{U}_i(\widehat{\mathbf{a}}_{\mathcal{N}_i^S}, \mathbf{a}_{\mathcal{N}(i) \setminus S}) - \mathcal{U}_i(\mathbf{a}_{\mathcal{N}(i)})) \right| \\ 1262 \quad &\leq \sum_{\substack{S \in \mathcal{S}: \\ i \in S}} \frac{1}{|S|} \sum_{\widehat{\mathbf{a}}_{\mathcal{N}_i^S} \in \mathcal{A}_{\mathcal{N}_i^S}} \mu^{(t+1)}(S, \widehat{\mathbf{a}}_{\mathcal{N}_i^S}) \left| \mathcal{U}_i(\widehat{\mathbf{a}}_{\mathcal{N}_i^S}, \mathbf{a}_{\mathcal{N}(i) \setminus S}) - \mathcal{U}_i(\mathbf{a}_{\mathcal{N}(i)}) \right| \\ 1266 \quad &\stackrel{(i)}{\leq} \sum_{\substack{S \in \mathcal{S}: \\ i \in S}} \frac{1}{|S|} \sum_{\widehat{\mathbf{a}}_{\mathcal{N}_i^S} \in \mathcal{A}_{\mathcal{N}_i^S}} \mu^{(t+1)}(S, \widehat{\mathbf{a}}_{\mathcal{N}_i^S}). \end{aligned}$$

1268 (i) is because $\mathcal{U}_i(\mathbf{a}_{\mathcal{N}(i)}) \in [0, 1]$ for any $\mathbf{a}_{\mathcal{N}(i)} \in \mathcal{A}_{\mathcal{N}(i)}$.

1270 Recall that by definition, $\mathbf{a}_{-B}^{(t)} = \text{argmax}_{\mathbf{a}_{-B} \in \mathcal{A}_{-B}} \sum_{i \in \text{st}(B)} u_i^{(t)}(\mathbf{a}_{\mathcal{N}(i)})$. Then,

$$\begin{aligned} 1272 \quad & d^{(t)}(B, \mathbf{a}_B) \\ 1273 \quad &= \sum_{i \in \text{st}(B)} u_i^{(t)}((\mathbf{a}_{\mathcal{N}(i) \cap B}, \mathbf{a}_{\mathcal{N}(i) \setminus B}^{(t)})) \\ 1276 \quad &\geq \sum_{i \in \text{st}(B)} u_i^{(t)}((\mathbf{a}_{\mathcal{N}(i) \cap B}, \mathbf{a}_{\mathcal{N}(i) \setminus B}^{(t+1)})) \\ 1279 \quad &= \sum_{i \in \text{st}(B)} u_i^{(t+1)}((\mathbf{a}_{\mathcal{N}(i) \cap B}, \mathbf{a}_{\mathcal{N}(i) \setminus B}^{(t+1)})) + \left(u_i^{(t+1)}((\mathbf{a}_{\mathcal{N}(i) \cap B}, \mathbf{a}_{\mathcal{N}(i) \setminus B}^{(t+1)})) - u_i^{(t)}((\mathbf{a}_{\mathcal{N}(i) \cap B}, \mathbf{a}_{\mathcal{N}(i) \setminus B}^{(t+1)})) \right) \\ 1282 \quad &\geq \sum_{i \in \text{st}(B)} \left(u_i^{(t+1)}((\mathbf{a}_{\mathcal{N}(i) \cap B}, \mathbf{a}_{\mathcal{N}(i) \setminus B}^{(t+1)})) - \sum_{\substack{S \in \mathcal{S}: \\ i \in S}} \frac{1}{|S|} \sum_{\widehat{\mathbf{a}}_{\mathcal{N}_i^S} \in \mathcal{A}_{\mathcal{N}_i^S}} \mu^{(t+1)}(S, \widehat{\mathbf{a}}_{\mathcal{N}_i^S}) \right) \\ 1285 \quad &= d^{(t+1)}(B, \mathbf{a}_B) - \sum_{S \in \mathcal{S}} \frac{1}{|S|} \sum_{i \in S \cap \text{st}(B)} \sum_{\widehat{\mathbf{a}}_{\mathcal{N}_i^S} \in \mathcal{A}_{\mathcal{N}_i^S}} \mu^{(t+1)}(S, \widehat{\mathbf{a}}_{\mathcal{N}_i^S}) \\ 1288 \quad &\geq d^{(t+1)}(B, \mathbf{a}_B) - 1. \end{aligned}$$

1289 Similarly, we can get the upper bound that $d^{(t)}(B, \mathbf{a}_B) \leq d^{(t+1)}(B, \mathbf{a}_B) + 1$. Hence, the proof is
1290 completed. \square

1292 G EFFICIENT UPDATE OF μ

1294 This section provides the omitted details regarding the update procedure for μ and presents the
1295 complete proof of Theorem 5.3.

1296 G.1 EFFICIENT UPDATE OF μ
12971298 The procedure for updating μ closely parallels that of π . Specifically, we iterate over all coalitions
1299 $S \in \mathcal{S}$ and, for each S , determine the optimal action $\mathbf{a}_S \in \mathcal{A}_S$. To achieve this, we maintain a
1300 dynamic programming vector $\mathbf{g}_S \in \mathbb{R}^{\times_{B \in \mathcal{T}} \mathcal{A}_B}$ for each $S \in \mathcal{S}$, which is updated according to
1301

1302
$$\mathbf{g}_S^{(t+1)}(B, \hat{\mathbf{a}}_B) = \frac{1}{|S|} \sum_{\tau=1}^t \sum_{\substack{i \in S: \\ i \text{ assigned to } B}} \sum_{\mathbf{a} \in \mathcal{A}} \pi^{(\tau)}(\mathbf{a}) (\mathcal{U}_i(\hat{\mathbf{a}}_{B \cap S}, \mathbf{a}_{B \setminus S}) - \mathcal{U}_i(\mathbf{a}_B))$$

1303
1304
$$+ \sum_{B' \in C(B)} \max_{\substack{\hat{\mathbf{a}}'_{B'} \in \mathcal{A}_{B'}: \\ \hat{\mathbf{a}}_{B \cap B'} = \hat{\mathbf{a}}'_{B \cap B'}}} g^{(t+1)}(B', \hat{\mathbf{a}}'_{B'}) + m^{(t+1)}(B, \hat{\mathbf{a}}_B).$$

1305
1306
1307

1308 At first sight, the $\sum_{\mathbf{a} \in \mathcal{A}}$ appears computationally prohibitive, since \mathcal{A} is exponentially large. Fortunately,
1309 the update becomes tractable once we recall that $\pi^{(\tau)}$ is always a pure strategy for $\tau \geq 1$. Denote by
1310 $\mathbf{a}^{(\tau)}$ the joint action selected by $\pi^{(\tau)}$. Then (G.1) simplifies to
1311

1312
$$\mathbf{g}_S^{(t+1)}(B, \hat{\mathbf{a}}_B) = \frac{1}{|S|} \sum_{\tau=1}^t \sum_{\substack{i \in S: \\ i \text{ assigned to } B}} \left(\mathcal{U}_i(\hat{\mathbf{a}}_{B \cap S}, \mathbf{a}_{B \setminus S}^{(\tau)}) - \mathcal{U}_i(\mathbf{a}_B^{(\tau)}) \right)$$

1313
1314
1315 (G.1)
1316
$$+ \sum_{B' \in C(B)} \max_{\substack{\hat{\mathbf{a}}'_{B'} \in \mathcal{A}_{B'}: \\ \hat{\mathbf{a}}_{B \cap B'} = \hat{\mathbf{a}}'_{B \cap B'}}} g^{(t+1)}(B', \hat{\mathbf{a}}'_{B'}) + m_S^{(t+1)}(B, \hat{\mathbf{a}}_B).$$

1317
1318

1319 After completing the dynamic programming updates, we focus on the root bag B^r of the tree de-
1320 composition. The selected coalition is then $S^{(t+1)} = \operatorname{argmax}_{S \in \mathcal{S}} \max_{\hat{\mathbf{a}}_{B^r} \in \mathcal{A}_{B^r}} g_S^{(t+1)}(B^r, \hat{\mathbf{a}}_{B^r})$.
1321 Next, we apply the reconstruction procedure in (5.5) on $\mathbf{g}_{S^{(t+1)}}^{(t+1)}$ to extract a joint action $\hat{\mathbf{a}}^{(t+1)} \in \mathcal{A}$.
1322 Finally, we update $\mu^{(t+1)}(S^{(t+1)}, \hat{\mathbf{a}}^{(t+1)}) = 1$.
13231324 This procedure ensures that μ can be updated efficiently while maintaining consistency with the tree
1325 decomposition structure. Analogous to the update of π , the regret of this process can be bounded.
13261327 G.2 PROOF OF THEOREM 5.3
13281329 **Theorem 5.3.** Consider the updates in (5.3). For any $\delta > 0$, with probability at least $1 - \delta$, the
1330 following holds:

1331
$$\max_{\hat{\mu} \in \Delta^{\times_{S \in \mathcal{S}} \mathcal{A}_S}} \sum_{t=1}^T F(\pi^{(t)}, \hat{\mu}) - F(\pi^{(t)}, \mu^{(t)}) \leq 2|\mathcal{T}| \frac{1 + (\operatorname{tw}(\mathcal{G}) + 1) \log A}{\eta} + 2\eta|\mathcal{T}|T + \sqrt{2T \log \frac{1}{\delta}}.$$

1332
1333

1334 *Proof.* The proof of Theorem 5.3 is similar to that of Theorem 5.2. By using a similar argument as
1335 the proof of Theorem 5.2, for any $\hat{\mu} \in \Delta^{\times_{S \in \mathcal{S}} \mathcal{A}_S}$, we have
1336

1337
$$\sum_{t=1}^T (F(\pi^{(t)}, \hat{\mu}) - F(\pi^{(t)}, \mu^{(t)}))$$

1338
1339
$$\leq \langle \widetilde{\mathbf{m}}, \hat{\mu} - \mu^{(2)} \rangle + \sum_{t=1}^T (F(\pi^{(t)}, \mu^{(t+1)}) - F(\pi^{(t)}, \mu^{(t)})).$$

1340
1341
1342
1343

1344 Next, by introducing the counterpart of Lemma F.3 in the following, the rest of the proof follows
1345 that of Theorem 5.2.
13461347 **Lemma G.1.** Consider the update rule (5.3). For any timestep $t = 1, 2, \dots, T$, bag $B \in \mathcal{T}$, joint
1348 action $\hat{\mathbf{a}}_B \in \mathcal{A}_B$, coalition $S \in \mathcal{S}$, and noise $\widetilde{\mathbf{m}} \in \mathbb{R}^{\times_{B \in \mathcal{T}} \mathcal{A}_B}$, we have
1349

1349
$$\left| g_S^{(t+1)}(B, \hat{\mathbf{a}}_B) - g_S^{(t)}(B, \hat{\mathbf{a}}_B) \right| \leq 1.$$

The proof is postponed to the end of this section. Let $S^{(t)}, \hat{\mathbf{a}}^{(t)}$ denote the coalition and action the deviator picks at timestep t , i.e., $\mu^{(t)}(S^{(t)}, \hat{\mathbf{a}}^{(t)}) = 1$. Then,

$$\begin{aligned} & \mathbb{E} \left[F \left(\pi^{(t)}, \mu^{(t+1)} \right) - F \left(\pi^{(t)}, \mu^{(t)} \right) \right] \\ & \leq \Pr_{\tilde{\mathbf{m}}} \left(\mu^{(t+1)} \neq \mu^{(t)} \right) \\ & = \Pr_{\tilde{\mathbf{m}}} \left(S^{(t)} = S^{(t+1)} \right) \prod_{B \in \mathcal{T}} \Pr_{\tilde{\mathbf{m}}} \left(\hat{\mathbf{a}}_{B \setminus fa(B)}^{(t)} = \hat{\mathbf{a}}_{B \setminus fa(B)}^{(t+1)} \mid \hat{\mathbf{a}}_{fa(B)}^{(t)} = \hat{\mathbf{a}}_{fa(B)}^{(t+1)}, S^{(t)} = S^{(t+1)} \right) \\ & \stackrel{(i)}{\leq} 1 - \exp(2\eta|\mathcal{T}|). \end{aligned}$$

(i) is because choosing $S^{(t)}$ is equivalent to adding a new player in the root bag B^r , whose action is to select the coalition. Finally, for any $\delta > 0$, with probability at least $1 - \delta$,

$$\begin{aligned} & \sum_{t=1}^T \left(F \left(\pi^{(t)}, \hat{\mu} \right) - F \left(\pi^{(t)}, \mu^{(t)} \right) \right) \\ & \leq 2|\mathcal{T}| \frac{1 + (\text{tw}(\mathcal{G}) + 1) \log A}{\eta} + 2\eta|\mathcal{T}|T + \sqrt{2T \log \frac{1}{\delta}}. \end{aligned} \quad \square$$

G.3 PROOF OF AUXILIARY LEMMAS

Lemma G.1. Consider the update rule (5.3). For any timestep $t = 1, 2, \dots, T$, bag $B \in \mathcal{T}$, joint action $\hat{\mathbf{a}}_B \in \mathcal{A}_B$, coalition $S \in \mathcal{S}$, and noise $\tilde{\mathbf{m}} \in \mathbb{R}^{\times_{B \in \mathcal{T}} \mathcal{A}_B}$, we have

$$\left| g_S^{(t+1)}(B, \hat{\mathbf{a}}_B) - g_S^{(t)}(B, \hat{\mathbf{a}}_B) \right| \leq 1.$$

Proof. For any $S \in \mathcal{S}$, the upper bound of $\left| g_S^{(t+1)}(B, \hat{\mathbf{a}}_B) - g_S^{(t)}(B, \hat{\mathbf{a}}_B) \right|$ can be obtained similarly to the proof of Lemma F.3 by choosing

$$\begin{aligned} u_i^{(t)}(\mathbf{a}_{\mathcal{N}(i)}) &= \frac{1}{|S|} \sum_{\tau=1}^t \sum_{\substack{i \in S: \\ i \text{ assigned to } B}} \sum_{\mathbf{a} \in \mathcal{A}} \pi^{(\tau)}(\mathbf{a}) (\mathcal{U}_i(\hat{\mathbf{a}}_{B \cap S}, \mathbf{a}_{B \setminus S}) - \mathcal{U}_i(\mathbf{a}_B)) \text{ for } i \in [N] \\ u_i^{(t)}(\mathbf{a}_{\mathcal{N}(i)}) &= m_S(B, \mathbf{a}_{\mathcal{N}(i)}) \text{ for } i \text{ as the noise player assigned to bag } B. \end{aligned}$$

Then,

$$\begin{aligned} \left| u_i^{(t)}(\mathbf{a}_{\mathcal{N}(i)}) - u_i^{(t+1)}(\mathbf{a}_{\mathcal{N}(i)}) \right| &= \left| \frac{1}{|S|} \sum_{\substack{i \in S: \\ i \text{ assigned to } B}} \sum_{\mathbf{a} \in \mathcal{A}} \pi^{(t+1)}(\mathbf{a}) (\mathcal{U}_i(\hat{\mathbf{a}}_{B \cap S}, \mathbf{a}_{B \setminus S}) - \mathcal{U}_i(\mathbf{a}_B)) \right| \\ &\stackrel{(i)}{\leq} \frac{1}{|S|} \sum_{\substack{i \in S: \\ i \text{ assigned to } B}} \sum_{\mathbf{a} \in \mathcal{A}} \pi^{(t+1)}(\mathbf{a}). \end{aligned}$$

(i) is by the fact that $\mathcal{U}_i(\hat{\mathbf{a}}_{B \cap S}, \mathbf{a}_{B \setminus S}), \mathcal{U}_i(\mathbf{a}_B) \in [0, 1]$. The rest of the proof follows that of Lemma F.3, and thus we complete the proof. \square

H ADDITIONAL EXPERIMENTAL RESULTS

In this section, we detail our experimental setup and report additional results for two further games: the Chicken game (Bergstrom & Godfrey-Smith, 1998) and Pigou's network (Pigou, 1920). All experiments are conducted on a 13th Gen Intel(R) Core(TM) i7-13700K @ 3.40 GHz. Error bars for **MASE** and **FTPL** indicate $\pm 1\sigma$ over 100 random seeds (0, 1, ..., 99). Across all experiments, we set the learning rate to $\eta = 0.01$ and run for $T = 10,000$ timesteps.

1404
1405

H.1 EXPERIMENTAL DETAILS

1406
1407
1408
1409
1410

For all baselines, we run each algorithm independently for each player, thus the average strategy converges to a CCE (Hazan et al., 2016). For **FTRL**, **Hedge**, and **OMD**, each player $i \in [N]$ is initialized with a uniform distribution $\pi_i^{(1)}$ over all actions. **MASE** and **FTPL** are initialized with a pure strategy chosen uniformly at random from all pure strategies.

1411
1412

H.2 UTILITY FUNCTIONS

1413
1414

This subsection specifies the utility functions for all four games.

1415
1416
1417
1418
1419

Prisoner’s Dilemma. The utility matrix is shown in Table 2. If both prisoners confess, they receive reduced sentences. If one confesses while the other defects, the confessor is imprisoned and the defector is released immediately. If both defect, both are imprisoned for longer than in the mutual-confession case to penalize dishonesty.

1420
1421
1422

	Confess (C)	Defect (D)
Confess (C)	(0.6, 0.6)	(0, 1)
Defect (D)	(1, 0)	(0.2, 0.2)

1423
1424
1425

Table 2: Utility matrix of the Prisoner’s Dilemma. Each entry (a, b) denotes the payoffs to the row player (a) and the column player (b) .

1426

Stag Hunt. The utility matrix is shown in Table 3. A stag yields a higher reward, but it can only be hunted successfully if both players choose Stag; a solo stag attempt yields nothing. A hare provides a smaller payoff but can be secured by a single player.

1427
1428
1429
1430
1431
1432
1433

	Stag (S)	Hare (H)
Stag (S)	(1, 1)	(0.1, 0.8)
Hare (H)	(0.8, 0.1)	(0.5, 0.5)

1434
1435
1436

Table 3: Utility matrix of the Stag Hunt. Each entry (a, b) denotes the payoff of the row player (a) and the column player (b) .

1437
1438
1439
1440

Chicken Game. Two drivers head toward each other and can either swerve or go straight. If one goes straight while the other swerves, the swerving player “loses.” If both go straight, they crash.

1441
1442
1443

	Swerve (Sw)	Straight (St)
Swerve (Sw)	(5/6, 5/6)	(2/3, 1)
Straight (St)	(1, 2/3)	(0, 0)

1444
1445
1446

Table 4: Utility matrix of the Chicken game. Each entry (a, b) denotes the payoff of the row player (a) and the column player (b) .

1447

Pigou Network. We use a three-player variant of Pigou’s network. Each player chooses a *fast* or *slow* route. The slow route yields a constant utility of 0.25. The fast route yields utility $1.5 - 0.5 \cdot (\text{number of players choosing the fast route})$, reflecting congestion.

1448
1449
1450
1451

H.3 ADDITIONAL EXPERIMENTAL RESULTS

1452
1453
1454
1455
1456
1457

Figure 5 reports additional experiments on the Chicken game and Pigou’s network. **MASE** consistently outperforms the baselines in both coalition exploitability and social welfare. In Pigou’s network, purely self-interested players overuse the fast route, which in equilibrium becomes slow. By contrast, when players form coalitions and consider average utility within a coalition, they share the routes so that everyone is better off.

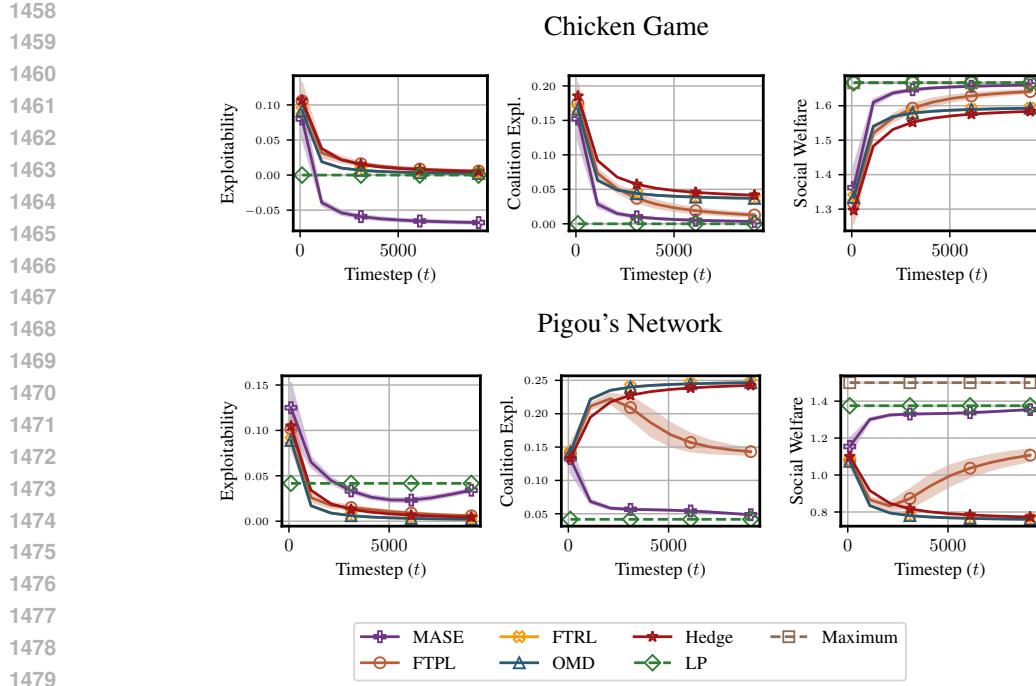


Figure 5: LP refers to the linear program in Appendix B. Maximum marks the maximum social welfare. MASE outperforms the baselines in both games in terms of coalition exploitability and social welfare.

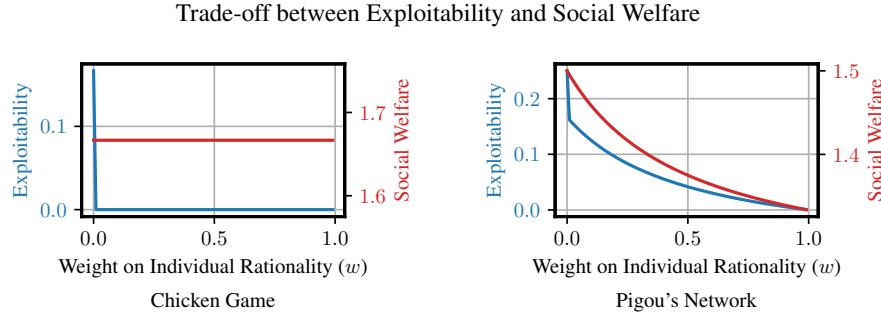


Figure 6: The trade-off between exploitability and social welfare in the Chicken game and the Pigou's network.

Figure 6 shows the trade-off between exploitability and social welfare in the Chicken game and Pigou's network.

Figure 7 reports the runtime of the algorithm for polymatrix games with varying numbers of players, action set sizes, and interaction densities.

H.4 PROOF OF LEMMA 6.1

Lemma 6.1. For any $\epsilon > 0$, computing the CCE with exploitability no more than ϵ that maximizes social welfare is equivalent to (6.1) by setting $\mathcal{S} = \{\{i\}\}_{i \in [N]} \cup \{[N]\}$ and using the weights:

$$w_S = \begin{cases} w & \text{if } |S| = 1 \\ 1 - w & \text{if } S = [N] \end{cases}$$

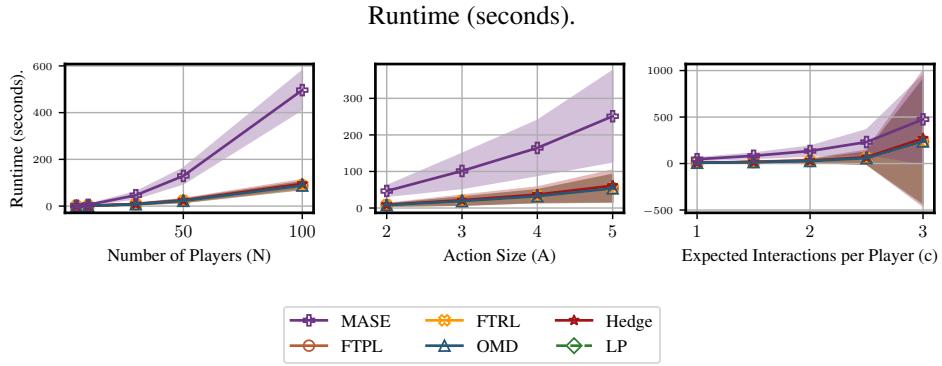


Figure 7: The runtime of the algorithm in different polymatrix games.

for some $w \in [0, 1]$. Conversely, solving (6.1) with these parameters corresponds to finding a point on the Pareto frontier of social welfare and exploitability.

Proof. For any $\epsilon > 0$, let π^* be the strategy that maximizes social welfare subject to its exploitability being at most ϵ . Let $g^* = \max_{\hat{\mathbf{a}} \in \mathcal{A}} \frac{1}{N} \sum_{i=1}^N \mathbb{E}_{\mathbf{a} \sim \pi^*} [\mathcal{U}_i(\hat{\mathbf{a}}) - \mathcal{U}_i(\mathbf{a})]$ be the maximum gain for the grand coalition $[N]$. Let $w = \frac{g^*}{\epsilon + g^*}$. Then, by construction, the objective value for π^* under (6.1) is:

$$\begin{aligned} \max_{S \in \mathcal{S}} \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \frac{w_S}{|S|} \sum_{i \in S} \mathbb{E}_{\mathbf{a} \sim \pi^*} [\dots] &= \max(w \cdot (\text{exploitability}), (1-w) \cdot g^*) \\ &\leq \max(w\epsilon, (1-w)g^*) = \frac{\epsilon g^*}{\epsilon + g^*}. \end{aligned}$$

Any strategy $\hat{\pi}$ with exploitability $> \epsilon$ would have an objective value $> w\epsilon = \frac{\epsilon g^*}{\epsilon + g^*}$, which is worse than the value π^* achieves. Therefore, any optimal solution to (6.1) must have exploitability at most ϵ . Since π^* by definition maximizes social welfare (i.e., minimizes the coalition gain g^*) among all strategies in this set, it must also be an optimal solution to (6.1).

Conversely, for any $w \in [0, 1]$, let π^* be the corresponding strategy that optimizes (6.1). Let its exploitability be

$$\epsilon = \max_{i \in [N]} \max_{\hat{a}_i \in \mathcal{A}_i} \mathbb{E}_{\mathbf{a} \sim \pi^*} [\mathcal{U}_i(\hat{a}_i, \mathbf{a}_{-i}) - \mathcal{U}_i(\mathbf{a})].$$

We will show by contradiction that no strategy π' exists such that $\text{exploitability}(\pi') \leq \epsilon$ and $SW(\pi') > SW(\pi^*)$ (which implies $g' < g^*$, where g' is the gain for the grand coalition under π').

Suppose such a π' exists. We analyze two cases:

Case 1: $\text{exploitability}(\pi') < \epsilon$. Since π' has both strictly lower exploitability than π^* and $g' < g^*$ (higher social welfare), its objective value is $\max(w \cdot \text{exploitability}(\pi'), (1-w)g')$. This is strictly less than $\max(w\epsilon, (1-w)g^*)$, which is the objective value of π^* . This contradicts the optimality of π^* .

Case 2: $\text{exploitability}(\pi') = \epsilon$. If $\epsilon > 0$, choose a small $\delta > 0$ and consider the mixed strategy $\pi_{\text{new}} = (1-\delta)\pi' + \delta\pi''$, where π'' is an arbitrary CCE, which is guaranteed to exist (Nash Jr, 1950). For any $i \in [N]$ and $\hat{a}_i \in \mathcal{A}_i$, we have:

$$\begin{aligned} &\mathbb{E}_{\mathbf{a} \sim \pi_{\text{new}}} [\mathcal{U}_i(\hat{a}_i, \mathbf{a}_{-i}) - \mathcal{U}_i(\mathbf{a})] \\ &= (1-\delta)\mathbb{E}_{\mathbf{a} \sim \pi'} [\mathcal{U}_i(\hat{a}_i, \mathbf{a}_{-i}) - \mathcal{U}_i(\mathbf{a})] + \delta\mathbb{E}_{\mathbf{a} \sim \pi''} [\mathcal{U}_i(\hat{a}_i, \mathbf{a}_{-i}) - \mathcal{U}_i(\mathbf{a})] \\ &\stackrel{(i)}{\leq} (1-\delta)\mathbb{E}_{\mathbf{a} \sim \pi'} [\mathcal{U}_i(\hat{a}_i, \mathbf{a}_{-i}) - \mathcal{U}_i(\mathbf{a})] \\ &\leq (1-\delta)\epsilon. \end{aligned}$$

1566 Step (i) holds because π'' is a CCE, so its exploitability $\mathbb{E}_{\pi''}[\dots]$ is ≤ 0 . Since $\epsilon > 0$, the new
 1567 strategy π_{new} has exploitability(π_{new}) $< \epsilon$. By continuity, for sufficiently small δ , $SW(\pi_{new})$
 1568 remains strictly higher than $SW(\pi^*)$ (since $SW(\pi') > SW(\pi^*)$). This puts us in Case 1, which
 1569 leads to a contradiction.

1570 If $\epsilon \leq 0$, then exploitability(π^*) ≤ 0 . The objective value for π^* is $\max(w\epsilon, (1-w)g^*) =$
 1571 $(1-w)g^*$ (since $w\epsilon \leq 0$ and $(1-w)g^* \geq 0$ by definition). The hypothetical strategy π' has
 1572 exploitability(π') $= \epsilon \leq 0$ and $g' < g^*$. Its objective value is $\max(w\epsilon, (1-w)g') = (1-w)g'$.
 1573 Since $g' < g^*$ and $w < 1$, the objective value of π' is strictly less than that of π^* , which contradicts
 1574 the optimality of π^* .

1575 In all cases, the existence of such a π' leads to a contradiction. Thus, π^* must be a solution that
 1576 maximizes social welfare for a given exploitability ϵ . \square
 1577

1578 **I POLYMATRIX GAMES**
 1579

1581 In this section, we present experimental details for MASE on games with a larger number of players.
 1582 We select polymatrix games as the benchmark for these large-scale experiments. This choice is
 1583 motivated by their inherent graphical structure, which allows for the efficient generation of instances
 1584 with a low treewidth of their Utility Dependency Graph.

1585 We begin with the formal definition. A polymatrix game has a corresponding undirected graph
 1586 $\mathcal{G}^U = (\mathcal{V}^U, \mathcal{E}^U)$, with $\mathcal{V}^U = [N]$. For any joint action $\mathbf{a} \in \mathcal{A}$, the utility of any player i is defined
 1587 as:

$$\mathcal{U}_i(\mathbf{a}) := \sum_{(i,j) \in \mathcal{E}^U} \mathcal{U}_{i,j}(a_i, a_j), \quad (I.1)$$

1591 where $\mathcal{U}_{i,j}: \mathcal{A}_i \times \mathcal{A}_j \rightarrow [0, 1]$ represents the interaction between players i and j . In other words,
 1592 only players who are connected in \mathcal{G}^U interact, and a player's total utility is the summation of these
 1593 pairwise interactions.

1594 If we construct the Utility Dependency Graph directly, then the tree decomposition may explode
 1595 unwillingly, e.g., Figure 8 (a). We can see that the treewidth of \mathcal{G}^U is one while the treewidth of the
 1596 Utility Dependency Graph is three.

1597 Constructing the Utility Dependency Graph directly from the polymatrix game can cause its
 1598 treewidth to explode. For example, in Figure 8 (a), the original graph \mathcal{G}^U has a treewidth of one,
 1599 while the resulting Utility Dependency Graph has a treewidth of three.

1600 To prevent this, we construct a strategically equivalent game (note that this new game is *not* a
 1601 polymatrix game). This construction explicitly models the pairwise interactions as new players:

- 1604 • For any original edge $(i, j) \in \mathcal{E}^U$, we introduce two edge players, $e_{i,j}$ and $e_{j,i}$.
- 1605 • Each edge player $e_{i,j}$ has a singleton action set, $|\mathcal{A}_{e_{i,j}}| = 1$, meaning it has only a single
 1606 strategy.
- 1607 • The utility function of an edge player $e_{i,j}$ is defined as the original interaction utility:

$$\tilde{\mathcal{U}}_{e_{i,j}} = \mathcal{U}_{i,j}.$$
- 1608 • The utility function of an original vertex player i (one of the original N players) is now a
 1609 constant zero: $\tilde{\mathcal{U}}_i \equiv 0$.

1612 This transformation is illustrated in Figure 8 (b). The Utility Dependency Graph for this new game,
 1613 shown on the right of Figure 8 (b), now has a treewidth of $\max(\text{tw}(\mathcal{G}^U), 2)$. This method effectively
 1614 bounds the treewidth and avoids the undesirable explosion.

1615 Next, we show that the new game and the original polymatrix game are strategically equivalent.
 1616 In other words, for any joint strategy $\pi \in \Delta^{\mathcal{A}}$, the maximum average deviation gain, $\max_{S \in \mathcal{S}}$
 1617 $\max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \frac{1}{|S|} \sum_{i \in S} \mathbb{E}_{\mathbf{a} \sim \pi} [\mathcal{U}_i(\hat{\mathbf{a}}_S, \mathbf{a}_{-S}) - \mathcal{U}_i(\mathbf{a})]$, does not change. Recall that since the edge
 1618 players have only a single action, $\pi \in \Delta^{\mathcal{A}}$ (a distribution over the original players' joint actions) is
 1619 sufficient to specify the joint strategy in both games.

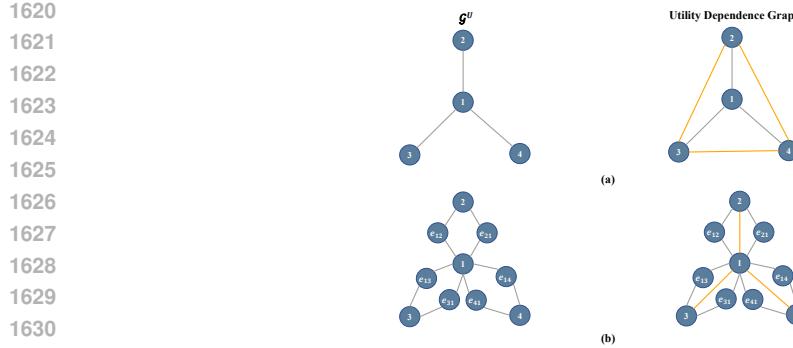


Figure 8: (a) The original graph \mathcal{G}^U corresponding to the polymatrix game (left) and the Utility Dependency Graph. (b) The strategically equivalent game and its Utility Dependency Graph.

Lemma I.1. The new game described above is equivalent to the original polymatrix game, when $\tilde{\mathcal{S}} = \left\{ S \cup \{e_{i,j}\}_{i \in S \wedge (i,j) \in \mathcal{E}^U} \right\}_{S \in \mathcal{S}}$. Formally, for any joint strategy $\pi \in \Delta^{\mathcal{A}}$, we have

$$\begin{aligned} & \max_{S \in \mathcal{S}} \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \frac{1}{|S|} \sum_{i \in S} \mathbb{E}_{\mathbf{a} \sim \pi} [\mathcal{U}_i(\hat{\mathbf{a}}_S, \mathbf{a}_{-S}) - \mathcal{U}_i(\mathbf{a})] \\ &= \max_{\tilde{S} \in \tilde{\mathcal{S}}} \max_{\hat{\mathbf{a}}_{\tilde{S}} \in \mathcal{A}_{\tilde{S}}} \frac{1}{|\tilde{S} \cap [N]|} \sum_{i \in \tilde{S}} \mathbb{E}_{\mathbf{a} \sim \pi} [\tilde{\mathcal{U}}_i(\hat{\mathbf{a}}_{\tilde{S} \cap [N]}, \mathbf{a}_{-(\tilde{S} \cap [N])}) - \tilde{\mathcal{U}}_i(\mathbf{a})]. \end{aligned}$$

The proof is postponed to the end of this section. This equivalence allows us to solve the new game instead of the original one. Our algorithm can minimize a more general objective, $\max_{S \in \mathcal{S}} \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} w_S \sum_{i \in S} \mathbb{E}_{\mathbf{a} \sim \pi} [\mathcal{U}_i(\hat{\mathbf{a}}_S, \mathbf{a}_{-S}) - \mathcal{U}_i(\mathbf{a})]$, for any weight vector $w \in \mathbb{R}^S$.⁹ We can therefore apply our algorithm to this new, strategically equivalent game.

I.1 EXPERIMENTAL DETAILS

We generate random polymatrix games using the following procedure:

- Each pair of players (i, j) is connected independently with probability $\frac{c}{N-1}$, where N is the total number of players. This results in an expected degree of c for each player in \mathcal{G}^U .
- For each connected pair (i, j) , the interaction utilities $\mathcal{U}_{i,j}(a_i, a_j)$ are sampled independently and uniformly from $[0, 1]$ for all action pairs $a_i \in \mathcal{A}_i, a_j \in \mathcal{A}_j$. These pairwise utilities are then normalized according to the formula:

$$\frac{\mathcal{U}_{i,j}(a_i, a_j) - \min_{k \in [N], \hat{\mathbf{a}} \in \mathcal{A}} \mathcal{U}_k(\hat{\mathbf{a}})}{\max_{k \in [N], \hat{\mathbf{a}} \in \mathcal{A}} \mathcal{U}_k(\hat{\mathbf{a}}) - \min_{k \in [N], \hat{\mathbf{a}} \in \mathcal{A}} \mathcal{U}_k(\hat{\mathbf{a}})}.$$

This process ensures that the final total utility $\mathcal{U}_i(\mathbf{a})$ for any player $i \in [N]$ and joint action $\mathbf{a} \in \mathcal{A}$ falls within the range $[0, 1]$.

Consistent with the experiments on small games, we average the results over 100 runs for each hyper-parameter setting (using seeds 0–99). All algorithms use a learning rate of $\eta = 0.01$, and error bars represent 1σ . For these larger games, we set the number of timesteps to $T = 100,000$ and a uniform action set size $|\mathcal{A}_i| = A$ for all players $i \in [N]$.

The hyper-parameters for the ablation studies are as follows:

- **Ablation on N :** $A = 2$ and $c = 1$.
- **Ablation on A :** $N = 30$ and $c = 1$.

⁹Both the implementation and the proof only use the linearity of the objective. Hence, any weighted-sum can fit into the framework.

1674 • **Ablation on c :** $N = 30$ and $A = 2$.
 1675

1676 Furthermore, to accelerate the algorithm, without loss of generality, we only need to consider
 1677 $\mathcal{S} = \{\{i\}\}_{i \in [N]} \cup \{\{i, j\} \mid i, j \in [N], (i, j) \in \mathcal{G}^U\}$ to minimize the coalition exploitability for any
 1678 coalitions with no more than two players. In other words, for coalitions of two players, we only
 1679 need to consider the case when they are connected in \mathcal{G}^U . As shown in the following lemma.

1680 **Lemma I.2.** For any joint strategy $\pi \in \Delta^{\mathcal{A}}$, by letting $\mathcal{S} = \{\{i\}\}_{i \in [N]} \cup$
 1681 $\{\{i, j\} \mid i, j \in [N] \wedge (i, j) \in \mathcal{G}^U\}$, we have

$$\begin{aligned} & \max_{S \in \mathcal{S}} \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \frac{1}{|S|} \sum_{i \in S} \mathbb{E}_{\mathbf{a} \sim \pi} [\mathcal{U}_i(\hat{\mathbf{a}}_S, \mathbf{a}_{-S}) - \mathcal{U}_i(\mathbf{a})] \\ &= \max_{\substack{S \in \{\{i\}\}_{i \in [N]} \\ \cup \{\{i, j\} \mid i, j \in [N] \wedge i \neq j\}}} \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \frac{1}{|S|} \sum_{i \in S} \mathbb{E}_{\mathbf{a} \sim \pi} [\mathcal{U}_i(\hat{\mathbf{a}}_S, \mathbf{a}_{-S}) - \mathcal{U}_i(\mathbf{a})]. \end{aligned}$$

1690 The proof is postponed to the end of this section.
 1691

1692 I.2 PROOF OF THE AUXILIARY LEMMA

1693 **Lemma I.1.** The new game described above is equivalent to the original polymatrix game, when
 1694 $\tilde{\mathcal{S}} = \left\{ S \cup \{e_{i,j}\}_{i \in S \wedge (i,j) \in \mathcal{E}^U} \right\}_{S \in \mathcal{S}}$. Formally, for any joint strategy $\pi \in \Delta^{\mathcal{A}}$, we have

$$\begin{aligned} & \max_{S \in \mathcal{S}} \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \frac{1}{|S|} \sum_{i \in S} \mathbb{E}_{\mathbf{a} \sim \pi} [\mathcal{U}_i(\hat{\mathbf{a}}_S, \mathbf{a}_{-S}) - \mathcal{U}_i(\mathbf{a})] \\ &= \max_{\tilde{S} \in \tilde{\mathcal{S}}} \max_{\hat{\mathbf{a}}_{\tilde{S}} \in \mathcal{A}_{\tilde{S}}} \frac{1}{|\tilde{S} \cap [N]|} \sum_{i \in \tilde{S}} \mathbb{E}_{\mathbf{a} \sim \pi} [\tilde{\mathcal{U}}_i(\hat{\mathbf{a}}_{\tilde{S} \cap [N]}, \mathbf{a}_{-(\tilde{S} \cap [N])}) - \tilde{\mathcal{U}}_i(\mathbf{a})]. \end{aligned}$$

1704 *Proof.* For any $S \in \mathcal{S}$, let \tilde{S} be its correspondence in $\tilde{\mathcal{S}}$. Then,

$$\begin{aligned} & \max_{\hat{\mathbf{a}}_{\tilde{S}} \in \mathcal{A}_{\tilde{S}}} \frac{1}{|\tilde{S} \cap [N]|} \sum_{i \in \tilde{S}} \mathbb{E}_{\mathbf{a} \sim \pi} [\tilde{\mathcal{U}}_i(\hat{\mathbf{a}}_{\tilde{S} \cap [N]}, \mathbf{a}_{-(\tilde{S} \cap [N])}) - \tilde{\mathcal{U}}_i(\mathbf{a})] \\ & \stackrel{(i)}{=} \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \frac{1}{|S|} \sum_{i \in \tilde{S}} \mathbb{E}_{\mathbf{a} \sim \pi} [\tilde{\mathcal{U}}_i(\hat{\mathbf{a}}_S, \mathbf{a}_{-S}) - \tilde{\mathcal{U}}_i(\mathbf{a})] \\ & \stackrel{(ii)}{=} \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \frac{1}{|S|} \sum_{i \in S} \sum_{j: (i,j) \in \mathcal{E}^U} \mathbb{E}_{\mathbf{a} \sim \pi} [\tilde{\mathcal{U}}_{e_{i,j}}(\hat{\mathbf{a}}_S, \mathbf{a}_{-S}) - \tilde{\mathcal{U}}_{e_{i,j}}(\mathbf{a})] \\ & \stackrel{(iii)}{=} \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \frac{1}{|S|} \sum_{i \in S} \mathbb{E}_{\mathbf{a} \sim \pi} [\mathcal{U}_i(\hat{\mathbf{a}}_S, \mathbf{a}_{-S}) - \mathcal{U}_i(\mathbf{a})]. \end{aligned}$$

1717 (i) uses the fact that $|\mathcal{A}_{e_{i,j}}| = 1$ and $\tilde{S} \cap [N] = S$. (ii) is because $\mathcal{U}_i \equiv 0$ for any $i \in [N]$. (iii) is
 1718 by the definition of $\tilde{\mathcal{U}}_{e_{i,j}}$ and \tilde{S} . \square
 1719

1720 **Lemma I.2.** For any joint strategy $\pi \in \Delta^{\mathcal{A}}$, by letting $\mathcal{S} = \{\{i\}\}_{i \in [N]} \cup$
 1721 $\{\{i, j\} \mid i, j \in [N] \wedge (i, j) \in \mathcal{G}^U\}$, we have

$$\begin{aligned} & \max_{S \in \mathcal{S}} \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \frac{1}{|S|} \sum_{i \in S} \mathbb{E}_{\mathbf{a} \sim \pi} [\mathcal{U}_i(\hat{\mathbf{a}}_S, \mathbf{a}_{-S}) - \mathcal{U}_i(\mathbf{a})] \\ &= \max_{\substack{S \in \{\{i\}\}_{i \in [N]} \\ \cup \{\{i, j\} \mid i, j \in [N] \wedge i \neq j\}}} \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \frac{1}{|S|} \sum_{i \in S} \mathbb{E}_{\mathbf{a} \sim \pi} [\mathcal{U}_i(\hat{\mathbf{a}}_S, \mathbf{a}_{-S}) - \mathcal{U}_i(\mathbf{a})]. \end{aligned}$$

1728 *Proof.* For any disconnected players i, j and $S = \{i, j\}$, we can see that
 1729

$$\begin{aligned}
 1730 \quad & \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \frac{1}{|S|} \sum_{k \in S} \mathbb{E}_{\mathbf{a} \sim \pi} [\mathcal{U}_k(\hat{\mathbf{a}}_S, \mathbf{a}_{-S}) - \mathcal{U}_k(\mathbf{a})] \\
 1731 \quad & \leq \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \max_{k \in S} \mathbb{E}_{\mathbf{a} \sim \pi} [\mathcal{U}_k(\hat{\mathbf{a}}_S, \mathbf{a}_{-S}) - \mathcal{U}_k(\mathbf{a})] \\
 1732 \quad & = \max_{k \in S} \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \mathbb{E}_{\mathbf{a} \sim \pi} [\mathcal{U}_k(\hat{\mathbf{a}}_S, \mathbf{a}_{-S}) - \mathcal{U}_k(\mathbf{a})] \\
 1733 \quad & = \max_{k \in S} \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \mathbb{E}_{\mathbf{a} \sim \pi} \left[\sum_{k' \in [N]: (k, k') \in \mathcal{G}^U} \mathcal{U}_{k, k'}(\hat{\mathbf{a}}_S, \mathbf{a}_{-S}) - \mathcal{U}_{k, k'}(\mathbf{a}) \right] \\
 1734 \quad & \stackrel{(i)}{=} \max_{k \in S} \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \mathbb{E}_{\mathbf{a} \sim \pi} \left[\sum_{k' \in [N]: (k, k') \in \mathcal{G}^U} \mathcal{U}_{k, k'}(\hat{\mathbf{a}}_k, \mathbf{a}_{-k}) - \mathcal{U}_{k, k'}(\mathbf{a}) \right] \\
 1735 \quad & = \max_{k \in S} \max_{\hat{\mathbf{a}}_S \in \mathcal{A}_S} \mathbb{E}_{\mathbf{a} \sim \pi} [\mathcal{U}_k(\hat{\mathbf{a}}_k, \mathbf{a}_{-k}) - \mathcal{U}_k(\mathbf{a})].
 \end{aligned}$$

1744 (i) is because $k' \notin S$ since $k \in S = \{i, j\}$ and i, j are not connected. Therefore, since the coalition
 1745 exploitability of S is upper bounded by the maximum of that of coalitions $\{i\}$ and $\{j\}$, we do not
 1746 need to consider $\{i, j\}$.
 1747

1748 Actually, the argument can be generalized to coalitions of any size M . If we want to consider
 1749 the coalition exploitability for coalitions no more than size M , then we only need to consider all
 1750 connected coalitions of size no more than size M by an induction similar to the proof above. \square

1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781