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ABSTRACT

To adequately test modern code generation systems, evaluation benchmarks must
execute and test the code generated by the system. However, these execution
and testing requirements have largely limited benchmarks to settings where code
is easily executable or has human-written tests. To facilitate evaluation of code
generation systems across diverse scenarios, we present CODEBENCHGEN, a
framework to create scalable execution-based benchmarks from naturally occur-
ring code sources. Specifically, we leverage a large language model (LLM) to
sandbox arbitrary pieces of code into evaluation examples, including test cases
for execution-based evaluation. We illustrate the usefulness of our framework
by creating a dataset, Exec-CSN, which includes 1,931 examples involving 293
libraries converted from code in 367 GitHub repositories taken from the Code-
SearchNet dataset. To demonstrate the solvability of examples in Exec-CSN, we
present a human study demonstrating that 81.3% of the examples can be solved
by humans and 61% are rated as “requires effort to solve”. We conduct code
generation experiments on open-source and proprietary models and analyze the
performance of both humans and models.1

1 INTRODUCTION
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Figure 1: Comparison with existing dataset creation meth-
ods.2We follow the original paper of RepoEval and R2E and
apply their repository filtering strategies on the same reposi-
tories we build our dataset from (i.e., 408 repositories in the
CodeSearchNet dataset). The final number of repositories in
RepoEval and R2E also depend on how much human effort
they spend on environment setup, debugging, etc.

Code generation systems assist pro-
grammers by generating code based
on their instructions (Simon, 1963;
Feng et al., 2020; Chen et al., 2021).
To evaluate the requisite capabilities
of such systems, there is a need
for benchmarks that simulate a va-
riety of scenarios, such as solving
algorithmic problems (Austin et al.,
2021; Hendrycks et al., 2021), devel-
oping data science applications (Lai
et al., 2023), implementing web ap-
plications (Oda et al., 2015), and as-
sisting in software engineering prac-
tices (Jimenez et al., 2024). Given
the complexity of the code that can
be generated, it is desirable to execute
the system-generated code and check
whether it passes test cases (Chen et al., 2021; Hendrycks et al., 2021; Lai et al., 2023). Such
execution-based metrics have been shown to be a more reliable indicator of functional correctness
than execution-free metrics (Chen et al., 2021; Wang et al., 2023; Dibia et al., 2023).

To construct execution-based benchmarks, early works either borrow programming problems from
online platforms (Hendrycks et al., 2021; Guo et al., 2024) or manually curate evaluation exam-

1Code and dataset available at https://github.com/CodeBenchGen/CodeBenchGen.
2We do not compare to SWE-BENCH (Jimenez et al., 2024) in Figure 1 because they do not introduce their

repository selection process.
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Functionality: Converts a list of 
Python bytecode objects into executable code and 
executes in a given namespace's module dictionary.
Input: Bytecode objects, Namespace object.
Output: None.

Instruction try:
  from ast import unparse
except ImportError:
  from astunparse import unparse
...
from typing import Any, Callable, List, Optional

class Namespace:
  def __init__(self):
    self.module = types.ModuleType("mock_module")
    self.module.__dict__["__bootstrapped__"] = False
    ...

def compile_bytecode(
  code:List[types.CodeType], ns:Namespace)-> None:

  <ENTER YOUR ANSWER HERE>

class Compiler:
  def __init__(self, filename, opts:Optional[dict]) 
    ...

Context

pip install astunparse
Environment 

def test_compile_bytecode():
  ns = Namespace()
  compiled_1 = compile("x=5", "<string>", "exec")
  compiled_2 = compile("def test_func(): 
           return 'bytecode'", "<string>", "exec")

  compile_bytecode([compiled_1, compiled_2], ns)
  assert 'x' in ns.module.__dict__
  assert ...
  compiled_code_3 = [] 
  ...

Test 

  for bytecode in code:
    exec(bytecode, ns.module.__dict__)

Ground Truth ✓

Figure 2: The input of CODEBENCHGEN is an arbitrary code fragment (e.g., code on GitHub), and
the output is an evaluation example as illustrated. The context and ground truth are adapted from the
input code fragment by an LLM. The instruction and tests are generated based on the adapted code.

ples (Chen et al., 2021; Lai et al., 2023), which are limited to algorithm and data structure problems
or require heavy human effort. Recent work builds benchmarks by selecting GitHub repositories
containing human-written tests (Zhang et al., 2023; Jimenez et al., 2024), which are generally well-
developed projects contributed by professional developers. With a biased repository distribution,
such datasets cannot directly evaluate models’ ability to assist less experienced programmers on less
mature projects. A concurrent work (Jain et al., 2024) leverages LLMs to generate tests. However, as
shown in Figure 1, to successfully execute the code, it (1) can only build on repositories with setup
files, which again limits the created benchmark to mature codebases, and (2) still requires human
effort to set up the environment, resulting in limited scalability.

In this paper, we present CODEBENCHGEN, a framework to create scalable execution-based bench-
marks, which leverages an LLM to ensure the successful execution of code. As shown in Figure 2,
CODEBENCHGEN adapts an arbitrary user-selected code fragment into an evaluation example,
where the target is to generate code based on textual instructions and the correctness is checked by
test cases. To facilitate the execution of the code fragment, we use an LLM to generate test cases and
to make minimal edits that allow sandboxing the code. We observe that the LLM can successfully
sandbox complicated code such as local module imports, external API usage, and local file reading.
To ensure the correctness of the evaluation examples, we iteratively execute and refine the examples
until the ground truth code completion can pass all test cases.

As a demonstration of our method’s capabilities, we apply the CODEBENCHGEN framework on a set
of GitHub code sampled from the CodeSearchNet dataset (Husain et al., 2020) and construct a dataset,
Exec-CSN, containing 1,931 examples adapted from 367 GitHub repositories. We successfully adapt
47% of the input code fragments into evaluation examples, covering 90% of the input repositories.
Compared to existing datasets, Exec-CSN covers code with more diverse domains (i.e., 293 libraries
and 668 repository topics) and repositories created by more diverse programmers (see §4.1 for
details). Analyses show that the adapted code preserves high similarity to the naturally occurring
input code from GitHub. For instance, the average Jaccard similarity of variables before and after
adaptation achieves 83% (§4.2). Although the examples are relatively long, with on average 492
tokens (§4.3), our human study shows that 81.3% of the examples are solvable by computer science
graduate students and have a range of difficulties. 85% of the test cases rated as “reasonable and not
too trivial”, which demonstrates the high quality of our evaluation examples(§4.4).

To evaluate model’s ability to solve real-world tasks in diverse domains, we benchmark 12 open-
source and proprietary models on Exec-CSN. The key results are as follows: (1) The best model
(GPT-4) only achieves a Pass@1 score of 37.21%, indicating that it is still challenging to solve diverse
real-world tasks. (2) Specifically, models receive overall lower scores on examples with longer target
lengths, more function calls or external libraries, which suggests potential directions to improve
current models. (3) We compare the programming abilities of humans and models under a more
realistic setting where both humans and models can iteratively improve their answers based on the
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execution results. We observe that while GPT-4 has a better initial Pass@1 score, humans achieve
significantly better scores after several rounds of improvements.

Contributions. (1) We present CODEBENCHGEN, a framework to adapt code fragments into
execution-based evaluation examples, which enables researchers to construct scalable and custom
benchmarks tailored to naturally occurring code domains. (2) We use our framework to create a new
benchmark, Exec-CSN, from GitHub code and conduct analyses and human studies to demonstrate
the diversity, realism, complexity, and solvability of the examples. (3) We benchmark 12 code
generation models on Exec-CSN and compare and analyze model and human programming abilities.

2 METHODOLOGY OF CODEBENCHGEN

The framework of CODEBENCHGEN is illustrated in Figure 4. The input is an arbitrary user-interested
code fragment, and the result is an evaluation example for code generation that supports execution-
based evaluation, such as illustrated earlier in Figure 2. To construct an easy-to-use benchmark,
CODEBENCHGEN provides a single sandbox to run the tests in all the evaluation examples.

from .utils import nowutc
...

APIClient.login(api_key)
...

DOC = open(“doc.txt”).read()

Input Code Fragment from datetime import datetime
def nowutc():
  now = datetime.now()
  return now

Context

class mock_ApiClient(object):
  ...
  def login(self, api_key):
    return type(api_key) == str   

Context

DOC = “title\nthis is a doc.\n\n”
Test

LLM

LLM

LLM

Figure 3: Illustration of the sandboxing step. When adapting
the input code, we observe that the LLM can successfully
adapt (1) local module imports, (2) external API usage, and
(3) local file reading.

Step 1: Sandboxing. We need to exe-
cute the model-generated code to test
generation correctness. However, it is
nontrivial to directly execute an arbi-
trary piece of code from GitHub, es-
pecially the code containing compli-
cated dependencies on external files,
external API calls, access to the file
system, etc.

As a result, after selecting a segment
of the code as the target code, we
use an LLM to sandbox the source
code so that it can be executed in an
isolated environment. To create ex-
amples close to real-world code, we
prompt the LLM to remove as little
source code as much as possible and
add new code only when necessary. As shown in Figure 3, in our experiments, we observe that the
LLM can (1) generate new classes of functions not presented in the source code, (2) replace external
API calls with mock connections, (3) create strings to simulate files in the system, etc.. Furthermore,
our quantitative analyses and case studies demonstrate that the sandboxed code is similar to the input
code in terms of token-level overlap, variable overlap, and AST depth (See §4.2 for details).

In practice, it is possible that the LLM does not fully follow the instructions and omits too much
context or outputs an incomplete piece of code. We thus require the target to be similar to the input
and require the context to have a certain length, and automatically re-generate examples that do not
satisfy the requirements.

Step 2: Test Generation. In the second step, the input is code generated in step 1 and we call an LLM
to generate test cases to verify the functionality of the generated code. To encourage test coverage,
we prompt the model to generate at least three test cases. Similar to step 1, we check whether the
generated tests call the target code and contain at least three assert statements, and re-generate if not.

Step 3: Iterative Execution and Debugging. Since the code generated in steps 1 and 2 could have
errors, we iteratively execute the code scripts and use an LLM to debug the code until the target
output is able to pass all test cases. Unlike previous work that only aims to generate and debug the
tests (Xie et al., 2023), we allow the LLM to debug the entire generated code, including the target
output, the context, and the tests. Similar to the first two steps, to avoid the adapted code deviating
too much from the input, we re-run debugging for the examples where the final generated code has
incomplete tests or has a much shorter length than the original input of this step.

Step 4: Post-processing. After generating the code, we generate natural language instructions
for the examples. As discovered by previous work (Wen et al., 2024), adding I/O specifications (i.e.,
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Input: User-interested Code Fragment

from ast import unparse
...

def compile_bytecode(..):
  for bytecode in code:
    exec(bytecode, ns..)

class ..

Draft Context

Draft Ground Truth

① SandboxingLLM

def test_compile..():
  compile_bytecode(
  assert ...

Draft Test

② Test 
Generation

LLM

ImportError: cannot 
import name 'unparse' 
from 'ast'

try:
  from ast import unparse
except ImportError:
  from astunparse import unparse
...
def compi..

Execution: 
successful

③ Iterative Execution & Debugging

LLM

…

Debugged Context

pip install astunparse

Debugged Environment

④ Post-processing

Functionality: Converts a list of 
bytecode into executable objects ..

Instruction

Context Environment

Ground Truth

Test

Output: Evaluation Example

Augmented Tests

LLM

Figure 4: The framework of CODEBENCHGEN, which leverages an LLM to convert a code fragment
selected by the user to an evaluation example. The framework (1) sandboxes the code fragment to run
in an isolated environment, (2) generates tests for the code, (3) iteratively debugs or regenerates the
code to ensure its functional correctness, and (4) post-processes the code into an evaluation example.

the descriptions of the input and output of the target code) better clarifies the intent and consistently
improves model performance. We thus use the LLM to generate instructions with natural language
descriptions of the desired functionality, input, and output of the target code.

Additionally, we use an LLM to generate additional tests (Liu et al., 2023). In evaluation, we
execute each set of tests separately and check whether all of them are passed, thereby achieving
strictly better test coverage than the initial tests. We note that there are other test generation methods
such as fuzzing methods and learning-based methods. As discussed in §6.2, we choose LLM-based
methods for its high accuracy.

In previous steps, we sequentially installed the dependencies for each evaluation example, which
could potentially conflict with each other. Hence, to set up a shared runtime environment where all of
the examples can run without dependency conflicts, we conduct a final filtering pass. To do this, we
restart the sandbox, install the dependency list, and execute all examples again. The examples with
compilation or runtime errors are filtered out. We further filter out examples containing potentially
destructive or stateful code. More details on our filtering strategy can be found in Appendix A.2

3 CREATING A DATASET: EXEC-CSN USING CODEBENCHGEN

Step Description # Examples

1⃝ 2⃝ Sandboxing & Test Gen 1,260

3⃝
1st Exec & Debug Iter 1,973

2nd Exec & Debug Iter 2,155
3rd Exec & Debug Iter 2,343

4⃝ Post-processing 1,931

Table 1: Number of evaluation examples gen-
erated in each step of our framework. We only
count examples where the target can pass all
the test cases. We have 4,079 pieces of code
in the input, covering 408 repositories.

To demonstrate the scalability of our method, we cre-
ate a dataset, Exec-CSN (examples can be found in
Appendix A.7). We take the source code fragment
from the CodeSearchNet (Husain et al., 2020) dataset,
a GitHub function completion dataset that does not
support execution-based evaluation, where the input
contains the function signature and the docstring, and
the target is the function body. We choose Code-
SearchNet as the source because of its large scale and
coverage across a diversity of examples from GitHub.

We sample 5,000 Python examples from the test split
of CodeSearchNet. Because the function signature
only contains limited information, we download the
corresponding code file from GitHub as additional
context for each example and filter out examples that do not have a valid file link. To simplify the
execution environment of our benchmark, we filter out examples with I/O operations by keywords.
There were 4,079 examples left after filtering.
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Dataset #Examples #Repo #Topics #Libs (Std.+Ext.) #Contributors Source
HumanEval (Chen et al., 2021) 164 – – 4 = 4 + 0 – Hand-written
MBPP (Austin et al., 2021) 974 – – 12 = 12 + 0 – Hand-written
APPS (Hendrycks et al., 2021) 10,000 – – 0 – Coding contest
DS1000 (Lai et al., 2023) 1,000 – – 7 = 0 + 7 – Stack Overflow
ODEX (Wang et al., 2023) 945 – – 79 = 48 + 31 – Stack Overflow & Hand-written
ClassEval (Du et al., 2023) 100 – – 28 = 19 + 9 – Hand-written
CoderEval (Zhang et al., 2024) 230 43 145 179 = 86 + 93 1 ∼ 417 GitHub
RepoEval-func (Zhang et al., 2023) 455 8 23 75 = 33 + 42 1 ∼ 51 GitHub
SWE-BENCH (Jimenez et al., 2024) 2,294 12 60 214 = 111 + 103 185 ∼ 444 GitHub

Exec-CSN (ours) 1,931 367 668 293 = 118 + 175 1 ∼ 449 GitHub

Table 2: Statistics of Exec-CSN compared to existing execution-based code generation datasets.3For
datasets built from GitHub, we compare the number of repositories, repository topic, and contributors.
We count the libraries in the oracle context for RepoEval-func and SWE-BENCH.
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Figure 5: Domain diversity in different datasets. We check each dataset’s coverage of the top-30 most
common libraries or topics, which are estimated by frequency in the Stack dataset (Kocetkov et al.,
2022). “CSN” denotes CodeSearchNet, which we use as input to our framework to create Exec-CSN.

We take the 4,079 examples as the input and run our framework. In the first three steps, we re-
generate each example at most three times and run the execution and debugging cycle for at most
three iterations per example. We use GPT-4 as the LLM due to its high quality. In post-processing,
we use GPT-3.5 to generate 5 more sets of tests for each example and filter out incorrect ones. We
use a different LLM in this step to reduce model bias. Details and experiments on test generation
can be found in Appendix A.2 and A.3. Table 1 shows the number of evaluation examples generated
in each step. After each iteration of debugging, our framework creates more examples where the
target can pass all test cases. We finally obtained 1,931 examples after post-processing: successfully
converting 47% of the source code fragment into evaluation examples with executable test cases.
These 1,931 examples cover 367 out of 408 source repositories from CodeSearchNet, giving 90%
repository coverage, which is substantially higher than previous dataset construction methods (Zhang
et al., 2023; Jain et al., 2024). Since we take the source code from an existing dataset, the only
human effort in constructing Exec-CSN is to make a set of requirements for the examples and write
corresponding prompts, which does not grow with the dataset size.

4 QUALITY VERIFICATION FOR EXEC-CSN

We evaluate the quality of the generated benchmark by studying three research questions: [RQ1-
Diversity] Can our framework generate diverse evaluation examples? [RQ2-Realism] Are the
examples similar to the input code fragment, preserving the realism of code? [RQ3-Complexity] Do
the examples have varying degrees of complexity? [RQ4-Solvability] Are the examples possible
to solve, including reasonable instructions, code, and test cases? In this section, we will answer the
question with statistics, qualitative analysis, and a human study.

3We do not compare to R2E-Eval1 (Jain et al., 2024) because their dataset is not released.
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Figure 6: Distribution of contributor numbers of the repositories in different datasets.

Context + Target Target # Test Cases#Code Tokens AST Depth # Variables # Code Tokens AST Depth # Variables
Avg 491.88 9.38 12.03 86.92 7.92 4.24 8.79
[min, max] [83, 1529] [6, 18] [0, 50] [15, 556] [4, 18] [0, 23] [3, 18]

Table 3: Complexity of our dataset measured by the number of code tokens, depth of AST, and
number of variables in the context and the target code and the number of test cases. We count the
code tokens using the tokenize library and parse the AST using the tree-sitter library.

4.1 DIVERSITY ANALYSIS

To answer [RQ1-Diversity], we compare the diversity in (1) the domains of code and (2) the
programmers creating the code. Table 2 presents the statistics of Exec-CSN and existing benchmarks
with execution support. We can observe that Exec-CSN covers code with more diverse libraries (both
standard and external), repository topics, and number of contributors.

Analysis of Domain Diversity. To estimate the most common domains, we leverage the Stack
dataset (Kocetkov et al., 2022), which contains 23M GitHub Python files, and count the libraries
and repository topics in 10K randomly sampled files. As shown in Figure 5, Exec-CSN has higher
coverage of the top-30 most common standard/external libraries and topics compared to existing
execution-based benchmarks. Specifically, RepoEval does not contain django, the top-1 external
library, and SWE-BENCH misses torch and tensorflow, which are ranked in the 3rd and 4th

places. In comparison, Exec-CSN covers all top-10 external libraries. We also observe that Exec-CSN
covers 30/30 standard libraries, 17/23 external libraries, and 23/24 repository topics from its input
code, which suggests that our framework can preserve the diversity in the input to a large extent.

Analysis of Programmer Diversity. Figure 6 shows the distribution of the number of contributors
to each repository across benchmarks. We observe that compared to existing benchmarks, the
distribution of Exec-CSN is closer to the natural distribution evidenced in the Stack. The reason is
that RepoEval and SWE-BENCH rely on repositories containing human-written tests, and hence skew
toward projects that have high quality, large scale, and more contributors. In comparison, Exec-CSN
covers repositories created by diverse contributors, reflecting a wider range of scenarios of coding.

4.2 REALISM ANALYSIS

We investigate [RQ2-Realism] by comparing the function to complete in each Exec-CSN example
and its corresponding function in the input code (i.e., the GitHub function in the CodeSearchNet
dataset). We first compare the BLEU score of the input and adapted function, which is 0.5116 on
average, indicating high token-level overlap. As a reference, the BLEU score of two random functions
in the input is only 0.0052. We also compare the Jaccard similarity of variables in the input and
adapted function. The variable name is an important type of code tokens, which generally suggest the
meaning and usage of the variables. As shown in Figure 10, we observe high overlaps between the
variables in input and adapted function, with 83% Jaccard similarity on average.

Finally, as shown in Figure 9, we compute the correlation between the number of code tokens, AST
layers, and variables in the input and adapted function. We observe high correlation for all three
attributes. For instance, the Pearson-r correlation coefficient for number of variables is 0.73, with
p-value< 0.001. Functions in 62% of the examples have the same AST depth as the input function.
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Figure 7: Human study results collected from 64 examples in Exec-CSN.

We conduct a case study in §A.9. In all four cases, the adapted functions are nearly identical to the
input. The only minor edit is made in the last case, where our method creates a new class “DAGS” to
replace an external class “DagBag” in the input code.

4.3 COMPLEXITY ANALYSIS

To study [RQ3-Complexity], we measure the number of code tokens, depth of AST, and number
of variables in both the target and the full example. Results in Table 3 show that our framework
can generate relatively long examples, with an average of 491.88 code tokens, 12.03 variables, and
9.38 layers in the AST. The generated examples also have varying complexity, from 83 to 1,529
code tokens. In addition, our framework successfully generates on average 8.79 test cases for each
evaluation example, with a high line coverage of 95.76% (See §A.3 for details).

4.4 COMPLEXITY AND SOLVABILITY ANALYSIS BY HUMAN STUDY

We conduct a human study to further study [RQ3-Complexity] and [RQ4-Solvability].

Setup. We invited computer science graduate student volunteers for the study and obtained results on
64 examples in total. To check the examples’ solvability, we present each evaluation example as a
coding problem to the participants and ask them to write code based on the instruction and the context.
The participants can use any external resources (e.g., search engines) except for AI models. After
submitting an answer, they will see the execution results of the test cases and can choose to revise
their answers accordingly. We record the percentage of solved problems. Intuitively, a participant
solving a problem indicates that the instruction and test cases are consistent with their target code The
use of external resources and the number of revisions indicate the complexity level of the examples.

To check the examples’ complexity, after the participants pass all test cases or decide not to proceed,
we ask them to rate the level of difficulty, the clarity of instructions, and the quality of test cases using
a five-point Likert scale. To compare our instruction generation strategy with past work (Husain et al.,
2020) that uses the docstrings of the target functions as instructions, we also ask the participants to
rate the quality of the docstrings by considering them as instructions.

Main Results. Figure 7 presents the human study results. 81.3% of the examples were solved by
their assigned participant, which indicates that these examples have clear instructions, reasonable test
cases, and have difficulty within a reasonable range. The average rating of our generated instructions
is much higher than that of the original docstrings of the target code, which were used as instructions
in previous methods (Husain et al., 2020). 85% of the test cases are rated “reasonable and not trivial.”

We also observe that the generated examples have varying complexity levels. 34.4% of the examples
are solved in the first submission and 68.8% within five submissions. On 50% of the examples, The
participants used external resources such as searching for external libraries they are not familiar with.
According to the ratings, 39% of the examples can be quickly solved by most programmers. 44%
require some effort and 17% can only be solved by professionals or with great effort.
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Model Family Size Model Pass@1 Pass@2 Pass@5 Pass@10
Open-source Models

Mistral 7B OpenChat-3.5 23.61 27.08 31.39 34.34
Llama 8B Llama-3-chat 25.31 28.70 32.29 34.66

CodeQwen 7B CodeQwen-chat 28.58 32.54 36.82 39.49
DeepSeek-Coder 6.9B DeepSeek-Coder-chat 28.68 32.36 36.52 39.22
DeepSeek-Coder 6.7B Magicoder-S-DS 30.73 34.92 39.56 42.47

DeepSeek-Coder 33B WizardCoder 33.35 36.81 40.51 42.76
DeepSeek-Coder 33B DeepSeek-Coder-chat 34.00 37.69 41.59 44.06

CodeLlama 34B CodeLlama-chat 26.24 30.11 34.37 36.95
CodeLlama 34B Speechless-CodeLlama 32.23 36.03 40.16 42.80

CodeLlama 70B CodeLlama-chat 30.92 37.36 43.60 47.18

Proprietary models
– – GPT-3.5 32.56 35.73 39.14 41.26
– – GPT-4 37.21 39.85 42.67 44.53

Table 4: Code generation results on Exec-CSN. We put models with different sizes in different groups
and split open-source and proprietary models. The model with the best Pass@k performance is
highlighted in bold and the best open-source model is underlined.

5 CODE GENERATION PERFORMANCE EVALUATION

This section aims to answer: [RQ5] How do code generation models perform on Exec-CSN?

5.1 EXPERIMENTAL SETUP

Code Generation Models. We conduct experiments on 10 open-source and 2 proprietary models.
We select open-source models across various parameter sizes (7B, 33B, 70B) and model families
(Mistral, Llama, CodeQwen, and DeepSeek-Coder). We provide model details in Table 9.

Evaluation Metrics. We measure functional correctness using the standard pass@k metric for
k ∈ {1, 2, 5, 10} (Chen et al., 2021).

Experimental Details. To compute Pass@k, we take 20 samples per example for open-source models
and 10 samples per example for closed-source models. For all models, we sample outputs with a
temperature of 0.3 and top-p of 0.95. Note that we sample with a relatively low temperature as we
are primarily interested in Pass@k scores for low k; sampling with higher temperature would likely
have yielded higher Pass@{5, 10} scores across all models (Chen et al., 2021; Liu et al., 2023). In
our prompts, we provide the surrounding context, function header, and docstring, but do not provide
the test cases. An example prompt is shown in Appendix A.8.

5.2 MAIN RESULTS

Table 4 presents the code generation results of open-source and proprietary models. The best model
(GPT-4) only achieves 37.21 Pass@1, indicating that there is still room for improvement on our
dataset. Comparison between open-source and proprietary models shows that WizardCoder-33B
and DeepSeek-Coder consistently surpass GPT-3.5 on all metrics, although both models are still
outperformed by GPT-4. Comparison between models with different sizes shows that both DeepSeek-
Coder and CodeLlama greatly benefit from larger parameter sizes.

Results show that CodeLlama-70B achieves the highest Pass@5 and Pass@10 scores, surpassing
GPT-4, but does not have a particularly high Pass@1. We observe that although the generated code
has high quality, in around 8% of the cases, CodeLlama-70B misinterprets our queries as “dangerous”
or as requests to do students’ programming homework for them and “refuses” to generate the code,
which substantially drag down the Pass@1 score. This is most likely a byproduct of CodeLlama’s
alignment training, which encourages rejecting dangerous or unethical requests (Rozière et al., 2024).
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Figure 8: Code generation performance of two models on different groups of examples.

5.3 RESULTS ANALYSIS

Performance Breakdown. To identify what kind of examples are hard for models, we focus on
DeepSeek-Coder-33B and GPT-4, the best open-source and proprietary model under Pass@1, and
study four factors that could affect model performance: target length (number of code tokens), context
length, number of function calls, and libraries. We split the examples into 5 groups based on each
factor such that each group has a similar number of examples. Then we compute the models’ average
Pass@1 on each group of examples.

# Revision GPT-4 Human
0 (Pass@1) 40.63 34.38
1 50.00 43.75
2 51.56 57.81
3 57.81 60.94
4 57.81 68.75
5-17 – 81.25

Table 5: The performance of humans
and GPT-4 on the 64 examples in the hu-
man study. We highlight the system with
higher and lower accuracy (i.e., per-

centage of solved examples) after each
round of revision. We also bold the final
accuracy of both systems. The accuracy
with no revision is the same as Pass@1.

As shown in Figure 8, when the target output has a longer
length or has more function calls, both models have lower
performance and the gap between DeepSeek-Coder and
GPT-4 becomes larger. Additionally, both models have
lower performance on examples that import any libraries,
especially external libraries. However, the context length
has a positive but weaker influence on model performance.

We also check the models’ performance on examples
with different libraries. We inspect the 10 most fre-
quent libraries in the stack, excluding tensorflow and
google as they are present only 4 and 1 times in our
dataset, respectively. Results indicate that both the dif-
ficulty of generating code and the gap between the two
models varies a lot across libraries. For instance, GPT-
4 surpasses DeepSeek-Coder substantially on sklearn
but is slightly outperformed on requests. These results
motivate benchmarks with high domain diversity to have
a more comprehensive ranking of model performance.

Humans vs. Models. To compare the performance of humans and models, we implement a generation
setting similar to the human study that also allows the model to revise from its previous outputs.
Specifically, if the model’s output fails to pass some test cases, we append its output and the execution
results of the test cases to the input and generate again.

We compare human performance to GPT-4 (OpenAI, 2023), the strongest model in our experiments
(see §5.2 for details). As shown in Table 5, with no revisions, GPT-4 has a higher Pass@1 than
humans. We suspect that the model is trained on code with diverse domains, while human have limited
experience in some domains and have trouble solving the problem at the first attempt. However, when
revision is allowed, humans can solve much more examples than GPT-4, suggesting that humans
make better use of the error messages. Our case study in Appendix A.5 further shows that GPT-4
generates more detailed and complete solutions at the first attempt, while humans write the code with
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an incremental approach. The revisions made by humans are also more closely related to the error
message, while GPT-4 may output the exactly same wrong answer for multiple times.

6 RELATED WORK

6.1 CODE GENERATION BENCHMARKS

Researchers have built code generation benchmarks for diverse scenarios, such as query parsing (Zelle
& Mooney, 1996), web development (Oda et al., 2015), problem-solving for programmers (Yin et al.,
2018), etc. To improve the reliability of evaluation, HumanEval (Chen et al., 2021) evaluates
code generation by executing test cases. It is followed by other execution-based benchmarks with
larger scale (Hendrycks et al., 2021; Austin et al., 2021), better test coverage (Liu et al., 2023), or
multiple languages (Cassano et al., 2022). To extend execution-based evaluation to diverse scenarios,
researchers have manually created benchmarks for data science code (Lai et al., 2023), Jupyter
notebooks (Yin et al., 2023), user-defined classes (Du et al., 2023), etc.

Recent works further enrich the code generation context by basing benchmarks on repositories with
test cases (Zhang et al., 2023; Jimenez et al., 2024). A concurrent work (Jain et al., 2024) uses an
LLM to generate test cases instead, but still requires the source repositories to have setup files and
need human effort in example curation. Limiting the evaluation to repositories with existing test cases
or setup files leads to a biased repository distribution in these datasets, neglecting less mature projects
constructed by less experienced programmers. To successfully execute the code, such methods also
require human effort to set up the environment, debug the code, or figure out the correct execution
commands, which largely limits their scalability. In comparison, our method (1) does not need heavy
repository filtering, and (2) uses an LLM to sandbox the code fragments and ensure its successful
execution, which has significantly better scalability and repository coverage.

6.2 AUTOMATIC TEST GENERATION

Traditional test generation methods include black-box methods that generate random inputs to the
code to test (Necula, 2000; Yang et al., 2011; Cha et al., 2015) and white-box methods that analyze the
structure of the code (King, 1976; Cadar et al., 2008). Such methods lack context understanding and
the generated tests are typically executable but lack relevance. For instance, it may generate a random
string as input, while a JSON string is expected. Another category of methods trains language models
to generate test cases (Alagarsamy et al., 2023; Tufano et al., 2021), which suffer from unsatisfactory
accuracy. Similar to our test generation strategy, recent works prompt LLMs to generate, debug, and
improve test cases, which empirically generates more correct unit tests than existing methods (Liu
et al., 2022; Xie et al., 2023; Liu et al., 2023). Our work leverages LLM-based test generation, one of
the best-performing approaches, as one of the steps of benchmark construction.

7 CONCLUSIONS AND FUTURE WORKS

We presented a framework, CODEBENCHGEN, to assist researchers in constructing scalable and
custom execution-based code generation benchmarks. The framework leverages LLMs to convert
arbitrary code fragments into evaluation examples complete with test cases. We use our framework to
create a benchmark, Exec-CSN, with 1,931 examples taken from the CodeSearchNet dataset. We
conduct analyses and a human study to verify the quality of generated examples in terms of diversity,
realism, complexity, and solvability. Compared to existing code generation benchmarks, Exec-CSN
covers more diverse libraries, topics, and number of contributors. We benchmarked open-source and
proprietary code generation models on Exec-CSN and analyzed both human and model performance.
Results indicate that there is still substantial headroom for models on our dataset.

To improve code generation models, as suggested by our analyses, future work could focus on using
more diverse libraries and generating longer code. Based on the comparison with human, another
potential direction could be improving the model’s ability to iteratively refine the generated code.
One may also extend this setting to a more realistic setting, where the model can not only access the
execution outputs, but interact with the compiler in a more dynamic way, such as setting break points,
printing variable values, or even writing test cases.
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A APPENDIX

A.1 REALISM ANALYSIS: DEVIATION FROM INPUT CODE FRAGMENT
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Figure 9: Comparison between the the statistics of the input code fragment and our adapted code. The
statistics include the number of code tokens, depth of AST, and number of variables of the function
to complete in Exec-CSN (y-axis) and the corresponding function in the input code fragment (y-axis).
We report the Pearson-r correlation coefficient and the p-value.
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Figure 10: Jaccard similarity of variables in input and adapted functions (83% on average).

A.2 DATASET POST-PROCESSING DETAILS

In Step 4 of our CodeBenchGen framework (see §2), we perform post-processing on our generated
evaluation examples to validate and improve their quality. In this step, in addition to generating
natural language instructions with I/O specifications, we filter the data to ensure all examples can run
safely and generate additional test cases to more accurately measure functional correctness.

Dataset Post-Filtering. After all examples have been generated and all dependencies installed,
we filter the examples based on two criteria: (1) whether the ground truth code is still able to pass
generated tests and (2) whether the example contains potentially dangerous code (e.g., code that kills
an OS process).

For the latter, we use simple keyword-based filtering to ban destructive operations, such as killing
processes or deleting files. The full list of keywords is shown in Table 6. We find this to be sufficient
for our Exec-CSN experiments. However, the keyword list is not complete. An operation not on this
list or an external API that invokes one of these operations may still trigger undesirable side effects.
Moreover, creating this list of keywords may require some level of domain expertise. We leave the
task of creating more secure execution environments to future work.

Test Augmentation Details. Execution-based evaluation is heavily dependent on the quality of
the executed tests. To improve the reliability of our evaluation, we generate additional tests in
post-processing. As explained in §6.2, fuzzing-based methods and learning-based methods for test
generation suffer from unsatisfactory relevance or accuracy. As such, we adopt an LLM-based
approach similar to that of Liu et al. (2023), where we feed the example being tested to an LLM
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os.kill terminate subprocess.call([’kill’,
subprocess.call([’rm’, subprocess.call([’rmdir’, subprocess.call(["kill",
subprocess.call(["rm", subprocess.call(["rmdir", sys.exit
os.unlink .unlink .rmdir
os.remove os.removedirs os.rmdir
os.system rmtree send2trash
open( .read .write
.load .dump shutil.
glob. os.path. os.remove(
os.rename( os.rmdir( os.mkdir(
os.makedirs( os.listdir( .readlines(
.writelines( .seek( .tell(

Table 6: List of banned keywords for post-filtering

and prompt it to generate an additional set of tests. To ensure the correctness of generated tests, we
discard the sets of tests that the target code cannot successfully pass. To achieve better test coverage,
we do not replace the original tests with the generated ones. Instead, we execute the tests separately
and the system under test must be able to pass both.

For simplicity, instead of performing iterative execution and self-debugging as in Step 3 of our
CODEBENCHGEN framework, we directly sample k tests from the LLM, and select the first of these
k tests that is consistent with the target (i.e., the target code passes the tests). If no test is consistent
with an example’s target code, we do not augment that particular example’s tests. In our experiments,
we use GPT-3.5 as the test generator as it is relatively inexpensive to sample from while still yielding
high-quality outputs. We sample k = 5 completions with a temperature of 0.3 and top-p of 0.7.

A.3 EXPERIMENTS ON TEST AUGMENTATION

Test Coverage Analyses. To study the quality of tests augmented by GPT-3.5 in post-processing,
we compute the line coverage rate and the performance of models under the original and augmented
tests. As shown in Table 7, while the original tests already display high coverage of the target code,
they can be further improved by the addition of GPT-3.5-generated tests. Moreover, we find that
the augmented tests are able to catch more errors as the Pass@1 scores of our top models drop
significantly. Interestingly, however, after adding the new tests, the Pass@1 scores of different models
all decrease by roughly the same amount and hence the overall ranking of models remains the same.

To study the test generation ability of different models, we additionally augment the tests with two
other models: DeepSeek-Coder-33B and DeepSeek-Coder-7B. As shown in Table 7, combining
the tests generated by either model improves the test coverage rate. Among the models, GPT-3.5
generates correct tests for the largest percentage of examples with the highest line coverage rate.
Additionally, the coverage of tests generated by DeepSeek-Coder-33B is substantially higher than
that of DeepSeek-Coder-7B, suggesting that the test generation ability of the models may also benefit
from larger model sizes.

Note that we only keep the tests augmented by GPT-3.5 in Exec-CSN (in addition to the tests
generated by GPT-4), as adding tests augmented by DS-33B and DS-7B only leads to marginal
improvement in line coverage rate.

Analyses of Self-bias. Previous work shows that a wide range of LLMs have self-bias, which means
the models rank their own generation output higher than other models’ output (Zheng et al., 2023).
To study whether the tests generated by LLMs also have self-bias, we check the code generation
performance of GPT-3.5 and GPT-4 on the tests generated by GPT-3.5 and GPT-4, separately. We
only experiment on the examples where we successfully generate tests by GPT-3.5.

As shown in Table 8, the Pass@1 of GPT-4 is 6.59% higher than GPT-3.5 on GPT-4 generated tests,
but is only 3.01% higher on GPT-3.5 generated tests. This suggests that the tests generated by LLMs
may also have self-bias. We hence combine the tests generated by the two models, GPT-3.5 and
GPT-4, in post-processing to reduce the effects of self-bias.
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Test Cases % Aug % Line Coverage Pass@1
GPT-4 DS-33B GPT-3.5 DS-7B

Original (GPT-4) - 94.18 42.53 38.27 37.05 33.07
Original + GPT-3.5 70.42 95.76 37.21 34.00 32.56 28.68
Original + DS-33B 73.33 95.32 39.79 35.77 34.66 30.54
Original + DS-7B 52.26 95.04 41.46 37.82 36.81 32.51

All tests 88.95 96.44 33.46 30.56 30.01 25.57

Table 7: Line coverage of the target code and downstream Pass@1 performance of the models
under the original and augmented tests. The original tests are generated by GPT-4. “% Aug” is the
percentage of examples for which we successfully generate additional tests.

Test Cases Pass@1
GPT-4 GPT-3.5

Tests generated by GPT-4 (original) 46.28 39.69
Tests generated by GPT-3.5 41.35 38.34

Table 8: Performance of GPT-4 and GPT-3.5 under tests generated by GPT-4 or GPT-3.5. Note that
all scores are computed over the subset of samples where we have tests generated by both GPT-4 and
GPT-3.5.

A.4 EXPERIMENTAL DETAILS

Model Family Size Model Full Checkpoint Name
Open-source Models

Mistral 7B OpenChat-3.5 OpenChat-3.5-0106 (Wang et al., 2024) 4

Llama 8B Llama-3-chat Meta-Llama-3-8B-Instruct (AI@Meta, 2024) 5

CodeQwen 7B CodeQwen-chat CodeQwen1.5-7B-Chat (Bai et al., 2023) 6

DeepSeek-Coder 6.9B DeepSeek-Coder-chat DeepSeek-Coder-7B-instruct-v1.5 (Guo et al., 2024) 7

DeepSeek-Coder 6.7B Magicoder-S-DS Magicoder-S-DS-6.7B (Wei et al., 2023) 8

DeepSeek-Coder 33B WizardCoder WizardCoder-33B-V1.1 (Luo et al., 2023) 9

DeepSeek-Coder 33B DeepSeek-Coder-chat DeepSeek-Coder-33B-instruct (Guo et al., 2024) 10

CodeLlama 34B CodeLlama-chat CodeLlama-34B-Instruct (Rozière et al., 2024) 11

CodeLlama 34B Speechless-CodeLlama speechless-codellama-34B-v2.0 12

CodeLlama 70B CodeLlama-chat CodeLlama-70B-Instruct (Rozière et al., 2024) 13

Proprietary models
– – GPT-3.5 gpt-3.5-turbo-0125 14

– – GPT-4 gpt-4-0125-preview 15

Table 9: Evaluated models and their full checkpoint name. We also provide the links to obtain the
checkpoints.

4https://huggingface.co/openchat/openchat-3.5-0106
5https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
6https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat
7https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5
8https://huggingface.co/ise-uiuc/Magicoder-S-DS-6.7B
9https://huggingface.co/WizardLM/WizardCoder-33B-V1.1

10https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct
11https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf
12https://huggingface.co/uukuguy/speechless-codellama-34b-v2.0
13https://huggingface.co/codellama/CodeLlama-70b-Instruct-hf
14https://platform.openai.com/docs/models/gpt-3-5-turbo
15https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
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A.5 COMPARING THE CODE REFINEMENT STRATEGY OF HUMANS AND MODELS

To understand why humans have substantially higher performance than models when revision is
allowed, we conduct a case study to compare the strategies of humans and models when refining the
code they create. Below, we present an example of the evaluation example, the code created by the
human in multiple rounds, and the code generated by GPT-4. We have several observations on the
difference between human-written and model-generated code.

The first observation is that models generate more detailed and longer code in the first submission,
while humans iteratively add details to the code. The first few submissions made by humans are of-
ten short, with simple code or only calling functions defined in the context (“self.feed forward”
and “accuracy”) in this example. In contrast, models make attempts to cover all problem require-
ments right from their first submission. Even in cases where the problem description lacks clarity,
models make assumptions and confidently output code that seems relevant to solve the problem.

The second observation is that humans make better use of the error message when refining
unsuccessful submissions. We can see from the example that the refinements made by humans are
closely related to the error message. For instance, after seeing the error message about calling the
“feed forward()” function, the participant removed the function call from the submission. In
contrast, models are often “stubborn,” refusing to modify their code even after repeated occurrences
of the same error. In the example below, the model keeps generating “outputs” and “targets”
as the input arguments of the “monitors” function, ignoring the error message of “monitors()
missing 2 required positional arguments.”

The third observation is that humans make more “careless mistakes” than models. We observe
that human submissions sometimes involve simple syntax errors such as missing the “:” after an if
statement. In contrast, models rarely make such “careless mistakes”.

To sum up, we observe that models typically generate a complete solution in one shot, while humans
write code with an incremental approach.

The evaluation example

Instructions
Functionality: This function evaluates and returns the accuracy of model predictions against
the set targets using the Classifier’s associated loss functions.
Input: An optional dictionary outputs.
Output: Returns a list with one tuple to monitor the accuracy of classifier predictions.

Context
import numpy as np

class Layer :
def forward(self, input_data):

raise NotImplementedError("Forward pass not implemented.")

def backward(self, grad_output):
raise NotImplementedError("Backward pass not implemented.")

class Loss :
def __init__ ( self, targets = {}):

self.targets = targets

def accuracy ( self , outputs ) :
pass

class Regularizer :
pass

class Classifier :
DEFAULT_OUTPUT_ACTIVATION = ’softmax’
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OUTPUT_NDIM = 1

def __init__ ( self , layers , loss = ’xe’ , weighted = False ,
rng = 13 ) :
self.layers = layers
self.losses = [ Loss () ]
self.weighted = weighted
self.rng = np.random.default_rng(rng)

def monitors ( self, outputs = {}, **kwargs) :
...

def feed_forward ( self , x , ** kwargs ) :
for layer in self.layers:

x = layer.forward(x)
return x

Target code
return [(’acc’, loss.accuracy(outputs)) for loss in self.losses

]

Test Cases

def test_monitors ( ) :
model = Classifier ( [ 10 , ( 20 , ’tanh’ ) , 50 ] )
result = model.monitors ( )
assert isinstance ( result , list ) , ’Result is not a list’
assert len ( result ) == 1 , ’Result list length is not 1’
assert result [ 0 ] [ 0 ] == ’acc’ , ’First element of result

tuple is not "acc"’
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The revision history of human

Human Submission 1
def monitors ( self, outputs = {}, **kwargs) :

acc_list = []
outputs[’predictions’] = self.feed_forward(**kwargs)

for x in self.losses:
acc_list.append(x.accuracy(outputs))

return acc_list

Result: Error –

Traceback (most recent call last):
File "tmp/split3_test3.py", line 52, in <module>

test_monitors ( )
File "tmp/split3_test3.py", line 45, in test_monitors
result = model.monitors ( )

File "tmp/split3_test3.py", line 31, in monitors
outputs[’predictions’] = self.feed_forward(**kwargs)

TypeError:feed_forward() missing 1 required positional argument:’x’

Human Submission 2
def monitors ( self, outputs = {}, **kwargs) :

acc_list = []

for x in self.losses:
acc_list.append(x.accuracy(outputs))

return acc_list

Result: Error –

Traceback (most recent call last):
File "tmp/split3_test3.py", line 52, in <module>

test_monitors ( )
File "tmp/split3_test3.py", line 48, in test_monitors
assert result [ 0 ] [ 0 ] == ’acc’ , First element of result

tuple is not "acc"
TypeError: ’NoneType’ object is not subscriptable

Human Submission 3
def monitors ( self, outputs = {}, **kwargs) :

acc_list = []

for x in self.losses:
acc_list.append( (’acc’, x.accuracy(outputs)) )

return acc_list

Result: Successful
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The revision history of GPT-4

Model Submission 1
def monitors ( self , outputs , targets ) :

accuracy_list = [ ]
for loss in self.losses :

accuracy = loss.accuracy ( outputs , targets )
accuracy_list.append ( ( "accuracy" , accuracy ) )

return accuracy_list

Result: Error –
Traceback (most recent call last):

File "tmp/code_gen_round0_24.py", line 71, in <module>
test_monitors()

File "tmp/code_gen_round0_24.py", line 66, in
test_monitors

result = model.monitors ( )
TypeError: monitors() missing 2 required positional arguments:
’outputs’ and ’targets’

Model Submission 2
Same as Submission 1

Model Submission 3
Same as Submission 1

Model Submission 4
def monitors ( self , outputs , targets ) :

accuracy_list = [ ( loss.__class__.__name__ + "_accuracy" ,
loss.accuracy ( outputs , targets ) ) for loss in self.
losses ]

return accuracy_list

Result: Error –
Traceback (most recent call last):

File "tmp/code_gen_round4_24.py", line 68, in <module>
test_monitors()

File "tmp/code_gen_round4_24.py", line 63, in
test_monitors

result = model.monitors ( )
TypeError: monitors() missing 2 required positional arguments:
’outputs’ and ’targets’
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A.6 LOGISTIC REGRESSION ANALYSIS ON FACTORS AFFECTING MODEL PERFORMANCE

In addition to the performance breakdown analysis in §5.3, in this section, we present a more rigorous
analysis on the factors affecting model performance using logistic regression.

Analysis Data. We examine the Pass@1 scores of the following models:

• OpenChat-3.5 (7B)

• DeepSeek-Coder-chat (6.9B)

• Magicoder-S-DS (6.7B)

• WizardCoder (33B)

• DeepSeek-Coder-chat (33B)

• CodeLlama-chat (34B)

• Speechless-CodeLlama (34B)

• CodeLlama-chat (70B)

• GPT-3.5

• GPT-4

We study the performance trends with respect to the following factors, where summary statistics for
the above variables are reported in sections 4.1 and 4.3:

• The length of the target code (TargetLength)

• The length of the context code (ContextLength)

• The number of imports in the code (NumberImports)

• The number of variables in the target code (FocalVariablesCount)

• The number of variables in the full code (FullVariablesCount)

• The AST tree depth for the target code (FocalASTDepth)

• The AST tree depth for the full code (FullASTDepth)

• The number of calls made to the function in the target code (NumberFunctionCalls)

Because the logistic regression analysis requires binary outcome variables, we use the empirical
Pass@1 score for this analysis, which is obtained by randomly sampling an output and checking
whether or not it passes all test cases. Note that empirical pass@k is different from the standard
pass@k metric reported in §5, which is defined as the probability of having at least one correct
solution among k randomly selected outputs.

Analysis Setup. We performed a logistic regression analysis on examples in Exec-CSN to assess the
relative impact each factor had on the empirical Pass@1 score of each model. Specifically, we built
a logistic regression model with one instance per example per model with empirical Pass@1 as a
categorical dependent measure. After filtering out examples where we encountered errors in AST
parsing, we have 1,922 examples left. Thus, there were a total of 19,220 data points in the analysis.

The repositories represent code of different types, thus we included an indicator of repository in
our analysis to account for variation across examples that is not represented in any of our co-
variates. There were initially 367 distinct repositories, but for the analysis, we aggregated all
repositories where we had fewer than 10 examples into a single category called Other. 50 repos-
itories had at least 10 examples. Thus, the Repository variable had 51 levels. Independent
variables included Repository, Model, and the interaction between Repository and Model.
In addition, we included covariates for Target Length, Context Length, NumberOfImports,
FocalVariablesCount, FullVariablesCount, FocalASTDepth, FullASTDepth,
and NumberFunctionCalls.

Analysis Results. The full model had AIC 22655 and BIC 26699.7. The effect of Repository on
empirical Pass@1 was significant, indicating that even controlling for the factors represented by the
covariates, the examples across repositories were difficult to a differential degree. The category “Other”
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was in the middle of the pack. The interaction between Repository and Model was not significant,
thus indicating that the general performance of models relative to that of the other models did not vary
significantly across repositories. The effect of FullASTDepth and NumberFunctionCalls
was not significant. Thus, the interaction term and the two nonsignificant covariates were dropped
from the analysis, and the model was rerun.

The full revised model had AIC 218867.7 and BIC 22405.2. All of the independent vari-
ables and covariates were significant in the revised model. TargetLength and Repository
had the highest logworth for explaining variation in the dependent variable followed by model,
ContextLength, NumberImports, FocalVariablesCount, FocalASTDepth, and
FullVariablesCount. The significant effect of TargetLength indicates that a longer
TargetLength was associated with lower empirical Pass@1. The significant effect of
ContextLength indicates that lower context lengths were associated with lower empirical
Pass@1. The significant effect of NumberImports indicates that more imports are associ-
ated with lower empirical Pass@1. Higher FocalVariablesCount, FocalASTDepth, and
FullVariablesCount were also associated with lower empirical Pass@1.
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A.7 EXEC-CSN DATASET EXAMPLES

Below we show 5 representative examples from Exec-CSN. Note that we only display the original
tests for brevity and readability.

In the following example, the code generation model is required to solve a problem using the re
standard library and a provided regular expression.

Example #1: files

Instructions
Functionality: Iterates over text to find & tokenize content within <FILENAME> tags.
Inputs: A single string of text containing <FILENAME> XML-like tags.
Outputs: A generator yielding tuples of `stream id` and tokenized `tagged doc`
within each <FILENAME> tag.

File Context
import re
from nltk.tokenize import WhitespaceTokenizer
filename_re = re.compile ( ’’’.*?<FILENAME docid="(?P<stream_id

>.*?)">(?P<tagged_doc>(.|\n)*?)</FILENAME>’’’ )

def files ( text ) :
...

Test Cases
def test_files ( ) :

sample_text_1 = ’<IGNORE>This is a preamble.<FILENAME docid
="12345">Some contents here</FILENAME>And some more text’

sample_text_2 = ’No filename tag present here at all.’
sample_text_3 = ’<FILENAME docid="67890">Another document

content</FILENAME><FILENAME docid="54321">Yet another
document content</FILENAME>’

results_1 = list ( files ( sample_text_1 ) )
results_2 = list ( files ( sample_text_2 ) )
results_3 = list ( files ( sample_text_3 ) )
assert results_1 == [ ( ’12345’ , ’Some contents here’ ) ] , "

Test with one FILENAME tag failed."
assert results_2 == [ ] , "Test with no FILENAME tags failed."
assert results_3 == [ ( ’67890’ , ’Another document content’ )

, ( ’54321’ , ’Yet another document content’ ) ] , "Test
with multiple FILENAME tags failed."

Reference Solution
def files(text):

for f_match in filename_re.finditer(text):
yield f_match.group(’stream_id’), f_match.group(’tagged_doc

’)
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This example tests models’ ability to use the given context of code to solve a task. In this case, to
implement deserialization logic, models must attend to the preceding serialization logic.

Example #2: Credentials.deserialize

Instructions
Functionality: Reconstructs a Credentials instance from a serialized string.
Inputs: A serialized str representing the serialized credentials string.
Outputs: A Credentials instance with user’s protected resources information.

File Context
import json
from authomatic.exceptions import CredentialsError

class Credentials :

def __init__ ( self , ** kwargs ) :
self.token = kwargs.get ( ’token’,’’ )
self.refresh_token = kwargs.get ( ’refresh_token’,’’ )
self.expiration_time = int ( kwargs.get ( ’expiration_time’

, 0 ) )

def serialize ( self ) :
concatenated = ’\n’.join ( [ self.token , self.

refresh_token , str ( self.expiration_time ) ] )
return json.dumps ( { ’credentials’ : concatenated } ,

separators = ( ’,’ , ’:’ ) )

@ classmethod
def deserialize ( cls , serialized_str ) :

...

Test Cases
def test_users ( ) :

conduit_client = ConduitClient ( )
assert conduit_client.users ( "PHID-USER-1" ) == json.dumps ( {

"result" : { "PHID-USER-1" : { "phid" : "PHID-USER-1" , "
userName" : "user1" } } } )

assert conduit_client.users ( "PHID-INVALID" ) == json.dumps (
{ "result" : { } } )

assert conduit_client.users ( "PHID-USER-1" , "PHID-USER-3" )
== json.dumps ( { "result" : { "PHID-USER-1" : { "phid" : "
PHID-USER-1" , "userName" : "user1" } , "PHID-USER-3" : { "
phid" : "PHID-USER-3" , "userName" : "user3" } } } )

Reference Solution
@classmethod
def deserialize(cls, serialized_str):

try:
# JSON decode.
data = json.loads(serialized_str)
token, refresh_token, expiration_time = data[’

credentials’].split(’\n’)

# Create a Credentials instance.
return cls(token=token, refresh_token=refresh_token,

expiration_time=expiration_time)

24



Under review as a conference paper at ICLR 2025

except Exception as e:
raise CredentialsError(’Failed to deserialize

credentials: {}’.format(e))
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This example illustrates how our CODEBENCHGEN framework generates new functions or classes to
ensure the self-consistency of the code. In this example, the input code is making HTTP requests,
while the information of the website is missing. To avoid making web requests, GPT-4 alters the code
to call a mock request function which returns a MockResponse object. We also observed other
workarounds in the data, such as tests that monkey-patch problematic libraries with safer code.

Example #3: Client.get container

Instructions
Functionality: Retrieve information about a specified container, potentially applying filters
and settings through query parameters.
Inputs: `container` (required, string), `headers` (optional, dictionary), `prefix`
(optional, string), `delimiter` (optional, string), `marker` (optional, string),
`end marker` (optional, string), `limit` (optional, integer), `query` (optional, dic-
tionary), `cdn` (optional, boolean), `decode json` (optional, boolean).
Outputs: An instance of `MockResponse` containing the status, reason, headers, and
contents (either as JSON or a string based on `decode json`).

File Context
import json

class MockResponse :

def __init__ ( self , status , reason , headers , contents ) :
self.status = status
self.reason = reason
self.headers = headers
self.contents = contents

class Client :

def request ( self , method , path , contents , headers ,
decode_json = False , stream = False , query = None , cdn =
False ) :
if method == ’GET’ :

if not cdn :
mock_contents = json.dumps ( [ { ’name’ : ’

container1’ , ’bytes’ : 1234 , ’count’ : 2 } , {
’name’ : ’container2’ , ’bytes’ : 5678 , ’count

’ : 5 } , ] )
else :

mock_contents = json.dumps ( { "error" : "CDN
access not simulated" } )

return MockResponse ( 200 if not cdn else 400 , "OK" if
not cdn else "Bad Request" , { ’content-type’ : ’

application/json’ } , mock_contents )
return MockResponse ( 400 , "Bad Request" , { } , "" )

def get_container ( self , container , headers = None , prefix
= None , delimiter = None , marker = None , end_marker =
None , limit = None , query = None , cdn = False ,
decode_json = True ) :
...

Test Cases
def test_get_container ( ) :

client = Client ( )
response = client.get_container ( "my_container" )
assert response.status == 200
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assert response.reason == "OK"
assert isinstance ( response.contents , list ) and response.

contents [ 0 ] [ ’name’ ] == ’container1’
response = client.get_container ( "my_container" , decode_json

= False )
assert isinstance ( response.contents , str )
response_cdn = client.get_container ( "my_container" , cdn =

True )
assert response_cdn.status == 400

Reference Solution
def get_container(self, container, headers=None, prefix=None,

delimiter=None, marker=None, end_marker=None, limit=None,
query=None, cdn=False, decode_json=True):
query = dict(query or {})
query[’format’] = ’json’
if prefix:

query[’prefix’] = prefix
if delimiter:

query[’delimiter’] = delimiter
if marker:

query[’marker’] = marker
if end_marker:

query[’end_marker’] = end_marker
if limit:

query[’limit’] = limit
response = self.request(’GET’, ’’, ’’, headers, decode_json

=decode_json, query=query, cdn=cdn)
if decode_json:

try:
response.contents = json.loads(response.contents)

except json.JSONDecodeError:
pass

return response
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This example tests models’ ability to handle longer code contexts as well as their ability to use
libraries like matplotlib.

Example #4: Striplog.plot axis

Instructions
Functionality: Render a visual representation of geological intervals on a given Matplotlib
axis.
Inputs: `ax` (Matplotlib axis), `legend`, `ladder`, `default width`,
`match only`, `colour`, `colour function`, `cmap`, `default`,
`width field`, and additional keyword arguments for patch properties.
Outputs: None (modifies the Matplotlib axis in place).

File Context
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from collections import UserDict
from collections import defaultdict

class Position ( UserDict ) :

def __init__ ( self , z , * args , ** kwargs ) :
self.z = z
super ( ).__init__ ( * args , ** kwargs )

class Component ( UserDict ) :

def __init__ ( self , data = { } , * args , ** kwargs ) :
super ( ).__init__ ( data , * args , ** kwargs )

class Decor ( UserDict ) :

def __init__ ( self , width = None , colour = ’black’ , * args
, ** kwargs ) :
self.width = width
self.colour = colour
super ( ).__init__ ( * args , ** kwargs )

class Interval :

def __init__ ( self , top , base , components = [ ] , primary =
None , description = ’’ , data = { } , * args , ** kwargs )
:
self.top = Position ( top , data )
self.base = Position ( base , data )
self.components = components
self.primary = primary
self.description = description
self.data = data
super ( ).__init__ ( * args , ** kwargs )

def thickness ( self ) :
return self.base.z - self.top.z

class Striplog :

def __init__ ( self , list_of_Intervals , source = None , order
= ’auto’ ) :
self._list = list_of_Intervals
self.order = order
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self.source = source
self.__index = 0

def plot_axis ( self , ax , legend = None , ladder = False ,
default_width = 1 , match_only = None , colour = None ,
colour_function = None , cmap = None , default = None ,
width_field = None , ** kwargs ) :
...

def get_ylim ( self , ax , z , other = None ) :
y = z.z
ymax = 1
ymin = min ( ymax , y / self.stop )
return ymin , ymax

def axis_transform ( self , ax , x , z , data = None , other =
None , ylim = ( 0 , 1 ) ) :
return z , x , ylim [ 0 ] , ylim [ 1 ]

@ property
def start ( self ) :

return self._list [ 0 ].top.z

@ property
def stop ( self ) :

return self._list [ - 1 ].base.z

Test Cases
def test_plot_axis ( ) :

fig , test_ax = plt.subplots ( )
test_intervals = [ Interval ( 1 , 2 , components = [ Component

( { ’lithology’ : ’Limestone’ } ) ] , primary = Decor ( 0.5
, ’gray’ ) ) , Interval ( 2 , 3 , components = [ Component (
{ ’lithology’ : ’Shale’ } ) ] , primary = Decor ( 1.0 , ’

green’ ) ) , Interval ( 3 , 5 , components = [ Component ( {
’lithology’ : ’Sandstone’ } ) ] , primary = Decor ( 0.75 ,

’red’ ) ) ]
test_striplog = Striplog ( test_intervals )
test_striplog.plot_axis ( test_ax , width_field = ’primary’ )
assert len ( test_ax.patches ) == 3 , "There should be 3

patches on the axis."
for rect in test_ax.patches :

assert isinstance ( rect , mpl.patches.Rectangle ) , "Each
patch should be a Rectangle."

assert rect.get_width ( ) in [ iv.primary.width for iv in
test_striplog._list ] , " Rectangle SPACETOKEN width
SPACETOKEN should SPACETOKEN match SPACETOKEN the
SPACETOKEN ’primary’ SPACETOKEN attribute SPACETOKEN of
SPACETOKEN the SPACETOKEN intervals."

Reference Solution
def plot_axis(self, ax,

legend=None,
ladder=False,
default_width=1,
match_only=None,
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colour=None,
colour_function=None,
cmap=None,
default=None,
width_field=None,
**kwargs
):

cdata = [getattr(i, width_field) for i in self._list] #
Access using single underscore.

for iv, c in zip(self._list, cdata): # Access using single
underscore.
_, ymin = self.get_ylim(ax, iv.base)
_, ymax = self.get_ylim(ax, iv.top)
rect = mpl.patches.Rectangle((0, iv.top.z), c.width, iv

.thickness(), clip_on=False, **kwargs)
ax.add_patch(rect)
ax.axvline(c.width, ymin=ymin, ymax=ymax, clip_on=False

)
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A.8 EXEC-CSN CODE GENERATION PROMPT

We provide each model with a prompt consisting of a boilerplate natural language instruction, the
surrounding context, and the header and docstring of the target code (which is a function in Exec-
CSN). Note that instead of using the original docstring of the function, we use the model-generated
functionality-input-output instructions generated in Step 4 (post-processing) of our framework. An
example prompt is shown below.

Example Exec-CSN code generation prompt

Complete the CkClass.flags2text function in the code below based on the docstring. Output
one complete piece of code. Your code should start with a ```python delimiter and end
with a ``` delimiter.

```python

from __future__ import print_function
import os
import sys

class CkClass ( object ) :
flags_dict = dict ( )
fields = dict ( )
flags = 0

def flags2text ( self ) :
"""
Functionality: Converts the ’self.flags’ field into a

list of strings representing set flag bits.
Inputs: No external inputs; uses class instance’s

’self.flags’ and ’self.flags_dict’.
Outputs: List of strings corresponding to set flags.
"""

...

```

31



Under review as a conference paper at ICLR 2025

A.9 ORIGINAL CODESEARCHNET EXAMPLES VS. ADAPTED EXAMPLES IN EXEC-CSN

Here we present comparisons between the original CodeSearchNet examples and the adapted sand-
boxed codes in Exec-CSN. Note that we highlight the focal method in green in the adapted codes.
For the majority of examples, the focal method stays (nearly) exactly the same, while surrounding
context is added to enable executability.

Original CodeSearchNet Function Sandboxed Code

def _psd_mask(x):
eigenvalues, _ = tf.linalg.eigh(x)
return tf.cast(

tf.reduce_min(input_tensor=eigenvalues, axis
=-1) >= 0, dtype=x.dtype)

import numpy as np
import tensorflow as tf

def _psd_mask(x):
eigenvalues, _ = tf.linalg.eigh(x)
return tf.cast(

tf.reduce_min(input_tensor=eigenvalues,
axis=-1) >= 0, dtype=x.dtype)

def test__psd_mask():
x1 = np.array([[2, 1], [1, 2]], dtype=’float32’

) # Positive Semi-Definite matrix
x2 = np.array([[2, -1], [-1, 2]], dtype=’

float32’) # Positive Semi-Definite matrix
x3 = np.array([[2, 1], [2, 1]], dtype=’float32’

) # Not a Positive Semi-Definite matrix
assert tf.equal(_psd_mask(x1), True)
assert tf.equal(_psd_mask(x2), True)
assert tf.equal(_psd_mask(x3), False)

def iter_labels(self, ontology, size=None,
sleep=None):

for label in _help_iterate_labels(self.
iter_terms(ontology=ontology, size=
size, sleep=sleep)):

yield label

import logging
import time
import requests
from unittest.mock import patch, Mock

HIERARCHICAL_CHILDREN = ’hierarchicalChildren’
api_ontology = ’/api/ontologies/{ontology}’
api_terms = ’/api/ontologies/{ontology}/terms’

def _iterate_response_terms(response):
for term in response[’_embedded’][’terms’]:

yield term

def _help_iterate_labels(term_iterator):
for term in term_iterator:

yield term[’label’]

class OlsClient:
"""Wraps the functions to query the Ontology

Lookup Service."""
def __init__(self, ols_base):

{function body omitted for brevity}
def iter_terms(self, ontology, size=None, sleep

=None):
{function body omitted for brevity}

def iter_labels(self, ontology, size=None,
sleep=None):

for label in _help_iterate_labels(self.
iter_terms(ontology=ontology, size=
size, sleep=sleep)):

yield label

def test_iter_labels():
with patch(’requests.get’) as mocked_get:

mocked_get.return_value.json.return_value =
{

’_embedded’: {
’terms’: [{’label’: ’term1’}, {’

label’: ’term2’}, {’label’: ’
term3’}]

}
}
ols_client = OlsClient(ols_base=’

ols_api_base’)
labels = list(ols_client.iter_labels(

ontology=’ontology_name’))
assert labels == [’term1’,’term2’,’term3’]
assert len(labels) == 3
assert ’term2’ in labels
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Original CodeSearchNet Function Sandboxed Code

def _connect(self):
with self._lock:

if self._aggregator:
try:

return self._pool_connect(self.
_aggregator)

except PoolConnectionException:
self._aggregator = None

if not len(self._aggregators):
with self._pool_connect(self.

_primary_aggregator) as conn:
self._update_aggregator_list(

conn)
conn.expire()

random.shuffle(self._aggregators)

last_exception = None
for aggregator in self._aggregators:

self.logger.debug(’Attempting
connection with %s:%s’ % (
aggregator[0], aggregator[1])
)

try:
conn = self._pool_connect(

aggregator)
# connection successful!
self._aggregator = aggregator
return conn

except PoolConnectionException as e
:

# connection error
last_exception = e

else:
# bad news bears... try again

later
self._aggregator = None
self._aggregators = []

raise last_exception

import random
import threading
import logging

class DummyError(Exception):
pass

class ConnectionPool:
{class contents omitted for brevity}

class PoolConnectionException(Exception):
pass

class conn:
{class body omitted for brevity}

class RandomAggregatorPool(object):
def __init__(self, host, port, user=’root’,

password=’’, database=’information_schema
’):

{function body omitted for brevity}

def connect(self):
{function body omitted for brevity}

def connect_master(self):
{function body omitted for brevity}

def close(self):
self._pool.close()

def _pool_connect(self, agg):
return self._pool.connect(agg[0], agg[1],

self._user, self._password, self.
_database)

def _connect(self):
with self._lock:

if self._aggregator:
try:

return self._pool_connect(self.
_aggregator)

except PoolConnectionException:
self._aggregator = None

if not len(self._aggregators):
with self._pool_connect(self.

_primary_aggregator) as conn:
self._update_aggregator_list(

conn)
conn.expire()

random.shuffle(self._aggregators)

last_exception = None
for aggregator in self._aggregators:

self.logger.debug(’Attempting
connection with %s:%s’ % (
aggregator[0], aggregator[1])
)

try:
conn = self._pool_connect(

aggregator)
self._aggregator = aggregator
return conn

except PoolConnectionException as e
:

last_exception = e
else:

self._aggregator = None
self._aggregators = []
raise last_exception

def _update_aggregator_list(self, conn):
{function body omitted for brevity}

def _refresh_aggregator_list(self, conn):
{function body omitted for brevity}
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Original CodeSearchNet Function Sandboxed Code

def get_dag_run_state(dag_id, execution_date):
"""Return the task object identified by the

given dag_id and task_id."""

dagbag = DagBag()

# Check DAG exists.
if dag_id not in dagbag.dags:

error_message = "Dag id {} not found".
format(dag_id)

raise DagNotFound(error_message)

# Get DAG object and check Task Exists
dag = dagbag.get_dag(dag_id)

# Get DagRun object and check that it exists
dagrun = dag.get_dagrun(execution_date=

execution_date)
if not dagrun:

error_message = (’Dag Run for date {} not
found in dag {}’

.format(execution_date,
dag_id))

raise DagRunNotFound(error_message)

return {’state’: dagrun.get_state()}

import random
from datetime import datetime

class DagNotFound(Exception):
pass

class DagRunNotFound(Exception):
pass

class DummyDag:
def __init__(self, dag_id):

self.dag_id = dag_id

def get_dagrun(self, execution_date):
if execution_date.year == 2020:

return DummyDagRun()
else:

return None

class DummyDagRun:
def get_state(self):

return random.choice([’success’, ’failed’,
’running’])

DAGS = {
’example_dag_1’: DummyDag(’example_dag_1’),
’example_dag_2’: DummyDag(’example_dag_2’),
’example_dag_3’: DummyDag(’example_dag_3’),

}

def get_dag_run_state(dag_id, execution_date):
"""Return the task object identified by the

given dag_id and task_id."""
if dag_id not in DAGS:

error_message = "Dag id {} not found".
format(dag_id)

raise DagNotFound(error_message)

dag = DAGS[dag_id]
dagrun = dag.get_dagrun(execution_date=

execution_date)
if not dagrun:

error_message = (’Dag Run for date {} not
found in dag {}’

.format(execution_date,
dag_id))

raise DagRunNotFound(error_message)

return {’state’: dagrun.get_state()}
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