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Abstract

We study zero-shot generalization in reinforcement learning—optimizing a policy
on a set of training tasks to perform well on a similar but unseen test task. To
mitigate overfitting, previous work explored different notions of invariance to the
task. However, on problems such as the ProcGen Maze, an adequate solution that
is invariant to the task visualization does not exist, and therefore invariance-based
approaches fail. Our insight is that learning a policy that effectively explores the
domain is harder to memorize than a policy that maximizes reward for a specific
task, and therefore we expect such learned behavior to generalize well; we indeed
demonstrate this empirically on several domains that are difficult for invariance-
based approaches. Our Explore to Generalize algorithm (ExpGen) builds on this
insight: we train an additional ensemble of agents that optimize reward. At test
time, either the ensemble agrees on an action, and we generalize well, or we take
exploratory actions, which generalize well and drive us to a novel part of the state
space, where the ensemble may potentially agree again. We show that our approach
is the state-of-the-art on tasks of the ProcGen challenge that have thus far eluded
effective generalization, yielding a success rate of 83% on the Maze task and 74%
on Heist with 200 training levels. ExpGencan also be combined with an invariance
based approach to gain the best of both worlds, setting new state-of-the-art results
on ProcGen. Code available at https://github.com/EvZissel/expgen.

1 Introduction

Recent developments in reinforcement learning (RL) led to algorithms that surpass human experts in a
broad range of tasks [Mnih et al., 2015, Vinyals et al., 2019, Schrittwieser et al., 2020, Wurman et al.,
2022]. In most cases, the RL agent is tested on the same task it was trained on, and is not guaranteed
to perform well on unseen tasks. In zero-shot generalization for RL (ZSG-RL), however, the goal is to
train an agent on training domains to act optimally in a new, previously unseen test environment [Kirk
et al., 2021]. A standard evaluation suite for ZSG-RL is the ProcGen benchmark [Cobbe et al., 2020],
containing 16 games, each with levels that are procedurally generated to vary in visual properties
(e.g., color of agents in BigFish, Fig. 1a, or background image in Jumper, Fig. 1c) and dynamics (e.g.,
wall positions in Maze, Fig. 1d, and key positions in Heist, Fig. 1e).

Previous studies focused on identifying various invariance properties in the tasks, and designing
corresponding invariant policies, through an assortment of regularization and augmentation tech-
niques [Igl et al., 2019, Cobbe et al., 2019, Wang et al., 2020, Lee et al., 2019a, Raileanu et al., 2021,
Raileanu and Fergus, 2021, Cobbe et al., 2021, Sonar et al., 2021, Bertran et al., 2020, Li et al., 2021].
For example, a policy that is invariant to the color of agents is likely to generalize well in BigFish.
More intricate invariances include the order of observations in a trajectory [Raileanu and Fergus,
2021], and the length of a trajectory, as reflected in the value function [Raileanu and Fergus, 2021].
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(a) BigFish (b) Plunder (c) Jumper (d) Maze (e) Heist (f) Hidden Maze

Figure 1: (a),(b),(c),(d) and (e) displays screenshot of ProcGen games. (f) Imaginary maze with goal
and walls removed (see text for explanation).

Can ZSG-RL be reduced to only finding invariant policies? As a counter-argument, consider the
following thought experiment2. Imagine Maze, but with the walls and goal hidden in the observation
(Fig. 1f). Arguably, this is the most task-invariant observation possible, such that a solution can still
be obtained in a reasonable time. An agent with memory can be trained to optimally solve all training
tasks: figuring out wall positions by trying to move ahead and observing the resulting motion, and
identifying based on its movement history in which training maze it is currently in. Obviously, such a
strategy will not generalize to test mazes. Indeed, as depicted in Figure 2, performance in tasks like
Maze and Heist, where the strategy for solving any particular training task must be indicative of that
task, has largely not improved by methods based on invariance (e.g. UCB-DrAC and IDAAC).

Interestingly, decent zero-shot generalization can be obtained even without a policy that generalizes
well. As described by Ghosh et al. [2021], an agent can overcome test-time errors in its policy by
treating the perfect policy as an unobserved variable. The resulting decision making problem, termed
the epistemic POMDP, may require some exploration at test time to resolve uncertainty. Ghosh et al.
[2021] further proposed the LEEP algorithm based on this principle, which trains an ensemble of
agents and essentially chooses randomly between the members when the ensemble does not agree,
and was the first method to present substantial generalization improvement on Maze.
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Figure 2: Normalized test Performance for Exp-
Gen, LEEP, IDAAC, DAAC, and PPO, on five
ProcGen games. ExpGen shows state-of-the-art
performance on test levels of Maze, Heist and
Jumper; games that are notoriously challenging
for other leading approaches. The scores are nor-
malized as proposed by [Cobbe et al., 2020].

In this work, we follow the epistemic POMDP
idea, but ask: how to improve exploration at
test time? Our approach is based on a novel
discovery: when we train an agent to explore
the training domains using a maximum entropy
objective [Hazan et al., 2019, Mutti et al., 2021],
we observe that the learned exploration behav-
ior generalizes surprisingly well—much better
than the generalization attained when training
the agent to maximize reward. Intuitively, this
can be explained by the fact that reward is a
strong signal that leads to a specific behavior
that the agent can ‘memorize’ during training,
while exploration is naturally more varied, mak-
ing it harder to memorize and overfit.

Exploration by itself, however, is not useful for
solving new tasks. Our algorithm, Explore to
Generalize (ExpGen), additionally trains an en-
semble of reward-seeking agents. At test time,
either the ensemble agrees on an action, and we
generalize well, or we take exploratory actions
using the exploration policy, which we demon-
strate to generalize, and drive us to a novel part
of the state space, where the ensemble may potentially agree again.

ExpGen is simple to implement, and can be used with any reward maximizing RL algorithm.
Combined with vanilla PPO, ExpGen significantly improves the state-of-the-art (SOTA) on several
ProcGen games for which previous methods fail (see Fig. 2). ExpGen also significantly improves

2We validated this experiment empirically, using a recurrent policy on Maze with 128 training tasks, observing
85% success rate on training domains, and test success similar to a random policy (see Appendix A).
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upon LEEP, due to its effective test-time exploration strategy. For example, on Maze with 200 training
levels, our method obtains 83% success on test tasks, whereas the previous state-of-the-art achieved
66%. When combined with IDAAC [Raileanu and Fergus, 2021], the leading invariance-based
algorithm, ExpGen achieves state-of-the-art performance on the full ProcGen suite (the full results
are provided in Appendix D).

2 Related Work

Generalization in RL The recent survey by Kirk et al. [2021] provides an extensive review of
generalization in RL; here, we provide a brief overview. One approach to generalization is by
artificially increasing the number of training tasks, using either procedural generation [Cobbe et al.,
2019, 2020], or augmentations [Kostrikov et al., 2020, Ye et al., 2020, Lee et al., 2019a, Raileanu et al.,
2021], task interpolation [Yao et al., 2021] or various regularization technique, such as dropout [Igl
et al., 2020] and batch normalization [Farebrother et al., 2018, Igl et al., 2020]. Leading approaches,
namely IDAAC [Raileanu and Fergus, 2021] and PPG [Cobbe et al., 2021], investigate the advantages
of decoupling policy and value functions for generalization, whereas Jiang et al. [2021] propose
automatic curriculum learning of levels.

A different approach is to add inductive bias to the neural network policy or learning algorithm.
Approaches such as Tamar et al. [2016], Vlastelica et al. [2021], Boutilier et al. [2020] embed a
differentiable planner or learning algorithm into the neural network. Other methods [Kansky et al.,
2017, Toyer et al., 2018, Rivlin et al., 2020] combine learning with classical graph planning to
generalize across various planning domains. These approaches require some knowledge about the
problem structure (e.g., a relevant planning algorithm), while our approach does not require any
task-specific knowledge.

Another line of work aims to learn policies or features that are invariant across the different training
tasks [Sonar et al., 2021, Bertran et al., 2020, Li et al., 2021, Igl et al., 2019, Stooke et al., 2021,
Mazoure et al., 2020]. Most relevant to our work is the LEEP algorithm of Ghosh et al. [2021],
which trains an ensemble of policies, each on a separate subset of the training environment, with a
loss function that encourages agreement between the ensemble members. Effectively, the KL loss in
LEEP encourages random actions when the agents of the ensemble do not agree, which is related to
our method. However, random actions can be significantly less effective in exploring a domain than a
policy that is explicitly trained to explore, such as a maximum-entropy policy. Consequentially, we
observe that our approach leads to significantly better performance at test time.

State Space Maximum Entropy Exploration Maximum entropy exploration (maxEnt, Hazan et al.
2019, Mutti et al. 2021) is an unsupervised learning framework that trains policies that maximize
the entropy of their state-visitation frequency, leading to a behavior that continuously explores the
environment state space. Recently, maximum entropy policies have gained attention in RL [Liu and
Abbeel, 2021b,a, Yarats et al., 2021, Seo et al., 2021, Hazan et al., 2019, Mutti et al., 2021] mainly in
the context of unsupervised pre-training. In that setting, the agent is allowed to train for a long period
without access to environment rewards, and only during test the agent gets exposed to the reward
signal and performs a limited fine-tuning adaptation learning. Importantly, these works expose the
agent to the same environments during pre-training and test phases, with the only distinction being
the lack of extrinsic reward during pre-training. To the best of our knowledge, our observation that
maxEnt policies generalize well in the zero-shot setting is novel.

3 Problem Setting and Background

We describe our problem setting and provide background on maxEnt exploration.

Reinforcement Learning (RL)

In Reinforcement Learning an agent interacts with an unknown, stochastic environment and collects
rewards. This is modeled by a Partially Observed Markov Decision Process (POMDP) [Bertsekas,
2012], which is the tuple M = (S,A,O, Pinit, P,Σ, r, γ), where S ∈ R|S| and A ∈ R|A| are the
state and actions spaces, O is the observation space, Pinit is an initial state distribution, P is the
transition kernel, Σ is the observation function, r : S ×A→ R is the reward function, and γ ∈ [0, 1)
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is the discount factor. The agent starts from initial state s0 ∼ Pinit and at time t performs an action
at on the environment that yields a reward rt = r(st, at), and an observation ot = Σ(st, at) ∈ O.
Consequently, the environment transitions into the next state according to st+1 ∼ P (·|st, at). Let
the history at time t be ht = {o0, a0, r0, o1, a1, r1 . . . , ot}, the sequence of observations, actions
and rewards. The agent’s next action is outlined by a policy π, which is a stochastic mapping
from the history to an action probability π(a|ht) = P (at = a|ht). In our formulation, a history-
dependent policy (and not a Markov policy) is required both due to partially observed states, epistemic
uncertainty [Ghosh et al., 2021], and also for optimal maxEnt exploration [Mutti et al., 2022].

Zero-Shot Generalization for RL

We assume a prior distribution over POMDPs P (M), defined over some space of POMDPs. For a
given POMDP, an optimal policy maximizes the expected discounted return Eπ,M [

∑∞
t=0 γ

tr(st, at)],
where the expectation is taken over the policy π(ht), and the state transition probability st ∼ P of
POMDP M . Our generalization objective in this work is to maximize the discounted cumulative
reward taken in expectation over the POMDP prior, also termed the population risk:

Rpop(π) = EM∼P (M)

[
Eπ,M

[ ∞∑
t=0

γtr(st, at)

]]
. (1)

Seeking a policy that performs well in expectation over any POMDP from the prior corresponds to
zero-shot generalization.

We assume access to N training POMDPs M1, . . . ,MN sampled from the prior, Mi ∼ P (M). Our
goal is to use M1, . . . ,MN to learn a policy that performs well on objective 1. A common approach
is to optimize the empirical risk objective:

Remp(π) =
1

N

N∑
i=1

Eπ,Mi

[ ∞∑
t=0

γtr(st, at)

]
= EM∼P̂ (M)

[
Eπ,M

[ ∞∑
t=0

γtr(st, at)

]]
, (2)

where the empirical POMDP distribution can be different from the true distribution, i.e. P̂ (M) ̸=
P (M). In general, a policy that optimizes the empirical risk (Eq. 2) may perform poorly on the
population risk (Eq. 1)—this is known as overfitting in statistical learning theory [Shalev-Shwartz
and Ben-David, 2014], and has been analyzed recently also for RL [Tamar et al., 2022].

Maximum Entropy Exploration

In the following we provide the definitions for the state distribution and the maximum entropy
exploration objective. For simplicity, we discuss MDPs—the fully observed special case of POMDPs
where O = S, and Σ(s, a) = s.

A policy π, through its interaction with an MDP, induces a t-step state distribution dt,π(s) = p(st =
s|π) over the state space S. Let dt,π(s, a) = p(st = s, at = a|π) be its t-step state-action counterpart.
For the infinite horizon setting, the stationary state distribution is defined as dπ(s) = limt→∞dt,π(s),
and its γ-discounted version as dγ,π(s) = (1 − γ)

∑∞
t=0 γ

tdt,π(s). We denote the state marginal
distribution as dT,π(s) =

1
T

∑T
t=0 dt,π(s), which is a marginalization of the t-step state distribution

over a finite time T . The objective of maximum entropy exploration is given by:

H(d(·)) = −Es∼d[log(d(s))], (3)

where d can be regarded as either the stationary state distribution dπ [Mutti and Restelli, 2020],
the discounted state distribution dγ,π [Hazan et al., 2019] or the marginal state distribution dT,π

[Lee et al., 2019b, Mutti and Restelli, 2020]. In our work we focus on the finite horizon setting and
adapt the marginal state distribution dT,π in which T equals the episode horizon H , i.e. we seek to
maximize the objective:

RH(π) = EM∼P̂ (M) [H(dH,π)] = EM∼P̂ (M)

[
H

(
1

H

H∑
t=0

dt,π(s)

)]
, (4)

which yields a policy that “equally” visits all states during the episode. Existing works that target
maximum entropy exploration rely on estimating the density of the agent’s state visitation distribution
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[Hazan et al., 2019, Lee et al., 2019b]. More recently, a branch of algorithms that employ non-
parametric entropy estimation [Liu and Abbeel, 2021a, Mutti et al., 2021, Seo et al., 2021] has
emerged, circumventing the burden of density estimation. Here, we follow this common thread and
adapt the non-parametric entropy estimation approach; we estimate the entropy using the particle-
based k-nearest neighbor (k-NN estimator) [Beirlant et al., 1997, Singh et al., 2003], as elaborated in
the next section.

4 The Generalization Ability of Maximum Entropy Exploration

In this section we present an empirical observation—policies trained for maximum entropy exploration
(maxEnt policy) generalize well. First, we explain the training procedure of our maxEnt policy, then
we show empirical results supporting this observation.

4.1 Training State Space Maximum Entropy Policy

To tackle objective (4), we estimate the entropy using the particle-based k-NN estimator [Beirlant
et al., 1997, Singh et al., 2003], as described here. Let X be a random variable over the support
χ ⊂ Rm with a probability mass function p. Given the probability of this random variable, its entropy
is obtained by HX(p) = −Ex∼p[log(p)]. Without access to its distribution p, the entropy can be
estimated using N samples {xi}Ni=1 by the k-NN estimator Singh et al. [2003]:

Ĥk,N
X (p) ≈ 1

N

N∑
i=1

log
(∥∥xi − xk-NN

i

∥∥
2

)
, (5)

where xk-NN
i is the k-NN sample of xi from the set {xi}Ni=1.

To estimate the distribution dH,π over the states S, we consider each trajectory as H samples of states
{st}Ht=1 and take sk-NN

t to be the k-NN of the state st within the trajectory, as proposed by previous
works (APT, Liu and Abbeel [2021a], RE3, Seo et al. [2021], and APS, Liu and Abbeel [2021a]),

Ĥk,H(dH,π) ≈
1

H

H∑
t=1

log
(∥∥st − sk-NN

t

∥∥
2

)
. (6)

Next, similar to previous works, since this sampled estimation of the entropy (Eq. 6) is a sum of
functions that operate on each state separately, it can be considered as an expected reward objective
Ĥk,H(dH,π) ≈ 1

H

∑H
t=1 rI(st) with the intrinsic reward function:

rI(st) := log(
∥∥st − sk-NN

t

∥∥
2
). (7)

This formulation enables us to deploy any RL algorithm to approximately optimize objective (4).
Specifically, in our work we use the policy gradient algorithm PPO [Schulman et al., 2017], where at
every time step t the state sk-NN

t is chosen from previous states {si}t−1
i=1 of the same episode.

Figure 3: Example of a maxEnt trajectory on
Maze. The policy visits every reachable state
and averts termination by avoiding the goal state.

Another challenge stems from the computational
complexity of calculating the L2 norm of the
k-NN (Eq. 7) at every time step t. To improve
computational efficiency, we introduce the follow-
ing approximation: instead of taking the full obser-
vation as the state si (i.e. 64×64 RGB image), we
sub-sample (denoted ↓) the observation by apply-
ing average pooling of 3× 3 to produce an image
s↓i of size 21× 21, resulting in:

rI(st) := log
(∥∥∥s↓t − sk-NN,↓

t

∥∥∥
2

)
. (8)

We emphasize that we do not modify the termina-
tion condition of each game. However, a maxEnt
policy will learn to avoid termination, as this in-
creases the sum of intrinsic rewards. In Figure 3
we display the states visited by a maxEnt policy
on Maze. We also experimented with L0 as the
state similarity measure instead of L2, which resulted in similar performance (see Appendix F.2).
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Figure 4: Generalization ability of maximum entropy vs. extrinsic reward: (a) Score of maximum
entropy. (b) Score of extrinsic reward. Training for maximum entropy exhibits a small generalization
gap in Maze, Jumper and Miner. Average and standard deviation are obtained using 4 seeds.

4.2 Generalization of maxEnt Policy

The generalization gap describes the difference between the reward accumulated during training
Remp(π) and testing Rpop(π) of a policy, where we approximate the population score by testing
on a large population of tasks withheld during training. We can evaluate the generalization gap
for either an extrinsic reward, or for an intrinsic reward, such as the reward that elicits maxEnt
exploration (Eq. 8). In the latter, the generalization gap captures how well the agent’s exploration
strategy generalizes.

We found that agents trained for maximum entropy exploration exhibit a smaller generalization gap
compared with the standard approach of training solely with extrinsic reward. Intuitively, this can
be attributed to the extrinsic reward serving as an ‘easy’ signal to learn from, and overfit to in the
training environments. To assess the generalization quality of the maxEnt policy, we train agents on
200, 500, 1000 and 5000 instances of ProcGen’s Maze, Jumper and Miner environments using the
intrinsic reward (Eq. 8). The policies are equipped with a memory unit (GRU, Cho et al. 2014) to
allow learning of deterministic policies that maximize the entropy [Mutti et al., 2022]3.

The train and test return scores are shown in Fig. 4a. In all three environments, we demonstrate a small
generalization gap, as test performance on unseen levels closely follows the performance achieved
during training. When considering Maze trained on 200 levels, we observe a small generalization
gap of 1.7%, meaning test performance closely follows train performance. For Jumper and Miner
the maxEnt policy exhibits a small generalization gap of 8.5% and 4.3%, respectively. In addition,
we verify that the train results are near optimal by comparing with a hand designed approximately
optimal exploration policy. For example, on Maze we use the well known maze exploring strategy
wall follower, also known as the left/right-hand rule [Hendrawan, 2020]; see Appendix B.2 for details.

Next, we evaluate the generalization gap of agents trained to maximize the extrinsic reward4. The
results for this experiment, shown in Fig. 4b, illustrate that the generalization gap for extrinsic reward
is more prominent. For comparison, when trained on 200 levels, the figure shows a large generalization
gap for Maze (38.8%) and Jumper (27.5%), while Miner exhibits a moderate generalization gap of
13.1%. For an evaluation on all ProcGen games, please see Appendix B.1.

3An extensive discussion on the importance of memory for the maxEnt objective is in Appendix B.3.
4We train for extrinsic reward using an architecture identical to that of the intrinsic reward, with the exception

of the memory unit. Incorporating a memory unit in this case further degrades performance (see Appendix B.3).
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5 Explore to Generalize (ExpGen)

Our main insight is that, given the generalization property of the entropy maximization policy
established above, an agent can apply this behavior in a test MDP and expect effective exploration at
test time. In the following, we pair this insight with the epistemic POMDP idea, and propose to play
the exploration policy when the agent faces epistemic uncertainty, hopefully driving the agent to a
different state where the reward-seeking policy is more certain. This can be seen as an adaptation of
the seminal explicit explore or exploit idea [Kearns and Singh, 2002], to the setting of ZSG-RL.

5.1 Algorithm

Our framework comprises two parts: an entropy maximizing network and an ensemble of networks
that maximize an extrinsic reward to evaluate epistemic uncertainty. The first step entails training
a network equipped with a memory unit to obtain a maxEnt policy πH that maximizes entropy, as
described in section 4.1. Next, we train an ensemble of memory-less policy networks {πj

r}mj=1 to
maximize extrinsic reward. Following Ghosh et al. [2021], we shall use the ensemble to assess
epistemic uncertainty. Different from Ghosh et al. [2021], however, we do not change the RL
loss function, and use an off-the-shelf RL algorithm (such as PPO [Schulman et al., 2017] or
IDAAC [Stooke et al., 2021]).

Algorithm 1 Explore to Generalize (ExpGen)

1: Input: ensemble size m,
2: initial state s0 = ENVIRONMENT.reset().
3: nπH = 0
4: Train maxEnt policy πH using intrinsic reward rI (Eq: 7).
5: Train m policies π1

r , π
2
r . . . π

m
r using extrinsic reward rext.

6: for t = 1 to H do
7: ai ∼ πi

r(·|st)
8: nπH ← nπH − 1
9: if ai ∈ Consensus(aj | j ∈ {1 . . .m}) and nπH < 0 then

10: at = ai
11: else
12: aH ∼ πH(·|ht)
13: at = aH
14: nπH ∼ Geom(α)
15: end if
16: st+1 ← ENVIRONMENT.STEP(at)
17: end for

At test time, we couple
these two components into
a combined agent π (de-
tailed as pseudo-code in Al-
gorithm 1). We consider do-
mains with a finite action
space, and say that the pol-
icy πi

r is certain at state s if
its action ai∼πi

r(a|s) is in
consensus with the ensem-
ble: ai = aj for the ma-
jority of k out of m, where
k is a hyperparameter of
our algorithm. When the
networks {πj

r}mj=1 are not
in consensus, the agent π
takes a sequence of nπH ac-
tions from the entropy max-
imization policy πH, which
encourages exploratory be-
havior.

Agent meta-stability Switching between two policies may result in a case where the agent repeat-
edly toggles between two states—if, say, the maxEnt policy takes the agent from state s1 to a state s2,
where the ensemble agrees on an action that again moves to state s1. To avoid such “meta-stable”
behavior, we randomly choose the number of maxEnt steps nπH from a Geometric distribution,
nπH ∼ Geom(α).

6 Experiments

We evaluate our algorithm on the ProcGen benchmark, which employs a discrete 15-dimensional
action space and generates RGB observations of size 64× 64× 3. Our experimental setup follows
ProcGen’s ‘easy’ configuration, wherein agents are trained on 200 levels for 25M steps and subse-
quently tested on random levels [Cobbe et al., 2020]. All agents are implemented using the IMPALA
convolutional architecture [Espeholt et al., 2018], and trained using PPO [Schulman et al., 2017] or
IDAAC [Raileanu and Fergus, 2021]. For the maximum entropy agent πH we incorporate a single
GRU [Cho et al., 2014] at the final embedding of the IMPALA convolutional architecture. For all
games, we use the same parameter α = 0.5 of the Geometric distribution and form an ensemble of
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Figure 5: Test performance of PPO trained using the reward rtotal that combines intrinsic and extrinsic
rewards, weighted by β (Eq. 9). Each figure details the results for different values of discount factor
γ. All networks are randomly initialized and trained on 200 maze levels, and their mean is computed
over 4 runs with different seeds. The figures show an improvement over the PPO baseline for γ = 0.5.
In all cases, ExpGen outperforms the combined reward agent.

10 networks. For further information regarding our experimental setup and specific hyperparameters,
please refer to Appendix C.

6.1 Generalization Performance

We compare our algorithm to six leading algorithms: vanilla PPO [Schulman et al., 2017], PLR [Jiang
et al., 2021] that utilizes automatic curriculum-based learning, UCB-DrAC [Raileanu et al., 2021],
which incorporates data augmentation to learn policies invariant to different input transformations,
PPG [Cobbe et al., 2021], which decouples the optimization of policy and value function during
learning, and IDAAC [Raileanu and Fergus, 2021], the previous state-of-the-art algorithm on ProcGen
that decouples policy learning from value function learning and employs adversarial loss to enforce
invariance to spurious features. Lastly, we evaluate our algorithm against LEEP [Ghosh et al., 2021],
the only algorithm that, to our knowledge, managed to improve upon the performance of vanilla
PPO on Maze and Heist. The evaluation matches the train and test setting detailed by the contending
algorithms and their performance is provided as reported by their authors. For evaluating LEEP and
IDAAC, we use the original implementation provided by the authors. 5

Tables 2 and 1 show the train and test scores, respectively, for all ProcGen games. The tables show
that ExpGen combined with PPO achieves a notable gain over the baselines on Maze, Heist and
Jumper, while on other games, invariance-based approaches perform better (for example, IDAAC
leads on BigFish, Plunder and Climber, whereas PPG leads on CaveFlyer, and UCB-DrAC leads
on Dodgeball). These results correspond to our observation that for some domains, invariance
cannot be used to completely resolve epistemic uncertainty. We emphasize that ExpGen substantially
outperforms LEEP on all games, showing that our improved exploration at test time is significant.
In Appendix E we compare ExpGen with LEEP trained for 50M environment steps, showing a
similar trend. When combining ExpGen with the leading invariance-based approach, IDAAC, we
establish that ExpGen is in-fact complementary to the advantage of such algorithms, setting a new
state-of-the-art performance in ProcGen. A notable exception is Dodgeball, where all current methods
still fail.

Figures 6 and 7 show aggregate statistics of ExpGen, PPO, PLR, UCB-DrAC, PPG and IDAAC for
all games 6, affirming the dominance of ExpGen+IDAAC as the state-of-the-art. The results are
obtained using 10 runs per game, with scores normalized as in Appendix C.1. The shaded regions
indicate 95% Confidence Intervals (CIs) and are estimated using the percentile stratified bootstrap
with 2, 000 (Fig. 6) and 50, 000 (Fig. 7) bootstrap re-samples. Fig. 6 (Left) compares algorithm
score-distribution, illustrating the advantage of the proposed approach across all games. Fig. 6 (Right)
shows the probability of improvement of algorithm X against algorithm Y . The first row (ExpGen
vs. IDAAC) demonstrates that the proposed approach surpasses IDAAC with probability 0.6 and

5For LEEP and IDAAC, we followed the prescribed hyperparameter values of the papers’ authors (we directly
corresponded with them). For some domains, we could not reproduce the exact results, and in those cases, we
used their reported scores, giving them an advantage.

6See rliable [Agarwal et al., 2021] for additional details on the various performance measures and protocols.
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subsequent rows emphasize the superiority of ExpGen over contending methods at an even higher
probability. This is because ExpGen improves upon IDAAC in several key challenging tasks and is
on-par in the rest. Fig. 7 provides aggregate metrics of mean, median and IQM scores and optimality
gap (as 1−mean) for all ProcGen games. The figure shows that ExpGen outperforms the contending
methods in all measures.

Ablation Study One may wonder if the ensemble in ExpGen is necessary, or whether the observa-
tion that the maxEnt policy generalizes well can be exploited using a single policy. We investigate the
effect of combining the intrinsic and extrinsic rewards, rI and rext, respectively, into a single reward
as a weighted sum:

rtotal = βrI + (1− β)rext, (9)

and train for β = {0.1, 0.3, 0.5, 0.7, 0.9} on Maze. Figure 5 shows the train and test scores over 50M
steps for different values of discount factor γ. We obtain the best test score for γ = 0.5 and β = 0.1,
illustrating an improvement compared with the PPO baseline. When comparing with ExpGen, the
combined reward (Eq. 9) exhibits inferior performance with slightly higher variance. In Appendix
C.2 and F, we also provide an ablation study of ensemble size and draw comparisons to variants of
our algorithm.

Game PPO PLR UCB-DrAC PPG IDAAC LEEP ExpGen ExpGen
(PPO) (IDAAC)

BigFish 2.9± 1.1 10.9± 2.8 9.2± 2.0 11.2± 1.4 18.5± 1.218.5± 1.218.5± 1.2 4.9± 0.9 6.0± 0.5 18.5± 1.918.5± 1.918.5± 1.9
StarPilot 24.9± 1.0 27.9± 4.4 30.0± 1.3 47.2± 1.647.2± 1.647.2± 1.6 37.0± 2.3 3.2± 2.2 31.0± 0.9 39.8± 2.9
FruitBot 26.2± 1.2 28.0± 1.4 27.6± 0.4 27.8± 0.6 27.9± 0.527.9± 0.527.9± 0.5 16.4± 1.6 26.2± 0.6 28.4± 0.428.4± 0.428.4± 0.4
BossFight 7.4± 0.4 8.9± 0.4 7.8± 0.6 10.3± 0.210.3± 0.210.3± 0.2 9.8± 0.6 0.5± 0.3 7.7± 0.2 9.8± 0.5
Ninja 6.1± 0.2 7.2± 0.47.2± 0.47.2± 0.4 6.6± 0.4 6.6± 0.1 6.8± 0.4 4.4± 0.5 6.6± 0.2 6.6± 0.3
Plunder 7.8± 1.6 8.7± 2.2 8.3± 1.1 14.3± 2.0 23.3± 1.423.3± 1.423.3± 1.4 4.4± 0.3 5.5± 1.3 23.6± 1.423.6± 1.423.6± 1.4
CaveFlyer 5.5± 0.5 6.3± 0.5 5.0± 0.8 7.0± 0.47.0± 0.47.0± 0.4 5.0± 0.6 4.9± 0.2 5.7± 0.3 5.3± 0.7
CoinRun 8.6± 0.2 8.8± 0.5 8.6± 0.2 8.9± 0.1 9.4± 0.19.4± 0.19.4± 0.1 7.3± 0.4 8.8± 0.1 9.3± 0.39.3± 0.39.3± 0.3
Jumper 5.8± 0.3 5.8± 0.5 6.2± 0.3 5.9± 0.1 6.3± 0.2 5.4± 1.2 6.7± 0.36.7± 0.36.7± 0.3 6.8± 0.56.8± 0.56.8± 0.5
Chaser 3.1± 0.9 6.9± 1.2 6.3± 0.6 9.8± 0.59.8± 0.59.8± 0.5 6.8± 1.0 3.0± 0.1 3.6± 1.6 7.1± 1.4
Climber 5.4± 0.5 6.3± 0.8 6.3± 0.6 2.8± 0.4 8.3± 0.4 2.6± 0.9 5.9± 0.5 9.5± 0.39.5± 0.39.5± 0.3
Dodgeball 2.2± 0.4 1.8± 0.5 4.2± 0.94.2± 0.94.2± 0.9 2.3± 0.3 3.2± 0.3 1.9± 0.2 2.9± 0.3 2.8± 0.2
Heist 2.4± 0.5 2.9± 0.5 3.5± 0.4 2.8± 0.4 3.5± 0.2 4.5± 0.3 7.4± 0.27.4± 0.27.4± 0.2 7.2± 0.57.2± 0.57.2± 0.5
Leaper 4.9± 2.2 6.8± 1.2 4.8± 0.9 8.5± 1.08.5± 1.08.5± 1.0 7.7± 1.0 4.4± 0.2 4.0± 1.7 7.6± 1.2
Maze 5.6± 0.1 5.5± 0.8 6.3± 0.1 5.1± 0.3 5.6± 0.3 6.6± 0.2 8.3± 0.28.3± 0.28.3± 0.2 7.8± 0.2
Miner 7.8± 0.3 9.6± 0.6 9.2± 0.6 7.4± 0.2 9.5± 0.49.5± 0.49.5± 0.4 1.1± 0.1 8.0± 0.7 9.8± 0.39.8± 0.39.8± 0.3

Table 1: Test score of ProcGen games trained on 200 levels for 25M environment steps. We compare
our algorithm to PPO, PLR, UCB-DrAC, PPG, IDAAC and LEEP. The mean and standard deviation
are computed over 10 runs with different seeds.

Game PPO PLR UCB-DrAC PPG IDAAC LEEP ExpGen ExpGen
(PPO) (IDAAC)

BigFish 8.9± 2.0 7.8± 1.0 12.8± 1.8 19.9± 1.7 21.8± 1.821.8± 1.821.8± 1.8 8.9± 0.9 7.0± 0.4 21.5± 2.321.5± 2.321.5± 2.3
StarPilot 29.0± 1.1 2.6± 0.3 33.1± 1.3 49.6± 2.149.6± 2.149.6± 2.1 38.6± 2.2 5.3± 0.3 34.3± 1.6 40.0± 2.7
FruitBot 28.8± 0.6 15.9± 1.3 29.3± 0.5 31.1± 0.531.1± 0.531.1± 0.5 29.1± 0.7 17.4± 0.7 28.9± 0.6 29.5± 0.5
BossFight 8.0± 0.4 8.7± 0.7 8.1± 0.4 11.1± 0.111.1± 0.111.1± 0.1 10.4± 0.4 0.3± 0.1 7.9± 0.6 9.9± 0.7
Ninja 7.3± 0.2 5.4± 0.5 8.0± 0.4 8.9± 0.2 8.9± 0.38.9± 0.38.9± 0.3 4.6± 0.2 8.5± 0.3 7.9± 0.6
Plunder 9.4± 1.7 4.1± 1.3 10.2± 1.8 16.4± 1.9 24.6± 1.624.6± 1.624.6± 1.6 4.9± 0.2 5.8± 1.4 26.1± 2.726.1± 2.726.1± 2.7
CaveFlyer 7.3± 0.7 6.4± 0.1 5.8± 0.9 9.5± 0.29.5± 0.29.5± 0.2 6.2± 0.6 4.9± 0.3 6.8± 0.4 5.5± 0.5
CoinRun 9.4± 0.3 5.4± 0.4 9.4± 0.2 9.9± 0.09.9± 0.09.9± 0.0 9.8± 0.1 6.7± 0.1 9.8± 0.1 9.1± 0.4
Jumper 8.6± 0.1 3.6± 0.5 8.2± 0.1 8.7± 0.1 8.7± 0.28.7± 0.28.7± 0.2 5.7± 0.1 7.9± 0.2 8.1± 0.4
Chaser 3.7± 1.2 6.3± 0.7 7.0± 0.6 10.7± 0.410.7± 0.410.7± 0.4 7.5± 0.8 2.6± 0.1 4.7± 1.8 6.9± 1.1
Climber 6.9± 1.0 6.2± 0.8 8.6± 0.6 10.2± 0.2 10.2± 0.7 3.5± 0.3 7.7± 0.4 11.4± 0.211.4± 0.211.4± 0.2
Dodgeball 6.4± 0.6 2.0± 1.1 7.3± 0.87.3± 0.87.3± 0.8 5.5± 0.5 4.9± 0.3 3.3± 0.1 5.8± 0.5 5.3± 0.5
Heist 6.1± 0.8 1.2± 0.4 6.2± 0.6 7.4± 0.4 4.5± 0.3 7.1± 0.2 9.4± 0.19.4± 0.19.4± 0.1 7.0± 0.6
Leaper 5.5± 0.4 6.4± 0.4 5.0± 0.9 9.3± 1.19.3± 1.19.3± 1.1 8.3± 0.7 4.3± 2.3 4.3± 2.0 8.1± 0.9
Maze 9.1± 0.2 4.1± 0.5 8.5± 0.3 9.0± 0.2 6.4± 0.5 9.4± 0.3 9.6± 0.19.6± 0.19.6± 0.1 7.4± 0.4
Miner 11.3± 0.3 9.7± 0.4 12.0± 0.312.0± 0.312.0± 0.3 11.3± 1.0 11.5± 0.5 1.9± 0.6 9.0± 0.8 11.9± 0.2

Table 2: Train score of ProcGen games trained on 200 levels for 25M environment steps. We
compare our algorithm to PPO, PLR, UCB-DrAC, PPG, IDAAC and LEEP. The mean and standard
deviation are computed over 10 runs with different seeds.
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Figure 6: Comparison across all ProcGen games, with 95% bootstrap CIs highlighted in color. Left.
Score distributions of ExpGen, PPO, PLR, UCB-DrAC, PPG and IDAAC. Right. Shows in each row,
the probability of algorithm X outperforming algorithm Y . The comparison illustrates the superiority
of ExpGen over the leading contender IDAAC with probability 0.6, as well as over other methods
with even higher probability.
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7 Discussion and Limitations

We observed that policies trained to explore, using maximum entropy RL, exhibited generalization of
their exploration behavior in the zero-shot RL setting. Based on this insight, we proposed ExpGen—a
ZSG-RL algorithm that takes a maxEnt exploration step whenever an ensemble of policies trained
for reward maximization does not agree on the current action. We demonstrated that this simple
approach performs well on all ZSG-RL domains of the ProcGen benchmark.

One burning question is why does maxEnt exploration generalize so well? An intuitive argument
is that the maxEnt policy in an MDP is invariant to the reward. Thus, if for every training MDP
there are many different rewards, each prescribing a different behavior, the maxEnt policy has to
be invariant to this variability. In other words, the maxEnt policy contains no information about
the rewards in the data, and generalization is well known to be bounded by the mutual information
between the policy and the training data [Bassily et al., 2018]. Perhaps an even more interesting
question is whether the maxEnt policy is also less sensitive to variations in the dynamics of the MDPs.
We leave this as an open theoretical problem.

Another consideration is safety. In some domains, a wrong action can lead to a disaster, and in
such cases, exploration at test time should be hedged. One possibility is to add to ExpGen’s policy
ensemble an ensemble of advantage functions, and use it to weigh the action agreement [Rotman
et al., 2020]. Intuitively, the ensemble should agree that unsafe actions have a low advantage, and not
select them at test time.

Finally, we point out that while our work made significant progress on generalization in several
ProcGen games, the performance on Dodgeball remains low for all methods we are aware of. An
interesting question is whether performance on Dodgeball can be improved by combining invariance-
based techniques (other than IDAAC) with exploration at test time, or whether Dodgeball represents
a different class of problems that requires a completely different approach.
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A Hidden Maze Experiment

In this section we empirically validate our thought experiment described in the Introduction: we
train a recurrent policy on hidden mazes using 128 training levels (with fixed environment colors).
Figure 8a depicts the observations of an agent along its trajectory; the agent sees only its own location
(green spot), whereas the entire maze layout, corridors and goal, are hidden. In Fig. 8b we visualize
the full, unobserved, state of the agent. The train and test results are shown in Fig 9, indicating severe
overfitting to the training levels: test performance failed to improve beyond the random initial policy
during training. Indeed, the recurrent policy memorizes the agent’s training trajectories instead of
learning generalized behavior. Hiding the maze’s goal and corridors leads to agent-behavior that is the
most invariant to instance specific observations—the observations include the minimum information,
such that the agent can still learn to solve the maze.

t = 0 t = 1 t = 2 t = 4

t = 6 t = 9 t = 11 t = 12

(a) Agent observations along a trajectory for the Hidden Maze task. The bottom-right frame (t = 12) shows the
agent eventually revealing the goal.

t = 0 t = 1 t = 2 t = 4

t = 6 t = 9 t = 11 t = 12

(b) The corresponding unobserved true states of agent. Unexplored regions of the maze appear as faded sections.

Figure 8: Hidden Maze experiment where the agent only observes its own location (green spot). Both
the goal (purple spot) and corridors are not observable (appear as walls).

This experiment demonstrates why methods based on observation invariance (e.g., IDAAC Raileanu
and Fergus [2021]) do not improve performance on Maze-like tasks, despite significantly improving
performance on games such as BigFish and Plunder, where invariance to colors helps to generalize.
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B Maximum Entropy Policy

This section elaborates on the implementation details of the maxEnt oracle and provides a performance
evaluation of the maxEnt policy.

B.1 Generalization Gap of maxEnt vs PPO across all ProcGen Environments

Recall from Section 4.2 that the (normalized) generalization gap is described by

(Remp(π)−Rpop(π))/Remp(π),

where Remp(π) = Rtrain(π) and Rpop(π) = Rtest(π). Fig 10 shows the generalization ability of
the maxEnt exploration policy compared to PPO, obtained from training on 200 training levels.
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Figure 10: The normalized generalization gap [%] of maxEnt and PPO for all ProcGen games, trained
on 200 training levels and averaged over 4 seeds (lower is better).

The figure demonstrates that the maxEnt exploration policies transfer better in zero-shot generalization
(achieve a smaller generalization gap) across all ProcGen games apart from Ninja. This holds true
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even in environments where the ExpGen algorithm is on par but does not exceed the baseline, pointing
to the importance of exploratory behavior in some environments, but not in others.

B.2 Computing the maxEnt Oracle

The maxEnt oracle prescribes the maximum intrinsic return achievable per environment instance.
To simplify the computation of the maxEnt oracle score, in this section, we evaluate the maxEnt
score using the L0 instead of the L2 norm and use the first nearest neighbor (k = 1). In Maze, we
implement the oracle using the right-hand rule [Hendrawan, 2020] for maze exploration: If there
is no wall and no goal on the right, the agent turns right, otherwise, it continues straight. If there
is a wall (or goal) ahead, it goes left (see Figure 3). In Jumper, we first down-sample (by average
pooling) from 64× 64 to 21× 21 pixels to form cells of 3× 3, and the oracle score is the number of
background cells (cells that the agent can visit). Here we assume that the agent has a size of 3× 3
pixels. In Miner, the “easy” environment is partitioned into 10× 10 cells. The maximum entropy
is the number of cells that contain “dirt” (i.e., cells that the agent can excavate in order to make
traversable).
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Figure 11: Generalization ability of maximum entropy and extrinsic reward policy: (a.top row)
Score of maximum entropy policy, normalized by the oracle score. (a.bottom row) Success Rate
of maximum entropy policy. (b) Score of extrinsic reward policy. Training for maximum entropy
exhibits a small generalization gap in Maze, Jumper and Miner. Average and standard deviation are
obtained using 4 seeds.
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In Fig. 11a the top row describes the intrinsic return of the maxEnt policy, normalized by the oracle’s
return (described above). We draw a comparison between agents with memory (GRU) and without.
For the Maze environment (top-right), the agent achieves over 90% of the oracle’s performance when
employing a memory unit (GRU). For the Jumper and Miner environments, the agents approach 60%
and 80% of the oracle’s score, respectively.

Next, the bottom row of Fig. 11a details the success rate as the ratio of instances in which the
agent successfully reached the oracle’s score (meaning that the entire traversable region has been
explored). For the Maze environment, the agent achieves a success-rate of 70%, whereas for the
Jumper and Miner the agent fails to meet the oracle’s score. This indicates that the oracle, as per our
implementation for Jumper and Miner, captures states that are in-effect unreachable, and thus the
agent is unable to match the oracle’s score.

B.3 The Importance of a Memory Unit for maxEnt

We evaluate the importance of memory for maxEnt: In Fig. 11a we train a maxEnt agent with and
without memory (GRU). The results indicate that for Maze, the GRU is vital in order to maximize
performance for all various sizes of training set. In Jumper, we see that the GRU provides an
advantage when training on 200 levels, however the benefit diminishes when additional training levels
are available. For Miner, there appears to be no significant advantage for incorporating memory with
200 training levels. However, the benefit of a GRU becomes noticeable once more training levels are
available (beyond 500).

When looking at the extrinsic reward (Fig. 11b), we see an interesting effect after introducing a GRU.
Maze and Jumper suffer a degradation in performance with 200 levels (indicating overfit), while
Miner appears to be unaffected.

In summary, we empirically show that memory is beneficial for the maxEnt policy on Maze, Jumper
and Miner. Interestingly, we demonstrate that the introduction of memory for training to maximize
extrinsic reward causes the agent to overfit in Maze and Jumper with 200 training levels.

C Experimental Setup

This section describes the constants and hyperparameters used as part of the evaluation of our
algorithm.

C.1 Normalization Constants

In Figures 2 and 12 we compare the performance of the various algorithms. The results are normalized
in accordance with [Cobbe et al., 2020], which defines the normalized return as

Rnorm = (R−Rmin)/(Rmax −Rmin).

The Rmin and Rmax of each environment are detailed in Table 3. Note that the test performance of
PPO on Heist (see Fig. 2) is lower than Rmin (the trivial performance), indicating severe overfitting.

C.2 Hyperparameters

As described in Section 5.1, the hyperparameters of our algorithm are the number of agents m that
form the ensemble, of which k agents are required to be in agreement for the ensemble to achieve a
consensus on its action, and α as the parameter of nπH ∼ Geom(α) that represents the number of
maxEnt steps taken when the ensemble fails to reach a consensus. An additional hyperparameter is
the neighborhood size kNN of the k-NN estimator (Section 4.1), used to determine the reward of the
maxEnt policy.

We conducted a hyperparameter search over the ensemble size m ∈ {4, 6, 8, 10} for different values
of ensemble agreement k ∈ {2, 4, 6, 8}, and values of α ∈ {0.2, 0.5, 0.8}. We found that a value
of α = 0.5, and an ensemble size of m = 10 produce the best results for all games, whereas the
value of k varies from game to game, as detailed in table 4. For example, table 5 shows the results
for varying values of m and k for the Maze environment. Throughout our experiments, we train our
networks using the Adam optimizer [Kingma and Ba, 2014]. For the PPO hyperparameters we use
the hyperparameters found in [Cobbe et al., 2020] as detailed in Table 6.
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Hard Easy
Environment Rmin Rmax Rmin Rmax

CoinRun 5 10 5 10
StarPilot 1.5 35 2.5 64

CaveFlyer 2 13.4 3.5 12
Dodgeball 1.5 19 1.5 19
FruitBot -.5 27.2 -1.5 32.4
Chaser .5 14.2 .5 13
Miner 1.5 20 1.5 13

Jumper 1 10 3 10
Leaper 1.5 10 3 10
Maze 4 10 5 10

BigFish 0 40 1 40
Heist 2 10 3.5 10

Climber 1 12.6 2 12.6
Plunder 3 30 4.5 30
Ninja 2 10 3.5 10

BossFight .5 13 .5 13

Table 3: Normalization Constants.

Game k
Maze 6
Jumper 4
Miner 2
Heist 8
BigFish 8
StarPilot 1
FruitBot 1
BossFight 1
Plunder 2
CaveFlyer 2
CoinRun 1
Chaser 2
Climber 2
Dodgeball 2
Leaper 1
Ninja 2

Table 4: Consensus size k as hyperparameter for each game.

Ensemble size 4 6 8 10
ExpGen 8.02± 0.06 8.15± 0.19 8.00± 0.12 8.22± 0.118.22± 0.118.22± 0.11

Table 5: Ablation study of ensemble size and its effect on the test score. Each network in the ensemble
is trained on 200 instances of Maze. The results show improved performance for large ensemble size.
The mean and standard deviation are computed using 10 runs with different seeds.

Table 7 shows an evaluation of the maxEnt gap and ExpGen using different neighbor size kNN on the
Maze environment. We found that the best performance is obtained for kNN ∈ {1, 2, 3, 4, 5}. Thus,
we choose kNN = 2, the second nearest neighbor, for all games.

D Results for all ProcGen Games

Figure 12 details the normalized test performance for all ProcGen games. Normalization is per-
formed according to [Cobbe et al., 2020] as described in Appendix C.1. The figure demonstrates
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Parameter Value
γ .999
λ .95
# timesteps per rollout 512
Epochs per rollout 3
# minibatches per epoch 8
Entropy bonus (kH ) .01
PPO clip range .2
Reward Normalization? Yes
Learning rate 5e-4
# workers 1
# environments per worker 32
Total timesteps 25M
GRU? Only for maxEnt
Frame Stack? No

Table 6: PPO Hyperparameters.

Neighbor Maze Environment
Size kNN maxEnt (Train) maxEnt (Test) maxEnt Gap [%] ExpGen (Test)

1 17.5± 0.5 15.3± 1.4 12.7%12.7%12.7% 7.9± 0.2
2 33.9± 0.2 31.3± 1.5 7.7%7.7%7.7% 8.3± 0.2
3 50.2± 2.0 42.5± 2.8 15.3%15.3%15.3% 8.2± 0.2
4 62.9± 2.6 52.3± 3.0 16.8%16.8%16.8% 8.2± 0.1
5 70.6± 3.3 57.8± 4.6 15.5%15.5%15.5% 8.2± 0.1
6 80.0± 3.2 65.3± 1.4 18.4% 8.1± 0.2
7 87.2± 1.4 71.1± 1.1 18.5% 8.0± 0.1
8 93.8± 1.0 75.3± 2.3 19.7% 7.8± 0.2
9 96.6± 4.8 78.0± 2.0 19.3% 8.1± 0.2
10 102.2± 1.8 89.1± 0.6 12.8%12.8%12.8% 7.9± 0.1

Table 7: Hyperparameter search for neighborhood size kNN for the Maze environment. The table
presents the maxEnt gap and the performance of ExpGen for varying values of kNN. The mean and
variance are computed for 3 seeds.

that ExpGen establishes state-of-the-art results on several challenging games and achieves on-par
performance with the leading approach on the remaining games.

E Results after convergence

Tables 8 and 9 detail the train and test performance of ExpGen, LEEP and PPO, when trained for
50M environment steps. Table 9 shows that ExpGen surpasses LEEP and PPO in most games.

Game PPO LEEP ExpGen
Maze 9.45± 0.21 9.84± 0.05 9.71± 0.11
Heist 7.97± 0.56 6.86± 0.68 9.62± 0.08
Jumper 8.62± 0.08 6.1± 0.4 8.00± 0.13
Miner 12.86± 0.06 1.9± 0.2 12.53± 0.12
BigFish 14.24± 3.36 8.82± 0.36 5.95± 0.32
Climber 8.76± 0.41 4.6± 0.4 8.89± 0.29
Dodgeball 8.88± 0.38 6.22± 0.55 8.73± 0.40
Plunder 9.64± 1.85 5.1± 0.1 8.06± 0.98
Ninja 9.10± 0.32 5.2± 0.3 8.90± 0.30
CaveFlyer 8.98± 0.59 5.4± 0.1 8.75± 0.59

Table 8: Train score of ProcGen environments trained on 200 instances for 50M environment steps.
We compare our algorithm to the baselines LEEP and PPO. The mean and standard deviation are
computed over 8 runs with different seeds.
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Figure 12: Normalized test Performance for PPO, IDAAC, and ExpGen+IDAAC, on all ProcGen
games. ExpGen achieves state-of-the-art performance on test levels of Maze, Heist, and Jumper and
on-par performance in the remaining games.

Game PPO LEEP ExpGen
Maze 5.78± 0.39 6.78± 0.21 8.33± 0.148.33± 0.148.33± 0.14
Heist 2.54± 0.45 4.42± 0.57 6.91± 0.246.91± 0.246.91± 0.24
Jumper 5.78± 0.28 6.4± 0.4 6.64± 0.156.64± 0.156.64± 0.15
Miner 8.76± 0.33 0.8± 0.1 9.48± 0.399.48± 0.399.48± 0.39
BigFish 3.82± 1.98 5.5± 0.41 5.99± 0.645.99± 0.645.99± 0.64
Climber 6.14± 0.50 2.6± 0.4 6.29± 0.54
Dodgeball 3.71± 0.55 4.58± 0.474.58± 0.474.58± 0.47 3.84± 0.56
Plunder 7.78± 1.747.78± 1.747.78± 1.74 4.2± 0.2 6.91± 1.00
Ninja 6.94± 0.30 4.9± 0.8 6.75± 6.756.75± 6.756.75± 6.75
CaveFlyer 6.19± 0.66 2.6± 0.2 6.36± 0.496.36± 0.496.36± 0.49

Table 9: Test score of ProcGen environments trained on 200 instances for 50M environment steps.
We compare our algorithm to the baselines LEEP and PPO. The mean and standard deviation are
computed over 8 runs with different seeds.

F Ablation Study

In the following sections, we provide ablation studies of an ExpGen variant that combines random
actions and an evaluation of L0 state similarity measure.

F.1 Ensemble Combined with Random Actions

We compare the proposed approach to a variant of ExpGen denoted by Ensemble+random where
we train an ensemble and at test time select a random action if the ensemble networks fail to reach a
consensus. The results are shown in Table 10, indicating that selecting the maximum entropy policy
upon ensemble disagreements yields superior results.
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Algorithm Train Test
ExpGen 9.6± 0.29.6± 0.29.6± 0.2 8.2± 0.18.2± 0.18.2± 0.1
Ensemble + random 9.3± 0.1 6.2± 0.2
LEEP 9.4± 0.3 6.6± 0.2
PPO + GRU 9.5± 0.2 5.4± 0.3
PPO 9.1± 0.2 5.6± 0.1

Table 10: Ablation study of ExpGen on Maze. The table shows testing scores of networks trained on
200 maze instances. We present a comparison between the proposed approach and LEEP, PPO+GRU
and PPO, as well as an alternative ensemble policy with random actions upon ensemble disagreement.
The mean and standard deviation are computed using 10 runs with different seeds.

F.2 Evaluation of Various Similarity Measures for maxEnt

Tables 11 and 12 present the results of our evaluation of ExpGen equipped with a maxEnt exploration
policy that uses either the L0 or L2 norms. The experiment targets the Maze and Heist environments
and uses the same train and test procedures as in the main paper (25M training steps, score mean and
standard deviation are measured over 10 seeds).

Game ExpGen L0 (Train) ExpGen L2 (Train) PPO (Train)

Heist 9.4± 0.39.4± 0.39.4± 0.3 9.4± 0.19.4± 0.19.4± 0.1 6.1± 0.8
Maze 9.6± 0.29.6± 0.29.6± 0.2 9.6± 0.19.6± 0.19.6± 0.1 9.1± 0.2

Table 11: Train scores of ExpGen using maxEnt policy with either L0 or L2 compared with PPO.
The mean and standard deviation are measured over 10 seeds.

Game ExpGen L0 (Test) ExpGen L2 (Test) PPO (Test)

Heist 7.4± 0.17.4± 0.17.4± 0.1 7.4± 0.27.4± 0.27.4± 0.2 2.4± 0.5
Maze 8.2± 0.18.2± 0.18.2± 0.1 8.3± 0.28.3± 0.28.3± 0.2 5.6± 0.1

Table 12: Test scores of ExpGen using maxEnt policy with either L0 or L2 compared with PPO. The
mean and standard deviation are measured over 10 seeds.

The results demonstrate that both L2 and L0 allow ExpGen to surpass the PPO baseline for Maze
and Heist environments, in which they perform similarly well at test time. This indicates that both
are valid measures of state similarity for the maxEnt policy.

G Sample Complexity

One may wonder whether the leading approaches would benefit from training on additional environ-
ment steps. A trained agent can still fail at test time either due to poor generalization performance
(overfitting on a small number of training domains) or due to insufficient training steps of the policy
(underfitting). In this work, we are interested in the former and design our experiments such that no
method underfits. Figure 13 shows IDAAC training for 100M steps on Maze and Jumper, illustrating
that the best test performance is obtained at around 25M steps, and training for longer does not
contribute further (and can even degrade performance). Therefore, although ExpGen requires more
environment steps (on account of training its ensemble of constituent reward policies), training for
longer does not place our baseline (IDAAC) at any sort of a disadvantage.
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Figure 13: The mean and median of the accumulated reward for IDAAC trained for 100M steps,
averaged over 10 runs with different seeds. The curves show that test-reward stagnates and even
decreases beyond 25M steps.
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