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Abstract

We study the Pareto frontier of two archetypal objectives in multi-armed bandits, namely,
regret minimization (RM) and best arm identification (BAI) with a fixed horizon. It is folklore
that the balance between exploitation and exploration is crucial for both RM and BAI, but
exploration is more critical in achieving the optimal performance for the latter objective.
To this end, we design and analyze the BoBW-lil’UCB(γ) algorithm. Complementarily,
by establishing lower bounds on the regret achievable by any algorithm with a given BAI
failure probability, we show that (i) no algorithm can simultaneously perform optimally for
both the RM and BAI objectives, and (ii) BoBW-lil’UCB(γ) achieves order-wise optimal
performance for RM or BAI under different values of γ. Our work elucidates the trade-off
more precisely by showing how the constants in previous works depend on certain hardness
parameters. Finally, we show that BoBW-lil’UCB outperforms a close competitor UCBα

(Degenne et al., 2019) in terms of the time complexity and the regret on diverse datasets
such as MovieLens and Published Kinase Inhibitor Set.

1 Introduction

Consider a drug company Dandit (Drug Bandit) that wants to design an effective vaccine for a certain virus.
It has a certain number of feasible options, say L = 10. Because Dandit has a limited budget, it can only
test vaccines for a fixed number of times, say T = 1, 000. Using the limited number of tests, it wants to
find the option that will lead to the “best” outcome, e.g., the maximum efficacy of the drug. At the same
time, Dandit aims to protect individuals from potentially adverse side effects of the vaccines to be tested.
How can Dandit find the optimal drug design and, at the same time, protect the health of participants? We
design an algorithm BoBW-lil’UCB that allows Dandit to balance between these two competing targets. In
complement, we also show that it is impossible for Dandit to achieve optimal performances for both targets
simultaneously, and Dandit has to settle for operating on the Pareto frontier of the two objectives.

To solve Dandit’s problem, we study the Cumulative Regret Minimization (RM) and Best Arm Identification
(BAI) problems for stochastic bandits with a fixed time horizon or budget. While most existing works only
study one of these two targets (Auer et al., 2002a; Audibert & Bubeck, 2010), Degenne et al. (2019) designed

1

https://openreview.net/forum?id=XXfEmIMJDm


Published in Transactions on Machine Learning Research (09/2023)

the UCBα algorithm for both RM and BAI with a fixed confidence. Therefore, these studies are not directly
applicable to Dandit’s problem as Dandit is interested in obtaining the optimal item and minimizing the
damage across a fixed number of tests. However, our setting dovetails neatly with company Dandit’s goals.
Dandit can utilize our algorithm to sequentially and adaptively select different design options to test the
vaccines and to eventually balance between choosing the optimal vaccine and, in the process, mitigating any
physical damage on the participants. We also show that Dandit cannot achieve both targets optimally and
simultaneously.

Beyond any specific applications, we believe this problem is of fundamental theoretical importance in the
broad context of multi-armed bandits (MAB). In order to design an efficient bandit algorithm, a well-known
challenge is to balance between exploitation and exploration (Auer et al., 2002a; Lattimore & Szepesvári,
2020; Kaufmann & Garivier, 2017). Our work quantifies the Pareto frontier of RM and BAI, as well as the
effects of exploitation and exploration on these two aims.

Main contributions. In stochastic bandits, there are L items with different unknown reward distributions.
At each time step, a random reward is generated from each item’s distribution. Based on the previous
observations, a learning agent selects an item and observes its reward. Given the number of time steps T ∈ N,
the agent aims to maximize the cumulative rewards and to identify the optimal item with high probability.

Our first main contribution is the BoBW-lil’UCB(γ) algorithm. BoBW-lil’UCB(γ) is designed for both
RM and BAI over a fixed time horizon, which achieves Pareto-optimality of RM and BAI in some regimes.
(i) On one hand, we can shrink the confidence radius of each item by increasing γ, which encourages BoBW-

lil’UCB(γ) to pull items with high empirical mean rewards (exploitation) and generally leads to high
rewards (i.e., small regret).

(ii) On the other hand, we can enlarge the confidence radius by decreasing γ to encourage the exploration of
items that have not been sufficiently pulled in previous time steps (exploration); this will result in a high
BAI success probability.

The parameter γ in BoBW-lil’UCB(γ) can be tuned such that either its cumulative regret or its failure
probability almost matches the corresponding state-of-the-art lower bound (Lai & Robbins, 1985; Carpentier
& Locatelli, 2016). The performance of BoBW-lil’UCB(γ) implies that exploitation is more critical in
achieving the optimal performance for RM, while exploration is more crucial for BAI in stochastic bandits.
We also analyze the Exp3.P algorithm proposed by Auer et al. (2002b) for both RM and BAI, which indicates
the similar trade-off between these two aims in adversarial bandits.

Moreover, we evaluate the Pareto frontier of RM and BAI theoretically. In Lattimore & Szepesvári (2020),
Note 33.2 and Exercise 33.5 only explore the sub-optimality for BAI of an asymptotically-optimal RM
algorithm, and provide asymptotic bounds with constant ε (See Section 3 for the meaning of ε). Our work
goes beyond the asymptotic regimes in that observation, by exploring the Pareto frontier of RM and BAI
for any algorithm in Theorems 5.1 and 5.3 in the finite horizon / budget setting. Our non-asymptotic
bounds quantify how the trade-off between regret and BAI probability depends on the hardness quantity
H2 and gap parameter ∆1,i’s of an instance (see definitions in Section 2), instead of fixed constants such as ε
(Lattimore & Szepesvári, 2020). Another relevant work is Bubeck et al. (2009), which explores the trade-off
between cumulative regret and simple regret.1 Due to the relation between BAI and simple regret, our results
precisely quantify the values of constants C and D in Bubeck et al. (2009) (see Section 5 for details). While
these two works focus on the stochastic bandits, we also analyze the Pareto frontier between RM and BAI in
adversarial bandits in Appendix B.

Furthermore, BoBW-lil’UCB(γ) empirically outperforms a close competitor UCBα (Degenne et al., 2019)
in difficult scenarios in which the differences between the optimal and suboptimal items are small. While
both algorithms identify the optimal item with high probability, UCBα, designed for the fixed-confidence
case, requires a longer horizon to do so and also suffers from larger regret. This demonstrates the superiority
of BoBW-lil’UCB(γ) under the fixed-budget setting, which it is specifically designed for.

Novelty. (i) We are the first to design an algorithm for both RM and BAI with a fixed budget. We can
adjust the proposed BoBW-lil’UCB(γ) algorithm to perform (near-)optimally for both RM and BAI with

1When there is no ambiguity, we abbreviate “cumulative regret” as “regret”.
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proper choices of γ. (ii) The performance of BoBW-lil’UCB(γ) implies that exploitation is more crucial
to obtain a small regret, while exploration is more critical to shrink the BAI failure probability. (iii) We
quantify the Pareto frontier of RM and BAI. We show that it is inevitable for any algorithm to compromise
between RM and BAI in a fixed horizon setting. Beyond the stochastic bandits, we also provide a preliminary
study on the adversarial bandits.

Literature review. Both the RM and BAI problems have been studied extensively for stochastic multi-armed
bandits. Firstly, an RM algorithm aims to maximize its cumulative rewards, i.e., to minimize its regret (the
gap between the highest cumulative rewards and the obtained rewards). One line of seminal works on RM
involve the class of Upper Confidence Bound (UCB) algorithms (Auer et al., 2002a; Garivier & Cappé, 2011),
while another line of works study Thompson sampling (TS) algorithms (Agrawal & Goyal, 2012; Russo &
Van Roy, 2014; Agrawal & Goyal, 2017). Lai & Robbins (1985) derived a lower bound on the regret of any
online algorithm.

Secondly, there are two complementary settings for BAI: (i) given T ∈ N, the agent aims to maximize the
probability of finding the optimal item in at most T steps (Audibert & Bubeck, 2010; Karnin et al., 2013;
Zhong et al., 2021a); (ii) given δ > 0, the agent aims to find the optimal item with the probability of at least
1 − δ in the smallest number of time steps (Bubeck et al., 2013; Kaufmann & Kalyanakrishnan, 2013). These
two settings are known as the fixed-budget and fixed-confidence settings respectively. Moreover, Kaufmann
et al. (2016) presented theoretical findings for both settings, including a lower bound for two-armed bandits
and a lower bound for multi-armed Gaussian bandits under the fixed-budget setting. Carpentier & Locatelli
(2016) established a lower bound on the failure probability of any algorithm in a fixed time horizon.

While most existing works focus solely on RM or BAI, Degenne et al. (2019) explored both goals with
a fixed confidence and proposed the UCBα algorithm. Recently Kim et al. (2023) also focused on the
fixed-confidence setting and studied the trade-off between RM and Pareto Front Identification (PFI) in linear
bandits; PFI is a generalization of BAI since in this setting each arm has a vector reward instead of a scalar
one. Simchi-Levi & Wang (2023) provided a novel definition of Pareto Optimality and aimed to solve a
corresponding minimax multi-objective optimization problem, which has a different focus from this work.
To the best of our knowledge, there is no existing analysis of a single, unified algorithm for both RM and
BAI given a fixed horizon. Our work fills in this gap by proposing the BoBW-lil’UCB(γ) algorithm and
proving that it achieves Pareto-optimality in some regimes. We also study the Pareto frontier of RM and
BAI, which depends on the balance between exploitation and exploration. We show that a single algorithm
cannot perform optimally for both RM and BAI simultaneously.

2 Problem Setup

For any n ∈ N, we denote the set {1, . . . , n} as [n]. Let there be L ∈ N ground items, contained in [L].
A random variable X (or its distribution) is σ-sub-Gaussian (σ-SG) if E[eλ(X−EX)] ≤ exp(λ2σ2/2). Each
item i ∈ [L] is associated with a σ-SG reward distribution νi, mean wi, and variance σ2

i . The distributions
{νi}i∈[L], means {wi}i∈[L], and variances {σ2

i }i∈[L] are unknown to the agent. We let {gi,t}T
t=1 be the i.i.d.

sequence of rewards associated with item i during the T time steps; each gi,t is an independent sample
from νi.

We focus on stochastic instances with a unique item having the highest mean reward, and assume that
w1 > w2 ≥ . . . ≥ wL, so the unique optimal item i∗ = 1. Note that the items can, in general, be arranged in
any order; the ordering that wi ≥ wj for i < j is employed to ease our discussion. We denote ∆1,i := w1 −wi

as the optimality gap of item i, and assume ∆1,i ≤ 1 for all i ∈ [L]; this can be achieved by rescaling the
instance if necessary. We define the minimal optimality gap

∆ := min
i̸=1

∆1,i.

Clearly, ∆ > 0. We characterize the hardness of an instance with the following canonical quantities:

H1 :=
∑
i ̸=1

1
∆1,i

and H2 :=
∑
i ̸=1

1
∆2

1,i

. (2.1)
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The hardness quantity H1 is involved in some near-optimal regret bounds (Auer et al., 2002a; Agrawal &
Goyal, 2012). The quantity H2 was first introduced in Audibert & Bubeck (2010) and appears in many
landmark works on BAI (Jamieson et al., 2014; Karnin et al., 2013; Carpentier & Locatelli, 2016).

The agent uses an online algorithm π to decide the item iπt to pull at each time step t, and the item iπ,T
out to

output eventually. More formally, an algorithm consists of a tuple π :=((πt)T
t=1, ψ

π,T
T ), where

• the sampling rule πt determines, based on the observation history, the item iπt to pull at time step t. That
is, the random variable iπt is Ft−1-measurable, where Ft := σ(iπ1 , giπ

1 ,1, . . . , i
π
t , giπ

t ,t);
• the recommendation rule ψπ,T

T chooses an item iπ,T
out , that is, by definition, FT -measurable.

Moreover, we define the pseudo-regret RT of π as

RT (π) : = max
1≤i≤L

E

[
T∑

t=1
gi,t

]
− E

[
T∑

t=1
giπ

t ,t

]
= T · w1 − E

[
T∑

t=1
wiπ

t

]
.

The algorithm π aims to both minimize the pseudo-regret RT (π) and at the same time, to identify the optimal
item with high probability, i.e., to minimize the failure probability eT (π) := Pr(iπ,T

out ̸= 1). We omit T and /
or π in the superscript or subscript when there is no cause of confusion. We write RT (π) as RT (π, I), eT (π)
as eT (π, I) when we wish to emphasize their dependence on both the algorithm π and the instance I.

3 Discussion on Existing Algorithms

Although there is no existing work that analyzes a single algorithm for both RM and BAI in a fixed horizon,
it is natural to ask if an algorithm which is originally designed for RM can also perform well for BAI, and
vice versa. In Table 3.1, we present the theoretical results from some existing works. We focus on algorithms
that are with (potential) theoretical guarantees for both RM and BAI. We define

H ′
p := max

i ̸=1

ip

∆2
i

and Cp := 2−p +
L∑

r=2
r−p

for p > 0 as in Shahrampour et al. (2017). We abbreviate Sequential Halving as SH, Nonlinear
Sequential Elimination with parameter p as NSE(p), and UCB-E with parameter a as UCB-E(a). Also
see Appendix A for more discussions.

Table 3.1: Comparison among upper bounds for algorithms and lower bounds in stochastic bandits.
Algorithm/Instance Pseudo-regret RT Failure Probability eT References

SH Θ(T ) ≈ exp
(

− T

8H2 log2 L

)
Karnin et al. (2013)

NSE(p) Θ(T ) ≈ exp
(

− 2(T − L)
H ′

pCp

)
Shahrampour et al. (2017)

UCB-E(α log T ) 6.3α2H1 log T
2LT 1−2α/25

Corollary A.1, Audibert & Bubeck (2010)
(when α log T ≤ 25(T −L)

36H2
)

BoBW-lil’UCB(γ)
H1 log T (Prob-dep) ≈ L exp

(
− T −L

144H2

)
Theorems 4.1 and 4.2

√
TL log T (Prob-indep) (when γ ≥ γ1(∆, H2))

Stochastic Bandits
≈ 4H1 log T 1

6 exp
(

− 400T
H2 logL

)
Lai & Robbins (1985); Carpentier & Locatelli (2016)

(Lower Bound)

According to the discussions on RM and BAI in Lattimore & Szepesvári (2020), any algorithm with an
asymptotically optimal regret would incur a failure probability lower bounded by Ω(T−1); this is much larger

4



Published in Transactions on Machine Learning Research (09/2023)

than the state-of-the-art lower bound Ω(exp(−400T/(H2 logL))) by Carpentier & Locatelli (2016). Therefore,
we only include algorithms that were designed for BAI in Table 3.1.

Among the various BAI algorithms, SH and NSE(p) perform almost the best. However, their bounds on the
failure probabilities are incomparable in general. The comparison among more BAI algorithms is provided in
Table A.1. Due to the designs of SH and NSE(p), we surmise their regrets grow linearly with T , which is
vacuous for the RM task.

Although UCB-E(α log T ) has upper bounds on both pseudo-regret and failure probability, its bound on the
latter, which decays only polynomially fast with T when α is an absolute constant, is clearly suboptimal vis-
à-vis the state-of-the-art lower bound by Carpentier & Locatelli (2016). In order to achieve an exponentially
decaying upper bound on eT (i.e., exp(−Θ(T ))), we need to set α = O(T/ log T ), and hence the regret bound
(see Corollary A.1 in the supplementary) will be O(T 2/ log T ), which is vacuous.

The discussion above raises a natural question. Is it possible to provide a non-trivial bound on the regret for an
algorithm that performs optimally for BAI over a fixed horizon? This motivates us to design BoBW-lil’UCB,
which can be tuned to perform near-optimally for both RM and BAI.

4 The BoBW-lil’UCB Algorithm

We design and analyze BoBW-lil’UCB(γ) (Best of Both Worlds-Law of Iterated Logs-UCB), an
algorithm for both RM and BAI in a fixed horizon. By choosing parameter γ judiciously, the guarantees of
BoBW-lil’UCB(γ) match those of the state-of-the-art algorithms for both RM (up to log factors) and BAI
(concerning the exponential term).

Algorithm 1 BoBW-lil’UCB(γ)
1: Input: time budget T , size of ground set of items L, scale σ > 0, ε ∈ (0, 1), β ≥ 0, and γ ∈ (0, 1).
2: Sample it = i for t = 1, . . . , L and set t = L.
3: For all i ∈ [L], compute Ni,L, ĝi,L, Ci,L,γ , Ui,L,γ :

Ni,t =
t∑

u=1
1{iu = i}, ĝi,t =

∑t
u=1 gi,t · 1{iu = i}

Ni,t
,

Ci,t,γ = 5σ(1 +
√
ε)

√
2(1 + ε)
Ni,t

· log
( log(β + (1 + ε)Ni,t)

γ

)
, Ui,t,γ = ĝi,t + Ci,t,γ .

4: for t = L+ 1, . . . , T do
5: Pull item it = arg max

i∈[L]
Ui,t−1,γ .

6: Update Nit,t, ĝit,t, Cit,t,γ , and Uit,t,γ .
7: end for
8: Output iout = arg maxi∈[L] ĝi,T .

Design of algorithm. We design BoBW-lil’UCB in the spirit of the law of the iterated logarithm
(LIL) (Darling & Robbins, 1967; Jamieson et al., 2014). We remark that it is a variation of the lil’UCB
algorithm proposed by Jamieson et al. (2014). The three differences are:
(i) to construct the confidence radius Ci,t,γ , we replace (1 + β) and δ in lil’UCB by 5 and γ in BoBW-

lil’UCB(γ) respectively;
(ii) in the design of Ci,t,γ , we also replace log((1 + ε)Ni,t) by log(β + (1 + ε)Ni,t);
(iii) BoBW-lil’UCB(γ), which is designed for both RM and BAI in a fixed horizon, involves no stopping

rule since it proceeds for exactly T time steps; while lil’UCB is designed for BAI with a fixed confidence.
Although our algorithm depends on the choices of ε, β, and γ, we term it as BoBW-lil’UCB(γ) instead of
the more verbose BoBW-lil’UCB(ε, β, γ) because we scale the confidence radius by only varying γ which
adjusts the performance of the algorithm. More precisely, inspired by the LIL (see Theorem C.1), we design
item i’s confidence radius Ci,t,γ with Ni,t (the number of time steps when item i is pulled up to and including
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the tth time step) and ĝi,t (the empirical mean of item i at time step t), and its upper confidence bound Ui,t,γ

accordingly.

The design of BoBW-lil’UCB(γ) allows us to shrink Ci,t,γ , the confidence radius of each item i, by increasing
γ; and vice versa. Moreover, with a fixed γ, if item i is rarely pulled in previous time steps, it has a small
Ni,t and hence a large Ci,t,γ ; and vice versa.
(i) Therefore, when γ increases, the dominant term in Ui,t,γ = ĝi,t + Ci,t,γ becomes the empirical mean ĝi,t.

Since BoBW-lil’UCB pulls the item with the largest Ui,t−1,γ at time step t, the algorithm tends to pull
the item with the largest empirical mean in this case. In other words, a large γ encourages exploitation.

(ii) When γ decreases, the confidence radius Ci,t,γ dominates Ui,t,γ . Consequently, BoBW-lil’UCB is likely
to pull items with large Ci,t,γ , i.e., the rarely pulled items with small Ni,t. This indicates that a small γ
encourages exploration.

Altogether, we can scale Ui,t,γ by adjusting γ, which allows us to balance exploitation and exploration and
trade-off between the twin objectives — RM and BAI.

Analysis for RM. We first derive problem-dependent and problem-independent bounds on the pseudo-regret
of BoBW-lil’UCB(γ).
Theorem 4.1 (Bounds on the pseudo-regret of BoBW-lil’UCB). Let ε ∈ (0, 1), β ≥ 0, and γ ∈
(0,min{log(β + 1 + ε)/e, 1}). For all T ≥ 1, the pseudo-regret of BoBW-lil’UCB(γ) satisfies

RT ≤O

(
σ2 ·

∑
i̸=1

log(1/γ)
∆1,i

+ 2TLγ1+ε

)
, RT ≤O

(
σ2

√
TL log

(
log(T/Lγ)

γ

)
+ 2TLγ1+ε

)
.

Furthermore, we can set γ = (log T )/T to obtain

RT ≤ O

(
σ2 ·

∑
i ̸=1

log T
∆1,i

)
, RT ≤ O

(
σ2

√
TL log T

)
.

We observe that the order of the problem-dependent upper bound on the pseudo-regret of BoBW-
lil’UCB((log T )/T ) almost matches that of the lower bound (Lai & Robbins, 1985). Moreover, the worst-case
(problem-independent) upper bound of BoBW-lil’UCB((log T )/T ) is Õ(

√
TL), which matches the lower

bound O(
√
TL) (Bubeck et al., 2012) up to log factors. This implies that we can tune the parameter γ in the

BoBW-lil’UCB(γ) algorithm to obtain close-to-optimal performance for RM.

We remark that when the optimal item is not unique, we can also derive analogous upper bounds on the
pseudo-regret of BoBW-lil’UCB(γ) using a similar line of analysis (see Proposition D.1).

Analysis for BAI. Next, we upper bound the failure probability of BoBW-lil’UCB(γ).
Theorem 4.2 (Bounds on the failure probability of BoBW-lil’UCB). Let ε ∈ (0, 1), β ≥ 0, and γ ∈
(0,min{log(β + 1 + ε)/e, 1}). Let ∆i = max{∆,∆1,i} for all i ∈ [L]. For all T ≥ 1, the failure probability of
BoBW-lil’UCB(γ) satisfies

eT ≤ 2L(2+ε)
ε

(
γ

log(1+ε)

)1+ε

, if T −L
(1+ε)3 ≥

L∑
i=1

72σ2

∆2
i

· log
(

2.8
γ2 log

(
11σ(1+ε)2

∆i
+β
))
. (4.1)

In particular, the bound on eT in (4.1) holds when γ ≥ γ1(∆, H2), where

γ1(∆, H2) =

√
2.8 log

(
6
√

2.8σ(1 + ε)2

∆ + β

)
· exp

(
− T − L

144σ2(1 + ε)3(H2 + ∆−2)

)
.

For all T ≥ 1, when γ assumes its lower bound γ1(∆, H2), we have

eT ≤ Õ

(
L exp

(
− T − L

144σ2(1 + ε)2(H2 + ∆−2)

))
. (4.2)

When T ≫ L, the gap between our upper bound in (4.2) and Ω(exp(−400T/(H2 logL))), the state-of-the-art
lower bound (Carpentier & Locatelli, 2016), is manifested by the (pre-exponential) term L as well as the
constant in the exponent. This indicates that BoBW-lil’UCB(γ) can be adjusted to perform near-optimally
for BAI over a fixed horizon.
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Further observation. As discussed earlier, BoBW-lil’UCB(γ) encourages more exploitation than
exploration when γ is large (e.g. γ = (log T )/T ) and it stimulates more exploration when γ is small (e.g.
γ = γ1(∆, H2)). Besides, Theorems 4.1 and 4.2 imply that the pseudo-regret of BoBW-lil’UCB(γ) decreases
with γ while its failure probability increases with γ. Therefore, to minimize the regret, we should increase γ
to stimulate exploitation; and we should decrease γ to encourage exploration for obtaining a small failure
probability. This indicates that an optimal RM algorithm encourages more exploitation compared to an
optimal BAI one, and vice versa.

5 Pareto Frontier of RM and BAI

Theorems 4.1 and 4.2 together suggest that BoBW-lil’UCB(γ) cannot perform optimally for both RM and
BAI simultaneously with a universal (or single) choice of γ. In this section, we prove that no algorithm can
perform optimally for these two objectives simultaneously. Given a certain failure probability of an algorithm,
our goal is to establish a non-trivial lower bound on its pseudo-regret.

We first consider bandit instances in which items have bounded rewards. Let B1(∆, R) denote the set of
stochastic instances where (i) the minimal optimality gap ∆ ≥ ∆; and (ii) there exists R0 ∈ R such that
the rewards are bounded in [R0, R0 + R]. Let B2(∆, R,H2) denote the set of instances that (i) belong to
B1(∆, R), and (ii) have hardness quantities H2 ≤ H2.
Theorem 5.1. Let ϕT ,∆, R,H2 > 0. Let π be any algorithm with eT (π, I) ≤ exp(−ϕT )/4 for all I ∈
B1(∆, R). Then

sup
I∈B1(∆,R)

RT (π, I) ≥ ϕT · (L− 1)R
8∆ , sup

I∈B2(∆,R,H2)
RT (π, I) ≥ ϕT · ∆H2R

3

8 .

In Theorem 5.1, we apply the bounds R0 and R0 + R on items’ rewards to classify instances. In general,
∆H2 ≤ (L − 1)/∆ holds for any instance, and equality holds when ∆1,i = ∆ for all i ̸= 1. Therefore,
B1(∆, R) = B2(∆, R, (L− 1)/(∆2)). When R > 1, the analysis for the set B2(∆, R, (L− 1)/(∆2)) provides a
better bound (higher lower bound) for the set B1(∆, R).

Our non-asymptotic bounds complete the asymptotic observation on the trade-off between regret and BAI
in Lattimore & Szepesvári (2020) and quantify how the trade-off depends on the hardness quantity H2
and gap ∆1,i’s of an instance, instead of fixed constants such as ε. Another relevant work is Bubeck et al.
(2009). On one hand, Bubeck et al. (2009) explores the trade-off between the cumulative regret RT and the
simple regret rT and shows that any algorithm with RT ≤ Cψ(T ) satisfies rT ≥ ∆ exp(−Dψ(T ))/2 in some
instance. On the other hand, our work studies the Pareto frontier of RT and the BAI failure probability eT .
Since eT and rT satisfy that ∆ · eT ≤ rT ≤ eT , our Theorem 5.1 indicates that
Corollary 5.2. Let ϕT ,∆ > 0. Let π be any algorithm satisfying

sup
I∈B1(∆,1)

RT (π, I) ≤ ϕT · L− 1
8∆ ,

then eT ≥ exp(−ϕT )/4 and rT ≥ ∆ exp(−ϕT )/4.

In view of Corollary 5.2, we have precisely quantified that C = (L− 1)/(8∆) and D = 1 in the work of Bubeck
et al. (2009).

Furthermore, we establish a similar analysis for instances in which the variance of each item’s reward
distribution is bounded. Let B′

1(∆, V ) denote the set of instances where (i) the minimal optimality gap
∆ ≥ ∆; (ii) for each item i, the variance σ2

i ≤ V . Let B′
2(∆, V ,H2) denote the set of instances (i) that belong

to B′
1(∆, V ), and (ii) have hardness quantities H2 ≤ H2. The key difference between the proofs of these two

theorems lies in the design of hard instances. We elaborate on the details in Appendix E.
Theorem 5.3. Let ϕT ,∆, V ,H2 > 0. Let π be any algorithm with eT (π, I) ≤ exp(−ϕT )/4 for all I ∈
B′

1(∆, V ). Then

sup
I∈B′

1(∆,V )
RT (π, I) ≥ ϕT · (L− 1)V

2∆ , sup
I∈B′

2(∆,V ,H2)
RT (π, I) ≥ ϕT · ∆H2V

2 .
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By characterizing stochastic rewards with different statistics, Theorems 5.1 and 5.3 provide different lower
bounds on the pseudo-regret. We observe that when the rewards of items are bounded in [R0, R0 +R] for
some R0 ∈ R, the variances of the rewards are bounded by R2

/4. Therefore,

B1(∆, R) ⊂ B′
1

(
∆, R

2

4

)
, B2(∆, R,H2) ⊂ B′

2

(
∆, R

2

4 , H2

)
.

Besides, it is clear that

B1(∆, R), B2(∆, R, h), B′
2

(
∆, R

2

4 , h

)
⊂ B′

1

(
∆, R

2

4

)
.

Due to the relationship among these four sets of instances, we let π be an algorithm with eT (π, I) ≤
exp(−ϕT )/4 in any instance of B′

1(∆, R2
/4), and compare the derived lower bounds on its pseudo-regret

RT (π, I) in Table 5.1. Table 5.1 indicates that

• when the bound for B1(∆, R) (second column of Table 5.1) holds for B′
1(∆, R2

/4), the quantities L and
∆ are of the same order in the bounds derived for B1(∆, R) and B′

1(∆, R2
/4) respectively;

• similarly, when the bound for B2(∆, R,H2) (third column) holds for B′
2(∆, R2

/4, H2), the quantities L
and ∆ are of the same order in the bounds for B2(∆, R,H2) and B′

2(∆, R2
/4, H2).

Table 5.1: Lower bounds on RT when eT ≤ e−ϕT /4.
Instance Set B1(∆, R) B2(∆, R,H2) B′

1(∆, R2
/4) B′

2(∆, R2
/4, H2)

Bound on RT ϕT · (L−1)R/(8∆) ϕT · ∆H2R
3
/8 ϕT · (L−1)R2

/(8∆) ϕT · ∆H2R
2
/8

Moreover, when R > 1, we can apply the analysis of B2(∆, R,H2) to obtain a better bound (higher lower
bound) for B′

2(∆, R2
/4, H2).

In any set of instances studied in Theorems 5.1 or 5.3,
• when ϕT linearly grows with T , which is typical in the bounds on eT (Karnin et al., 2013; Carpentier &

Locatelli, 2016), the corresponding bound on RT grows linearly with T (vacuous);
• when the bound on RT grows with log T as in Garivier & Cappé (2011) and Lai & Robbins (1985), ϕT

grows logarithmically with T (i.e., the failure probability only decays polynomially).
Thus, we cannot achieve optimal performances for both RM and BAI using any algorithm with fixed
parameters. Alternatively, we can apply BoBW-lil’UCB(γ) to achieve the best of both objectives with
proper choices of the single parameter γ.

When the time horizon T is sufficiently large, an optimal or near-optimal RM algorithm, i.e., an algoirthm
that achieves the optimal regret with order O(log T/∆), usually pulls the optimal item T − o(T ) times and
all the suboptimal items for O(log T/(∆2)) times; a good BAI algorithm usually focuses on the best and the
second best items and pulls them for roughly the same number of times to distinguish between them. This
implies that the proportion of item pulls in an order-wise optimal RM algorithm, such as UCB1, is vastly
different from the optimal proportion of item pulls in an BAI algorithm. Hence, a bandit algorithm that is
tailored to the regret minimization task, is unlikely to yield a low failure probability eT , i.e., one that has a
hardness parameter in the exponent close to H2.

Tightness of the upper and lower bounds. We compare the upper and lower bounds on the pseudo-regret
of BoBW-lil’UCB(γ) when the horizon T → ∞.
Corollary 5.4. Define the interval I(ν, T ) = [γ1(∆, H2),min{log(β + 1 + ε)/e, (log T )/T, 1/L}], which is
a function of the instance ν and the fixed horizon T . When I(ν, T ) ̸= ∅,let π0 denote the online algorithm
BoBW-lil’UCB(γ) with γ satisfying the condition that γ ∈ I(ν, T ). Then

sup
I∈B2(∆,1,H2)

RT (π0, I) ∈ Ω
(

∆H2 log
(

1
γL

))⋂
O

(
L

∆ log
(

1
γ

))
.
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We observe from Corollary 5.4,2 which combines Theorems 4.1, 4.2, and 5.1, that the gap between the
upper and lower bounds depend on the term ∆H2 in the lower bound and L/∆ in the upper bound. As
H2 ≤ (L − 1)∆−2 for any instance, when ∆ = ∆1,i for all i ≠ 1 (all suboptimal items have the same
suboptimality gap), equality holds, and hence the bounds match up to a small additive log(1/L) term.
Corollary 5.4 implies that the parameter γ in BOBW-lil-UCB(γ) is essential in tuning the algorithm such
that it can perform optimally for either RM or BAI. This implies that in some regimes, BOBW-lil-UCB(γ)
achieves Pareto-optimality up to constant or small additive (e.g., log(1/L)) terms.

Besides, to show that there are cases for which I(ν, T ) ̸= ∅, we use several examples here. In the instance
where L = 256, w1 = 0.5, wi = 0.45 for i ̸= 1 and rewards are drawn from Bernoulli distributions, if we let
ε = 0.01, β = e, I(ν, T ) is always non-empty when time horizon T ≥ 106 as shown in Table 5.2.

Table 5.2: Intervals I(ν, T ) under different time horizons T
Time horizon T I(ν, T )
106 [1.85 × 10−7, 1.38 × 10−5]

107 [4.33 × 10−73, 1.61 × 10−6]

108 [0, 1.84 × 10−7]

109 [0, 2.07 × 10−8]

Furthermore, Corollary 5.4 suggests that the lower bound in Theorem 5.1 is almost tight, as it is achieved by
BoBW-lil’UCB(γ). Hence, up to terms logarithmic in the parameters such as L, we have quantified the
Pareto frontier for the trade-off between RM and BAI in stochastic bandits.

6 Numerical Experiments

We numerically compare BoBW-lil’UCB(γ) and UCBα as they are the only algorithms that can be tuned
to perform (near-)optimally for both RM and BAI. Since BoBW-lil’UCB(γ) is designed for the fixed-budget
setting and UCBα is for the fixed-confidence setting, there cannot be a completely fair comparison between
them. However, we attempt to perform fair comparisons as much as possible.

We evaluate the algorithms with both synthetic and real data. For BoBW-lil’UCB(γ), we fix ε = 0.01,
β = e, and vary γ. For UCBα, we vary α. We run BoBW-lil’UCB(γ) for T (fixed in a specific instance)
time steps, when the horizon (stopping time) of UCBα depends on its stopping rule and the instance. Due
to the difference between the fixed-horizon and fixed-confidence settings, the regrets of each algorithm may
be accumulated over different time horizons.

For each choice of algorithm and instance, we run 104 independent trials. Since the empirical failure probability
of BoBW-lil’UCB(γ) is below 1% in each instance (see Table H.1 in Appendix H.1), we set δ = 0.01
for UCBα, which guarantees that the failure probability of UCBα is also below 1%. We also present the
experiment results with empirical failure probabilities below 2% in Appendix H (where we set δ = 0.02 for
UCBα). We focus on the comparison on (i) the time horizon each algorithm runs; and (ii) the regret incurred
over its corresponding horizon. We present the averages and standard deviations of the time horizons and
redthe regrets of each algorithm. More numerical results that reinforce the conclusions herein are presented
in Appendix H.

6.1 Experiments using synthetic data

We set w1 = 0.5, and wi = 0.5 − ∆ for all i ̸= 1. We let Bern(a) denote the Bernoulli distribution with
parameter a. We consider Bernoulli bandits, i.e., νi = Bern(wi). We display some numerical results in
Figure 6.1 ; more results are postponed to Appendix H.3.

2H2 has the same units as L · ∆−2; hence, the terms in Ω(·) and O(·) also have the same units.
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Figure 6.1: Bernoulli instances with L=64, failure probability ≤1%. Left: ∆=0.05; right: ∆=0.1.

Under each instance presented in Figure 6.1, the regret of BoBW-lil’UCB(γ) is reduced when γ grows (see
Table H.3 for exact values), which corroborates with Theorem 4.1. Both the regret and the stopping time
of UCBα grow with α, which corroborates with Degenne et al. (2019, Theorem 3). Moreover, we observe
that the standard deviations of the regrets are larger for UCBα compared to BoBW-lil’UCB(γ), which
suggests that BoBW-lil’UCB(γ) is more statistically robust and consistent in terms of the regret. Note
that a larger ∆ means that the difference between the optimal and suboptimal items is more pronounced,
resulting in an easier instance. Given a fixed horizon T , our BoBW-lil’UCB(γ) algorithm outperforms the
UCBα algorithm with a varying range of parameters γ and α in instances with different values of ∆.

6.2 Experiments on real datasets

We use two real-world datasets, the MovieLens 25M (ML-25M) dataset (Harper & Konstan, 2015) and the
Published Kinase Inhibitor Set 2 (PKIS2) dataset (Drewry et al., 2017), to evaluate the performances of
BoBW-lil’UCB(γ) and UCBα in two types of practical applications, namely, content recommendation
and drug recovery. Similarly as in Zong et al. (2016); Hong et al. (2020); Zhong et al. (2021b); Mason et al.
(2020); Mukherjee et al. (2021), we generate data based on the real-world datasets.

ML-25M dataset. GroupLens Research provides a collection of datasets online,3 including the ML-25M
dataset. These datasets describe the rating activities from MovieLens, a movie recommendation service, and
are widely used to evaluate the performances of bandit algorithms (Zong et al., 2016; Hong et al., 2020; Zhong
et al., 2021b). The ML-25M dataset contains about 25 million ratings across about 62 thousand movies. We
choose movies with a high number of ratings in our simulations. For each selected movie, we compute the
empirical mean rating and generate random ratings according to a standard Gaussian distribution with the
corresponding mean. We aim to obtain cumulatively high ratings (RM) and identify the movie with the
highest rating (BAI); these are standard objectives in online recommendation systems.

PKIS2 dataset. This repository4 tests 641 small molecule compounds (kinase inhibitor) against 406 protein
kinases. This experiment aims to find the most effective inihibitor against a targeted kinase, and is a
fundamental study in cancer drug discovery. The entries in PKIS2 indicate the percentage control of each
inhibitor, which show the effectiveness of inhibitors and follow log-normal distributions (Christmann-Franck
et al., 2016). Accordingly, we generate random variables as in Mason et al. (2020); Mukherjee et al. (2021)
(see Appendix H.4 for details). We aim to find out the most effective inhibitor with the highest percentage
control against one specific kinase MAPKAPK5, and also obtain high percentage controls cumulatively during
the online learning process. Our study may aid in understanding how best to design experimental studies
that aim to identify the most effective inhibitor in a fixed number of tests (BAI in a fixed horizon), as well as
to provide effective inhibitors throughout the course of study (RM).

On the left of Figure 6.2, we report the results of the experiments on the 22 movies with at least 50, 000
ratings from the ML-25M dataset. The other plot in Figure 6.2 considers the effectiveness of 109 inhibitors
test against the MAPKAPK5 kinase in the PKIS2 dataset. Both figures suggest that with high probability,

3https://grouplens.org/datasets/movielens
4Table 4 in https://www.biorxiv.org/content/10.1101/104711v1.supplementary-material.
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Figure 6.2: Empirical failure probability ≤ 1%. Left: ML-25M dataset; right: PKIS2 dataset.

BoBW-lil’UCB(γ) can identify the most popular movie with the highest rating or the most effective
inhibitor against MAPKAPK5 with the highest percentage control within a fixed horizon. UCBα takes
longer to do so, and also suffers from a larger regret. These results from the real-life datasets suggest that
given a fixed horizon T and a wide range of parameters, BoBW-lil’UCB(γ) outperforms UCBα in these
real-life instances, which demonstrates the potential of BoBW-lil’UCB(γ) in practical settings.
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Supplementary Material for
“Achieving the Pareto Frontier of Regret Minimization

and Best Arm Identification in Multi-Armed Bandits”

In Appendix A, we discuss the existing algorithms and relevant theoretical findings in stochastic bandits.
In Appendix B, we (i) study the performance of UP-ADV (Audibert & Bubeck, 2010) and Exp3.P (Auer
et al., 2002b) for both RM and BAI in adversarial bandits, and (ii) provide a lower bound on the BAI failure
probability and the Pareto frontier of RM and BAI in adversarial bandits. In Appendix C, we list the useful
facts that are used in the analysis. In Appendices D to G, we present detailed proofs of our theoretical results.
In Appendix H, more numerical results are provided.

A Detailed discussion on existing algorithms

While most existing works only aim to perform either RM or BAI, Degenne et al. (2019) designed and
analyzed an algorithm called UCBα for both RM and BAI under the fixed-confidence setting. Given any δ,
UCBα aims to minimize the number of time steps τ so that eτ ≤ δ, and, at the same time, the incurred
regret Rτ can also be upper bounded. Therefore, the focus of Degenne et al. (2019) differs from that of
our work. We aim to study the pseudo-regret of an algorithm which can identify the best item with high
probability in a fixed horizon T in this work.

To the best of our knowledge, their is no existing work that analyzes a single algorithm for both RM and
BAI under the fixed-budget setting. However, it is natural to question if an algorithm which is originally
designed for RM can also perform well for BAI, and vice versa. We study some algorithms that are originally
designed to achieve optimal performance for either RM or BAI.

RM. According to the discussions on RM and BAI in Lattimore & Szepesvári (2020) (see the second point in
Note 33.3), for any algorithm with a regret that (nearly) matches the state-of-the-art lower bound (Carpentier
& Locatelli, 2016):

lim inf
T →∞

RT (π)
log T ≥

∑
i ̸=1

∆1,i

KL(νi∥ν1) ,

we can construct two instances I and I ′ with

wI
1 > wI

2 ≥ . . . ≥ wI
L, wI′

i = wI
i + ε(wI

1 − wI
i ), for some ε > 0

such that

eT (π, I) + eT (π, I ′) ≥ Ω(T (1+o(1))(1+ε)2
). (A.1)

This serves as a basic observation on the limitation for BAI of an algorithm that performs (near-)optimally
for RM.

BAI. Audibert & Bubeck (2010) were the first to explore the BAI problem under the fixed-budget setting.
Carpentier & Locatelli (2016) provided a lower bound on the failure probability of any algorithm.

In the spirit of UCB1 (Auer et al., 2002a), Audibert & Bubeck (2010) designed UCB-E for BAI. We let
UCB-E(a) denote the UCB-E algorithm when it is run with parameter a. When T is sufficiently large, we
can upper bound the pseudo-regret of UCB-E(α log T ) (α ≥ 2) with a similar analysis as that for UCB1
(see Proof of Theorem 1 in Auer et al. (2002a)). Besides, we can upper bound its failure probability with
Theorem 1 in Audibert & Bubeck (2010).
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Corollary A.1. Let α > 12.5. Assume that gi,t ∈ [0, 1] for all i ∈ [L], and α log T ≤ 25(T − L)/(36H2).
UCB-E(α log T ) satisfies

RT ≤ 2α2
∑
i ̸=1

(
log T
∆1,i

)
+
(

1 + π2

3

)
·
(∑

i ̸=1
∆1,i

)
,

eT ≤ 2LT (1−2α/25).

When the horizon T grows, Corollary A.1 indicates that the BAI failure probability of UCB-E(α log T )
decays only polynomially fast. In order to achieve the upper bound on eT as exp(−Θ(T )), we need to set
α = O(T/ log T ), and hence the regret bound as shown in Corollary A.1 will be O(T 2/ log T ), which is
vacuous.

A.1 Existing results under the fixed-budget setting of BAI

We abbreviate Sequential Rejects as SR, Sequential Halving as SH, Nonlinear Sequential
Elimination with parameter p as NSE(p). Besides, we simplify the bounds for algorithms which were
initially analyzed for more general problems than identification of the optimal item i∗. we define

H ′
p := max

i̸=1

ip

∆2
i

, Cp := 2−p +
L∑

i=2
i−p

for p > 0 as in Shahrampour et al. (2017). We let UGapEb(a) denote the UGapEb algorithm when it is run
with parameter a. In Table A.1, We present existing bounds from some seminal works. The algorithms are
listed in chronological order.

Table A.1: Comparison under the fixed-budget setting of BAI: upper bounds for algorithms and lower bounds
in stochastic bandits.

Algorithm/Instance Reference Failure probability eT

UCB-E
(

25(T − L)
36H2

)
Audibert & Bubeck (2010) 2TL exp

(
− T − L

18H2

)

SR Audibert & Bubeck (2010) L(L− 1) exp
(

− T − L

(1/2 +
∑L

i=2 1/i)H2

)

UGapEb
(
T − L

16H2

)
Gabillon et al. (2012) 2TL exp

(
− T − L

8H2

)

SAR Bubeck et al. (2013) 2L2 exp
(

− T − L

8(1/2 +
∑L

i=2 1/i)H2

)

SH Karnin et al. (2013) 3 log2 L · exp
(

− T

8H2 log2 L

)

NSE(p) Shahrampour et al. (2017) (L− 1) exp
(

− 2(T − L)
H ′

pCp

)

Stochastic Bandits Carpentier & Locatelli (2016) 1
6 exp

(
− 400T
H2 logL

)
(Lower Bound)

Since SH and NSE pull a number of items “uniformly” in each phase, we surmise the regret grows like Θ(T ).
For instance, there are logL many phases in SH and at least two items are uniformly pulled during each
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phase, so at least one non-optimal item j ̸= 1 is pulled for at least T/(L logL) times, leading to a regret at
least ∆1,j · T/(L logL).

As discussed in Shahrampour et al. (2017), H ′
pCp ≤ H2 logL in some special cases. Therefore, SH is better

than NSE(p) if we disregard the sub-exponential term, while NSE(p) is better in some cases in its dependence
on the exponential term. However, they are incomparable in general.

B Conclusion and Further Discussion on Adversarial Bandits

In Sections 5 and 6, we explore the Pareto frontier of RM and BAI over a fixed horizon in stochastic
bandits. The performance of our BoBW-lil’UCB algorithm sheds light on the different emphases of RM
and BAI. Moreover, we prove that no algorithm can simultaneously perform optimally for both objectives and
BoBW-lil’UCB nearly achieves the Pareto-optimality in some parameter regimes. However, as described
in the discussion after Corollary 5.4, although our BoBW-lil’UCB algorithm nearly achieves the Pareto
frontier, we acknowledge that there remains a small gap log(1/L) which may be closed in the future by
developing another more sophisticated algorithm.

In real-life applications, it may be unrealistic to assume i.i.d. stochastic rewards,meaning that the stochastic
bandit model may not be appropriate. This brings the study of adversarial bandits (Auer et al., 2002b; Abbasi-
Yadkori et al., 2018) to the fore. Here, the rewards of each item are not necessarily drawn independently
from the same distribution. In adversarial bandits, while there exists a lower bound on the regret of any
algorithm (Gerchinovitz & Lattimore, 2016), there is no lower bound on the failure probability for BAI.
We fill this gap by proving a lower bound Ω(exp(−150T∆2)) in Theorem B.3, where ∆ is the minimal gap
between the empirically-optimal items and the other items (see Appendix B.1 for the definitions). This bound
is almost tight as it nearly matches the upper bound of UP-ADV (Abbasi-Yadkori et al., 2018).

Furthermore, there is no existing analysis of a single algorithm that is applicable to both RM and BAI in
adversarial bandits. We fill this gap by studying the performance of Exp3.P(γ, η) (Auer et al., 2002b) for
both targets. Theorems B.1 and B.2 imply that by adjusting Exp3.P(γ, η) with γ, we can balance between
exploitation and exploration, and trade-off between the twin objectives: RM and BAI. Besides, Theorem B.4
implies that no algorithm can simultaneously perform optimally for both objectives in adversarial bandits.
However, since the regret bound of Exp3.P(γ, η) is problem-independent, we cannot ascertain if Exp3.P(γ, η)
achieves the Pareto frontier between RM and BAI. The further study of the Pareto frontier in adversarial
bandits, especially the stochastically constrained adversarial bandits (Zimmert & Seldin, 2021; Wei & Luo,
2018), may serve as an interesting direction for future work.

Outline. In this section, we first formulate the RM and BAI problem in adversarial bandits in Appendix B.1.
Next, we study the performance of UP-ADV (Audibert & Bubeck, 2010) and Exp3.P (Auer et al., 2002b) for
both RM and BAI in Appendix B.2. Subsequently, we provide a lower bound on the BAI failure probability
and the Pareto frontier of RM and BAI in Appendix B.3. We summarize some theoretical findings in
Table B.1.

B.1 Problem setup for adversarial bandits

In an adversarial bandit instance, we let gi,t ∈ [0, 1] be the reward of item i at time t, and let Gi,t :=
∑t

u=1 gi,u

for all 1 ≤ t ≤ T . We define the ∆̄i,j,T , empirical gap between item i and j in [L] and the empirically-optimal
item ī∗T as follows:

∆̄i,j,T := 1
T

· (Gi,t −Gj,t), ī∗T := arg max
1≤i≤L

Gi,T .

Moreover, we define the empirically-minimal optimality gap as

∆̄T := min
j ̸=ī∗

T

∆̄ī∗
T

,j .
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We say an instance is obliviously adversarial5, if {gi,t}i,t is a sequence of rewards obliviously generated by
the instance before online process. We assume the empirically-optimal item ī∗T is unique, which implies that
∆̄min,T > 0.

Moreover, we define the empirical-regret R̄π
T of an online algorithm π (as defined in Section 2) as

R̄π
T := max

1≤i≤L

T∑
t=1

gi,t −
T∑

t=1
giπ

t ,t = GI
ī∗

T
,T −

T∑
t=1

giπ
t ,t.

Recall the definition of pseudo-regret RT (π) in Section 2: if an instance is stochastic, ER̄π
T = Rπ

T ; if it is
adversarial, ER̄π

T ≤ Rπ
T . The aim of the agent is slightly different in stochastic and adversarial bandits:

• if the instance is stochastic, the algorithm π aims to both minimize the pseudo-regret RT (π) and identify
the pseudo-optimal item with high probability, i.e., to minimize eT (π) := Pr(iπ,T

out ̸= i∗T );
• if the instance is adversarial, the algorithm π aims to both minimize the empirical-regret R̄T (π) and

identify the empirically-optimal item with high probability, i.e., to minimize ēT (π) := Pr(iπ,T
out ̸= ī∗T ).

We omit T and/or π in the superscript or subscript when there is no cause of confusion. We write R̄T (π) as
R̄T (π, I), ēT (π) as ēT (π, I) when we wish to emphasize their dependence on both the algorithm π and the
instance I.

B.2 Adversarial algorithms: UP-ADV and Exp3.P

We discuss the theoretical performances of two basic algorithms in this section.

Hence, we take the performance of this basic algorithm as a benchmark to evaluate any algorithm for this
target. Besides, it is clearly that the uniform pull algorithm is the same as Exp3.P algorithm with β = 0,
γ = 1. We see that UP-ADV satisfies that ER̄T ≤ T , which is consistent with Theorem B.2.

The UP-ADV algorithm. First of all, Abbasi-Yadkori et al. (2018) shows that a simple algorithm, which is
termed as UP-ADV and chooses an item based on the uniform distribution at each time step t, satisfies that

ēT ≤ L exp
(

− 3T ∆̄2
T

28L

)
. (B.1)

Abbasi-Yadkori et al. (2018) claimed that UP-ADV performs near-optimally for BAI in adversarial bandits,
which is verified by our Theorem B.3 in the next section. Besides, it is obvious that UP-ADV satisfies
ER̄T ≤ T .

Algorithm 2 Uniform Pull-ADV (UP-ADV) (Abbasi-Yadkori et al., 2018)
1: Input: time budget T , size of ground set of items L.
2: for t = 1, . . . , T do
3: Choose item it ∈ [L] with probability 1/L.
4: Update the estimated cumulative gain G̃i,t =

∑t
u=1 gi,u · I{iu = i}.

5: end for
6: Output iout = arg maxi∈[L] G̃i,T .

The Exp3.P algorithm. After the Exp3 algorithm and its variations were proposed by Auer et al. (2002b)
for RM in adversarial bandits, this class of algorithms has been widely discussed as in Lattimore & Szepesvári
(2020); Bubeck et al. (2012). We present Exp3.P(γ, η) in Algorithm 3.

We first provide the upper bound on the regret of Exp3.P(γ, η). The proof is similar to that in Bubeck et al.
(2012) and is postponed to Appendix F.1

5When there is no ambiguity, we say an instance is adversarial to indicate that it is obliviously adversarial.
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Algorithm 3 Exp3.P(γ, η) (Bubeck et al. (2012), Section 3.3, Fig. 3.1)
1: Input: time budget T , size of ground set of items L, parameters η > 0 and γ ∈ [0, 1].
2: Set p1 be the uniform distribution over [L], i.e., pi,1 = 1/L ∀i ∈ [L].
3: for t = 1, . . . , T do
4: Choose item it ∈ [L] with probability pi,1.
5: Compute the estimated gain for each item

g̃i,t = gi,t · I{it = i}
pi,t

and update the estimated cumulative gain G̃i,t =
∑t

u=1 g̃i,u.
6: Compute the new probability distribution over the items pt+1 = (p1,t+1, . . . , pL,t+1) where

pi,t+1 = (1 − γ) · exp(ηG̃i,t)∑L
ℓ=1 exp(ηG̃ℓ,t)

+ γ

L
.

7: end for
8: Output iout = arg maxi∈[L] G̃i,T .

Theorem B.1 (Bounds on the regret of Exp3.P(γ, η)). Let η > 0, γ ∈ [0, 1/2] satisfying that Lη ≤ γ. Then
we can upper bound the regret of Exp3.P(γ, η) as follows. (i) Fix any given δ ∈ (0, 1), with probability at
least 1 − δ,

R̄T ≤ γT + ηLT + ln
(
L2T

ηδ

)
+ lnL

η
.

(ii) Moreover,

ER̄T ≤ γT + ηLT + ln
(
L2T

η

)
+ lnL

η
+ 1.

We observe that Exp3.P(1, η) is exactly the same as UP-ADV, and the corresponding bound provided in
Theorem B.2 is with the same order as in (B.1) derived by Abbasi-Yadkori et al. (2018). Our upper bound
is even slightly smaller regarding the constants since we apply tighter concentration inequalities. Next, we
upper bound its failure probability to identify the empirically-optimal item ī∗T .
Theorem B.2 (Bound on the failure probability of Exp3.P). Assume G1,T ≥ G2,T ≥ . . . ≥ GL,T . We see
that the optimal item ī∗T = 1. The failure probability of Exp3.P(γ, η) satisfies

ēT ≤ exp
(

−
γT ∆̄2

1,2,T

4L

)
+

L∑
i=2

exp
(

− 3γT (∆̄1,2,T /2 + ∆̄2,i,T )2

L(3 + ∆̄1,2,T /2 + ∆̄2,i,T )

)
≤ L exp

(
− γT ∆̄2

T

4L

)
.

The key idea among the analysis of Theorem B.2 is to derive high-probability one-sided bounds on G̃i,T −Gi,T

for all i ∈ [L] with Theorems C.2 and C.3. The detailed proof is postponed to Appendix F.2.

Theorems B.1 and B.2 imply that by adjusting Exp3.P(γ, η) with γ, we can balance between exploitation
and exploration and trade-off between the twin objectives — RM and BAI. In detail,

• When γ increases, the Exp3.P(γ, η) algorithm tends to bahave more similarly to UP-ADV, which
leads to a larger regret and a smaller failure probability. This indicates that a large γ encourages
exploitation.

• When γ decreases, the Exp3.P(γ, η) algorithm tends to emphasize more on the observation from
previous time steps and pull the items with high empirically means, which leads to a smaller regret
and a larger failure probability. In other words, a small γ encourages exploitation.
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B.3 Global performances of adversarial algorithms

In this section, we first lower bound the failure probability to identify the empirically-optimal item in
adversarial bandits. Next, given a certain failure probability of an algorithm, we establish a non-trivial lower
bound on its empirical-regret. The proofs are in Appendix G.

We consider bandit instances in which items have bounded rewards. Let B̄1(∆T , R̄) denote the set of instances
where (i) the empirically-minimal optimality gap ∆̄T ≥ ∆T in T time steps; and (ii) there exists R0 ∈ R such
the rewards are bounded in [R0, R0 +R]. We focus on B̄1(∆T , 1) for brevity; the analysis can be generalized
for any B̄1(∆T , R̄).

B.3.1 Lower bound on the BAI failure probability in adversarial bandits

Theorem B.3. Let 0 < ∆T ≤ 1. Then any algorithm π satisfies that

sup
B̄1(∆

T
,1)
ēT (π, I) ≥ 1 − exp(−3T/200)

4 · exp
(

− 150T∆2
T

L

)
.

Furthermore, when T ≥ 10,

sup
B̄1(∆T ,1)

ēT (π, I) ≥ 2
65 exp

(
− 150T∆2

T

L

)
.

We construct L instances with clipped Gaussian distributions, which are similar to those designed for the
analysis of lower bound on regret in Gerchinovitz & Lattimore (2016).

Besides, the gap between our lower bound in Theorem B.3 and the upper bounds of UP-ADV/Exp3.P(1, η)
in (B.1) and Theorem B.2 is manifested by the (pre-exponential) term L as well as the constant in the
exponential term. This indicates that UP-ADV/Exp3.P(1, η) perform near-optimally for BAI and our lower
bound in Theorem B.3 is almost tight.

B.3.2 Trade-off between RM and BAI in adversarial bandits

Theorem B.4. Let 0 < ∆T ≤ 1 and T ≥ 10. Let π be any algorithm with ēT (π, I) ≤ 2 exp(−ψT )/65 for all
I ∈ B̄1(∆T , 1). Then

sup
I∈B̄1(∆

T
,1)

ER̄T (π, I) ≥ ψT · L− 1
103∆T

.

Theorem B.4 implies that, as shown for the stochastic bandits (see Theorems 5.1 and 5.3), we cannot achieve
optimal performances for both RM and BAI using any algorithm with fixed parameters in adversarial bandits.
Besides, Theorems B.2 and B.4 indicates that

sup
I∈B̄1(∆T ,1)

ER̄T (Exp3.P(γ, η), I) ≥
(

log
(

2
65

)
+ γT∆2

T

4L

)
· L− 1

103∆T

= Ω(γT ∆̄T ).

However, since the upper bound on the regret of Exp3.P(γ, η) in Theorem B.1 is problem-independent, we
cannot ascertain if the algorithm achieves the Pareto optimality, which may serve as an interesting direction
for future work. Lastly, we summarize some theoretical findings of the adversarial bandits in Table B.1.

C Useful facts

C.1 Concentration

Theorem C.1 (Non-asymptotic law of the iterated logarithm; Jamieson et al. (2014), Lemma 3). Let
X1, X2, . . . be i.i.d. zero-mean sub-Gaussian random variables with scale σ > 0; i.e. E[eλXi ] ≤ exp(λ2σ2/2).
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Table B.1: Comparison among upper bounds for algorithms and lower bounds in adversarial bandits.

Algorithm/Instance Expected empirical-regret ER̄T Failure Probability ēT

UP-ADV
Θ(T ) L exp

(
− 3T ∆̄2

T

28L

)
(Abbasi-Yadkori et al., 2018)

Exp3.P(γ, η)
γT + ηLT + ln

(
L2T

η

)
+ lnL

η
+ 1 L exp

(
− γT ∆̄2

T

4L

)
(Theorem B.1 ) (Theorem B.2)

Adversarial Bandits 2
65 exp

(
− 150T ∆̄2

T

L

)
(Lower Bound, Theorem B.3)

Adversarial Bandits ψT · L− 1
103∆T

2
65 exp(−ψT )

(Lower Bound, Theorem B.4 ) (Theorem B.4)

For all ε ∈ (0, 1) and γ ∈ (0, log(1 + ε)/e), we have

Pr
(

∀τ ≥ 1, 1
τ

τ∑
s=1

Xs ≤ σ(1 +
√
ε)

√
2(1 + ε)

τ
· log

(
log((1 + ε)τ)

γ

) )
≥ 1 − 2 + ε

ε

(
γ

log(1 + ε)

)1+ε

.

Theorem C.2 (Chung & Lu (2006), Theorem 20). Let X1, · · · , Xn be a martingale adapted to filtration
F = (Fi)i satisfying

1. Var(Xi|Fi−1) ≤ σ2
i , for 1 ≤ i ≤ n;

2. Xi −Xi−1 ≤ ai +M , for 1 ≤ i ≤ n.

Then we have

Pr (Xn − EXn ≥ λ) ≤ exp
(

− λ2

2[
∑n

i=1(σ2
i + a2

i ) +Mλ/3]

)
.

Theorem C.3 (Chung & Lu (2006), Theorem 22). Let X1, · · · , Xn be a martingale adapted to filtration
F = (Fi)i satisfying

1. Var(Xi|Fi−1) ≤ σ2
i , for 1 ≤ i ≤ n;

2. Xi−1 −Xi ≤ ai +M , for 1 ≤ i ≤ n.

Then we have

Pr (Xn − EXn ≤ −λ) ≤ exp
(

− λ2

2[
∑n

i=1(σ2
i + a2

i ) +Mλ/3]

)
.

Theorem C.4 (Abramowitz & Stegun (1964), Formula 7.1.13; Agrawal & Goyal (2013), Lemma 6; Agrawal
& Goyal (2017), Fact 4). Let Z ∼ N (µ, σ2). The following inequalities hold:

1
2
√
π

exp
(

− 7z2

2

)
≤ Pr

Z
(|Z − µ| > zσ)≤ exp

(
− z2

2

)
∀z > 0,

1
2
√
πz

exp
(

− z2

2

)
≤ Pr

Z
(|Z − µ| > zσ)≤

√
2√
πz

exp
(

− z2

2

)
∀z ≥ 1.
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Theorem C.5 (Standard multiplicative variant of the Chernoff-Hoeffding bound; Dubhashi & Panconesi
(2009), Theorem 1.1). Suppose that X1, . . . , XT are independent [0, 1]-valued random variables, and let
X =

∑T
t=1 Xt. Then for all ε ∈ (0, 1),

Pr(X − EX ≥ εEX) ≤ exp
(

− ε2

3 EX
)
, Pr(X − EX ≤ −εEX) ≤ exp

(
− ε2

3 EX
)
.

C.2 Change of measure

Lemma C.6 (Tsybakov (2008), Lemma 2.6). Let P and Q be two probability distributions on the same
measurable space. Then, for every measurable subset A (whose complement we denote by Ā),

P (A) +Q(Ā) ≥ 1
2 exp(−KL(P ∥ Q)).

Lemma C.7 (Gerchinovitz & Lattimore (2016), Lemma 1). Consider two instances 1 and 2. We let Ni,t

denote the number of pulls of item i up to and including time step t. Under instance j (j = 1, 2),

• we let (gj
i,t)T

t=1 be the sequence of rewards of item i and ijt be the pulled item at time step t, and let Pj,i

denote the distribution of the gain of item i;
• we assume {gj

t = (gj
1,t, g

j
2,t, . . . , g

j
L,t)}T

t=1 is an i.i.d. sequence, i.e., gj
t1

and gj
t2

are i.i.d. for t1 ̸= t2 but
{gj

i,t}L
i=1 can be independent.

• we let ijt be the pulled item at time step t, and let Pj denote the probability law of the process {{ijt , g
j

ij
t ,t

}}T
t=1.

Then, we have

KL(P1 ∥ P2) =
L∑

i=1
EP1 [Ni,T ] · KL(P1,i ∥ P2,i).

C.3 KL divergence

Theorem C.8 (Pinsker’s and reverse Pinsker’s inequality; Götze et al. (2019), Lemma 4.1). Let P and Q be
two distributions that are defined in the same finite space A and have the same support. We have

δ(P,Q)2 ≤ 1
2KL(P,Q) ≤ 1

αQ
δ(P,Q)2

where δ(P,Q) = sup{ |P (A) −Q(A)|
∣∣A ⊂ A} = 1

2
∑

x∈A |P (x) −Q(x)| is the total variational distance, and
αQ = minx∈X:Q(x)>0 Q(x).
Lemma C.9 (KL divergence between two Gaussian distributions). Let P1 = N (µ1, σ

2
1), P2 = N (µ2, σ

2
2).

Then

KL(P1||P2) = log
(
σ2

σ1

)
+ σ2

1 + (µ1 − µ2)2

2σ2
2

− 1
2 .

Lemma C.10 (KL divergence between clipped Gaussian distributions; Lemma 7, Gerchinovitz & Lattimore
(2016)). Let Z be normally distributed with mean 1/2 and variance σ2 > 0. Let clip[a,b]x := max{a,min{b, x}}
for a ≤ b. Define X = clip[0,1](Z) and Y = clip[0,1](Z − ε) for ε ∈ R. Then

KL(PX ∥ PY ) ≤ ε2

2σ2 .
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D Analysis of BoBW-lil’UCB(γ) in stochastic bandits

Proposition D.1 (Bounds on the pseudo-regret of BoBW-lil’UCB(γ)). Assume the distribution νi is
sub-Gaussian with scale σ > 0 for all i ∈ [L], and w1 ≥ w2 ≥ . . . ≥ wL. Let ε ∈ (0, 1), β ≥ 0, and
γ ∈ (0,min{log(β + 1 + ε)/e), 1}). The pseudo-regret of BoBW-lil’UCB(γ) satisfies

RT ≤ O

(
σ2(1 + ε)3 ·

∑
i:∆1,i>0

log(1/γ)
∆1,i

)
, RT ≤ O

(
σ2(1 + ε)3

√
TL log

(
log(T/Lγ)

γ

) )
.

Furthermore, we can set γ = 1/
√
T to obtain

RT ≤ O

(
σ2(1 + ε)3 ·

∑
i:∆1,i>0

log T
∆1,i

)
, RT ≤ O

(
σ2(1 + ε)3

√
TL log T

)
.

D.1 Proof of Theorem 4.1

Theorem 4.1 (Bounds on the pseudo-regret of BoBW-lil’UCB). Let ε ∈ (0, 1), β ≥ 0, and γ ∈
(0,min{log(β + 1 + ε)/e, 1}). For all T ≥ 1, the pseudo-regret of BoBW-lil’UCB(γ) satisfies

RT ≤O

(
σ2 ·

∑
i̸=1

log(1/γ)
∆1,i

+ 2TLγ1+ε

)
, RT ≤O

(
σ2

√
TL log

(
log(T/Lγ)

γ

)
+ 2TLγ1+ε

)
.

Furthermore, we can set γ = (log T )/T to obtain

RT ≤ O

(
σ2 ·

∑
i ̸=1

log T
∆1,i

)
, RT ≤ O

(
σ2

√
TL log T

)
.

Proof. Recall that we assume w1 > w2 ≥ . . . ≥ wL. Therefore, item 1 is optimal and ∆1,j > 0 for all j ̸= 1.

Step 1: Concentration. Let Ei,γ := {∀t ≥ L, |ĝi,t − wi| ≤ Ci,t,γ} for all i ∈ [L]. We apply Theorem C.1 to
show that

⋂L
i=1 Ei,γ holds with high probability.

Lemma D.2 (Concentration of ĝi,t). Fix any ε ∈ (0, 1) and γ ∈ (0, log(β + 1 + ε)/e). We have

Pr
( L⋂

i=1
Ei,γ

)
≥ 1 − 2L(2 + ε)

ε

(
γ

log(1 + ε)

)1+ε

.

Step 2: Bound on Ni,T for i ̸= 1. Next, for all t > L, when

{ ĝ1,t−1 > w1 − C1,t−1,γ , ĝi,t−1 < wi + Ci,t−1,γ , ∆1,i > 2Ci,t−1,γ , ∀i ̸= 1}

holds, we have

{ U1,t−1,γ = ĝ1,t−1 + C1,t−1,γ > w1 = wi + ∆1,i > wi + 2Ci,t−1,γ > ĝi,t−1 + Ci,t−1,γ = Ui,t−1,γ ∀i ̸= 1 },

which indicates it = 1. In other words, when it = i ̸= 1 for t > L, one of the following holds:

ĝ1,t−1 ≤ w1 − C1,t−1,γ , ĝi,t−1 ≥ wi + Ci,t−1,γ , ∆1,i ≤ 2Ci,t−1,γ ,

We see that

∆1,i ≤ 2Ci,t−1,γ = 10σ(1 +
√
ε)

√
2(1 + ε)
Ni,t−1

· log
(

log(β + (1 + ε)Ni,t−1)
γ

)
⇔ Ni,t−1 ≤ 200σ2(1 +

√
ε)2(1 + ε)

∆2
1,i

· log
(

log(β + (1 + ε)Ni,t−1)
γ

)
.

In order to bound Ni,t−1, we derive the following lemma:
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Lemma D.3. For all τ > 0, 1.4ac/ρ+ b ≥ e, we have

τ ≤ c log
(

log(aτ + b)
ρ

)
⇒ τ ≤ c log

(
1.4
ρ

log
(

1.4ac
ρ

+ b

))
.

We apply Lemma D.3 with

c = 200σ2(1 +
√
ε)2(1 + ε)

∆2
1,i

, a = 1 + ε, and ρ = γ,

to obtain

Ni,t−1 ≤ 200σ2(1 +
√
ε)2(1 + ε)

∆2
1,i

· log
(
a1

γ
log
(

200a1σ
2(1 +

√
ε)2(1 + ε)2

∆2
1,iγ

+ β

))
:= N̄i,γ .

1.4ac/ρ+ b ≥ e is satisfied when γ ∈ (0, 1). Therefore, when t > L,
⋂L

i=1 Ei,γ holds and Ni,t−1 > N̄i,γ for all
i ̸= 1, we always have it = 1.

Step 3: Conclusion. Consequently,

RT = E
[ T∑

t=1
g1,t − git,t

]
= E

[( T∑
t=1

g1,t − git,t

)
· 1
( L⋂

i=1
Ei,γ

)]
+ E

[( T∑
t=1

g1,t − git,t

)
· 1
(

L⋂
i=1

Ei,γ

)]

≤ E
[( T∑

t=1
g1,t − git,t

)
· 1
( L⋂

i=1
Ei,γ

)]
+ T · Pr

(
L⋂

i=1
Ei,γ

)

≤
∑
j ̸=1

E
[( T∑

t=1
g1,t − git,t

)
· 1
(
it = j,

L⋂
i=1

Ei,γ

)]
+ T · Pr

(
L⋂

i=1
Ei,γ

)

≤
∑
j ̸=1

∆1,j · E
[ T∑

t=1
·1(it = j)

∣∣∣∣ L⋂
i=1

Ei,γ

]
+ T · Pr

(
L⋂

i=1
Ei,γ

)

=
∑
j ̸=1

∆1,j · E
[
Nj,T

∣∣∣∣ L⋂
i=1

Ei,γ

]
+ T · Pr

(
L⋂

i=1
Ei,γ

)

≤
∑
j ̸=1

∆1,j · (2 + N̄j,γ) + T · Pr
(

L⋂
i=1

Ei,γ

)

=
∑
i ̸=1

2∆1,i +
∑
i̸=1

200σ2(1 +
√
ε)2(1 + ε)

∆1,i
· log

(
a1

γ
log
(

200a1σ
2(1 +

√
ε)2(1 + ε)2

∆2
1,iγ

+ β

))

+ 2TL(2 + ε)
ε

(
γ

log(1 + ε)

)1+ε

=
∑
i ̸=1

2∆1,i +
∑
i̸=1

200σ2(1 +
√
ε)2(1 + ε)

∆1,i
· log

(
2a1

γ
log
(

10
√

2a1 · σ(1 +
√
ε)(1 + ε)

∆1,i
√
γ

+ β

))

+ 2TL(2 + ε)
ε

(
γ

log(1 + ε)

)1+ε

.
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We see that a1 = 1.4 ≤ 2. If we divide the ground set into two classes depending on whether ∆1,i ≥
√
L/T ,

we have

RT ≤ T ·
√
L

T
+ 2L+ 200Lσ2(1 +

√
ε)2(1 + ε)√

L/T
log
(

4
γ

log
(

20σ(1 +
√
ε)(1 + ε)√

L/T
√
γ

+ β

))
+ 2TL(2 + ε)

ε

(
γ

log(1 + ε)

)1+ε

=
√
TL ·

[
1 + 200σ2(1 +

√
ε)2(1 + ε) log

(
4
γ

log
(

20σ(1 +
√
ε)(1 + ε)√

γL/T
+ β

))]
+ 2L+ 2TL(2 + ε)

ε

(
γ

log(1 + ε)

)1+ε

.

In short, we have

RT ≤ O

(
σ2 ·

∑
i̸=1

log(1/γ)
∆1,i

+ 2TLγ1+ε

)
,

RT ≤ O

(
σ2

√
TL log

(
log(T/Lγ)

γ

)
+ 2TLγ1+ε

)
.

Let γ = (log T )/T , we have

RT ≤ O

(
σ2 ·

∑
i̸=1

log T
∆1,i

)
, RT ≤ O

(
σ2

√
TL log T

)
.

D.2 Proof of Theorem 4.2

Theorem 4.2 (Bounds on the failure probability of BoBW-lil’UCB). Let ε ∈ (0, 1), β ≥ 0, and γ ∈
(0,min{log(β + 1 + ε)/e, 1}). Let ∆i = max{∆,∆1,i} for all i ∈ [L]. For all T ≥ 1, the failure probability of
BoBW-lil’UCB(γ) satisfies

eT ≤ 2L(2+ε)
ε

(
γ

log(1+ε)

)1+ε

, if T −L
(1+ε)3 ≥

L∑
i=1

72σ2

∆2
i

· log
(

2.8
γ2 log

(
11σ(1+ε)2

∆i
+β
))
. (4.1)

In particular, the bound on eT in (4.1) holds when γ ≥ γ1(∆, H2), where

γ1(∆, H2) =

√
2.8 log

(
6
√

2.8σ(1 + ε)2

∆ + β

)
· exp

(
− T − L

144σ2(1 + ε)3(H2 + ∆−2)

)
.

For all T ≥ 1, when γ assumes its lower bound γ1(∆, H2), we have

eT ≤ Õ

(
L exp

(
− T − L

144σ2(1 + ε)2(H2 + ∆−2)

))
. (4.2)

Proof. Recall that we assume w1 > w2 ≥ . . . ≥ wL. We let ∆1 = w1 − w2 and ∆i = w1 − wi for all i ̸= 1.
Then ∆ = ∆1 and ∆1,i = ∆i for i ̸= 1.

Step 1: Concentration. Let E ′
i,γ := {∀t ≥ L, |ĝi,t −wi| ≤ Ci,t,γ/5} for all i ∈ [L]. Similarly to Lemma D.2,

we can apply Theorem C.1 to show that

Pr
( L⋂

i=1
E ′

i,γ

)
≥ 1 − 2L(2 + ε)

ε

(
γ

log(1 + ε)

)1+ε

.
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In the following, we prove that conditioning on the event
{⋂L

i=1 E ′
i,γ

}
, we have iout = 1, which concludes the

proof.

We assume
⋂L

i=1 E ′
i,γ holds from now on. Since iout is the item with the largest empirical mean, we have

ĝiout,T ≥ ĝi,t ∀i ̸= iout, ĝiout,T ≥ wiout − Ciout,T,γ/5, wi + Ci,T,γ/5 ≥ ĝi,t ∀i ̸= iout.

Consequently, to show iout = 1, it is sufficient to show that

Ci,T,γ

5 ≤ ∆i

2 ⇔ ∆i ≥ 2Ci,T,γ

5 = 2σ(1 +
√
ε)

√
2(1 + ε)
Ni,T

· log
(

log(β + (1 + ε)Ni,T )
γ

)
⇔ Ni,T ≥ 8σ2(1 +

√
ε)2(1 + ε)

∆2
i

· log
(

log(β + (1 + ε)Ni,T )
γ

)
∀i ∈ [L]. (D.1)

Step 2: Upper bound Ni,T (i ̸= 1). To begin with, we let a1 = 2 and prove prove by induction that

Ni,t ≤ 72σ2(1 +
√
ε)2(1 + ε)

∆2
i

· log
(
a1

γ
log
(

72a1σ
2(1 +

√
ε)2(1 + ε)2

∆2
i γ

+ β

) )
+ 1 ∀i ̸= 1. (D.2)

Clearly, this inequality holds for all i ̸= 1 when 1 ≤ t ≤ L. Now we assume that the inequality holds for all
i ≠ 1 at time t− 1(t > L). If it ≠ i, we have Ni,t = Ni,t−1 and the inequality still holds for i. Otherwise, we
have it = i and in particular Ui,t−1,γ ≥ U1,t−1,γ . Since

Ui,t−1,γ = ĝi,t−1 + Ci,t−1,γ ≤ wi + 6Ci,t−1,γ

5 , U1,t−1,γ = ĝ1,t−1 + C1,t−1,γ ≥ w1 + 4C1,t−1,γ

5 ≥ w1 = wi + ∆i,

we have

6Ci,t−1,γ

5 ≥ ∆i ⇔ Ni,t−1 ≤ 72σ2(1 +
√
ε)2(1 + ε)

∆2
i

· log
(

log(β + (1 + ε)Ni,t−1)
γ

)
(a)⇒ Ni,t−1 ≤ 72σ2(1 +

√
ε)2(1 + ε)

∆2
i

· log
(
a1

γ
log
(

72a1σ
2(1 +

√
ε)2(1 + ε)2

∆2
i γ

+ β

) )
.

We obtain (a) using Lemma D.3 with γ ∈ (0, 1):

Lemma D.3. For all τ > 0, 1.4ac/ρ+ b ≥ e, we have

τ ≤ c log
(

log(aτ + b)
ρ

)
⇒ τ ≤ c log

(
1.4
ρ

log
(

1.4ac
ρ

+ b

))
.

Subsequently, by using Ni,t = Ni,t−1 + 1, we obtain (D.2).

Step 3: Lower bound Ni,T (i ̸= 1). Next, we again prove by induction that

Ni,t ≥ 200σ2(1 + ε)(1 +
√
ε)2 · log

(
log(β + (1 + ε)Ni,t)

γ

)
· min

{
1

25∆2
i

,
1

36(C1,t−1,γ)2

}
, ∀i ̸= 1. (D.3)

Clearly, this inequality holds for all i ≠ 1 when 1 ≤ t ≤ L. Now we assume that these inequalities hold for all
i ̸= 1 at time t− 1(t > L). If it ̸= 1, we have

Ni,t ≥ Ni,t−1 ∀i ̸= 1, N1,t = N1,t−1,

which implies that the inequalities still hold for all i ̸= 1. Otherwise, it = 1 indicates that U1,t−1,γ ≥ Ui,t−1,γ

for all i ̸= 1. Since

U1,t−1,γ = ĝ1,t−1 + C1,t−1,γ ≤ w1 + 6C1,t−1,γ

5 , Ui,t−1,γ = ĝi,t−1 + Ci,t−1,γ ≥ wi + 4Ci,t−1,γ

5 ,
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we have
4Ci,t−1,γ

5 ≤ ∆i + 6C1,t−1,γ

5

⇔ Ci,t−1,γ = 5σ(1 +
√
ε)

√
2(1 + ε)
Ni,t−1

· log
(

log(β + (1 + ε)Ni,t−1)
γ

)
≤ 5∆i + 6C1,t−1,γ

4

⇔ 20σ(1 +
√
ε)

5∆i + 6C1,t−1,γ
·

√
log
(

log(β + (1 + ε)Ni,t−1)
γ

)
≤

√
Ni,t−1

2(1 + ε)

⇔ 400σ2(1 +
√
ε)2

(5∆i + 6C1,t−1,γ)2 · log
(

log(β + (1 + ε)Ni,t−1)
γ

)
≤ Ni,t−1

2(1 + ε)

⇔ Ni,t−1 ≥ 800σ2(1 + ε)(1 +
√
ε)2

(5∆i + 6C1,t−1,γ)2 · log
(

log(β + (1 + ε)Ni,t−1)
γ

)
.

We apply u+ v ≤ 2 max{u, v} and Ni,t = Ni,t−1 for all i ̸= 1 to obtain (D.3).

Step 4: Lower bound on N1,T . Recall that we want to show (D.1). (i) To show (D.1) holds for all i ̸= 1,
(D.3) indicates that it is sufficiently to show that

200σ2(1 + ε)(1 +
√
ε)2

36(C1,T −1,γ)2 · log
(

log(β + (1 + ε)Ni,T )
γ

)
≥ 8σ2(1 +

√
ε)2(1 + ε)

∆2
i

· log
(

log(β + (1 + ε)Ni,T )
γ

)
.

Moreover, since ∆1 = min
i∈[L]

∆i, it is sufficient to show

25
36(C1,T −1,γ)2 ≥ 1

∆2
1

⇔ C1,T −1,γ ≤ 5∆1

6 .

(ii) In order to show (D.1) holds for all i ∈ [L], it is sufficient to show that

C1,T −1,γ ≤ 5∆1

6 .

With a1 = 2, this is implied by

N1,T −1 ≥ 72σ2(1 +
√
ε)2(1 + ε)

∆2
i

· log
(
a1

γ
log
(

72a1βσ
2(1 +

√
ε)2(1 + ε)2

∆2
i γ

) )
⇔ N1,T ≥ 72σ2(1 +

√
ε)2(1 + ε)

∆2
i

· log
(
a1

γ
log
(

72a1σ
2(1 +

√
ε)2(1 + ε)2

∆2
i γ

+ β

) )
+ 1.

We obtain the inequality in the above display by applying Lemma D.3. Meanwhile, (D.2) and t =
∑L

i=1 Ni,t

implies that

N1,T = T −
∑
i ̸=1

Ni,T ≥ T − (L− 1) −
∑
i̸=1

72σ2(1 +
√
ε)2(1 + ε)

∆2
i

· log
(
a1

γ
log
(

72a1σ
2(1 +

√
ε)2(1 + ε)2

∆2
i γ

+ β

) )
.

Altogether, we complete the proof with
L∑

i=1

72σ2(1 +
√
ε)2(1 + ε)

∆2
i

· log
(
a1

γ
log
(

72a1σ
2(1 +

√
ε)2(1 + ε)2

∆2
i γ

+ β

) )
≤ T − L+ 1. (D.4)

Step 5: Conclusion. Since

72σ2(1 +
√
ε)2(1 + ε)

∆2
i

· log
(
a1

γ
log
(

72a1σ
2(1 +

√
ε)2(1 + ε)2

∆2
i γ

+ β

) )
≤ 72σ2(1 + ε)3

∆2
i

· log
(

2a1

γ2 log
(

6
√

2a1 · σ(1 + ε)2

∆i
+ β

) )
,
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To show (D.4), it is sufficient to have

L∑
i=1

72σ2(1 + ε)3

∆2
i

· log
(

2a1

γ2 log
(

6
√

2a1 · σ(1 + ε)2

∆i
+ β

) )
≤ T − L+ 1

⇔
L∑

i=1

72σ2(1 + ε)3

∆2
i

· log
(

2a1

γ2

)
≤ T − L+ 1 −

L∑
i=1

72σ2(1 + ε)3

∆2
i

· log
(

log
(

6
√

2a1 · σ(1 + ε)2

∆i
+ β

) )

⇔ γ ≥
√

2a1 · exp
(

−
T − L+ 1 −

∑L
i=1 72σ2∆−2

i · (1 + ε)3 log
(

log
( 6

√
2a1·σ(1+ε)2

∆i
+ β

) )∑L
i=1 144σ2(1 + ε)3∆−2

i

)
.

Recall the definition of H2 in (2.1):

H2 =
∑
i ̸=1

1
∆2

1,i

.

Furthermore, it suffices to have

γ ≥
√

2a1 · exp
(

− T − L

144σ2(1 + ε)3(H2 + 1/∆2
1,2) + 1

2 log
(

log
(

6
√

2a1 · σ(1 + ε)2

∆1,2
+ β

) ) )

=

√
2.8 · log

(
6
√

2.8 · σ(1 + ε)2

∆1,2
+ β

)
exp

(
− T − L

144σ2(1 + ε)3(H2 + 1/∆2
1,2)

)
:= γ1(∆1,2, H2).

Note that ∆ = ∆1,2. When γ = γ1(∆, H2),

eT ≤ 2L(2 + ε)
ε

(
γ1(∆, H2)
log(1 + ε)

)1+ε

= 2L(2 + ε)
ε[log(1 + ε)]1+ε

·
[
2.8 log

(
6
√

2.8 · σ(1 + ε)2

∆ + β

)](1+ε)/2
· exp

(
− T − L

144σ2(1 + ε)2(H2 + 1/∆2)

)
.

D.3 Proof of Lemma D.2

Lemma D.2 (Concentration of ĝi,t). Fix any ε ∈ (0, 1) and γ ∈ (0, log(β + 1 + ε)/e). We have

Pr
( L⋂

i=1
Ei,γ

)
≥ 1 − 2L(2 + ε)

ε

(
γ

log(1 + ε)

)1+ε

.

Proof. Let

Ei,γ := {∀t ≥ L, |ĝi,t − wi| ≤ Ci,t,γ}.

Then

Pr(Ei,γ) = Pr
(

∀t ≥ L,
∣∣ĝi,t − wi

∣∣ ≤ 5σ(1 +
√
ε)

√
2(1 + ε)
Ni,t

· log
(

log(β + (1 + ε)Ni,t−1)
γ

) )
= Pr

(
∀Ni,t ≥ 1,∣∣∣∣( 1

Ni,t

t∑
u=1

gi,u · 1{iu = i}
)

− wi

∣∣∣∣ ≤ 5σ(1 +
√
ε)

√
2(1 + ε)
Ni,t

· log
(

log(β + (1 + ε)Ni,t)
γ

) )
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When ε ∈ (0, 1) and γ ∈ (0, log(β + 1 + ε)/e), Theorem C.1 indicates that

Pr(Ei,γ) ≥ 1 − 2(2 + ε)
ε

(
γ

log(1 + ε)

)1+ε

.

Furthermore,

Pr
( L⋂

i=1
Ei,γ

)
= 1 − Pr

(
L⋂

i=1
Ei,γ

)
= 1 − Pr

( L⋃
i=1

Ei,γ

)

≥ 1 −
L∑

i=1
Pr
(

Ei,γ

)
≥ 1 − 2L(2 + ε)

ε

(
γ

log(1 + ε)

)1+ε

.

D.4 Proof of Lemma D.3

Lemma D.3. For all τ > 0, 1.4ac/ρ+ b ≥ e, we have

τ ≤ c log
(

log(aτ + b)
ρ

)
⇒ τ ≤ c log

(
1.4
ρ

log
(

1.4ac
ρ

+ b

))
.

Proof. Let

f(τ) = c log
(

log(aτ + b)
ρ

)
, τa1,a2 = c log

(
a1

ρ
log
(
a2c

ρ
+ b

))
.

Then

τa1,a2 ≥ f(τa1,a2) ⇔ c log
(
a1

ρ
log
(
a2c

ρ
+ b

))
≥ c log

(
1
ρ

log
[
ac log

(
a1

ρ
log
(
a2c

ρ

))
+ b

])
⇔ a1 log

(
a2c

ρ
+ b

)
≥ log

[
ac log

(
a1

ρ
log
(
a2c

ρ

))
+ b

]
.

Let a1 ≥ 1.4, then xa1 ≥ x log x for all x ≥ 1. To obtain τa1,a2 ≥ f(τa1,a2), it suffices to have(
a2c

ρ
+ b

)
· log

(
a2c

ρ
+ b

)
≥ ac log

(
a1

ρ
log
(
a2c

ρ

))
+ b,

which is implied by

a2c

ρ
+ b ≥ e and a2c

ρ
· log

(
a2c

ρ
+ b

)
≥ aca1

ρ
log
(
a2c

ρ

)
.

Conditioned on a2c/ρ+ b ≥ e, the last inequality holds when a2 ≥ a · a1. Since τ − f(τ) is monotonically
increasing in τ , and τa1,a·a1 ≥ f(τa1,a·a1), i.e., τa1,a·a1 − f(τa1,a·a1) ≥ 0, we have

τ ≥ τ1.4,1.4a ⇒ τ − f(τ) ≥ 0.

In other words, when 1.4ac/ρ+ b ≥ e,

τ ≤ f(τ) ⇒ τ ≤ τ1.4,2.8 = c log
(

1.4
ρ

log
(

1.4ac
ρ

))
.
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E Analysis of the Pareto frontier of RM and BAI in stochastic bandits

E.1 Proof of Theorem 5.1

Theorem 5.1. Let ϕT ,∆, R,H2 > 0. Let π be any algorithm with eT (π, I) ≤ exp(−ϕT )/4 for all I ∈
B1(∆, R). Then

sup
I∈B1(∆,R)

RT (π, I) ≥ ϕT · (L− 1)R
8∆ , sup

I∈B2(∆,R,H2)
RT (π, I) ≥ ϕT · ∆H2R

3

8 .

Proof. Step 1: Construct instances. To begin with, we fix dℓ ∈ (0, 1/4] for all 2 ≤ ℓ ≤ L. We let Bern(a)
denote the Bernoulli distribution with parameter a. We define the following distributions:

ν1 := Bern(1/2), νℓ := Bern(1/2 − dℓ) ∀1 < ℓ ≤ L;
ν′

1 := Bern(1/2), ν′
ℓ := Bern(1/2 + dℓ) ∀1 < ℓ ≤ L.

We construct L instances such that under instance ℓ (1 ≤ ℓ ≤ L), the stochastic reward of item i is drawn
from distribution

νℓ
i := b · (νi1{i ̸= ℓ} + ν′

i1{i = ℓ}),
where b > 0. Under instance ℓ (1 ≤ ℓ ≤ L), we see item ℓ is optimal, and we define several other notations

as follows:

(i) We let gℓ
i,t be the random reward of item i at time step t. Then gℓ

i,t ∈ {0, b}.

(ii) We let ∆ℓ
i,j := E[

∑T
t=1 g

ℓ
i,t − gℓ

k,t]/T denote the gap between item i and j. Then

∆1
1,j = b · dj ∀2 ≤ j ≤ L, ∆ℓ

ℓ,1 = b · dℓ, ∆ℓ
ℓ,j = b · dℓ + b · dj ∀2 ≤ j, ℓ ≤ L, j ̸= ℓ.

(iii) We denote the difficulty of the instance with

H2(ℓ) :=
∑
j ̸=ℓ

(∆ℓ
ℓ,j)−2.

Then H2(1) = max
1≤ℓ≤L

H2(ℓ) ≤ (L− 1)b−2 · max
2≤ℓ≤L

d−2
ℓ .

(iv) We let iℓt be the pulled item at time step t, and Ot
ℓ = {iℓu, giℓ

u,u}t
u=1 be the sequence of pulled items

and observed rewards up to and including time step t.

(v) We let Pt
ℓ be the measure on Ot

ℓ, and let Pℓ,i be the measure on the rewards of item i.

For simplicity, we abbreviate PT
ℓ , OT

ℓ as Pℓ, Oℓ respectively. Moreover, we let Ni,t denote the number of pulls
of item i up to and including time step t.

Step 2: Change of measure. First of all, we apply Lemmas C.6 and C.7 to obtain that for all 1 ≤ ℓ ≤ L,

Pr
O1

(iout ̸= 1) + Pr
Oℓ

(iout = 1) ≥ 1
2 exp(−KL(P1 ∥ Pℓ)) = 1

2 exp(−EP1 [Nℓ,T ] · KL(P1,ℓ ∥ Pℓ,ℓ)).

Suppose the pseudo-regret is upper bounded by Reg, we have

Reg ≥ EP1

[
T∑

t=1
1{i1t ̸= 1} · (g1

1,t − g1
it,t)

]
=

T∑
t=1

EPt
1
[1{i1t ̸= 1} · (g1

1,t − g1
it,t)]

=
L∑

ℓ=2

T∑
t=1

EPt
1
[1{i1t = ℓ} · (g1

1,t − g1
it,t)] =

L∑
ℓ=2

T∑
t=1

EPt
1
[(g1

1,t − g1
it,t)|i1t = ℓ] · EPt

1
[1{i1t = ℓ}]

=
L∑

ℓ=2

T∑
t=1

∆1
1,ℓ · EPt

1
[1{i1t = ℓ}] =

L∑
ℓ=2

b · dℓ · EP1 [Nℓ,T ].
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Since H2(ℓ) =
∑

j ̸=ℓ(∆ℓ
ℓ,j)−2, we have

Reg
H2(1) =

∑L
ℓ=2 b · dℓ · EP1 [Nℓ,T ]∑L

ℓ=2(∆1
1,j)−2

=
∑L

ℓ=2 b · dℓ · EP1 [Nℓ,T ]
b−3 ·

∑L
ℓ=2 d

−2
j

.

Thus, by the pigeonhole principle, there exists 2 ≤ ℓ1 ≤ L such that

b3d3
ℓ1
EP1 · [Nℓ1,T ] = b · dℓ1 · EP1 [Nℓ1,T ]

b−2 · d−2
ℓ1

≤ Reg
H2(1) ⇔ EP1 [Nℓ1,T ] ≤ Reg

b3d3
ℓ1
H2(1) .

Since dℓ ∈ (0, 1/4] for all 2 ≤ ℓ ≤ L, we apply Theorem C.8 to obtain

Pr
O1

(iout ̸= 1) + Pr
Oℓ1

(iout = 1) ≥ 1
2 exp(−EP1 [Nℓ1,T ] · KL(P1,ℓ1 ∥ Pℓ1,ℓ1)) ≥ 1

2 exp
(

− Reg
b3d3

ℓ1
H2(1) · (2dℓ1)2

1/4

)
.

Since PrOℓj
(iout ̸= ℓ1) ≥ PrOℓ1

(iout = 1), we have

max
1≤ℓ≤L

Pr
Oℓ

(iout ̸= ℓ) ≥ 1
4 exp

(
− 8Reg
H2(1)b3 · min

2≤ℓ≤L
dℓ

)
.

Step 3: Conclusion. We define
ℓ2 := arg max

1≤ℓ≤L
Pr
Oℓ

(iout ̸= ℓ).

Suppose algorithm π satisfies that

Pr
Oℓ2

(iout ̸= ℓ2) ≤ 1
4 exp(−ϕT ),

then we have

Reg ≥ ϕT ·
H2(1)b3 · min

2≤ℓ≤L
dℓ

8 .

When d = dℓ > 0 for all 2 ≤ ℓ ≤ L, we have H2(1) = (L− 1)/(b2d2).

Step 4: Classification of instances. Suppose algorithm π satisfies that eT (π) ≤ exp(−ϕT )/4. Let
B1(∆, R) denote the set of stochastic instances where (i) the minimal optimality gap ∆ ≥ ∆; and (ii) there
exists R0 ∈ R such the rewards are bounded in [R0, R0 +R]. Then

sup
I∈B1(∆,R)

RT (π, I) ≥ ϕT · (L− 1)R
8∆ ∀∆, R > 0.

Let B2(∆, R,H2) denote the set of stochastic instances that (i) belong to B1(∆, R), and (ii) are with hardness
parameter H2 ≤ H2. Then, we have

sup
I∈B2(∆,R,H2)

RT (π, I) ≥ ϕT · ∆H2R
3

8 ∀∆, R,H2 > 0.
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E.2 Proof of Theorem 5.3

Theorem 5.3. Let ϕT ,∆, V ,H2 > 0. Let π be any algorithm with eT (π, I) ≤ exp(−ϕT )/4 for all I ∈
B′

1(∆, V ). Then

sup
I∈B′

1(∆,V )
RT (π, I) ≥ ϕT · (L− 1)V

2∆ , sup
I∈B′

2(∆,V ,H2)
RT (π, I) ≥ ϕT · ∆H2V

2 .

Proof. Step 1: Construct instances. To begin with, we fix any σ > 0, dℓ > 0 for all 2 ≤ ℓ ≤ L. We define
the following distributions:

ν1 := N (1/2, σ2), νℓ := N (1/2 − dℓ, σ
2) ∀1 < ℓ ≤ L;

ν′
1 := N (1/2, σ2), ν′

ℓ := N (1/2 + dℓ, σ
2) ∀1 < ℓ ≤ L.

We construct L instances such that under instance ℓ (1 ≤ ℓ ≤ L), the stochastic reward of item i is drawn
from distribution

νℓ
i := νi1{i ̸= ℓ} + ν′

i1{i = ℓ}.

Under instance ℓ (1 ≤ ℓ ≤ L), we see item ℓ is optimal, and we define several other notations as follows:

(i) We let gℓ
i,t be the random reward of item i at time step t.

(ii) We let ∆ℓ
i,j := E[

∑T
t=1 g

ℓ
i,t − gℓ

k,t]/T denote the gap between item i and j. Then

∆1
1,j = dj ∀2 ≤ j ≤ L, ∆ℓ

ℓ,1 = dℓ, ∆ℓ
ℓ,j = dℓ + dj ∀2 ≤ j, ℓ ≤ L, j ̸= ℓ.

(iii) We denote the difficulty of the instance with

H2(ℓ) :=
∑
j ̸=ℓ

(∆ℓ
ℓ,j)−2.

Then H2(1) = max
1≤ℓ≤L

H2(ℓ) ≤ (L− 1) · max
2≤ℓ≤L

d−2
ℓ .

(iv) We let iℓt be the pulled item at time step t, and Ot
ℓ = {iℓu, giℓ

u,u}t
u=1 be the sequence of pulled items

and observed rewards up to and including time step t.

(v) We let Pt
ℓ be the measure on Ot

ℓ, and let Pℓ,i be the measure on the rewards of item i.

For simplicity, we abbreviate PT
ℓ , OT

ℓ as Pℓ, Oℓ respectively. Moreover, we let Ni,t denote the number of pulls
of item i up to and including time step t.

Step 2: Change of measure. First of all, we apply Lemmas C.6 and C.7 to obtain that for all 1 ≤ ℓ ≤ L,

Pr
O1

(iout ̸= 1) + Pr
Oℓ

(iout = 1) ≥ 1
2 exp(−KL(P1 ∥ Pℓ)) = 1

2 exp(−EP1 [Nℓ,T ] · KL(P1,ℓ ∥ Pℓ,ℓ)).

Suppose the pseudo-regret is upper bounded by Reg, we have

Reg ≥ EP1

[
T∑

t=1
1{i1t ̸= 1} · (g1

1,t − g1
it,t)

]
=

T∑
t=1

EPt
1
[1{i1t ̸= 1} · (g1

1,t − g1
it,t)]

=
L∑

ℓ=2

T∑
t=1

EPt
1
[1{i1t = ℓ} · (g1

1,t − g1
it,t)] =

L∑
ℓ=2

T∑
t=1

EPt
1
[(g1

1,t − g1
it,t)|i1t = ℓ] · EPt

1
[1{i1t = ℓ}]

=
L∑

ℓ=2

T∑
t=1

dℓ · EPt
1
[1{i1t = ℓ}] =

L∑
ℓ=2

dℓ · EP1 [Nℓ,T ].
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Since H2(ℓ) =
∑

j ̸=ℓ(∆ℓ
ℓ,j)−2, we have

Reg
H2(1) =

∑L
ℓ=2 dℓ · EP1 [Nℓ,T ]∑L

ℓ=2(∆1
1,j)−2

=
∑L

ℓ=2 dℓ · EP1 [Nℓ,T ]∑L
ℓ=2 d

−2
j

.

Thus, by the pigeonhole principle, there exists 2 ≤ ℓ1 ≤ L such that

d3
ℓ1
EP1 · [Nℓ1,T ] = dℓ1 · EP1 [Nℓ1,T ]

d−2
ℓ1

≤ Reg
H2(1) ⇔ EP1 [Nℓ1,T ] ≤ Reg

d3
ℓ1
H2(1) .

Further, we apply Lemma C.9 to obtain

Pr
O1

(iout ̸= 1) + Pr
Oℓ1

(iout = 1) ≥ 1
2 exp(−EP1 [Nℓ1,T ] · KL(P1,ℓ1 ∥ Pℓ1,ℓ1)) ≥ 1

2 exp
(

− Reg
d3

ℓ1
H2(1) · (2dℓ1)2

2σ2

)
.

Since PrOℓj
(iout ̸= ℓ1) ≥ PrOℓ1

(iout = 1), we have

max
1≤ℓ≤L

Pr
Oℓ

(iout ̸= ℓ) ≥ 1
4 exp

(
− 2Reg
H2(1)σ2 · min

2≤ℓ≤L
dℓ

)
.

Step 3: Conclusion. We define
ℓ2 := arg max

1≤ℓ≤L
Pr
Oℓ

(iout ̸= ℓ).

Suppose algorithm π satisfies that

Pr
Oℓ2

(iout ̸= ℓ2) ≤ 1
4 exp(−ϕT ),

then we have

Reg ≥ ϕT ·
H2(1)σ2 · min

2≤ℓ≤L
dℓ

2 .

When d = dℓ > 0 for all 2 ≤ ℓ ≤ L, we have H2(1) = (L− 1)/d2.

Step 4: Classification of instances. Suppose algorithm π satisfies that eT (π) ≤ exp(−ϕT )/4. Let
B′

1(∆, V ) denote the set of stochastic instances where (i) the minimal optimality gap ∆ ≥ ∆; (ii) for each
item i, the variance σ2

i ≤ V . Then

sup
I∈B′

1(∆,V )
RT (π, I) ≥ ϕT · (L− 1)V

2∆ ∀∆, V > 0.

Let B′
2(∆, V ,H2) denote the set of stochastic instances (i) that belong to B′

1(∆, V ), and (ii) are with the
hardness H2 ≤ H2. We have

sup
I∈B′

2(∆,V ,H2)
RT (π, I) ≥ ϕT · ∆H2V

2 ∀∆, V ,H2 > 0.

E.3 Proof of Corollary 5.4

Corollary 5.4. Define the interval I(ν, T ) = [γ1(∆, H2),min{log(β + 1 + ε)/e, (log T )/T, 1/L}], which is
a function of the instance ν and the fixed horizon T . When I(ν, T ) ̸= ∅,let π0 denote the online algorithm
BoBW-lil’UCB(γ) with γ satisfying the condition that γ ∈ I(ν, T ). Then

sup
I∈B2(∆,1,H2)

RT (π0, I) ∈ Ω
(

∆H2 log
(

1
γL

))⋂
O

(
L

∆ log
(

1
γ

))
.
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Proof. We consider the stochastic instances in B2(∆, 1, H2). By the classification of instances in Theorem 5.1,
these instances satisfy the conditions

gi,t ∈ [0, 1] ∀i, t, and H2 ≤ H2.

Therefore, the distribution νi is sub-Gaussian with scale σ = 1/2 for all i ∈ [L]. We assume T is sufficiently
large such that

log T
T

≥ γ1 =

√
2.8 log

(
6
√

2.8σ(1 + ε)2

∆ + β

)
· exp

(
− T − L

144σ2(1 + ε)3(H2 + 1/∆2)

)

=

√
2.8 log

(
3
√

2.8(1 + ε)2

∆ + β

)
· exp

(
− T − L

36(1 + ε)3(H2 + ∆−2)

)
.

As a result, for all instance in B2(∆, 1, H2), since ∆ ≥ ∆ and H2 ≤ H2, we have

log T
T

≥

√
2.8 log

(
3
√

2.8(1 + ε)2

∆ + β

)
· exp

(
− T − L

36(1 + ε)3(H2 + ∆−2)

)
.

Fix any γ ∈ [γ1, (log T )/L]. On one hand, for any instance in B2(∆, 1, H2), Theorem 4.1 implies that
BoBW-lil’UCB(γ) satisfies that

RT ≤ O

(
log
(

1
γ

)
·H1

)
.

On the other hand, Theorem 4.2 implies that

eT ≤ 2L(2 + ε)
ε

(
γ

log(1 + ε)

)1+ε

.

Moreover, we can apply Theorem 5.1 to obtain that

sup
I∈B2(∆,1,H2)

RT (BoBW-lil’UCB(γ), I) ∈ Ω
(

∆H2 log
(

1
γL

))
.

Altogether, we have

sup
I∈B2(∆,1,H2)

RT (BoBW-lil’UCB(γ), I) ∈ Ω
(

∆H2 log
(

1
γL

))⋂
O

(
(L− 1)

∆ log
(

1
γ

))
.

F Analysis of Exp3.P in adversarial bandits

F.1 Proof of Theorem B.1

Theorem B.1 (Bounds on the regret of Exp3.P(γ, η)). Let η > 0, γ ∈ [0, 1/2] satisfying that Lη ≤ γ. Then
we can upper bound the regret of Exp3.P(γ, η) as follows. (i) Fix any given δ ∈ (0, 1), with probability at
least 1 − δ,

R̄T ≤ γT + ηLT + ln
(
L2T

ηδ

)
+ lnL

η
.

(ii) Moreover,

ER̄T ≤ γT + ηLT + ln
(
L2T

η

)
+ lnL

η
+ 1.
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Proof. The analysis is similar to that of Theorem 3.2 in Bubeck et al. (2012) with β = 0, while the following
lemma signifies the key difference.

Lemma F.1 (Implied by Bubeck et al. (2012), Lemma 3.1). For any item i, with probability at least 1 − δ,

T∑
t=1

gi,t ≤
T∑

t=1
g̃i,t + ln

(
LT

ηδ

)
.

Replacing Lemma 3.1 in Bubeck et al. (2012) by Lemma F.1, we can adopt the analysis of Theorem 3.2 in
Bubeck et al. (2012) and show that with probability 1 − δ,

R̄T ≤ γT + ηLT + ln
(
L2T

ηδ

)
+ lnL

η
.

Moreover, we derive that

W ′ = R̄T −
[
γT + ηLT + ln

(
L2T

η

)
+ lnL

η

]
,

P(W ′ > ln 1
δ

) = Pr
(
R̄T −

[
γT + ηLT + ln

(
L2T

ηδ

)
+ lnL

η

]
> 0
)

≤ δ,

ER̄T −
[
γT + ηLT + ln

(
L2T

η

)
+ lnL

η

]
≤ 1,

ER̄T ≤ γT + ηLT + ln
(
L2T

η

)
+ lnL

η
+ 1.

F.2 Proof of Theorem B.2

Theorem B.2 (Bound on the failure probability of Exp3.P). Assume G1,T ≥ G2,T ≥ . . . ≥ GL,T . We see
that the optimal item ī∗T = 1. The failure probability of Exp3.P(γ, η) satisfies

ēT ≤ exp
(

−
γT ∆̄2

1,2,T

4L

)
+

L∑
i=2

exp
(

− 3γT (∆̄1,2,T /2 + ∆̄2,i,T )2

L(3 + ∆̄1,2,T /2 + ∆̄2,i,T )

)
≤ L exp

(
− γT ∆̄2

T

4L

)
.

Proof. For brevity, we assume G1,T ≥ G2,T ≥ . . . ≥ GL,T and abbreviate ∆̄i,j,T as ∆i,j for any i, j ∈ [L].
Consequently, the optimal item ī∗ = 1.

Step 1: Construction of martingale. Let

yi,t = g̃i,t − gi,t, Xi,t = G̃i,t −Gi,t =
t∑

u=1
(g̃i,u − gi,u) =

t∑
u=1

yi,u.

Now we fix arbitrary i ∈ [L] and abbreviate yi,t as yt, Xi,t as Xt for brevity when there is no ambiguity.
Then we have

Xt −Xt−1 = yt = g̃i,t − gi,t = gi,t ·
(
I{it = i}
pi,t

− 1
)

= gi,t ·
(
I{it = i}
pi,t

− 1
)
,

− 1 ≤ yt ≤ 1
pi,t

− 1 since gi,t ≤ 1,

E[yt|Ft−1] = E
[
gi,t ·

(
E[I{it = i}|Ft−1]

pi,t
− 1
)∣∣∣∣Ft−1

]
= 0, Eyt = E[E[yt|Ft−1]] = 0.

Since yt is a martingale, we can apply Theorem C.2 and C.3 for the analysis.
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Meanwhile, note that gi,t, pi,t ∈ Ft−1 and again gi,t ≤ 1. Since P(it = i|Ft−1) = pi,t, the variance conditioned
on Ft−1 is the variance of the Bernoulli random variable with parameter pi,t, scaled to the range [0, gi,t/pi,t].
Hence, we have

Var(Xt|Ft−1) = Var(yt|Ft−1) = Var
(
gi,t · (I{it = i} − 1)

pi,t

∣∣∣∣ Ft−1

)
= Var

(
gi,t · I{it = i}

pi,t

∣∣∣∣ Ft−1

)
= Var

(
gi,t · I{it = i}

pi,t

∣∣∣∣ Ft−1

)
=
g2

i,t

p2
i,t

· Var(I{it = i}|Ft−1) =
pi,t(1 − pi,t)g2

i,t

p2
i,t

=
(1 − pi,t)g2

i,t

pi,t

= g2
i,t ·

(
1
pi,t

− 1
)

≤ 1
pi,t

− 1 := σ2
t since gi,t ≤ 1.

On one hand, in order to apply Theorem C.2 to upper bound G̃i,T − Gi,T , we need to upper bound
Var(Xt|Ft−1), yt, and lower bound pi,t. These bounds will depend on the lower bound on pi,t. On the other
hand, to lower bound G̃i,T −Gi,T with Theorem C.3, we need to upper bound Var(Xt|Ft−1), pi,t, and lower
bound yt. This motivates to derive bounds on pi,t. Since 1 − γ + γ

L − 1
L = (1 − 1

L )(1 − γ) > 0, there are
global bounds on {pi,t}i,t:

γ

L
≤ pi,t ≤ 1 − γ + γ

L
.

Step 2: Bound G̃i,T −Gi,T with high probability.

Upper bound on G̃i,T −Gi,T . We first derive upper bounds on
∑T

t=1 σ
2, yt with lower bounds on pi,t:

(i)
T∑

t=1
σ2

t =
T∑

t=1

(
1
pi,t

− 1
)

≤ T ·
(
L

γ
− 1
)

(ii) yt ≤ 1 − β

pi,t
− 1 ≤ L

γ
− 1 := M.

Let at = 0. We apply Theorem C.2. For all λ ∈ (0, 1),

Pr(XT − EXT ≥ λ) ≤ exp
(

− λ2∑T
t=1 σ

2
t +Mλ/3

)
, EXT =

T∑
t=1

Eyt = 0.

Therefore, for all i ∈ [L], λi ∈ (0, 1),

P(G̃i,T −Gi,T ≥ λi) ≤ exp
(

− λ2
i∑T

t=1 σ
2
t +Mλi/3

)
. (F.1)

Lower bound on G̃i,T −Gi,T . Similarly, we have Xt−1 −Xt = −yt ≤ 1 := M ′. We apply Theorem C.3.
Therefore, for all i ∈ [L], λi ∈ (0, 1), we have

Pr(G̃i,T −Gi,T ≤ −λi) ≤ exp
(

− λ2
i∑T

t=1 σ
2
t +M ′λi/3

)
. (F.2)

Step 3: Last step. We decompose the failure probability as follows:

Lemma F.2. For any fixed time budget T , we have

Pr(iout ̸= 1) ≤ Pr
(
G̃1,T −G1,T ≤ −T∆1,2

2

)
+

L∑
i=2

Pr
(
G̃i,T −Gi,T ≥ T∆1,2

2 + T · ∆2,i

)
.
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Combining (F.1), (F.2) and Lemma F.2 , we see that

λ1 ≤ T∆1,2

2 , λi ≤ T∆1,2

2 + T · ∆2,i ∀i ̸= 1,

⇒ Pr(iout ̸= 1) ≤ exp
(

− λ2
1∑T

t=1 σ
2
t +M ′λ1/3

)
+

L∑
i=2

exp
(

− λ2
i∑T

t=1 σ
2
t +Mλi/3

)
.

Let

λ1 := T∆1,2

2 λi := T∆1,2

2 + T · ∆2,i ∀i ̸= 1.

We now complete the proof:

Pr(iout ̸= 1) ≤ exp
(

−
T∆2

1,2/4
L/γ

)
+

L∑
i=2

exp
(

− T (∆1,2/2 + ∆2,i)2

L(3 + ∆1,2/2 + ∆2,i)/(3γ)

)

= exp
(

−
γT∆2

1,2

4L

)
+

L∑
i=2

exp
(

− 3γT (∆1,2/2 + ∆2,i)2

L(3 + ∆1,2/2 + ∆2,i)

)
.

F.3 Proof of Lemma F.2

Lemma F.2. For any fixed time budget T , we have

Pr(iout ̸= 1) ≤ Pr
(
G̃1,T −G1,T ≤ −T∆1,2

2

)
+

L∑
i=2

Pr
(
G̃i,T −Gi,T ≥ T∆1,2

2 + T · ∆2,i

)
.

Proof. We observe that

Pr(iout ̸= 1) = Pr(∃i ̸= 1 : G̃i,T ≥ G̃1,T )

≤ Pr
(

∃i ̸= 1 : G̃i,T −Gi,T ≥ T∆1,2

2 + T · ∆2,i, or G̃1,T −G1,T ≤ −T∆1,2

2

)
(F.3)

≤ Pr
(
G̃1,T −G1,T ≤ −T∆1,2

2

)
+

L∑
i=2

Pr
(
G̃i,T −Gi,T ≥ T∆1,2

2 + T · ∆2,i

)
. (F.4)

It is trivial to obtain (F.4) with (F.3). Now we complete the proof with the derivation of (F.3). We denote

E1,T :=
{
G̃1,T −G1,T ≤ −T∆1,2

2

}
, Ei,T :=

{
G̃i,T −Gi,T ≥ T∆1,2

2 + T · ∆2,i

}
∀i ̸= 1.

We can rewrite (F.3) as P(∃i ̸= 1 : G̃i,T ≥ G̃1,T ) ≤ P(
⋃L

i=1 Ei,T ). Hence, it is sufficient to show{ L⋂
i=1

EC
i,T

}
⇒ {G̃i,T < Gi,T ∀i ̸= 1}

as follows. When
⋂L

i=1 EC
i,T holds, for any i ̸= 1, we have

G̃i,T < Gi,T + T∆1,2

2 + T · ∆2,i = G1,T − T · ∆1,T + T∆1,2

2 + T · ∆2,i

< G̃1,T + T∆1,2

2 − T · ∆1,T + T∆1,2

2 + T · ∆2,i = G̃1,TT · ∆1,2 − (T · ∆1,2 + T · ∆2,T ) + T · ∆2,i

= G̃1,T .
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G Analysis of global performances of adversarial algorithms

G.1 Proof of Theorem B.3

Theorem B.3. Let 0 < ∆T ≤ 1. Then any algorithm π satisfies that

sup
B̄1(∆

T
,1)
ēT (π, I) ≥ 1 − exp(−3T/200)

4 · exp
(

− 150T∆2
T

L

)
.

Furthermore, when T ≥ 10,

sup
B̄1(∆

T
,1)
ēT (π, I) ≥ 2

65 exp
(

− 150T∆2
T

L

)
.

Proof. Step 1: Construct instances. To begin, we let Z1, Z2, . . . , ZT be a sequence of i.i.d. Gaussian
random variables with mean 1/2 and variance σ2 ∈ [1,∞). Let ε ∈ (0, 1/2) be a constant that will be chosen
differently in each proof. Under instance ℓ (1 ≤ ℓ ≤ L), Let gℓ

i,t be the random gain of item i at time step t,
where

gℓ
i,1 =

 1/2 if i = 1
1/2 + ε if i = ℓ ̸= 1
1/2 − ε else

, gℓ
i,t =


clip[0,1](Zt) if i = 1
clip[0,1](Zt + ε) if i = ℓ ̸= 1
clip[0,1](Zt − ε) else

∀t > 1.

Note that clip[a,b]x := max{a,min{b, x}} for a ≤ b. Under instance ℓ (1 ≤ ℓ ≤ L), we define notations as
follows:

(i) We let Gℓ
i,t =

∑t
u=1 g

ℓ
i,t and T · ∆̄ℓ

i,j = Gℓ
i,T − Gℓ

j,T for all i, j ∈ [L], which indicates that ℓ =
arg maxi∈[L] G

ℓ
i,T is the optimal item.

(ii) We let iℓt be the pulled item at time step t, and Ot
ℓ = {iℓu, giℓ

u,τ }t
u=1 be the sequence of pulled items

and observed gains up to and including time step t.

(iii) We let Pt
ℓ be the measure on Ot

ℓ, and let Pℓ,i be the measure on the gain of item i.

(iv) We define ∆̄ℓ
min := min

j ̸=ℓ
∆̄ℓ

ℓ,j .

For simplicity, we abbreviate PT
ℓ , OT

ℓ as Pℓ, Oℓ respectively. Moreover, we let Ni(t) denote the number of
pulls of item i up to and including time step t.

Step 2: Change of measure. First of all, we apply Lemmas C.6 and C.7 obtain that for all 1 ≤ ℓ ≤ L,

Pr
O1

(iout ̸= 1) + Pr
Oℓ

(iout = 1) ≥ 1
2 exp(−KL(P1 ∥ Pℓ)) = 1

2 exp(−EP1 [Nℓ(T )] · KL(P1,ℓ ∥ Pℓ,ℓ)).

Now we turn to bound EP1 [Nℓ(T )]. Since
∑L

ℓ=1 EP1 [Nℓ(T )] = T , there exists 2 ≤ ℓ2 ≤ L such that
EP1 [Nℓ2(T )] ≤ T/L.

Further, with Lemma C.10, we can see that

Pr
O1
iout ̸= 1) + Pr

Pℓ2

(iout = 1) ≥ 1
2 exp(−EP1 [Nℓ2(T )] · KL(P1,ℓ2 ∥ Pℓ2,ℓ2))

≥ 1
2 exp

(
− T

L
· (2ε)2

2σ2

)
.

Since PrOℓ2
(iout ̸= ℓ2) ≥ PrOℓ2

(iout = 1), we have

max
1≤ℓ≤L

Pr
Oℓ

(iout ̸= ℓ) ≥ 1
4 exp

(
− 2Tε2

σ2L

)
.
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Step 3: Comparison between ε and ∆̄ℓ
min. (i) Under instance 1, since G1

1,T ≥ G1
i,T = G1

j,T for all i, j ̸= 1,
i.e., item 1 is the optimal item and all other items are suboptimal with identical rewards after T time steps,
we have

∆̄1
min = min

j ̸=1
∆̄1

1,j = ∆̄1
1,2 =

G1
1,T −G1

2,T

T
= 1
T

·
T∑

t=1
[clip[0,1](Zt) − clip[0,1](Zt − ε)].

Let Xt = clip[0,1](Zt) − clip[0,1](Zt − ε) and X =
∑T

t=1 Xt. Then X = T ∆̄1
min. We have

Xt ≥ [clip[0,1][Zt + ε) − clip[0,1](Zt)] · 1{ε ≤ Zt ≤ 1 − ε} = ε · 1{ε ≤ Zt ≤ 1 − ε}.

Let zσ = 1/2 − ε. Theorem C.4 implies that

Pr
Zt

( ∣∣∣∣Zt − 1
2

∣∣∣∣ ≥ 1
2 − ε

)
≤ exp

(
− (1/2 − ε)2

2σ2

)
⇒ Pr

Zt

(ε ≤ Zt ≤ 1 − ε) ≥ 1 − exp
(

− (1 − 2ε)2

8σ2

)
:= p(ε, σ).

Hence,we have EXt ≥ ε · p(ε, σ).

Since Xt ∈ [0, ε] for all t, X1/ε, . . . ,XT /ε are independent [0, 1]-valued random variables, Theorem C.5
indicates that for all a ∈ (0, 1),

Pr(X − EX ≤ −aEX) ≤ exp
(

− a2EX
3ε

)
⇔ Pr(X ≥ (1 − a)EX) ≥ 1 − exp

(
− a2EX

3ε

)
. (G.1)

Let b = 1 − a. Since EXt ≥ ε · p(ε, σ) for all t,

Pr( X ≥ bTε · p(ε, σ) ) ≥ 1 − exp
(

− (1 − b)2T · p(ε, σ)
3

)
∀b ∈ (0, 1).

In order words,

Pr( ∆̄1
min ≥ bε · p(ε, σ) ) ≥ 1 − exp

(
− (1 − b)2T · p(ε, σ)

3

)
∀b ∈ (0, 1), ε ∈ (0, 1/2).

(ii) Under instance ℓ (ℓ ̸= 1), since Gℓ
ℓ,T ≥ Gℓ

1,T ≥ Gℓ
i,T = Gℓ

j,T for all i, j /∈ {1, ℓ}, i.e., item ℓ is the optimal
item, item 1 is the second optimal item, and all other items are with identical smaller rewards after T time
steps, we have

∆̄ℓ
min = min

j ̸=ℓ
∆̄ℓ

ℓ,j = ∆̄ℓ
ℓ,1 =

Gℓ
ℓ,T −Gℓ

1,T

T
= 1
T

·
T∑

t=1
[clip[0,1](Zt + ∆) − clip[0,1](Zt)].

Let X ′
t = clip[0,1](Zt + ε) − clip[0,1](Zt) and X ′ =

∑T
t=1 X

′
t. Then X ′ = T ∆̄ℓ

min. We have

X ′
t ≥ [clip[0,1](Zt + ε) − clip[0,1](Zt)] · 1{ε ≤ Zt ≤ 1 − ε} = ε · 1{ε ≤ Zt ≤ 1 − ε}.

We again apply Theorem C.4 to EX ′
t ≥ ε · p(ε, σ). Moreover, Theorem C.5 implies that

Pr( ∆̄ℓ
min ≥ bε · p(ε, σ) ) ≥ 1 − exp

(
− (1 − b)2T · p(ε, σ)

3

)
∀b ∈ (0, 1), ε ∈ (0, 1/2).

(iii) Altogether, for all 1 ≤ ℓ ≤ L, we have

Pr( ∆̄ℓ
min ≥ bε · p(ε, σ) ) ≥ 1 − exp

(
− (1 − b)2T · p(ε, σ)

3

)
∀b ∈ (0, 1), ε ∈ (0, 1/2). (G.2)
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Step 4: Consider the instance with the largest error probability. Let 1 ≤ ℓ3 ≤ L satisfy that

Pr
Oℓ3

(iout ̸= ℓ3) ≥ 1
4 exp

(
− 2Tε2

σ2L

)
.

Note that ∆̄1
min, . . . , ∆̄L

min are all determined by {Zt}T
t=1. We let O′ := Oℓ3 ∪ {Zt}T

t=1. Then for all b ∈ (0, 1),

Pr
Oℓ3

(iout ̸= ℓ3) ≥ Pr
O′

(
iout ̸= ℓ3, ∆̄ℓ3

min ≥ bε · p(ε, σ)
)

≥ Pr
O′

(
iout ̸= ℓ3

∣∣ ∆̄ℓ3
min ≥ bε · p(ε, σ)

)
· Pr

O′

(
∆̄ℓ3

min ≥ bε · p(ε, σ)
)

≥ 1
4 exp

(
− 2Tε2

b2σ2L · p2(ε, σ)

)
·
[
1 − exp

(
− (1 − b)2T · p(ε, σ)

3

)]
.

Let ε = 1/10, σ = 1/3, b = 7/10. Then

p(ε, σ) = 1 − exp
(

− (1 − 2ε)2

8σ2

)
= 1 − exp

(
− 9

8 ·
(

4
5

)2)
= 1 − exp

(
− 18

25

)
≥ 1

2 .

Moreover,

Pr
Oℓ3

(iout ̸= ℓ3) ≥ 1
4 exp

(
− 2T (∆̄ℓ3

min)2

(7/10)2 · (1/3)2 · L · (1/2)2

)
·
[
1 − exp

(
− (3/10)2 · T · (1/2)

3

)]
= 1

4 exp
(

− 7200T (∆̄ℓ3
min)2

49L

)
·
[
1 − exp

(
− 3T

200

)]
≥ 1

4 exp
(

− 150T (∆̄ℓ3
min)2

L

)
·
[
1 − exp

(
− 3T

200

)]
.

When T ≥ 10, since 1 − exp(−3T/200) ≥ 8/65, we have

Pr
Oℓ3

(iout ̸= ℓ3) ≥ 2
65 exp

(
− 150T (∆̄ℓ3

min)2

L

)
.

Step 5: Classification of instances. Let B̄1(∆T , R̄) denote the set of instances where (i) the empirically-
minimal optimality gap ∆̄T ≥ ∆T ; and (ii) there exists R0 ∈ R such the rewards are bounded in [R0, R0 +R].
Then

sup
B̄1(∆

T
,1)

Pr(iout ̸= ī∗T ) ≥ 1 − exp(−3T/200)
4 · exp

(
− 150T∆2

T

L

)
∀0 < ∆T ≤ 1.

When T ≥ 10,

sup
B̄1(∆

T
,1)

Pr(iout ̸= ī∗T ) ≥ 2
65 exp

(
− 150T∆2

T

L

)
∀0 < ∆T ≤ 1.

G.2 Proof of Theorem B.4

Theorem B.4. Let 0 < ∆T ≤ 1 and T ≥ 10. Let π be any algorithm with ēT (π, I) ≤ 2 exp(−ψT )/65 for all
I ∈ B̄1(∆T , 1). Then

sup
I∈B̄1(∆

T
,1)

ER̄T (π, I) ≥ ψT · L− 1
103∆T

.
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Proof. The analysis is similar to that of Theorem B.3 (See Appendix G.1). We construct L instances in the
same way.

Step 1: Change of measure. We apply Lemmas C.7 and C.6 to show that

Pr
O1

(iout ̸= 1) + Pr
Oℓ

(iout = 1) ≥ 1
2 exp(−KL(P1 ∥ Pℓ)) = 1

2 exp(−EP1 [Nℓ(T )] · KL(P1,ℓ ∥ Pℓ,ℓ)).

In order to upper bound EP1 [Nℓ(T )], we lower bound the number of time steps that g1
1,t − g1

ℓ,t = ε, i.e.,
Zt ∈ [0, 1 − ε]. Let zσ = 1/2 − ε. We again apply Theorem C.4 to obtain (G.1):

Pr
Zt

(ε ≤ Zt ≤ 1 − ε) ≥ 1 − exp
(

− (1 − 2ε)2

8σ2

)
= p(ε, σ).

Since the expectation of the empirical-regret is upper bounded by Reg, we have

Reg ≥ EP1

[
T∑

t=1
1{i1t ̸= 1} · (g1

1,t − g1
it,t)

]
≥ EP1

[
T∑

t=1
1{i1t ̸= 1,∆ ≤ Zt ≤ 1 − ε} · (g1

1,t − g1
it,t)

]

=
T∑

t=1
EPt

1
[1{i1t ̸= 1} · [clip[0,1](Zt) − clip[0,1](Zt − ε)] | ε ≤ Zt ≤ 1 − ε] · Pr

Zt

(ε ≤ Zt ≤ 1 − ε)

=
T∑

t=1
EPt

1
[1{i1t ̸= 1} · [Zt − (Zt − ε)] | ε ≤ Zt ≤ 1 − ε] · p(ε, σ)

=
T∑

t=1
EPt

1
[1{i1t ̸= 1}] · ε · p(ε, σ) = ε · p(ε, σ) ·

L∑
ℓ=2

EP1 [Nℓ(T )].

Hence, there exists 2 ≤ ℓ0 ≤ L such that

EP1 [Nℓ0(T )] ≤ Reg
ε · p(ε, σ) · (L− 1) .

Further, we again apply Lemma C.10 to obtain

Pr
O1

(iout ̸= 1) + Pr
Oℓ0

(iout = 1) ≥ 1
2 exp(−EP1 [Nℓ0(T )] · KL(P1,ℓ0 ∥ Pℓ0,ℓ0))

≥ 1
2 exp

(
− Reg
ε · p(ε, σ) · (L− 1) · (2ε)2

2σ2

)
.

Since PrOℓ0
(iout ̸= ℓ0) ≥ PrOℓ0

(iout = 1), we have

max
1≤ℓ≤L

Pr
Oℓ

(iout ̸= ℓ) ≥ 1
4 exp

(
− 2εReg
σ2 · p(ε, σ) · (L− 1)

)
where p(ε, σ) = 1 − exp[−(1 − 2ε)2/(8σ2)].

Step 2: Consider the instance with the largest error probability. Recall (G.2) from the analysis of
Theorem B.3 in Appendix G.1. For all 1 ≤ ℓ ≤ L, we have

Pr( ∆̄ℓ
min ≥ bε · p(ε, σ) ) ≥ 1 − exp

(
− (1 − b)2T · p(ε, σ)

3

)
∀b ∈ (0, 1), ε ∈ (0, 1/2).

Let 1 ≤ ℓ2 ≤ L satisfy that

Pr
Oℓ2

(iout ̸= ℓ2) ≥ 1
4 exp

(
− 2εReg
σ2 · p(ε, σ) · (L− 1)

)
.
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Note that ∆̄1
min, . . . , ∆̄L

min are all determined by {Zt}T
t=1. We let O′ := Oℓ2 ∪ {Zt}T

t=1. Then for all b ∈ (0, 1),
1 ≤ ℓ ≤ L,

Pr
Oℓ2

(iout ̸= ℓ2) ≥ Pr
O′

(
iout ̸= ℓ2, ∆̄ℓ

min ≥ bε · p(ε, σ)
)

≥ Pr
O′

(
iout ̸= ℓ2

∣∣ ∆̄ℓ
min ≥ bε · p(ε, σ)

)
· Pr

O′

(
∆̄ℓ

min ≥ bε · p(ε, σ)
)

≥ 1
4 exp

(
− 2∆̄ℓ

min · Reg
σ2 · b · p2(ε, σ) · (L− 1)

)
·
[
1 − exp

(
− (1 − b)2T · p(ε, σ)

3

)]
.

Since this inequality holds for all 1 ≤ ℓ ≤ L, we let ∆̄min = min1≤ℓ≤L ∆̄ℓ
min, and have

Pr
Oℓ2

(iout ̸= ℓ2) ≥ 1
4 exp

(
− 2∆̄min · Reg
σ2 · b · p2(ε, σ) · (L− 1)

)
·
[
1 − exp

(
− (1 − b)2T · p(ε, σ)

3

)]
.

We again let ε = 1/10, σ = 1/3, b = 7/10. Then p(ε, σ) ≥ 1/2, and

Pr
Oℓ2

(iout ̸= ℓ2) ≥ 1
4 exp

(
− 2∆̄min · Reg

(1/3)2 · (7/10) · (1/2)2 · (L− 1)

)
·
[
1 − exp

(
− (3/10)2 · T · (1/2)

3

)]
≥ 1

4 exp
(

− 720∆̄min · Reg
7(L− 1)

)
·
[
1 − exp

(
− 3T

200

)]
≥ 1

4 exp
(

− 103∆̄min · Reg
L− 1

)
·
[
1 − exp

(
− 3T

200

)]
.

When T ≥ 10, since 1 − exp(−3T/200) ≥ 8/65, we have

Pr
Oℓ2

(iout ̸= ℓ2) ≥ 2
65 exp

(
− 103∆̄min · Reg

L− 1

)
.

Suppose algorithm π satisfies that

Pr
Oℓ2

(iout ̸= ℓ2) ≤ 2
65 exp(−ψT ),

then we have

Reg ≥ L− 1
103∆̄min

· ψT .

Step 3: Classification of instances. Suppose algorithm π satisfies that ēT (π) ≤ 2 exp(−ψT )/65. We
again consider B̄1(∆T , 1) as in Theorem B.3. Recall that B̄1(∆, R̄) denote the set of instances where (i) the
empirically-minimal optimality gap ∆̄min,T ≥ ∆T in T time steps; and (ii) there exists R0 ∈ R such the
rewards are bounded in [R0, R0 +R]. When T ≥ 10,

sup
I∈B̄1(∆

T
,1)

ER̄T (π, I) ≥ ψT · L− 1
103∆T

∀0 < ∆T ≤ 1.

H Additional numerical results

We present the failure probabilities and counts of algorithms in different instances in Appendix H.1. We provide
additional numerical results for both synthetic and real datasets in Appendices H.3 and H.4 respectively. We
also elaborate more details about the experiment setup of the PKIS2 dataset in Appendix H.4.
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H.1 Empirical failure probability of BoBW-lil’UCB(γ)

Table H.1: Empirical failure probability below 1%
Bernoulli instances ML-25M PKIS2

L 64 128 22 109
∆ 0.05 0.1 0.1 0.2

BoBW(6 × 10−7) 0.83% 0.22% 0.78% 0.20% 0.96% 0.92%
BoBW(6 × 10−4) 0.65% 0.17% 0.62% 0.18% 0.72% 0.23%
BoBW(6 × 10−1) 0.11% 0.03% 0.14% 0.04% 0.06% 0

Table H.2: Empirical failure probability below 2%
Bernoulli instances ML-25M PKIS2

L 64 128 22 109
∆ 0.05 0.1 0.1 0.2

BoBW(6 × 10−7) 1.78% 1.60% 1.06% 0.31% 0.96% 1.68%
BoBW(6 × 10−4) 1.21% 0.95% 0.61% 0.16% 0.72% 0.42%
BoBW(6 × 10−1) 0.28% 0.23% 0.06% 0.03% 0.06% 0
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H.2 Empirical regret of algorithms with empirical failure probability below 1%

Table H.3: Empirical regret of algorithms using synthetic data
Algorithm L ∆ Average regret Standard deviation of regret
BoBW(9 × 10−1) 64 0.05 6.45 × 103 5.10 × 101

BoBW(9 × 10−4) 64 0.05 6.59 × 103 1.38 × 101

BoBW(9 × 10−7) 64 0.05 6.61 × 103 9.27
UCB3.0 64 0.05 1.84 × 104 2.31 × 103

UCB4.5 64 0.05 2.34 × 104 3.41 × 103

UCB6.0 64 0.05 2.64 × 104 4.22 × 103

BoBW(9 × 10−1) 64 0.1 3.78 × 103 3.74 × 101

BoBW(9 × 10−4) 64 0.1 3.90 × 103 8.53
BoBW(9 × 10−7) 64 0.1 3.91 × 103 5.64
UCB3.0 64 0.1 8.89 × 103 1.12 × 103

UCB4.5 64 0.1 1.13 × 104 1.68 × 103

UCB6.0 64 0.1 1.28 × 104 2.07 × 103

BoBW(9 × 10−1) 128 0.1 6.82 × 103 3.26 × 101

BoBW(9 × 10−4) 128 0.1 6.91 × 103 7.37
BoBW(9 × 10−7) 128 0.1 6.92 × 103 4.83
UCB3.0 128 0.1 1.84 × 104 2.21 × 103

UCB4.5 128 0.1 2.35 × 104 3.39 × 103

UCB6.0 128 0.1 2.67 × 104 4.19 × 103

BoBW(9 × 10−1) 128 0.2 3.87 × 103 2.49 × 101

BoBW(9 × 10−4) 128 0.2 3.95 × 103 4.47
BoBW(9 × 10−7) 128 0.2 3.96 × 103 2.86
UCB3.0 128 0.2 8.72 × 103 1.09 × 103

UCB4.5 128 0.2 1.11 × 104 1.62 × 103

UCB6.0 128 0.2 1.26 × 104 2.01 × 103

Table H.4: Empirical regret of algorithms using the ML-25M dataset
Algorithm L Average regret Standard deviation of regret
BoBW (9 × 10−1) 22 4.05 × 103 113.98
BoBW (9 × 10−4) 22 5.16 × 103 43.93
BoBW (9 × 10−7) 22 5.38 × 103 31.79
UCB 3.0 22 7.05 × 103 927.60
UCB 4.5 22 11.22 × 103 1.77 × 103

UCB 6.0 22 15.04 × 103 2.67 × 103

Table H.5: Empirical regret of algorithms using the PKIS2 dataset
Algorithm L Average regret Standard deviation of regret
BoBW(9 × 10−1) 109 8.63 × 106 2.31 × 103

BoBW(9 × 10−4) 109 8.73 × 106 1.55 × 103

BoBW(9 × 10−7) 109 8.78 × 106 1.32 × 103

UCB3.0 109 17.01 × 106 2.33 × 106

UCB4.5 109 21.50 × 106 2.94 × 106

UCB6.0 109 26.31 × 106 3.71 × 106
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H.3 Experiments using synthetic data

In this section, we present more numerical results for larger instances with L = 128 items. These figures yield
the same conclusions as in Section 6.1.

Experiments with empirical failure probabilities below 1%.
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Figure H.1: Empirical failure probability ≤ 1%: L = 128, ∆ = 0.1, νi = Bern(wi).
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Figure H.2: Empirical failure probability ≤ 1%: L = 128, ∆ = 0.2, νi = Bern(wi).

Experiments with empirical failure probabilities below 2%.
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Figure H.3: Empirical failure probability ≤ 2%: L = 64, ∆ = 0.05, νi = Bern(wi).
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Figure H.4: Empirical failure probability ≤ 2%: L = 64, ∆ = 0.1, νi = Bern(wi).
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Figure H.5: Empirical failure probability ≤ 2%: L = 128, ∆ = 0.1, νi = Bern(wi).
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Figure H.6: Empirical failure probability ≤ 2%: L = 128, ∆ = 0.2, νi = Bern(wi).

H.4 Experiments using real data

PKIS2 dataset. The repository tests 641 small molecule compounds (kinase inhibitor) against 406 protein
kinases. This experiment aims to find the most effective inihibitor against a targeted kinase, and is a
fundamental study in cancer drug discovery. PKIS2 presents a ‘percentage inhibition’ for each inhibitor,
which is averaged over several trials. For each entry, we normalize it to be between 0 and 1, and then obtain
the percentage control by subtracting each of the normalized entries from 1. The percentage control can
help understand how effective the inhibitor is against the targeted kinase. Since Christmann-Franck et al.
(2016) reported that these values have log-normal distributions with variance less than 1, we sample random
variables form a standard normal distribution with the log of the percent control as the mean; the similar
setup was used in Mason et al. (2020); Mukherjee et al. (2021). In our experiment, we select the inhibitors
tested against one specific kinase MAPKAPK5. We aim to find out the most effective inhibitor with the
highest percentage control against MAPKAPK5, and also obtain high percentage controls cumulatively during
the process. Our results may benefit the experiments that test inhibitors with genuine cancer patients, which
helps to identify the most effective inhibitor with a fixed number of tests and provide effective solutions to
the attendants during the tests.

Experiments with empirical failure probabilities below 2%.
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Figure H.7: Empirical failure probability ≤ 2%. ML-25M: L = 22 movies with at least 50, 000 ratings.
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Figure H.8: Empirical failure probability ≤ 2%. PKIS2: L = 109 inhibitors tested against MAPKAPK5.
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