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Abstract—Recent growing needs for real time data analytics
have increased importance of streaming model selection. Real-
world streaming observations are often obtained by dynamically-
changing or heterogeneous data sources, and learning machines
must identify the complexities of the data generation processes
on the fly without prior knowledge. This paper proposes online
FAB (OFAB) inference as a general framework for streaming
model selection of latent variable models. The key idea in OFAB
inference is degeneration, i.e. it intentionally considers a “redun-
dant” latent space and dynamically derives a “non-redundant”
latent sub-space using a FAB-unique shrinkage mechanism on
demand. By integrating the idea of stochastic variational in-
ference, OFAB automatically and dynamically selects the best
dimensionality of latent variables in a streaming and Bayesian
principled manner. Empirical results on two applications, density
estimation and abnormal detection, show that online FAB (OFAB)
outperformed the state-of-the-art online inference methods.

I. INTRODUCTION

Recent growing needs for real time data analytics have
increased importance of streaming learning machines. For
example, in Internet of Things (IoT), infinite amount of sensor
streaming data might be too huge to be uploaded to cloud.
Thus learning as well as prediction has to be processed on
the “edges” where the amount of memory and storage are
quite limited. The streaming observations from the sensors
are often governed by a variety of data generation processes
due to deployed environment, type of sensors, non-stationary
changes in data over time, etc. Further, it is often hard in
the above scenarios to obtain supervised signals in real time.
Due to these natures, unsupervised learning machines must
identify the complexities of the data generation processes on
the fly without prior knowledge.

Online learning of unsupervised learning machines, partic-
ularly latent variable models, have been actively studied for a
past decade [1], [2], [3], [4], [5], [6]. Particularly, stochastic
variational inference (SVI) [7] and related work [8], [9], [10],
[11] have recently received significant attentions for a wide
class of latent variable models. The SVI methods incorporate
ideas in stochastic optimization [12] and natural gradient [13]
with variational inference, and their estimates of the gradi-
ent of evidence lower bounds (ELBOs) by subsampling the
data can be cheaply obtained and are unbiased under mild
conditions. With a combination of Bayesian Non-Parametric
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models (BNPs), SVI enables us to determine model complex-
ity (i.e. dimensionality of latent variables) as well as model
parameters in a streaming fashion. However, Bayesian non-
parametric priors tend to include superfluous latent variables
to achieve a good estimate of the density [14], [15] and thus
usually overestimate the dimensionality of latent variables as
we will demonstrate in our experiments.

Meanwhile, factorized asymptotic Bayesian (FAB) inference
has recently been proposed for model selection of various of
latent variable models [16], [17], [18], [19], [20], [21], and
its model selection has been empirically proven to outperform
BNPs with much less computational cost. A unique nature
of the FAB inference is a L0-regularization effect on latent
variables induced from Bayesian marginalization, which au-
tomatically eliminates irrelevant latent variables through EM-
like alternating optimization (so-called shrinkage). In contrast
to BNPs which enables us to control model complexity by
prior representation, the FAB inference is better at automation
since its model selection is purely induced by Bayesian
marginalization regardless of prior. Although FAB inference is
promising for streaming model selection, previous FAB meth-
ods are batch learning algorithms and are not applicable to
steaming scenarios. Further, the FAB regularization eliminates
irrelevant latent variables but there is no principal mechanism
to generate latent variables (e.g. a new topic appears over time
in non-stationary topic clustering).

This paper proposes online FAB (OFAB) inference as a
general framework for streaming model selection of latent
variable models. Our key ideas and contributions that ad-
dress the above issues of FAB inference are summarized
as follows. First, we combine an idea of streaming trust-
region SVI (strust-SVI) [11] with FAB inference and derive
streaming update formula of OFAB inference. As with strust-
SVI, OFAB inference alternatingly scratches a sample subset
from data stream and performs trust-region updates of model
parameters based on the captured subset via alternating co-
ordinate ascent. In addition, in order to address the issue of
“generating” latent variables, we employ a latest theoretical
notion, degeneration on FAB inference introduced by Hayashi
et al. [22]. Suppose we have two latent variables Z and Z ′

with dimZ > dimZ ′ where dimZ is the dimensionality of Z.
Roughly speaking, the idea of degeneration is that the values
of marginal log-likelihood under Z and Z ′ are equivalent



if there exists a projector Π such that Z ′ = ΠZ, and the
shrinkage of FAB inference finds such Z ′ from Z (and Π
is chosen to minimize the dimensionality of Z ′.). On the
basis of degeneration, our OFAB inference learns Z with
sufficiently large dimensionality in a streaming fashion (here
we do not perform the shrinkage operation) and then returns
Z ′ = ΠZ on the fly by performing the shrinkage operation
while keeping Z in the back. This procedure enables dynamic
adjustment of the realized dimensionality of Z ′ and realizes
fully-streaming model selection of latent variable models. We
derive OFAB inference for two basic models, Gaussian mix-
ture models (GMMs) and mixtures of probabilistic principal
component analyzers (MPPCA) [23], in applications to density
estimation and outlier detection. Experimental results show
the superiority of OFAB over state-of-the-art online inference
methods.

II. RELATED WORK

SVI [7] has been proposed for (batch) stochastic inference
of latent variable models by incorporating the idea of stochas-
tic optimization [12] and natural gradient [13] in [1], and SVI
has been extended in various aspects such as combinations
with BNPs [8], [24], adaptive learning rate [25], combinations
with collapsed VB [26], etc. For streaming model selection,
SVI with BNPs offer efficient online learning algorithms with
model selection ability [3], [5], [8], [9]. However, it has
been criticized due to its dependence on the learning rate
and a pre-knowledge of a fixed data size. To address the
issue, recently, the SVI has been improved by replacing the
natural gradient steps with trust-region updates, which allows
to initialize parameters arbitrarily in each iteration, and help to
escape local optima [11]. Although this strategy is particularly
suitable in the streaming setting, it hasn’t been directly derived
to BNPs.

Besides those stochastic variational inference (SVI) style
methods, Lin [27] developed the sequential variational approx-
imation (SVA) inference for DP mixture models, which has
been generalized to a broader class of BNPs recently [28].
Streaming variational Bayesian (SVB) [6] handles unbounded
data by exploiting the sequential nature of Bayes theorem to
recursively update an approximation of the posterior using the
previous posterior as a prior. Campbell et al. [10] extended
SVB to BNPs and more importantly they proposed a com-
putation framework for streaming, distributed, asynchronous
data clustering.

Factorized asymptotic Bayesian inference has been pro-
posed in [16] as a model selection framework and has been
extended to various latent variables such as hidden Markov
models [17], latent features models [18], hierarchical mixture
of experts [19], binary matrix factorization [20], and principal
component analysis [22]. They have shown the superiority of
FAB inference w.r.t. model selection over BNP-based methods.
Recently, Liu et al. [20] combines SVI with FAB for scalable
model selection on very large network data. However, their
methods are essentially batch-learning algorithms, and as far

as we know there has been no work extending FAB inference
for streaming scenarios.

III. PRELIMINARY: FAB INFERENCE AND DEGENRATION

Suppose we have observation data XN = x1, · · · , xN
where xn ∈ RD. Let us denote latent variables corresponding
to XN as ZN = z1, · · · , zN , where zn ∈ {0, 1}K is an
indicator vector with znk = 1 denotes xn is generated by
the k-th latent state1. FAB inference considers the following
alternative representation of the marginal log-likelihood,

log p(XN |K) = max
q

{∑
ZN

q(ZN ) log
p(XN , ZN |K)

q(ZN )

}
,

(1)

p(XN , ZN |K) =

∫
p(XN , ZN |Θ)p(Θ|K)dΘ, (2)

where q(ZN ) is a variational distribution on ZN , K denotes
the model complexity, and Θ is a model parameter, respec-
tively. By adopting a prior of log p(Θ|K) = O(1), and by
applying the Laplace method to p(XN , ZN |K), we obtain an
asymptotic approximation of (1) as follows2:

FIC(Θ|XN ) ≡ max
q

{
Eq

(
log p(XN , ZN |Θ)

−
K∑
k=1

Dk

2
log

N∑
n=1

znk

)
− Dα

2
logN +H(q)

}
, (3)

where Dα and Dk are the parameter dimensionality of p(ZN )
and pk(XN |ZNk ), respectively, and H(q) is the entropy of
q(ZN ). FIC(Θ) is referred to as factorized information cri-
terion (FIC), and FAB inference optimizes q and Θ by EM-like
alternating updates. FIC has been proven to be asymptotically
accurate, i.e. with N goes infinity,

log p(XN |K) = FIC(Θ|XN ) +O(1) (4)

holds.
Hayashi et al. [22] have introduced the notion of degen-

eration that plays a central role in our idea of online FAB
inference. Suppose we have two tuples: (ΘK ,K, ZK) and
(ΘK′ ,K ′, ZK′) where K ′ < K. Here we denote Θ and
Z given K by ΘK and ZK , respectively. Then, the model
p(X,ZK |ΘK ,K) is degenerated if there exists an equivalent
likelihood as follows:

p(XN , ZK |ΘK ,K) = p(XN , ZK′ |ΘK′ ,K ′). (5)

One of key observations in [22] is that, if there exists a
continuous onto mapping (ZK ,ΘK) → (ZK′ ,ΘK′) that
satisfies (5) and ZK′ is not degenerated3, then

log p(XN |K) = log p(XN |K ′) +O(1) (6)

1Here we consider multinomial latent variables but it is easy to extend it
for factorial latent variables [18], [20] and continuous latent variables [22].

2The generalized FIC which is asymptotically more accurate than the
standard FIC has been proposed by [22], which replace log

∑N
n=1 znk by

logarithmic determinant of Fisher information matrix.
3For more detailed theoretical conditions, see [22].



holds and, importantly, such mappings exist for many laten-
t variable models like Gaussian mixture models (GMMs),
principal component analysis (PCA), etc. For example, it
may correspond to merge two identical mixed components
for GMMs or it may correspond to eliminate singular eigen
subspaces for PCA.

IV. ONLINE FAB INFERENCE

A. The Concept

The idea of degeneration states that FAB inference enables
identification of the smallest (i.e. non-degenerated) subspace
of latent variables for given data X from the degenerated
space. In other words, if we have sufficiently large (de-
generated) space of latent variables, we can recover a non-
degenerated small subspace anytime. The key idea in online
FAB inference is to update “sufficiently large” latent variables
in a streaming fashion and identify dynamically changing
model complexity on demand. Fig. 1 illustrates this key
concept of online FAB inference. Let b denotes the mini-
batch index and suppose we have the master latent variable
Z(b) and the master parameter Θ(b) where the dimensionality
of Z(b) is set to be a sufficiently large fixed number K in
advance. Further, suppose X(b) = x(b−1)T+1, . . . , xbT is a
streaming mini-batch observation where T is the batch size.
For each X(b), we iteratively update Z(b) and Θ(b). The key
idea is that K is sufficiently large such that Z(b) is always
degenerated (a practical setting of K under resource restriction
will be discussed in the later sub-section) though the effective
dimensionality given X(1), . . . X(b) may change over b. Then,
on the basis of requests from users, we duplicate Z(b) and Θ(b)

as Ẑ(b), and Θ̂(b) and perform the FAB shrinkage operation
to Ẑ(b) and Θ̂(b) in order to find the non-degenerated latent
variables and their corresponding parameters.

B. Online FAB Algorithm

The derivation of the online FAB algorithm has the follow-
ing two key processes:

1) streaming updates of Θ and q(Z),
2) streaming shrinkage operation.

Streaming FAB EM Updates: In the stochastic updates, we
extend the idea of SVI [7], particularly the recently proposed
strust-SVI [11], for the FAB inference. The (strust-)SVI s-
tochastically approximates the ELBO (a.k.a. variational free
energy) by replacing expectation over variational distributions
on Θ and Z by sub-sampling. Such noisy estimates of a
gradient not only are cheaper to compute than true gradient,
but also empower an inference algorithm with sequential
nature. Instead of the ELBO, our FAB inference considers the

following stochastic approximation of FIC on the mini-batch
X(b):

FIC(Θ,q(Z(b))|X(b)) = Eq

[
Nb+1

T

T∑
i=1

log
p(xNb+i, zNb+i|Θ)

q(zNb+i)

−
K∑
k=1

Dk

2
log

Nb+1

T

T∑
i=1

zNb+i,k

]
− Dα

2
logNb+1.

(7)

where
Nb = (b− 1)T. (8)

It is easy to prove that (7) is an unbiased estimator of (3),
as is the case of SVI. Then, the online FAB E-step updates
q(Z(b)) by:

arg max
q(Z(b))

FIC(Θ(b), q(Z(b))|X(b)) (9)

The idea of trust-region updates in SVI [11] is to regularize
the ELBO by the Kullback-Leibler (KL) divergence which pre-
vents the joint distribution of model parameters from changing
so much comparing with the last update, and such that trust
region updates together with the arbitrarily initialization of
mini-batch samples will help to make the learning algorithm
more robust (less sensitive to initialization). More specifically,
the online FAB M-step using the trust-region update is given
by:

arg max
Θ
FIC(Θ, q(b)(Z(b))|X(b))− εbKL(Θ(b−1),Θ),

(10)

KL(Θ(b−1),Θ) =
Nb+1

T
Ep

(
log

p(X(b), Z(b)|Θ(b−1))

p(X(b), Z(b)|Θ)

)
,

(11)

where εb is a learning rate which is chosen such that
∑
b(1 +

εb)
−1 = ∞ and

∑
b(1 + εb)

−2 < ∞ are satisfied. We set
the dynamic learning rate for the bth mini-batch by observed
sample number Nb+1 and two hyperparameters (τ, κ), which
is:

εb = (τ +Nb+1)κ − 1. (12)

Streaming Shrinkage Operation: One of unique natures of
the FAB inference is its regularization, caused by the double-
underlined parts in (3) and (7), which automatically eliminates
irrelevant and redundant latent variables as we will also see
in the next subsection. Previous studies refer to the effect
as model shrinkage. Roughly speaking, the smaller and more
poorly-fitted latent variables are, the more strongly they will
be regularized, and thus such latent variables are gradually
diminished from the model through the EM updates (please
see [16], [22] for details of the shrinkage mechanism).

In contrast to the other batch FAB methods which operate
the shrinkage operation directly on Z and Θ, OFAB first
duplicates Z and Θ as Ẑ and Θ̂, and then performs the
shrinkage operation on the duplicated model so that the
duplicated one comes to be non-degenerated (while the master
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Fig. 1. One pass through the streaming data for online FAB inference, where CK denotes the Kth component.

model is kept degenerated.) In practical implementation, the
shrinkage operation eliminates “small” latent variables which
satisfy:

Q
(b−1)
k +

T∑
i=1

q(b)(zNb+i,k) < Nb+1δ, (13)

Q
(b)
k =

b∑
b′=1

T∑
i=1

q(b′)(zNb′+i,k), (14)

where δ is pre-fixed shrinkage parameter, and Q(b)
k is a scalar

value and kept in memory as one of sufficient statistics. As
[16] pointed, FAB inference theoretically tends to keep similar
latent states (i.e. p(x|Θk) and p(x|Θk′) resemble with each
other). To obtain the model which maximizes FIC, we apply
the same merge heuristics proposed in [18], which sequentially
chooses two latent variables whose KL-divergence are the
smallest and merges them if FIC increases by the merge.

C. Practical Implementation: Dynamic Memory Adjustment

One of important issues in OFAB is the choice of K, i.e.
the dimensionality of the degenerated master latent variables.
In theory, it can be any sufficiently large number. However in
practice finding such a number might not be trivial particularly
in situations explained in Section I, e.g. different sensors
are governed by different data generation process. Suppose
we have two data streams and set K = 100. If the true
dimensionality of one stream is 10, then 100 might be too large
in terms of memory consumption (memory is often limited on
IoT edges). On the other hand, if that of another stream is 200,
100 is too small and we might fail to learn the data generation
process.

In order to mitigate such situations and to eliminate pre-
determination of K, we introduce a heuristics which dynam-
ically expands dimensionality of latent variable in memory.
As we have explained above, we assume that K is a very
big number which exists only theoretically. Let us introduce
two new notions, implemented dimensionality and realized
dimensionality. The implemented dimensionality, denoted by

K̄(b) < K, is dimensionality of the latent variables in memory
with which the model is still degenerated. If we apply the
shrinkage operation to the model with K̄(b) latent variables,
we obtain the non-degenerated model with K̂(b) < K̄(b) latent
variables, and we refer to K̂(b) as the realized dimensionality.

As we observe more streaming data, K̂(b) might approach
to K̄(b). If K̂(b) becomes larger than K̄(b) − K̄ε, we increase
the implemented dimensionality by K̄(b) + K̄i and reallocate
the model in memory. This procedure guarantees that the
implemented model always has more than K̄i redundant latent
variables and is degenerated. By this way and initializing
K̂(1) = 1 and K̄(1) = K̄i + 1, we can eliminate K
and dynamically adjust appropriate size of degenerated latent
variables. Although we here introduce two new parameters K̄ε

and K̄i, they are not sensitive and it’s easy to determine them4.

D. Examples: GMM and MPPCA

This section provides update equations for two standard
models, GMMs and MPPCAs. For each mini-batch streaming
observation, we iterate the OFAB EM steps for M times
in practice where M is a small number. Below, Let m ∈
{1, . . . ,M} denotes the index for the inner EM iterations.

1) Gaussian Mixture Models: Let Θk = {µk,Σk} and
αk ∈ [0, 1] denote the parameters and the mixing ra-
tio of the k-th component respectively, and let Θ =
{Θ1, . . . ,ΘK , α = (α1, . . . , αK)}. Then the joint distribution
of GMMs over X(b) and Z(b) is described as follows:

p(X(b), Z(b)|Θ) =
T∏
i=1

K∏
k=1

(αkN (xi|µk,Σk))
zik (15)

where µk ∈ RD and Σk ∈ RD×D are the mean vector and
covariance matrix of a Gaussian distribution.

By introducing the above joint likelihood into the stochastic
FIC (7) and solving the optimization problem in (9), we obtain

4As long as the implemented model is reasonably degenerated, the final
results are not significantly affected.



the formula of E-step updates for GMMs on the mini-batch
X(b) as follows:

q(b,m)(zNb+i,k) ∝ α(b,m)
k p(xNb+i|Θ(b,m)

k )exp

(
− Dk

2Q
(b,m−1)
k

)
,

(16)

Q
(b,m−1)
k = Q

(b−1)
k +

T∑
i=1

q(b,m−1)(zNb+i,k), (17)

where Dk represents the parameter dimensionality of Θ
(b)
k .

The unique regularization term of FAB double-underlined
in (3) and (7) turns to exp(−Dk/2Q

(b,m−1)
k ) in (16) when

updating the latent variable distribution q(zNb+i,k). Intuitively
speaking, the smaller a component is (the smaller Q(b,m−1)

k is),
the less possible samples will be assigned to this component
(the smaller q(b,m)(zNb+i,k) is), and the more likely it is to
be shrunk. Additionally, as the cumulative number of samples
Nb+1 → ∞, the regularization term approaches 1, resulting
in the attenuation of its regularizing effect. In practice for
streaming data, the less samples following a latent state, the
higher possibility that latent state is out-of-date or redundant,
then it should be eliminated.

The OFAB M-step using the trust-region update in (10) has
been derived for GMMs as follows:

α
(b,m)
k =

∑T
i=1 q

(b,m−1)(zNb+i,k) + εbTα
(b,m−1)
k

(1 + εb)T
, (18)

µ
(b,m)
k =

∑T
i=1 q

(b,m−1)(zNb+i,k)xNb+i

(1 + εb)Tα
(b,m−1)
k

+
εbµ

(b,m−1)
k

1 + εb
,

(19)

Σ
(b,m)
k =

∑T
i=1 q

(b,m−1)(zNb+i,k)
〈
xNb+i, µ

(b,m)
k

〉
(1 + εb)Tα

(b,m−1)
k

+
εb

1 + εb

(〈
µ

(b,m−1)
k , µ

(b,m)
k

〉
+ Σ

(b,m−1)
k

)
, (20)

where we denote (a− b)(a− b)T as 〈a,b〉.
Algorithm 1 summarizes OFAB for GMMs with the heuris-

tics explained in the previous subsection. For notational sim-
plicity, we denote q(b) = q(b,M) and the same rule is applied
to α(b), µ(b)

k and Σ
(b)
k . Also, in line 9, Θ(b) is denoted by:

Θ(b) = (α(b),Θ
(b)
1 , . . . ,Θ

(b)

K̄(b)). (21)

It is worth noting that the dimensionality of Θ̂ changes from
K̄(b) in line 9 to K̂(b) in line 10, and the dimensionality of
the output model dynamically changes over the mini-batch
iteration. Let us note a few points on hyper-parameter settings.
For updating the learning rate in line 3, we fixed τ = 1.0 and
κ = 0.5 which stably worked. δ is not necessarily determined
in advance and users can change it when they request models
though we fixed it to δ = 0.001 in our experiments for
simplicity. In terms of the number of inner EM iterations, M ,
a small value performed better in our investigation from both
viewpoints of computational efficiency and overfitting.

Algorithm 1 Online FAB for GMMs
Input:

Stream Mini-batch Data
{
X(b)

}∞
b=1

;
Hyperparameters τ = 1.0, κ = 0.5, δ = 0.001, K̄ε =
K̄i = 2, M = 10.

Output: Model parameters α and Θk for ∀k.
1: Randomly initialize parameters with K̄i + 1 latent vari-

ables.
2: for b = 1, 2, 3, · · · do
3: Randomly initialize q(b,0)(Z(b)) and update εb by (12)
4: for m = 1, · · · ,M do
5: Update (α(b,m), µ

(b,m)
k ,Σ

(b,m)
k ) by (18)-(20).

6: Update q(b,m)(zNb+n,k) by (16).
7: end for
8: if Receive a call for exporting the model then
9: Copy Θ(b) to Θ̂ by (21), and apply the shrinkage to

Θ̂ by (13)
10: yield Θ̂ = (α̂, Θ̂1, . . . , Θ̂K̂(b)).
11: end if
12: Update K̂(b) (the number of k that don’t satisfy (13)).
13: if K̂(b) ≥ K̄(b) − K̄ε then
14: Randomly initialize αK̄(b)+1, · · · , αK̄(b)+K̄i

and
ΘK̄(b)+1, · · · ,ΘK̄(b)+K̄i

and add them to Θ(b).
15: end if
16: end for

2) Mixtures of Probabilistic PCA: MPPCA differs from
GMM mainly on its decomposition of the full covariance
matrix Σk = WkW

T
k + σ2

kI and offers a way to control the
model complexity. Let Θk = {µk,Wk, D̃k, σk} denote the
parameters of the k-th component. Then the joint likelihood
over X(b) and Z(b) is given by:

p(X(b), Z(b)|Θ) =
T∏
i=1

K∏
k=1

(αkN (xi|µk,WkW
T
k + σ2

kI))zik ,

(22)
where µk ∈ RD, Wk ∈ RD×D̃k , D̃k ∈ {1, · · · , D}, and
σk ∈ R. It is worth noting that different components may have
different values of intrinsic dimensionality D̃k, and OFAB
inference is able to select them automatically.

The formula of E-step updates on the mini-batch X(b) is

q(zNb+i,k)(b,m) ∝ (23)

α
(b,m)
k p(xNb+i|µ(b,m)

k ,W
(b,m)
k W

(b,m)T
k + σ

2(b,m)
k I)

exp

(
−

(D + 1)2 − (D − D̃(b,m)
k )2 + D̃

(b,m)
k + 1

4Q
(b,m−1)
k

)
.

In the OFAB M-step, we first update α
(b,m)
k , µ(b,m)

k , and
Σ

(b,m)
k using (18) - (20), and then decompose Σ

(b,m)
k by:

Σ
(b,m)
k = VkDiag(λ1, ..., λD)V Tk ,

λ1 ≥ λ2 ≥ ...... ≥ λD,
Vk = [vk1, ..., vkD] ∈ RD×D, V Tk Vk = I, (24)



and update D̃(b,m)
k , W (b,m)

k , and σ2(b,m)
k as follows,

D̃
(b,m)
k = arg max

d

{
−
Nb+1(1 + εb)α

(b,m)
k

2 d∑
j=1

log λj + (D − d) log

∑D
j=d+1 λj

D − d


− 2Dd− d2 + d

4
log

(
Nb+1

T

T∑
i=1

q(b,m−1)(zNb+i,k)

)}
,

(25)

σ
2(b,m)
k =

∑D

j=D̃
(b,m)
k +1

λj

D − D̃(b,m)
k

, (26)

W
(b,m)
k (27)

=

[√
λ1 − σ2(b,m)

k vk1, . . . ,

√
λ
D̃

(b,m)
k

− σ2(b,m)
k v

kD̃
(b,m)
k

]
.

The unique nature of (O)FAB is the selection of latent vari-
ables by the double underlined term which is yielded from
the regularization term in FIC and corresponds to the double
underlined term in (3). By this regularization effect, (O)FAB-
MPPCA enables to select the intrinsic dimensionality for each
latent variable.

V. EXPERIMENTS

We conducted experiments using two basic models, GMMs
and MPPCAs, explained in Section IV-D.

A. Gaussian Mixture Model

1) Baseline Methods: We applied OFAB to GMM in appli-
cation to artificial datasets, and compared four state-of-the-art
methods with OFAB/GMM as baselines: (i) batch FAB infer-
ence for GMM (FAB [16]); (ii) GMM with streaming trust-
region stochastic variational inference (strust-SVI [11]); (iii)
streaming variational Bayesian inference for GMM (SVB [6]);
(iv) DP Gaussian mixture with streaming, distributed varia-
tional Bayesian inference (SDA-DP [10]). We used the latest
implementations provided by the authors for FAB, strust-SVI5,
and SDA-DP6, and implemented SVB/GMM on our own.
For model selection, strust-SVI and SVB employ an outer
loop for cross validation and SDA-DP relies on its Dirichlet
process prior to incorporate new components. It is worth
noting that only OFAB and SDA-DP are truly streaming
model selection methods since FAB is a batch algorithm and
strust-SVI and SVB need outer-loop cross validation.

The two hyperparameters in OFAB, K̄ε and K̄i as intro-
duced in section IV-C, are set as K̄ε = K̄i = 2 identically for
all synthetic datasets. We used the default hyperparameters
in the softwares for strust-SVI, SDA-DP, and FAB. Two
hyperparameters should be adjusted for SVB, parameter of
Dirichlet prior for mixing weights and parameter of normal

5https://github.com/lucastheis/trmix
6https://github.com/trevorcampbell/sda-bnp

prior for Gaussian mean value, for which we tried different
combinations and selected the best one. For fair comparison,
OFAB, strust-SVI, SVB, and SDA-DP all employ M = 10
as the maximum number of inner iteration on each streaming
mini-batch. We also ran only 1 thread for SDA-DP to avoid
loss of accuracy although it’s a distributed one. In all the
simulation experiments below, we initialized K̂(1) = 1 and
K̄(1) = K̂(1) + K̄i = 3 for OFAB, adopted K = 40 for FAB,
performed inference with K = 2, ..., 40 for strust-SVI and
SVB for cross validation, and truncated mini-batch inference
of SDA-DP to Kmini = 20 to balance between estimation
accuracy and model selection accuracy. All of the results are
average of three runs.

2) Evaluation Criteria: We compared the five methods on
the basis of three evaluation metrics. The first one is the KL
divergence between the true distribution and the estimated
distribution for evaluating estimation error. The second one
is the test log-likelihood for evaluating generalization error.
The last one is |K̂(b) − K∗| for evaluating model selection
error where K∗ is the true dimensionality.

3) Synthetic Dataset Generation: We generated the true
models with different D (dimension), K∗ (component number)
and Θ∗c = (µ∗c ,Σ

∗
c) (mean and covariance), where ∗ denotes

the true model. The parameter values were randomly sampled
as α∗c ∼ [0.4, 0.6] (before normalization), and µ∗c ∼ [−5, 5]D.
Σ∗c were generated as acΣ̄∗c , where ac ∼ [0.5, 1.5] is a scale pa-
rameter and Σ̄∗c ∼ [0, 1](D×D). Based on the true models, we
generated both stationary stream (data are generated according
to some stationary probability distributions) and non-stationary
stream (data are generated according to drifting probability
distributions) to simulate real data environments.

4) Case 1. Stationary Streaming: Assuming we have a true
model with K∗ components, then a stationary stream can be
simulated by: (i) mixing all instances from the K∗ components
uniformly, and getting the sample set S; (ii) dividing S into
several disjointed subsets; (iii) sending those subsets (batches)
one by one to the learning framework to simulate streaming
data.

We first investigated how the five methods work as stream-
ing data arrive continuously using a true model whose K∗ =
10, D = 3, N = 50000. When simulating the data stream,
we set the size of each coming mini-batch as T = 10, and
there are N/T = 5000 batches in total. Fig. 2 summarizes
the comparisons on KL-divergence, test log-likelihood and
component number. From these results, we observed:
• For KL-divergence (A), OFAB outperformed the others

identically along the stream arriving process. Further, the
convergence of OFAB was much faster than the others.

• For test log-likelihood, the performances of OFAB and
strust-SVI were similar and significantly better than the
others. Similar to KL-divergence, the convergence of OFAB
was faster than strust-SVI.

• For model selection along with mini-batches, SDA-DP per-
formed better than OFAB which required sufficient number
of mini-batches to appropriately perform its shrinkage mech-
anism. However, as data increased, SDA-DP overestimated



K as previous study theoretically shown [14]. On the other
hands, OFAB came to stably and well estimate K∗.

• Although the performance of strust-SVI was comparative
to OFAB, it needs outer-loop cross validations for model
selection, and thus is unable to adjust the learnt structure as
data streaming in incessantly.

• For KL-divergence and test log-likelihood, the performance
of OFAB rapidly approached those of the batch FAB. It
was rather surprising that OFAB achieved similar level of
errors with batch FAB that repeatedly revisit large amount
of samples, by looking at much less samples only once.
Next we evaluated the five methods further on datasets

with different model complexity (K*=10,30), different feature
scale (D=3,10,20), and different batch sizes (T = 10, 50) to
investigate detailed behaviors and sensitivity of each method.
Table I summarizes their performance on KL-divergence and
component number on the last mini-batch b = 5000. From the
results, we observed:
• Comparing two truly-streaming methods, OFAB and SDA-

DP, OFAB performed better in KL-divergence for 6 settings
out of 8. For model selection, SDA-DP significantly over-
estimated the dimensionality in many settings and failed to
select appropriate models though OFAB chose very close
dimensionality to K∗.

• Comparing OFAB with strust-SVI and SVB, OFAB per-
formed much better in KL-divergence for all settings. For
model selection, with K∗ = 10, both methods performed
comparatively, but OFAB outperformed strust-SVI with
K∗ = 30.

• The batch FAB performed the best among all because it can
finely tune the model by repeatedly visiting all samples. It is
worth noting that OFAB performed very closely to the batch
FAB and we confirmed the strong stream model selection
ability of OFAB.
5) Case 2. Non-stationary Streaming: We next evaluate

OFAB in cases where the stream is non-stationary. For a
true model with K∗ components, (i) divide the K∗ com-
ponents into several groups with or without overlap among
them, and get component group set Sk = {Sk1 , Sk2 , . . .};
(ii) for each component group Ski , mix instances from its
components uniformly, to get its sample set Ssi ; (iii) divide
Ssi into disjointed groups Ssi = {Ssi,1, Ssi,2, . . .}; (iv) com-
bine sample sets in the sequence of i increasing, and get
S = {. . . , Ssi,1, Ssi,2, . . . , Ssi+1,1, S

s
i+2,2, . . .}; (v) send sample

sets in S in sequence to the learning framework.
The configuration of the true model was K∗ = 10, D = 3,

N = 5000, and T = 10. Let us denote the j-th components
in the true model by Kj. To simulate the drifting stream, data
were divided into 500 mini-batches, where the first 150 batch-
es comprised samples following distributions of components
K1 ∼ K3, batches 151 ∼ 295 contained samples belonging
to components K4 ∼ K6 only, and batches 296 ∼ 500 had
samples from components K7 ∼ K10 which is shown in
Fig. 3-B.

Fig. 3 shows comparisons w.r.t. prediction and model s-
election (we here exclude KL-divergence because it is very

similar to the results w.r.t. test-loglikelihood). We can see
from (A) that sharp inflexions arose on batch 151 and batch
296 for all of the four methods. And these two mini-batches
were just the points where samples following old distribu-
tions disappeared and the ones following new patterns arose.
After these inflexion points, OFAB converged much faster
than all the other methods, meaning that OFAB captured the
drifting data generation processes the most quickly. That’s
because i) OFAB needs less data for convergence, and ii)
the mechanism of OFAB for increasing latent variable di-
mensionality makes it catch features of fresh patterns timely.
After stepping into stable convergence, OFAB and strust-
SVI shared similar predictive accuracy, while SVB and SDA-
DP performed inferiorly. (B) shows how the different online
methods work when learning model structures changing over
time. For strust-SVI/GMM and SVB/GMM, because of their
lacking the ability to adjust model complexity in one pass
which is the regular ways that stream arrive, thus they can’t
catch the dynamic changing model structures. For OFAB,
after the inflexion points (batch 1, 151, and 296), it gradually
approached and converged to the true model structure, which
benefited from: i) the shrinkage operation could automatically
eliminate useless components. For the example case, as no
more samples following old components arrived, the scale of
these old components became smaller and smaller (Qk got
smaller), and were shrunk finally. ii) Components catching
new features were added when OFAB found the implemented
model lacked redundant latent variables. For SDA-DP, it
looked sensitive to the emergence of new patterns because
the component number learnt out increased sharply after the
inflexion points, however, it obviously produced superfluous
components comparing with the true model.

B. Mixtures of Probabilistic Principle Component Analyzers

We next applied OFAB to MPPCA. Firstly, we used a
toy example to show how OFAB/MPPCA worked when
data streamed in with drifting patterns. Then we compared
OFAB/MPPCA with 1) batch FAB/MPPCA and 2) strust-
SVI for MPPCA (strust-SVI/MPPCA) in terms of outlier
detection on some real-world datasets. We derived trust-region
stochastic variational inference to MPPCA and implemented
it by ourselves.

1) Visual Demonstration: We generated a synthetic dataset
comprising 2000 two-dimensional data points that compose
characters ‘I’, ‘C’, ‘D’, ‘M’ with additive Gaussian noise
as Fig. 4 (A) showed. To demonstrate how OFAB/MPPCA
worked, we designed two streaming settings, 1) sequential
pattern and 2) hybrid pattern. In the sequential pattern, the 500
points that aggregate into ‘I’ are divided into different batches
and streamed in firstly, and then the same number of points that
aggregate into ‘C’, ‘D’, ‘M’ streamed in sequentially. In the
hybrid pattern, the points that compose ‘I’ and ‘C’ were mixed
randomly and streamed in firstly, and then the points that
compose ‘I’, ‘C’ and ‘D’ were mixed randomly and streamed
in, at last the remained points that compose ‘I’, ‘C’, ‘D’, ‘M’
were mixed randomly and streamed in. Under both of the two
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Fig. 2. Model selection accuracy comparison under stationary streaming setting. A, KL-divergence comparison among the five methods, where the batch FAB
carries out two experiments by using N = 5000 and N = 50000 samples, respectively. B, test log-likelihood comparison, and we used a test set holding
out a different 20% of the data to evaluate log-likelihood. C, the dynamic model structure estimation accuracy of OFAB along the stream arriving process.

TABLE I
COMPARISONS OF DENSITY ESTIMATION ABILITY (KL-DIVERGENCE, TOP) AND MODEL SELECTION ABILITY (BOTTOM) ON VARIOUS TYPES OF

SYNTHETIC DATA.THE STANDARD DEVIATIONS WAS SHOWED IN PARENTHESES. THE BEST RESULT ON EACH DATASET WAS HIGHLIGHTED IN BOLD, AND
THE SECOND BEST ONE WAS MARKED IN ITALIC, EXCLUDING THE BATCH FAB WHICH IS NOT A STREAM LEARNING ALGORITHM

.

K∗ D T FAB (batch) OFAB strust-SVI + CV SVB + CV SDA-DP
10 3 10 0.038(0.03) 0.051(0.04) 0.058(0.05) 0.291(0.21) 0.067(0.04)
10 3 50 0.038(0.03) 0.039(0.02) 0.112(0.09) 0.297(0.15) 0.084(0.08)
10 10 10 0.044(0.09) 0.049(0.07) 0.055(0.09) 1.816(0.82) 0.044(0.03)
10 10 50 0.044(0.09) 0.047(0.09) 0.460(0.26) 1.324(0.38) 0.056(0.04)
30 10 10 0.289(0.09) 0.212(0.18) 0.240(0.08) 1.435(0.49) 0.112(0.04)
30 10 50 0.289(0.09) 0.161(0.08) 1.367(0.21) 1.304(0.22) 0.599(0.17)
30 20 10 0.349(0.08) 0.943(0.62) 1.663(0.28) 3.039(0.68) 187.8(20.9)
30 20 50 0.349(0.08) 0.396(0.20) 2.648(0.49) 2.603(0.71) 1.347(0.43)
K∗ D T FAB (batch) OFAB strust-SVI + CV SVB + CV SDA-DP
10 3 10 10.0(2.45) 9.3(1.18) 10.0(0.00) 7.3(0.67) 11(1.67)
10 3 50 10.0(1.45) 11.2(1.86) 9.2(1.03) 7.4(1.20) 12(2.56)
10 10 10 9.9(0.35) 10.2(1.60) 10.0(0.00) 7.0(0.82) 282(99.9)
10 10 50 9.9(0.35) 10.8(0.37) 9.0(0.76) 8.83(0.69) 37(6.39)
30 10 10 29.1(1.12) 31.6(2.57) 28.8(0.90) 22.3(2.43) 653.1(300)
30 10 50 29.1(1.12) 29.9(0.70) 22.8(2.60) 22.8(1.48) 64.1(18.6)
30 20 10 30.4(1.49) 32.7(5.18) 19.5(4.11) 18.3(1.92) 6577.3(728.7)
30 20 50 30.4(1.49) 29.4(1.42) 24.5(3.23) 20.9(1.63) 474.7(67.7)

settings, in order to make the patterns visible, the batch size
was set to 250 and resulted in 8 batches. An MPPCA model
was fitted to the synthetic data points using OFAB inference
method. At each iteration, an involving model was updated
based on data points in the current batch, and then it was
used to reconstruct those data points to verify our approach.
In Fig. 4 (B)∼(I), we showed the reconstruction results at
different iterations. The first line of Fig. 4 illustrated the data
reconstruction in the sequential pattern, and the second line
showed the data reconstruction in the hybrid pattern. The
illustration provided some intuition that our online algorithm
can flexibly adapt to drifting concepts in data stream and adjust
the model structure dynamically to catch complicated data
structure.

2) Outlier Detection: One of important applications of MP-
PCA is outlier detections where MPPCA detect data samples
that have large reconstruction errors or high negative log-
likelihood. Compared to GMM, MPPCA learns local low-
dimensional coordinates and therefore can accurately detect
outliers by taking locality of outliers into account.

We employed three open datasets from UCI machine learn-

ing repository. The first one was the log file of shuttle
including 45586 normal records and 3022 anomaly records 7.
All 9 attributes were involved in our analyses. The second
dataset was the log file of network connections used for
KDD Cup 1999 8. Considering a large amount of memory
overhead consumed by batch algorithm, we only extracted 20
percent of samples and 3 attributes (i.e. duration, src bytes,
dst bytes). That is about 197K normal accesses and 2206
successful intrusions whose logged in attributes were 1. The
third dataset was composed of 2.4 million URLs and 3.2
million features [29] 9. We extracted about 255K benign URLs
and 1413 malicious URLs (spam, phishing, exploits, and so
on). Originally, there were 64 real-valued features in total,
and the number of features were further narrowed down to 5.
Those features were discarded because they were owned by
less than 10 percent of samples.

We used the same learning rate (τ = 1.0 and κ = 0.5),
the same batch size (T = 10), and the same number of

7https://archive.ics.uci.edu/ml/datasets/Statlog+%28Shuttle%29
8http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
9http://archive.ics.uci.edu/ml/datasets/URL+Reputation
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Fig. 3. Model selection accuracy comparison under non-stationary setting. A, test log-likelihood comparison, and we used the model at time t− 1 to predict
likelihood for the stream batch arriving at time t. B, the model structure estimation accuracy of OFAB along the stream arriving process.
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Fig. 4. Modeling noisy data that comprise characters ‘I’, ‘C’, ‘D’, and ‘M’. (A) The synthetic data in a scatter plot. (B)∼(E) Data reconstructed from the
fitted MPPCA model on different batches when data streamed in the sequential pattern. (F)∼(I) Data reconstructed from the fitted model on different batches
when data streamed in the hybrid pattern.

inner iteration (M = 10) for both OFAB/MPPCA and strust-
SVI/MPPCA in the following experiments. We gradually
updated an outlier detector as soon as it streamed in, and
used that detector to pick up outliers in the test set. Two
metrics, precision and recall, were used to measure the per-
formance of outlier detection, and they were plotted against
the number of mini-batches as Fig. 5 showed. The accuracy
of OFAB/MPPCA increased gradually and converged to that
of FAB/MPPCA. By comparing among different datasets, we
can see that as the scale of a dataset grew up, the speed
of convergence of OFAB/MPPCA slowed down. It’s easy to
understand, the data patterns might grow as their quantity
grew, and thus the algorithm needed more observations to
completely catch the data distribution. In general, the perfor-
mance of OFAB/MPPCA was much more attractive than that
of strust-SVI/MPPCA.

To investigate the influence of the batch size on the per-
formance of OFAB/MPPCA, we carried out additional exper-
iments with three different batch sizes (i.e. T = 10, T = 20,
and T = 50) on two open datasets. Since the number of
samples N is a constant, the total number of batches N/T

decreases when the batch size T becomes larger. In Fig. 6, we
truncated the accuracy curves to the previous N/50 batches
to facilitate demonstration for T = 10 and T = 20 , and we
found that the convergence speed of OFAB/MPPCA increased
when the batch size got larger.

VI. CONCLUSIONS

This paper proposes a general framework, online factorized
asymptotic Bayesian (OFAB) inference, for streaming model
selection of latent variable models. The main contribution-
s are applying degeneration for dynamic model selection
which keeps a redundant latent space and degenerate it into
a “non-degenerated” subspace on demand, an optimization
of degeneration that starts from a simple complexity and
gradually complicate it to catch new data generation processes
that significantly saves memory and improve the efficiency,
deriving OFAB for two basic models GMM and MPPCA in
application to density estimation and outlier detection.
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