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Abstract

Predictive tasks on relational databases are critical
in real-world applications spanning e-commerce,
healthcare, and social media. To address these
tasks effectively, Relational Deep Learning (RDL)
encodes relational data as graphs, enabling Graph
Neural Networks (GNNs) to exploit relational
structures for improved predictions. However,
existing RDL methods often overlook the
intrinsic structural properties of the graphs built
from relational databases, leading to modeling
inefficiencies, particularly in handling many-to-
many relationships. Here we introduce RELGNN,
a novel GNN framework specifically designed
to leverage the unique structural characteristics
of the graphs built from relational databases. At
the core of our approach is the introduction of
atomic routes, which are simple paths that enable
direct single-hop interactions between the source
and destination nodes. Building upon these
atomic routes, RELGNN designs new composite
message passing and graph attention mechanisms
that reduce redundancy, highlight key signals,
and enhance predictive accuracy. RELGNN is
evaluated on 30 diverse real-world tasks from
RELBENCH (Fey et al., 2024), and achieves
state-of-the-art performance on the vast majority
of tasks, with improvements of up to 25%.

1. Introduction

Predictive modeling over relational data (multiple tables
connected via primary-foreign key relations) is central to
numerous real-world applications: e-commerce platforms
forecast product demand, music streaming services personal-
ize recommendations, financial institutions assess credit risk,
etc. The common strategy to tackle these predictive tasks re-
lies on classical tabular machine learning approaches (Chen
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& Guestrin, 2016) that often require flattening relational data
into a single table through manual feature engineering (Kag-
gle, 2022). This approach is not only labor-intensive but
also leads to a substantial loss of predictive signal, as it
oversimplifies the interconnected structure of relational data
during the flattening process.

To overcome the limitations of tabular approaches, Fey et al.
(2024) introduced Relational Deep Learning (RDL), a new
machine learning paradigm that enables end-to-end trainable
neural networks to perform predictive modeling directly on
relational databases. In RDL, relational data is represented
as a graph, where each entity is represented as a node, and
the primary-foreign key links between entities define the
edges. This graph-based representation allows Graph Neural
Networks (GNNs) (Gilmer et al., 2017; Hamilton et al.,
2017) to serve as predictive models, capturing complex
relational dependencies that traditional approaches overlook.
Complementing this advancement, RELBENCH (Robinson
et al., 2024) provides the first comprehensive benchmark for
evaluating and developing RDL models.

Building effective RDL models is essential for tackling
predictive tasks, yet remains quite challenging: Relational
entity graphs are large-scale, heterogeneous, and temporally
dynamic. The models introduced by Robinson et al. (2024)
apply standard heterogeneous GNNSs (Schlichtkrull et al.,
2018; Hu et al., 2020) to relational entity graphs. This
design choice can be suboptimal, since standard hetero-
geneous GNNs are developed for generic multi-relational
graphs, where each edge-type denotes a direct semantic
interaction between nodes. In relational databases, however,
edges are defined by primary—foreign key links that merely
record table connectivity, rather than a native semantic
relation. Treating these schema-driven links as ordinary
semantic edges overlooks the database’s characteristic
topology (e.g., many-to-many motifs, as discussed later),
misrepresents how information should propagate, and
ultimately limits model fidelity. These differences motivate
the design of architectures tailored to the structural
regularities of relational databases.

Our contribution. We analyze the distinctive structural
patterns of relational entity graphs. Our work builds upon a
central insight: Relational databases abound with many-to-
many relationships; because each foreign key can reference
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Figure 1: An illustration of the key concepts in our method. (a) The primary-foreign key relation of the rel-f1 dataset.
Arrows point from a node with a foreign key to the node with the corresponding primary key. Nodes with zero or one foreign
key are marked in pink, and the corresponding foreign key is illustrated by a solid line. Nodes with two or more foreign
keys are marked in purple, and the corresponding foreign keys are illustrated by dotted lines. (b) An example of the bridge
structure, where standings node is a bridge node. (¢) An example of the hub structure, where results node is a hub node. (d)
Examples of three atomic routes, where the nodes within each box constitute a distinct atomic route.

only one primary key, these associations cannot be encoded
by a single primary—foreign key edge. Instead, they are
materialized through junction tables that sit between the two
entity tables, decomposing each many-to-many association
into a pair of one-to-many links. In the resulting graph, these
tables give rise to two common substructures: (i) bridge
nodes (cf. Figure 1(b)), which contain exactly two for-
eign keys and connect pairs of entities via tripartite pattern
(node-type 3 < node-type 1 — node-type 2) and (ii) hub
nodes (cf. Figure 1(c)), which possess three or more foreign
keys, forming star-shaped subgraphs. Bridge and hub nodes
function mostly as ‘routers’, i.e., they contribute little se-
mantic content, but channel information among their neigh-
bors. Standard message passing GNNs repeatedly aggregate
signals through the same bridge or hub nodes, generating
over-smoothed representations. Moreover, the star-shaped
motifs around hub nodes encode latent clique-like depen-
dencies that conventional message passing cannot exploit.

To address these challenges, we propose RELGNN, a novel
GNN framework that introduces the composite message
passing and graph attention mechanism to fully exploit the
unique structural properties of graphs built from relational
database. RELGNN introduces the concept of atomic routes,
which are simple paths that support complete, single-hop
information exchange between the source and destination
nodes, grounded in primary—foreign key relationships (cf.
Figure 1(d)). When a table has a single foreign key, an
atomic route consists of a pair of node-types and the edge
connecting them. When a table has multiple foreign keys, it
induces a set of atomic routes in the form of (source — inter-
mediate — destination) paths, each of which connects two
entities through a shared intermediate node (i.e., a bridge or
hub node). Although reminiscent of meta-paths (Sun et al.,

2011) used in conventional heterogeneous graphs, atomic
routes differ fundamentally in how they are constructed.
While meta-paths typically rely on manual design guided by
domain expertise, atomic routes are automatically and sys-
tematically derived from primary—foreign key relationships
in relational databases, making them both broadly applica-
ble and highly scalable across diverse datasets. Building on
these routes, RELGNN designs composite message passing
with attention mechanism that directly aggregates messages
along atomic routes in a single step, avoiding redundant hops
and preventing irrelevant information aggregation. This en-
ables more efficient and accurate extraction of predictive
signals compared to conventional heterogeneous GNNs.

We assess the performance of the proposed RELGNN across
all tasks in RELBENCH (Fey et al., 2024), a benchmark
which spans seven diverse relational databases covering e-
commerce, social networks, sports, and medical platforms.
RELBENCH features 30 real-world predictive tasks cast as
entity classification, entity regression, and recommendation.
RELGNN surpasses all baselines on 27 of the 30 tasks while
performing comparably on the remaining three. Notably,
RELGNN achieves more than a 4% improvement over a
standard heterogeneous GNN in 17 out of 30 tasks, and
provides up to a 25% improvement on the site-success
regression task in the rel-trial database.

2. Preliminaries
2.1. Relational Database

A relational database (7, £) consists of a set of tables T =
{T1,...,T,} and a set of links between them £L C T X T.
Each table is a set T = {vy, ..., Un,. }, where the elements
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Figure 2: Illustration of key concepts of RDL. (a) An example relational database. (b) Relational tables connected by
primary-foreign key relations. (c¢) Relational entity graph built from relational tables. (d) Subgraph sampled with termporal

neighbor sampling. Figures from Fey et al. (2024).

v; € T are called rows or entities. Each entity v € T
has a unique primary key p, that distinguishes it from
other entities within the table. An entity can possess one
or more foreign keys. Formally, each foreign key IC, C
{py : v € T'and (T,T") € L} links an entity v € T
to entity v' € T”, where p,- is the primary key of v’ in
table 7”. An entity may have several attributes x,,, which
represent the informational content, and may optionally
include a timestamp t,,, indicating when the corresponding
event occurred. Primary keys, foreign keys, attributes, and
the timestamp are all realized as table columns. A link
L = (Ttkey, Tprey) between tables exists if a foreign key
column in T}, references a primary key column of Ty

In Figure 2 (a), the TRANSACTIONS table contains one
primary key column (TRANSACTIONID), two foreign key
columns (PRODUCTID and CUSTOMERID), a numeri-
cal attribute column (PRICE), and a timestamp column
(TIMESTAMP). The PRODUCTS table, by contrast, has a
single primary key column (PRODUCTID), no foreign keys,
and three attribute columns (DESCRIPTION, IMAGE, SIZE);
it does not record timestamps. The black lines illustrate the
foreign-key—primary-key links between the tables.

To capture the structural relationships between tables, we
introduce the schema graph, which encodes the table-
level topology of a relational database. Given a relational
database (7, L), the schema graph is defined as (7, L),
where each table (i.e., node-type) corresponds to a node,
and each primary—foreign key relationship defines a directed
edge from the foreign key table to the primary key table. Fig-
ure 1 (a) illustrates the schema graph of re1—-f1 dataset and
Figure 4 shows the schema graphs of all the other datasets
in RELBENCH. This definition corresponds to the directed
variant of the schema graph described in Fey et al. (2024).
Note that a node in the schema graph corresponds to a node-
type in the relational entity graph, which we introduce in
the next subsection.

2.2. Relational Deep Learning (RDL)

Fey et al. (2024) introduced RDL, an end-to-end framework
for predictive modeling on relational databases with neural
networks. RDL represents the database as a relational
entity graph, which is a temporal, heterogeneous graph,
where each table becomes a node-type, each row (entity) an
individual node, and every primary—foreign key relationship
an edge (Figure 2 (b)—(c)). The columns of each table
provide the initial feature vector for their corresponding
nodes. The transformation from the relational database to
its relational entity graph form is lossless, preserving all
information contained in the original tables.

Time is a first-class citizen in RDL. Each entity v may carry
a timestamp ¢,, that records when the corresponding event
occurred—for example, every row in the TRANSACTIONS
table logs the moment of purchase. Many tasks are inher-
ently temporal (e.g., predicting next-week product sales), so
the model must respect causality. RDL therefore employs
temporal neighbor sampling (Hamilton et al., 2017; Fey
et al., 2024): for a seed entity at time ¢, it builds a subgraph
that contains only nodes with timestamps < ¢, excluding all
future information to avoid leakage. A GNN is then trained
end-to-end on these time-consistent subgraphs, eliminating
the need for manual feature engineering (Figure 2 (d)).

3. Bridge and Hub Topology in RDL (our
work)

3.1. Structural Patterns in Relational Databases

Heterogeneous graph topology. General heterogeneous
graphs encode information between nodes and edges of
different types. The basic structural unit of the heteroge-
neous graph schema is a relation, written as a triplet (source
node-type, edge-type, destination node-type). For example,
a retail purchase is captured by the triplet (customer,
transaction, item), which represents a customer purchasing
an item. Heterogeneous GNNs (Schlichtkrull et al., 2018;
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Hu et al., 2020), are designed to process these relations
through edge-semantic message passing, e.g., a message
originating at a customer node traverses a transaction
edge and is aggregated at the corresponding item node
in a single hop. This message passing mechanism learns
representations of both nodes and edge-types, and preserves
the distinct semantics of each relation.

Relational entity graph topology. Unlike general het-
erogeneous graphs, where an edge denotes a semantically
meaningful relation, the edges of relational entity graphs
are formed by references to primary foreign keys in the
database schema. Hence, each edge-type carries no intrinsic
semantics beyond “table A points to table B,” and the basic
structural unit collapses to a pair (node-type 1, node-type 2),
rather than a semantic triplet. Consider the retail example:
instead of a single relation (customer, transaction, item), the
database materializes a junction table transaction. In the
relational entity graph, this becomes an explicit intermediate
node-type, producing two edges (transaction, customer)
and (transaction, item). Because these edges encode only
primary-foreign key relationships—not the semantic of
purchasing—the usual message passing assumptions for
heterogeneous graphs no longer hold. This shift from
semantic triplets to purely structural links therefore calls
for further investigation.

Many-to-many relationships. The transition from seman-
tic triplets to primary—foreign key edges significantly im-
pacts how many-to-many relationships are represented in
relational databases. A many-to-many relationship describes
a scenario where multiple instances of one entity type are as-
sociated with multiple instances of another. Although many-
to-many relationships are ubiquitous, they cannot be directly
encoded using a single primary—foreign key connection, as
by definition, a foreign key can reference only one unique
primary key. To address this, databases introduce junction ta-
bles that decompose many-to-many relationships into pairs
of one-to-many links. In the retail example, customers and
items form a many-to-many relationship—each customer
can purchase multiple items, and each item can be purchased
by multiple customers. This association is mediated by a
transaction node, which serves as an intermediate connector
in the relational entity graph. Each transaction node contains
a pair of foreign keys, one referencing a customer node and
the other referencing an item node, thereby decomposing
the many-to-many association into two one-to-many links.

The previous observations lead to the following categoriza-
tion of node-types in relational entity graphs: (i) node-types
with zero or one foreign key, and (ii) node-types with two or
more foreign keys. To illustrate them, consider the re1-f1
schema, which tracks all-time Formula 1 racing data since
1950 (cf. Figure 1 (a)). In this schema, constructors, races,
and drivers each have zero foreign keys, and circuits has one.

Constructor_standings, constructor_results, and standings
each have two foreign keys, and results and qualifying each
have three. Node-types with zero or one foreign key, high-
lighted in pink, do not require intermediate nodes to support
message exchange and they exhibit a standard topology. In
contrast, node-types with two or more foreign keys, high-
lighted in purple, serve as structural intermediaries in the
schema. Given the ubiquity of many-to-many relationships
in real-world interactions, cases involving (ii) are common
in relational entity graphs and play a central role in shaping
information flow. Next, we analyze the limitations of stan-
dard message passing over these structures and motivate a
more specialized approach.

3.2. Challenges in Message Passing for RDL
3.2.1. NODE-TYPE WITH TWO FOREIGN KEYS (BRIDGE)

When a node-type has two foreign keys, it forms a subgraph
of the form (node-type 3 < node-type 1 — node-type 2),
creating a local tripartite structure among these three node-
types. In this configuration, node-type 1 simply acts as an
aggregating bridge between node-type 2 and node-type 3.
Under standard heterogeneous GNNs, message passing over
this structure involves two hops: from the source to the
bridge, and then from the bridge to the destination. However,
this two-hop communication introduces two inefficiencies.
First, redundancy: information from the destination node is
passed to the bridge in the first hop and then routed back to
itself in the second, duplicating self-information. Second,
imbalance: since the bridge node is an one-hop neighbor of
the destination node while the source node is two hops away,
the destination aggregates information from the bridge in
both hops but receives information from the source only in
the second. This leads to an overemphasis on the bridge
node and under-utilization of the source node, which often
carries more informative and predictive signals.

For example, consider the task of predicting race outcomes,
where information flows from a races node (source) to a
drivers node (destination) via a standings node (bridge) (cf.
Figure 1 (b)). In standard two-hop message passing, infor-
mation from standings reaches the drivers node in both hops,
while information from races arrives only in the second.
Since the races node typically contains more contextual
information relevant to driver performance, this imbalance
may degrade performance. As we show in the next section,
modeling such structure as an atomic route enables direct
one-hop message passing between the relevant node-types
without any loss of information.

3.2.2. NODE-TYPE WITH THREE OR MORE FOREIGN
KEYS (HUB)

When a node-type has three or more foreign keys, it forms
a star-shaped subgraph that acts as a communication hub,
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connecting multiple other node-types. For example, as
shown in Figure 1 (c), the results node links constructors,
races, and drivers, thereby mediating interactions among
constructors-races, races-drivers, and constructors-drivers.
These hub node-types inherit the same inefficiencies
observed in the two-foreign key case (bridge structures):
Standard two-hop message passing leads to redundant
communication paths and imbalanced predictive signals
since information from hub nodes is aggregated multiple
times, while more informative signals from source nodes
may be underrepresented. Furthermore, the star-shaped
connectivity patterns around hub node-types induce
latent second-order clique structures at the schema
level—structures that are typically overlooked and under-
utilized by standard modeling approaches. Our proposed
approach, detailed next, is designed to exploit these latent
clique structures, which constitute critical subgraphs in
many real-world domains. This shift from star-shaped
to clique-like connectivity substantially increases graph
density and transforms the geometry of information flow.

4. Proposed Architecture: RELGNN
4.1. Atomic Routes in RDL

To address the limitations of standard message passing in
relational entity graphs outlined above, we introduce the
concept of atomic routes.

Definition 4.1 (Atomic Route). An atomic route is a simple
path between node-types that enables a single-hop inter-
action between the source and destination node-type. We
distinguish two cases:

1. Single foreign key. If a table has exactly one foreign
key referencing to another table, the atomic route is
an edge between the foreign key node-type (source)
and the primary key node-type (destination), forming
a simple path (source — destination).

2. Multiple foreign keys. If a table has multiple for-
eign keys referencing to different tables, the atomic
routes are hyperedges that connect pairs of foreign key
node-types (source and destination) via the intermedi-
ate primary key node-type, forming simple paths of
type (source — intermediate — destination).

Figure 1 and 3 illustrate the primary-foreign key relation-
ships in the rel-f1 dataset and the atomic routes derived
from these relationships. For instance, the circuits table has
only one foreign key, which points to the races table, form-
ing atomic routes (circuits — races) and (races — circuits).
In contrast, the standings table has two foreign keys con-
necting it to both the drivers and races tables. This results in
atomic routes (drivers — standings — races) and (races —

standings — drivers). These routes capture the necessary
interactions among multiple entities within a single step.

Comparison to Meta-paths. We compare atomic routes
to meta-paths, a widely utilized concept in heterogeneous
graph learning (cf. Section 6 for an extended discus-
sion of meta-paths). Although both structures facilitate
message propagation, they differ fundamentally in their
construction and purpose. Meta-paths typically neces-
sitate manual design guided by domain knowledge and
task-specific intuition. This manual design process makes
them labor-intensive, sensitive to dataset-specific charac-
teristics, and susceptible to introducing selection bias. In
contrast, atomic routes are derived automatically from the
primary—foreign key relationships defined in the database
schema. This enables their extraction without human su-
pervision, ensuring applicability across a wide range of
relational databases—including those with complex or pre-
viously unseen schemas. While meta-paths are often con-
structed to emphasize particular semantic patterns relevant
to a task, atomic routes serve a fundamentally different func-
tion: they systematically capture the minimal pathways to
avoid structural inefficiencies due to the primary-foreign
key constraints.

4.2. Composite Message Passing for RDL

In this subsection, we build upon the concept of atomic
routes and design composite message passing mechanisms
for RDL. We begin this discussion by applying a standard
heterogeneous GNN on a subgraph that encodes tables with
multiple foreign keys. We assign src, dst, and mid to
represent nodes corresponding to source, destination, and
intermediate node-types, respectively. In standard heteroge-
neous GNNss, it takes two steps to complete the full informa-
tion exchange. In the first step, each mid node aggregates
information from all its neighbor nodes:

h"Y = UPD({{m{; "V |VR = (T, ¢(mid)) € R}}),
€))
where

m{" = AGGR(L),, {{h{[¢(u) = T}}),

th’ denotes the embedding of node v at the [-th layer, UPD
and AGGR are arbitrary differentiable functions with opti-
mizable parameters, {{-}} denotes a permutation invariant
set aggregator (e.g. mean, sum), R denotes the edge set
consisting of pairs of node-types connected through primary-
foreign key relationships and ¢(-) denotes a function map-
ping a node to its corresponding node-type. Then in the
second step, the message passed from mid to dst is

(12 sy = AGGRMEY {0 @)
Note that in Equation (1), T represents all node-types con-
nected to the intermediate node-type. Therefore, in addition
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to the information from the source node-type, information
from other node-types connected to the intermediate node-
type is also aggregated during this step. Furthermore, the
information from dst is passed to mid in this step, and
subsequently passed back to dst again in Equation (2),
leading to redundancy, as discussed in Section 3.2.

To avoid these modeling inefficiencies we propose a novel
composite message passing scheme based on atomic routes.

(1+1)
(dst,mid,src)

= AGGR(h{,, {{FUSE(h{),, h) ) }})

3)
Equation (3) describes a composite information exchange
from src viamid to dst that is completed within a single
step. As a result, there is no extraneous information entan-
gled in the process. In summary, our approach effectively
tackles the challenges that standard heterogeneous GNN's
may encounter, such as multiple steps needed for complete
information exchange and redundant aggregation during
message passing.

4.3. RELGNN: Composite Message Passing with
Atomic Routes

The introduction of atomic routes and composite message
passing enables the design of new architectures specifically
tailored to relational entity graphs. Equation (3) admits
multiple instantiations, offering a flexible framework for
message passing using atomic routes. Here, we propose
RELGNN, a graph attention instantiation of Equation (3).
When multiple foreign keys are involved, RELGNN in-
stantiates Equation (3) as follows: for each mid node, it
fuses information from each src node connected via a pri-
mary—foreign key relationship. Specifically, FUSE(-) is
implemented as a linear combination:

)=Wih!") + Wonl) . @)

src

FUSE(L(),,h(),
Note that, due to the nature of foreign keys, each mid node
is connected to only one src node. Then, RELGNN in-
stantiates AGGR(-) with the standard multi-head attention
mechanism (Vaswani et al., 2017; Shi et al., 2021), where
embeddings from destination nodes serve as queries, and em-
beddings derived from the fusion operation in Equation (4)

serve as keys and values. Let hggse = FUSE(hr(nlld7 hélﬁc)
as defined in Equation (4). AGGR(-) is realized as:
!
AGGR(B,, {hE). 1) = Wproshll,
+ > adst,fusewvh(!&se, 5)

fuse€N (dst)

where the attention coefficients agst ruse are computed via
multi-head attention (with the multi-head notation omitted

O = O

sre dst
src dst
races circuits
circuits races

O0— @—0

sre mid dst
src mid dst
races constructor_standings  constructors
constructors  constructor_standings races
races constructor_results constructors
constructors constructor_results races
drivers standings races
races standings drivers
drivers results races
races results drivers
constructors results races
races results constructors
drivers results constructors
constructors results drivers
drivers qualifying races
races qualifying drivers
constructors qualifying races
races qualifying constructors
drivers qualifying constructors
constructors qualifying drivers

Figure 3: All the atomic routes derived from rel-f1
dataset. The primary—foreign key relations of rel-£f1 is
illustrated in Figure 1 (a).

for brevity):

l l
WQhEis)t)T(Wthfzse) .
Vd

In cases where tables with multiple foreign keys are not
present, there is only a source and destination node-type, so
the fusion operation is not needed. We directly substitute
h¢yse with hg,. in Equation (5):

Qugst fuse = softmax <(

(141)
(dst,src)

= AGGR(hY),, {{h{).}}) 6)

m

We use different weight matrices in Equation (4) and Equa-
tion (5) for each atomic route, enabling RELGNN to capture
different types of information across routes.

Finally, the destination node aggregates information from
all atomic routes related to it using a simple summation and
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updates its embedding:

WtV = Y m*Y, )
teT (dst)

where T (dst) denotes the set of atomic routes with dst

as the destination node, and mEH_l) denotes the message

from atomic route ¢, as defined in Equation (3) or Equation
(6). Note that this final update operation will not lead to in-
formation entanglement, as the model learns distinct weight
matrices for each atomic route, therefore learning to assign
an appropriate weights to message from each atomic route
during the summation.

5. Experiments

We evaluate RELGNN on RELBENCH (Robinson et al.,
2024), a public benchmark designed for predictive tasks
over relational databases using GNNs. RELBENCH offers
a diverse collection of real-world relational databases and
realistic predictive tasks. The benchmark covers 7 datasets,
each carefully processed from real-world sources across
diverse domains such as e-commerce, social networks,
medical records, Q&A platforms, and sports. These datasets
vary significantly in size, with differences in the number
of rows, columns, and tables, serving as a challenging
and comprehensive benchmark for RDL model evaluation.
Appendix A.1 provides description and detailed statistics
for each dataset.

RELBENCH introduces 30 predictive tasks covering a
wide range of real-world use cases, grouped into three
representative types: entity classification (Section 5.1),
entity regression (Section 5.2), and recommendation
(Section 5.3). These tasks are designed to reflect practical
applications, such as predicting event attendance, estimating
sales of an item, and recommending posts to users. The data
is split temporally, with models trained on data from earlier
time periods and tested on data from future time periods. To
attach target labels, each task defines a training table that
links entities of interest to their target labels and timestamps
via foreign keys, enabling automatic supervision from
historical data while ensuring temporal consistency during
training. The tasks vary significantly in the number of
entities in the train/validation/test split and the proportion
of test entities encountered during training. Detailed
description of each task can be found in Appendix A.2.

We follow the data processing pipeline introduced in Robin-
son et al. (2024). Relational data is transformed into hetero-
geneous temporal graphs, and temporal neighbor sampling
is used to construct subgraphs centered around each entity
and timestamp. Initial node embeddings are extracted from
raw table attributes using PyTorch Frame (Hu et al., 2024).
Final node embeddings are passed to prediction heads
specific to the type of task to generate final predictions.

For baselines, we compare with the heterogeneous Graph-
SAGE (Hamilton et al., 2017; Fey & Lenssen, 2019; Robin-
son et al., 2024) used in the original RELBENCH paper. To
ensure a fair comparison, we maintain identical settings,
including the data processing pipeline and training table, the
temporal neighbor sampling algorithm, the initial node em-
beddings extraction model, the prediction head, and the loss
function. We also incorporate a Light Gradient Boosting
Machine (LightGBM) (Ke et al., 2017) as an additional non-
RDL baseline, which is applied directly to the raw entity ta-
ble features, following the setting in Robinson et al. (2024).

5.1. Entity Classification

Experimental Setup. The entity classification task in-
volves predicting binary labels for a given entity at a specific
seed time. The performance is evaluated with the ROC-AUC
(Hanley & McNeil, 1983) metric, where higher values indi-
cate better performance. The prediction head for this task
consists of a multi-layer perceptron (MLP) applied to the
GNN-generated node embeddings. The model is trained
using binary cross-entropy loss. All results are averaged
over five different seeds.

Results. Table 1 presents the results, along with the rel-
ative improvement of RELGNN over the standard hetero-
geneous GNN. RELGNN outperforms the baselines on 10
out of 12 tasks and achieves comparable performance on
the remaining two. Notably, the relative gain is more sig-
nificant on datasets with a more complex primary-foreign
key structure (e.g., rel-£1; see Appendix B for visualiza-
tions). In contrast, performance improvements are smaller
on datasets with simpler primary-foreign key structures, like
rel-amazon and rel-hm. This trend aligns with the
core design principle of RELGNN, demonstrating that its
performance gains arise from effectively highlighting key
predictive signals and eliminating redundant message ag-
gregation—key challenges faced by standard heterogeneous
GNNs when applied directly to relational entity graphs.

Discussion and Limitations. On the rel-stack
dataset, RELGNN does not achieve significant improve-
ments. A potential cause might be the unique self-loop
structure, where primary-foreign key links connect nodes
of the same type (posts). This pattern does not present in
other datasets in RELBENCH and introduces an orthogonal
modeling challenge. We provide a potential solution in Ap-
pendix D. Since robust handling of self-loops is orthogonal
to our core contribution, we leave it for future work.

5.2. Entity Regression

Experimental Setup. Entity regression task requires
predicting numerical labels for an entity at a specific
seed time. The evaluation metric is Mean Absolute Error
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Table 1: Entity classification results (ROC-AUC(%), higher
is better) on RELBENCH test set. Best values are in bold.

Table 2: Entity regression results (MAE, lower is better) on
RELBENCH test set. Best values are in bold.

. Hetero- RELGNN Relative

Dataset Task LightGBM GNN (ours) Gain
rel-amazon user-churn 52.22 70.42 70.99 1%
z item-churn 62.54 82.81 82.64 0%
rel-avito user-visits 53.05 66.20 66.18 0%
v user-clicks 53.60  65.90 68.23 4%
rel_event user-repeat 68.04 76.89 79.61 4%
v user-ignore 79.93 81.62 86.18 6%
relofl driver-dnf 68.56 72.62 75.29 4%
driver-top3 73.92 75.54 85.69 13%

rel-hm user-churn 55.21 69.88 70.93 2%
rel-stack user-engagement 63.39 90.59 90.75 0%
user-badge 63.43 88.86 88.98 0%

rel-trial study-outcome 70.09 68.60 71.24 4%

(MAE), where lower values indicate better performance.
The prediction head is an MLP applied to GNN-generated
node embeddings, identical to the setup used for entity
classification. The model is trained using L1 loss. Results
are averaged over five random seeds.

Results. Table 2 presents the results and the relative gain
of our model over the standard heterogeneous GNN. REL-
GNN outperforms the baselines on 8 out of 9 tasks and
achieves comparable performance on the remaining one.
As in the classification task, improvements are most pro-
nounced on datasets with complex primary-foreign key
structures, highlighting that RELGNN’s effectiveness in
modeling relational structure translates to consistent gains
in both classification and regression settings.

Discussion and Limitations. The performance gain
on rel-stack is limited, as discussed in Section 5.1.
We also observe divergent results across tasks in the
rel-trial dataset. A potential cause might be the inher-
ent limitation of the prediction head for the entity regression
task rather than the GNN model itself, as noted in the origi-
nal RELBENCH paper (Robinson et al., 2024). In particular,
study-adverse involves estimating an unbounded
target (the number of patients with severe outcomes), while
site-success predicts a bounded success rate. One
possible explanation is that unbounded predictions may be
more challenging given the inherently constrained design
of the regression head. Enhancing prediction heads for
regression tasks is an important direction for future work.

5.3. Recommendation

Experimental Setup. Recommendation tasks involve pre-
dicting a ranked list of top K target entities for a given
source entity at a specific seed time, where K is predefined
per task. This requires computing pairwise scores between
source and target entities. We follow RELBENCH implemen-
tation and use two types of prediction heads: a two-tower

Dataset Task LightGBM  Fer” R('ij(:sl;N Rejative
rel-amazon | User-ltv 16.783  14.313 14.230 1%

item-1ltv 60.569  50.053 48.767 3%
rel-avito ad-ctr 0.041 0.041 0.037 10%
rel-event user-attendance 0.264 0.258 0.238 8%
rel-f1 driver-position 4.170 4.022 3.798 6%
rel-hm item-sales 0.076 0.056 0.054 4%
rel-stack post-votes 0.068 0.065 0.065 0%
rel-trial study-adverse 44.011  44.473 44.461 0%

site-success 0.425 0.400 0.301 25%

GNN (Wang et al., 2019a) and an identity-aware GNN (ID-
GNN) (You et al., 2021). The two-tower GNN calculates
pairwise scores through the inner product of source and
target node embeddings and is trained using the Bayesian
Personalized Ranking loss (Rendle et al., 2012). ID-GNN
computes scores by applying an MLP to the embedding of
the target entity within the subgraph sampled around each
source entity and is trained using binary cross-entropy loss.
Consistent with the original implementation, we use two-
tower GNN for tasks in rel-amazon dataset and ID-GNN
for tasks in the remaining datasets. The evaluation metric is
Mean Average Precision (MAP) @ K, where higher values
indicate better performance. All results are averaged over
five seeds.

Results. Results are presented in Table 3.  REL-
GNN achieves better or same performance compared to
baselines on all 9 tasks. These consistent improvements
across diverse datasets and tasks underscore the versatil-
ity of our approach and demonstrate its effectiveness in
modeling complex relational information and extracting key
predictive signals crucial for recommendation.

Discussion and Limitations. One limitation comes from
the ID-GNN prediction head, which restricts recommenda-
tion candidates to nodes sampled within the source entity’s
subgraph for efficiency. This limitation is quantified by
the locality score (Yuan et al., 2024), which measures the
fraction of ground-truth targets present in the sampled
subgraph. A high locality score suggests users tend to
re-engage with previously interacted entities, while a low
score indicates a preference for novel items. ID-GNN
struggles on low-locality tasks where ground-truth targets
often fall outside the sampled subgraph. Accordingly,
RELGNN shows greater gains on high-locality tasks (e.g.,
rel-stack) than on low-locality ones (e.g., rel-hm,
rel-trial). Designing improved prediction heads for
recommendation tasks is orthogonal to our core contribution
and remains a valuable direction for future work.
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Table 3: Recommendation results (MAP(%), higher is bet-
ter) on RELBENCH test set. Best values are in bold.

Hetero- RELGNN Relative

Dataset Task LightGBM

GNN (ours) Gain

user—item-purchase 0.16 0.74 0.77 1%

rel-amazon  user-item-rate 0.17 0.87 0.92 6%
user-item-review 0.09 0.47 0.52 11%

rel-avito user-ad-visit 0.06 3.66 3.94 8%
rel-hm user—item-purchase 0.38 2.81 2.81 0%
| etack user-post-comment 0.04 12.72 14.00 10%
FelTetac post-post-related 2.00  10.83 11.66 8%
trial condition-sponsor-run 4.82 11.36 11.55 2%
rei-tria site-sponsor-run 8.40 19.00 19.14 1%

6. Related Work

Deep Learning on Relational Data. Several works
have explored the use of GNNs for learning on relational
data (Schlichtkrull et al., 2018; Cvitkovic, 2019; Sir,
2021; Zahradnik et al., 2023; Kanatsoulis et al., 2025).
These works investigated different GNN architectures that
utilize the relational structure. More recently, Fey et al.
(2024) introduced Relational Deep Learning (RDL) (cf.
Sec. 2.2), establishing a new subfield of machine learning.
RDL has enabled various research opportunities, such as
advancements in relational graph construction algorithms,
GNN architectures, and task-specific prediction heads.
Yuan et al. (2024) focused on improving recommendation
tasks by addressing limitations of the currently employed
two-tower and pair-wise prediction heads. In contrast, our
work focuses on improving GNN architectures applied to
all task types, offering an orthogonal contribution. Recently,
a series of works have explored the use of large language
models (LLMs) for heterogeneous graphs. HiGPT (Tang
et al., 2024) introduced a language-enhanced heterogeneous
graph tokenizer combined with LLMs. Wydmuch et al.
(2024) proposed leveraging LL.Ms for predictive tasks in
RDL, showing improvements on certain node-level tasks.

Meta-paths in Heterogeneous Graphs. Meta-paths (Sun
etal., 2011) are widely used in heterogeneous graph learn-
ing to capture semantic relationships between different types
of entities (Shang et al., 2016; Dong et al., 2017; Hu et al.,
2018; Shi et al., 2018; Wang et al., 2019b; Fu et al., 2020).
A meta-path is a manually designed sequence of node and
edge-types in a heterogeneous graph intended to capture spe-
cific relational patterns. For example, in an academic graph,
a meta-path Author—Paper—Author models co-authorship,
and a meta-path Author—Paper—Conference—Paper—Author
captures co-conference patterns. While effective in many
settings, meta-paths have some known limitations (Shi
et al., 2016; Hu et al., 2020; Shi, 2022). They typically rely
on manual specification, which requires domain expertise
and may introduce bias or overlook important patterns.
Designing an effective set of meta-paths for complex graphs
can be time-consuming and may fail to comprehensively
capture all relevant interactions.

Distinction between RDL and Knowledge Graphs. The
literature of knowledge graphs (Bordes et al., 2013; Wang
et al., 2014; 2017) differs from RDL in terms of the tasks
being tackled. Knowledge graph models mainly focus on
completion tasks like predicting missing entities (e.g., Q:
Who is the author of Harry Potter? A: J.K. Rowling) or
missing relationships (e.g., Q: Did Yoshua Bengio win a Tur-
ing Award? A: Yes). In contrast, RDL focuses on making
predictions about entities or groups of entities in the future
timestamp (e.g., Will a customer churn in the next month?
How much will a customer spend in the upcoming week?)

7. Conclusion

In this paper, we introduced RELGNN, a novel graph neu-
ral network framework specifically designed to address the
structural inefficiencies of existing heterogeneous GNNs
for relational databases. By leveraging atomic routes, we
designed a composite message passing mechanism that en-
ables direct single-hop interactions between the source and
destination nodes. This avoids redundant aggregation and
highlights key predictive signals, leading to more efficient
and accurate predictive modeling. Through extensive eval-
uation on RELBENCH, a diverse benchmark covering 30
predictive tasks across 7 relational databases, RELGNN
outperforms state-of-the-art baselines on the vast majority
of tasks, achieving up to a 25% improvement in predictive
accuracy. Our findings emphasize the limitations of conven-
tional heterogeneous GNNs when applied to relational data
and highlight the necessity of models that explicitly account
for primary-foreign key relationships.
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Table 4: Statistics of RELBENCH.

#Rows of training table #Unique otrain/test

Dataset Task name Task type Train Validation Test Entities Entity Overlap

user-churn 4,732,555 409,792 351,885 1,585,983 88.0
item-churn J 2,559,264 177,689 166,842 416,352 93.1
user-1tv regression 4,732,555 409,792 351,885 1,585,983 88.0

rel-amazon ;i on-ltv regression 2707679 166978 178334 427537 935
user—item-purchase recommendation 5,112,803 351,876 393,985 1,632,909 874
user—-item-rate recommendation 3,667,157 257,939 292,609 1,481,360 81.0
user—item-review recommendation 2,324,177 116,970 127,021 894,136 74.1
user-clicks classification 59,454 21,183 47,996 66,449 453

. user-visits classification 86,619 29,979 36,129 63,405 64.6

rel-avito .
ad-ctr regression 5,100 1,766 1,816 4,997 59.8
user—-ad-visit recommendation 86,616 29,979 36,129 63,402 64.6
user-repeat classification 3,842 268 246 1,514 115

rel-event user—ignore classification 19,239 4,185 4,010 9,799 21.1
user—attendance regression 19,261 2,014 2,006 9,694 14.6
driver-dnf classification 11,411 566 702 821 50.0

rel-f1 driver—top3 classification 1,353 588 726 134 50.0
driver-position regression 7,453 499 760 826 44.6
user—churn classification 3,871,410 76,556 74,575 1,002,984  89.7

rel-hm item-sales regression 5,488,184 105,542 105,542 105,542 100.0
user—item-purchase recommendation 3,878,451 74,575 67,144 1,004,046  89.2
user—engagement classification 1,360,850 85,838 88,137 88,137 97.4
user-badge classification 3,386,276 247,398 255360 255,360 96.9

rel-stack post-votes regression 2,453,921 156,216 160,903 160,903 97.1
user—-post—-comment recommendation 21,239 825 758 11,453 59.9
post-post-related recommendation 5,855 226 258 5,924 8.5
study-outcome classification 11,994 960 825 13,779 0.0
study-adverse regression 43,335 3,596 3,098 50,029 0.0

rel-trial site-success regression 151,407 19,740 22,617 129,542 42.0
condition-sponsor-run recommendation 36,934 2,081 2,057 3,956 98.4
site-sponsor-run recommendation 669,310 37,003 27,428 445,513 48.3

A. RELBENCH Details

In this section, we provide a detailed description and related statistics of RELBENCH. Table 4 provides detailed statistics for
each dataset and task.

A.1. Datasets

RELBENCH consists of 7 datasets, covering a diverse range of domains and scales. Below is a detailed description for each
dataset.

rel-amazon. The Amazon E-commerce dataset contains product, user, and review interactions on Amazon’s platform.
It includes product metadata (e.g., price, category), review details (e.g., rating, text), and user engagement.

rel-avito. Avito, a major online marketplace, facilitates buying and selling across categories such as real estate,
vehicles, and consumer goods. This dataset contains user search queries, ad characteristics, and additional contextual data
for developing predictive models.

rel-event. The Event Recommendation dataset is derived from Hangtime, a mobile app that tracks users’ social plans.
It contains user interactions, event metadata, demographic information, and social network connections, offering insights
into how social relationships influence user behavior.

rel-£f1. The F1 dataset records comprehensive Formula 1 racing data since 1950, covering drivers, constructors, engine
and tire manufacturers, and race circuits). It includes historical race results, season standings, and granular data on practice
sessions, qualifying rounds, sprints, and pit stops.

rel-hm. The H&M dataset captures customer and product interactions from the retailer’s e-commerce platform. It
includes metadata on customers and products (e.g., demographic attributes, product descriptions), and purchase histories.
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rel-stack. Stack Exchange is a network of Q&A websites where users earn reputation based on contributions. The
dataset contains detailed activity logs, including user biographies, posts, comments, edit histories, votes, and linked
questions.

rel-trial. The clinical trial dataset, sourced from the AACT initiative, aggregates study protocols and results. It
includes trial design details, participant demographics, intervention specifics, and outcome measures, serving as a valuable
resource for medical research and policy analysis.

A.2. Tasks

The following list outlines the description predictive tasks included in RELBENCH.

1. rel-amazon

(a) user—churn: Predict whether a user will stop reviewing products within the next three months.

(b) item-churn: Predict whether a product will receive no reviews in the next three months.

(c) user-1tv: Estimate the total dollar value of products a user will purchase and review over the next three months.

(d) item-1tv: Estimate the total dollar value of purchases and reviews a product will receive in the next three
months.

() user—item-purchase: Predict the set of items a user will purchase in the next three months.

(f) user—item-rate: Predict the set of items a user will purchase and rate five stars in the next three months.

(g) user-item-review: Predict the set of distinct items a user will purchase and write a detailed review for in
the next three months.

2. rel-avito

(a) user-visits: Predict if a user will interact with multiple ads within next four days.

(b) user-clicks: Predict if a user will engage with more than one ad by clicking within next four days.
(c¢) ad—-ctr: Estimate the click-through rate for an ad, assuming it receives a click within four days.

(d) user—ad-visit: Predict the list of ads a user will visit within next four days.

3. rel-event

(a) user-attendance: Predict the number of events a user will RSVP "yes” or "maybe” to in the next seven
days.

(b) user—-repeat: Predict whether a user will attend an event (by responding “yes” or “maybe”) in the next seven
days, given they attended an event in the last 14 days.

(c) user-ignore: Predict whether a user will ignore more than two event invitations in the next seven days.
4, rel-f1
Node-level tasks:

(a) driver—dnf: Predict whether a driver will fail to finish a race within the next month.
(b) driver—top3: Predict if a driver will secure a top-three qualifying position in a race within the next month.
(c) driver—-position: Predict a driver’s average finishing placement across all races in the next two months.
5. rel-hm
Node-level tasks:

(a) user—-churn: Predict if a customer will become inactive (no transactions) in the next week.
(b) item-sales: Predict total revenue generated by an article in the upcoming week.
(c) user—-item-purchase: Predict the list of articles a customer will over the next seven days.

6. rel-stack
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(a) user-engagement: Predict whether a user will participate by voting, posting, or commenting within the next
three months.

(b) user-badge: Predict if a user will earn a new badge within the next three months.

(c) post-votes: Predict the number of votes a user’s post will receive over the next three months.

(d) user-post-comment: Predict which existing posts a user will comment on in the next two years.

(e) post—-post-related: Identify a list of existing posts that will be linked to a given post within the next two
years.

7. rel-trial

(a) study-outcome: Predict if a clinical trial will meet its primary outcome within the next year.

(b) study—-adverse: Estimate the number of patients who will experience severe adverse events or death in a
clinical trial over the next year.

(c) site-success: Predict the success rate of a trial site in the next year.
(d) condition-sponsor-run: Predict which sponsors will be associated with a particular condition.
(e) site-sponsor—run: Predict whether a specific sponsor will conduct a trial at a given facility.

B. Visualization of Primary-Foreign Key Relationships

We visualize the primary-foreign key relationships of all datasets in RELBENCH in Figure 4 (rel-f1 is visualized in
Figure 1 (a)).

C. Ablation Study

To isolate the contribution of atomic routes, we conduct an ablation study comparing variants of RELGNN with and without
the attention mechanism. In our instantiation and main experiments, the FUSE operation of RELGNN is instantiated using
the same design as GraphSAGE (cf. Equation (4)). For this ablation, we additionally configure the AGGR operation to use
GraphSAGE-style aggregation instead of attention. This ensures that the only architectural difference between the baseline
and RELGNN is the inclusion of atomic routes.

As shown in Tables 5, 6, and 7, RELGNN achieves consistent gains over the baselines, even when using the same aggregation
mechanism. Notably, the performance improvement is not attributable to attention alone: the gap between RELGNN with
and without attention is modest. These results indicate that the performance gains stem primarily from the use of atomic
routes, which enable more efficient and targeted message passing across relational structures.

We also include additional baselines using GAT (Velickovi¢ et al., 2018) and GIN (Xu et al., 2019) as backbone architectures.
As shown in Tables 5, 6, and 7, RELGNNoutperforms all baselines regardless of the backbone GNN.

D. Additional Discussion

Scalability and Efficiency in Large Relational Databases. A common concern is whether the complexity of computing
atomic routes increases with database size. In our framework, atomic routes are computed at the schema graph level, where
nodes represent table types rather than individual entities. Even in large databases with millions of rows, the number of table
types typically remains in the tens. This schema-level design makes RELGNN agnostic to the number of entities and allows
it to scale efficiently as the database grows.

Another related concern is the complexity introduced by tables with many foreign keys. In practice, we follow the standard
RDL sampling strategy, which samples a fixed-size local neighborhood around each seed node. As a result, only a subset of
the foreign key links is activated at training or inference time. The number of active connections remains bounded by the
sampling configuration, ensuring that the message passing remains efficient even when some tables connect to many others.

A Potential Approach for Handling Self-Loop Tables. Although self-loop tables are rare in relational databases (only
1 out of 7 datasets in RELBENCH), it is worthwhile to improve the model handling of such cases. The key to addressing this
challenge is enhancing the model’s ability to distinguish messages coming from the same table type (for self-loop tables)
versus those from different types (for non-self-loop tables). To address this, we propose incorporating relative positional
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Figure 4: Primary-foreign key relationships of datasets in RELBENCH.
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Table 5: Ablation results for entity classification (ROC-AUC(%), higher is better) on RELBENCH test set. The best values
are in bold, and the second-best values are underlined.

Dataset Task GraphSAGE  GAT GIN ReLGNN  RELGNN
w/o attn

rel-amazon user—churn 70.42 63.21 70.50 70.99 70.90
eLramazo item-churn 82.81 69.99  82.74 82.64 82.94
N user-visits 66.20 64.82  65.96 66.18 66.80
reLTavito user—clicks 65.90 65.85  66.04 68.23 66.72
1 ‘ user—-repeat 76.89 68.24 74.35 79.61 78.82
reLmeven user-ignore 81.62  82.04  79.54 86.18 85.58
celofl driver-dnf 72.62  70.26  71.81 75.29 74.77
¢ driver-top3 75.54  60.03  73.64 85.69 84.86
rel-hm user—-churn 69.88 64.72 69.91 70.93 70.29
el-stack user—engagement 90.59 89.59 90.53 90.75 90.70
* user-badge 88.86  84.51  88.72 88.98 88.99
rel-trial study-outcome 68.60 66.19 68.44 71.24 69.34

Table 6: Ablation results for entity regression results (MAE, lower is better) on RELBENCH test set. The best values are in
bold, and the second-best values are underlined.

Dataset Task GraphSAGE GAT GIN RELGNN  RELGNN
w/o attn

1 user-1ltv 14.313 16.626 14.318 14.230 14.240
reLTamazon - item-ltv 50.053  58.902 50.087 48.767 48.282
rel-avito ad-ctr 0.041 0.043 0.041 0.037 0.037
rel-event user—attendance 0.258 0.263 0.264 0.238 0.238
rel-f1 driver-position 4.022 4.268 4.072 3.798 3.792
rel-hm item-sales 0.056 0.079 0.055 0.054 0.053
rel-stack post-votes 0.065 0.068 0.065 0.065 0.065
l-trial study-adverse 44.473 46.026 44.400 44.461 45.531
reiTtria site-success 0.400 0.393 0.398 0.301 0.354

Table 7: Ablation results for recommendation results (MAP(%), higher is better) on RELBENCH test set. The best values are
in bold, and the second-best values are underlined.

Dataset Task GraphSAGE GAT GIN RELGNN RELGNN
w/o attn

user—item-purchase 0.74 0.44 0.69 0.77 0.90

rel-amazon user—-item-rate 0.87 0.78 0.78 0.92 0.89
user-item-review 0.47 0.29 0.42 0.52 0.59

rel-avito user—ad-visit 3.66 1.99 3.66 3.94 3.96
rel-hm user—item-purchase 2.81 1.88 2.80 2.81 2.83
rel-stack user-post-comment 12.72 11.97 12.81 14.00 13.66
post-post-related 10.83 10.71 10.78 11.66 11.38

rel-trial condition-sponsor—run 11.36 10.43 11.32 11.55 11.44
site-sponsor-run 19.00 17.90 18.91 19.14 19.08
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encoding (RPE) over the schema graph (where nodes are table types and edges are primary-foreign key relations). RPE
helps the model identify whether two tables are of the same type and also offers additional benefits. Since the schema
graph defines the database structure at a macro level, it can provide global relational context that complements the local
structural information captured by GNNs on the relational entity graph. Moreover, schema graphs are typically small (with
only tens of nodes even in large databases) and static, so the RPE can be precomputed once with negligible overhead and
reused throughout training and inference.

To evaluate, we implemented an RPE method based on Huang et al.: eigen-decompose the Laplacian of the schema graph
L = Vdiag(\)V'T, apply m element-wise MLPs ¢y (+) to obtain Q[:,:, k] = Vdiag(¢x(\))V T, for k € [m], resulting
in a tensor Q € RYXN*™ and project via an MLP p to obtain RPE = p(Q) € RV*N*d where N is the number of
node-types of d is the dimension of node embeddings. For a message from node-type 7 to j, we update the original message
masm’ = m+ «- RPEJi, j] with learnable «. This resulted in a 2% improvement on both classification tasks in rel-stack,
which contains self-loops.

Integration with Advanced Components. We focus on improving the core design of message passing, but the REL-
GNN framework is flexible and accommodates more advanced components.

* Advanced GNN Aggregators. RELGNN allows easy integration of different GNN aggregators by re-instantiating
the AGGR operation in Equation (5). For example, PNA (Corso et al., 2020) improves expressiveness by combin-
ing multiple aggregators and degree-scalers. It can be integrated into RELGNN by instatiating Equation (5) with
AGGR(th)t, {{h%sc}}) = mejhggt +2 fuseen sy M (hE‘lq)Lse) where M (-) is the PNA operator. Model-agnostic
aggregators can also be integrated on top of RELGNN. For instance, Jumping Knowledge Network (Xu et al., 2018)
improves performance by adaptively combining representations from multiple layers. This can be implemented by
collecting outputs from each RELGNN layer and passing them to PyG’s JumpingKnowledge module, with the result
used as input to the final prediction layer.

 Effective Time Encodings. Many RDL tasks involve temporal prediction, and various temporal encodings can be
incorporated as additional node features for RELGNN. For example, Time2Vec (Kazemi et al., 2019) maps timestamps
t to R via Time2Vec(t)[i] = sin(w;t + ¢;) with learnable parameters w; and ¢;. GraphMixer (Cong et al.) introduces
i—1
a fixed time encoding t — cos(tw), where w = {a~ 7 }Z_,and the choice of c, 3 depends on the dataset’s time range.
These techniques are compatible with RELGNNand introduce minimal overhead.
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