
Adversarial Robust Model Compression using In-Train Pruning

Manoj-Rohit Vemparala1, Nael Fasfous2, Alexander Frickenstein1, Sreetama Sarkar1,
Qi Zhao3, Sabine Kuhn1, Lukas Frickenstein1, Anmol Singh1 Christian Unger1,

Naveen-Shankar Nagaraja1, Christian Wressnegger3, Walter Stechele2

1BMW Autonomous Driving, 2Technical University of Munich,
3Karlsruhe Institute of Technology

Abstract

Efficiently deploying learning-based systems on embed-
ded hardware is challenging for various reasons, two of
which are considered in this paper: The model’s size and
its robustness against attacks. Both need to be addressed
even-handedly. We combine adversarial training and model
pruning in a joint formulation of the fundamental learning
objective during training. Unlike existing post-train pruning
approaches, our method does not use heuristics and elimi-
nates the need for a pre-trained model. This allows for a
classifier which is robust against attacks and enables bet-
ter compression of the model, reducing its computational
effort. In comparison to prior work, our approach yields
6.21 pp higher accuracy for an 85% reduction in parame-
ters for ResNet20 on the CIFAR-10 dataset.

1. Introduction

While convolutional neural networks (CNNs) have been
proven effective in various computer vision applications,
such as image classification [1], semantic segmentation [2],
and object detection [3], their deployment on resource-
limited hardware such as in-vehicle systems remains chal-
lenging. In real-world applications, the high memory re-
quirements and energy consumption of neural networks can
be a limiting factor. Recent works on CNN optimization
are categorized into methods for parameter pruning [4–6],
quantization [7, 8], and knowledge distillation [9]. These
methods contribute to significant improvements in reducing
the computational complexity of neural networks. More-
over, neural networks are vulnerable to attacks, questioning
their suitability for safety-critical applications such as au-
tonomous driving. Adversarial examples, for instance, are
small perturbations to the input that appear insignificant or
even imperceptible to the human eye, but cause a differ-
ent/incorrect prediction by the classifier [10]. As a rem-

edy, the research community has invested significant efforts
to learn more robust models, for instance using adversarial
training [11, 12], where such adversarial examples are ac-
tively incorporated in the learning process. However, only
few studies analyze the impact of adversarial robustness and
network compression [13–16]

Techniques for pruning neural networks aim to remove
redundant structural parameters like channels, kernels or
individual weight elements of neural networks in order to
decrease the memory requirements and accelerate the com-
putation of the network at hand, while maintaining the net-
work’s accuracy. Most pruning methods [e.g. 4–6] follow a
three step approach: First, a model is learned to solve a task
at hand. Second, this very model is pruned according to a
separate objective function. Third, the model is fine-tuned
to maintain the overall accuracy.

Pruning often relies on magnitude-based heuristics that
require incorporating iterative fine-tuning during the prun-
ing search to maintain the model’s effectiveness [6, 17].
This, however, significantly increases the computation ef-
fort (the GPU hours) for the pruning process. To improve
upon this, recent research proposes reinforcement learn-
ing (RL) agents to automate the process of finding the opti-
mal model pruning strategies [5, 18]. While, these learning-
based compression techniques outperform pure heuristic-
based approaches both in efficiency and compression ratio,
they often do not yield an optimal solution.

In this paper, we propose to incorporate the pruning
process, that is, learning an appropriate pruning mask, in
the underlying optimization function of the training. We
thereby break through the barrier between training and
pruning, and circumvent the need for magnitude-based
heuristics. In an extensive evaluation, we demonstrate that
our method yields 80% reduction of multiply and accumu-
late (MAC) operations in a ResNet56 network with minimal
degradation in accuracy. Our joint formulation of the learn-
ing and pruning objectives allows us to additionally incor-
porate recent advantages from adversarial training [12] and

increase the robustness of the pruned network. We provide
a trade-off between task-specific accuracy, adversarial accu-
racy and compression rate. With this, we achieve higher ad-
versarial accuracy than RL-based approaches and also out-
perform the state of the art robust pruning methods.
We summarize our contributions as follows:

1. Higher Compression. Our method identifies redun-
dant weights by minimizing a hardware-aware aux-
iliary loss when updating the network’s connections.
We obtain 80% reduction of operations with only
2.22 pp (percent point) degradation in accuracy for
a ResNet56-based channel-pruned configuration on
CIFAR-10.

2. Sustained Robustness. We show the effectiveness of
our in-train pruning scheme under attack. By augment-
ing the trainable pruning masks with adversarial train-
ing, our method produces 5.91 pp and 8.65 pp higher
natural accuracy with similar adversarial robustness
compared to post-training RL pruning at a 70% reduc-
tion of operations for ResNet20 and ResNet56.

3. Improved Accuracy. We compare our approach
to state-of-the-art robust pruning methods. We
achieve a 6.21 pp higher natural accuracy than Robust-
ADMM [13] while maintaining a similar level of ad-
versarial robustness for 85% channel pruning.

The remainder of the paper is structured as follows: In
Section 2, we discuss related work on post-training and
in-train pruning, as well as adversarial robustness. Sec-
tion 3 introduces our approach on in-train adversarial robust
model compression, which is then extensively evaluated in
Section 4. Section 5 concludes the paper.

2. Related Work
Post-Train Pruning Han et al. [6] determined the impor-
tance of individual elements in the weight matrix based on
their magnitude, demonstrating the redundancies in deep
neural networks. Pruning individual weights, referred to
as irregular pruning, leads to inefficient memory accesses,
making it impractical for general-purpose computing plat-
forms. Regularity in pruning becomes an important cri-
terion towards accelerator-aware optimization [17]. He et
al. [4] prune redundant channels by applying LASSO re-
gression and solving for least square minimization of the
output error of the remaining feature maps. However, the
above pruning methods are based on heuristics, which can-
not be guaranteed to generalize well for different tasks and
objectives. Recently, auto-machine-learning (Auto-ML)
based approaches are leveraged in the research of model
pruning techniques [5, 18]. Huang et al. [18] proposed
a reinforcement learning based filter pruning framework to

achieve layer-wise filter pruning. An RL-agent prunes a sin-
gle layer at a time before fine-tuning and then moving on to
the next layer. This leads to longer GPU hours and pro-
vides no guarantee of a global optimal pruning strategy for
the entire model. In AMC [5], a deep deterministic policy
gradient (DDPG) based RL-agent is utilized in regular fil-
ter pruning. The RL-agent provides the environment with a
continuous action that can be defined as the compression ra-
tio of each layer. Based on the magnitude obtained from the
L2-norm heuristic and the sparsity ratio of each layer given
by the RL-agent, the redundant channels are pruned. In this
work, we eliminate the need for heuristics and search-time
for pruning and determine the pruning strategy based on
gradient updates during the training process.

In-Train Pruning Integrating the pruning process into
the training phase to jointly optimize the weights and
prune connections is referred to as in-train pruning. The
autoencoder-based low-rank filter-sharing technique (ALF)
proposed by Frickenstein et al. [19] utilizes sparse autoen-
coders that extract the most salient features of convolutional
layers, discarding filters in an unsupervised manner. ALF is
limited to filter pruning and does not support other pruning
regularities. ALF also adds an additional expansion layer
which prohibits the extraction of inter-layer filter pruning
benefits. Zhang et al. [20] present a systematic weight prun-
ing framework for neural networks, where pruning is for-
mulated as a constrained non-convex optimization problem
and solved using alternating direction method of multipli-
ers (ADMM) [21] during the training process. The au-
thors subsequently extend their work in StructADMM [22]
to structured sparsity and provide analysis on row prun-
ing, column pruning and filter pruning. Although the task-
specific and pruning objectives are solved simultaneously,
the authors use predefined sparsity ratios from other prun-
ing works to ensure the convergence. Sparse learning or
training sparse networks from scratch [23–25] can also
be considered as an in-train pruning technique, which has
achieved extremely high pruning rates with negligible ac-
curacy degradation. This method does not require a pre-
trained dense model and the network topology is updated
during training through pruning and regrowing connections.
Parameters are pruned based on magnitude and grown back
at random [23] or based on gradient [25] or momentum [24]
information. However, these methods often require prede-
fined layer-wise sparsities and are mostly effective in reduc-
ing model size through weight pruning, rather than focusing
on the hardware advantages through structured pruning.

Model Compression and Adversarial Robustness Gal-
loway et al. [26] evaluated and interpreted the adversar-
ial robustness of binary neural networks (BNNs). They
highlight the most commonly mentioned benefits of BNNs,

2

Original Neural Network

Pruned Neural Network

Prune

Fine-Tuning

Search (e.g. RL, GA)
→ Heuristic based

Unified
Training

Gradient Update
Al-1 Al

W: Latent Weights Mb: Configurable
Prune Mask

Sample Batch of Images

e.g. Convolutional Layer

Robust Prune and Train Objective
In-Train Pruning

M: Trainable
Prune Parameter

Forward Propagation

Robustness Task Compression

Conv

1

0000

0 0

00 1

1

1

Original
Image:

+ Noise δ

Attacked
Image:
(FGSM)

Figure 1: Depiction of existing post-train pruning approaches (left) in comparison to our newly proposed method (right).

i.e. the reduced memory consumption and the faster in-
ference. They also point out the improvement in robust-
ness against adversarial attacks for BNNs compared to full-
precision models. The inherently discontinuous and ap-
proximated gradients of BNNs gives them an advantage
over full-precision networks for adversarial attacks. In this
work, we focus on model pruning as the main compression
technique, orthogonal to quantization and binarization ap-
proaches. Inspired by the work of [20], Ye et al. [13] incor-
porated adversarial robustness into the ADMM objective.
One of the main findings of the work for improving robust-
ness of a compact model is to concurrently prune and adver-
sarially train an over-parameterized network. A similar ap-
proach followed by Gui et al [16] constructed framework to
realize a unified constrained robust-aware optimization on
DNN models. The objective function of ADMM is recon-
structed to improve adversarial robustness using three main
compression strategies: pruning, factorization and quanti-
zation. However, a pre-trained model with adversarial ro-
bustness is required before the compression. Differently,
our approach minimizes the associated loss term to obtain
sparsity by updating the differentiable prune masks with-
out relying on a magnitude-based heuristic. Sehwag et
al. [14] recently proposed a new method to make pruning
techniques aware of robust training objectives. After pre-
training an over-parameterized model, the pruning is based
on the importance score computed from the loss. After de-
termining the pruned subgraph, fine-tuning is performed.
As noted in their results, the lowest magnitude based prun-
ing is not suitable for robustness-aware pruning technique.
Our approach does not require a pre-trained model as we
prune and train the compact robust model simultaneously.

3. Adversarial Robust Model Compression
In this paper, we target two objectives: 1) Compressing

a model to reduce the computational effort of a neural net-

work, and 2) increasing the robustness against an adversary
manipulating input data. Both can be effectively achieved
by formulating a joint optimization problem as shown in
Fig 1.

We adopt the concept of adversarial training [11] but in-
corporate pruning edges in the network using a binary mask
Mb ∈ {0, 1} derived from a trainable continuous mask M ,
that is, weights W are canceled out if the corresponding
dimension of the mask is 0 and left unchanged if it is set
to 1: W �Mb (c.f . Sections 3.1 and 3.2). Attacks against a
neural networks are described as finding a minimal pertur-
bation δ of an image I (forming the the adversarial example
Iadv = I + δ) that changes the outcome of a given model
represented by the prediction function f(·) [27]. For ad-
versarial training, we make use of this generation principle,
while maximizing the loss L for a given perturbation budget
ε:

min
W,M

E
(I,Y)∼D

[
max
|δ|≤ε

L (f(I + δ,W �Mb), Y)

]
. (1)

The outer minimization problem in Eq. (1) involves a set
of randomly sampled images from dataset D, where the ex-
pected loss E on the random samples is minimized through
an adversarial training scheme, such as Fast Adversarial
Training (FastAT) [12].

Exposing a model to adversarial images Iadv results
in the adversarial accuracy Accadv, representing the mea-
sure of adversarial robustness of the underlying model.
Our in-train pruning approach aims to achieve a balanced
trade-off between natural accuracy Accnat (calculated from
the ground-truth labels Y for the corresponding images
I), adversarial robustness Accadv, and model complexity
sum(Mb) during the training process, rather than introduc-
ing separate (post-training) phases for pruning and fine-
tuning.

In principle, one may use different methods for gener-
ating adversarial examples for training, such as Fast Gra-

3

dient Sign Method (FGSM) [27], Projected Gradient De-
scent (PGD) [11] and Carlini-Wagner (C&W) [28]. Wong
et al. [12], however, show that using FGSM in combination
with random initialization is particularly effective. With
this, the cost of training, measured in GPU hours, with one
iteration of FGSM is significantly lower than with other
variants like PGD-based adversarial training [11]. We inte-
grate the in-train update operations of the pruning mask Mb

in the FastAT procedure as shown in Algorithm 1.

Algorithm 1: Joint selection of pruning masks and
adversarial training.

Require: Training samples D, perturbation strength
ε, step size α

1 Initialize θ, Mb ← 1
2 for Epoch = 1, . . . Nepochs do
3 for Batch B ⊂ D do
4 Initialize perturbation

δ ← random uniform(−ε,+ε)
5 Sample a batch of K examples

{(I(1), Y (1)), · · · , (I(K), Y (K))} from
data distribution.

6 Use FGSM attack to generate perturbations
on batch K to update δ

7 δ ← δ+α·sign(∇δL(f(I+δ,W�Mb), Y)
8 δ ← max(min(δ, ε),−ε)
9 Iadv ← I + δ

10 Update weights W and pruning masks M
using SGD for adversarial images:

11 W ←W − η · ∇WL(f(Iadv,W �Mb), Y)
12 M ←M − η · ∇ML(f(Iadv,W �Mb), Y)

13 end
14 if EPrune, Start ≤ Epoch ≤ EPrune, End then
15 if Epoch mod Prune step = 0 then
16 M ←M − η · ∇MLPrune(M,ψbase)
17 end
18 Mb ← round(0.5 · tanh(M)+0.5)

19 end
20 end

During each training step, we generate a uniform random
initialization for the adversarial perturbation as shown in
line 4, followed by performing a step into the ascent gradi-
ent direction (line 7) is scaled by the step size α. We update
the weights and pruning masks of the neural network jointly
in lines 11 and 12 for clean and adversarial images with
learning rate η. During these update steps the importance
scores for masks Mb get accumulated. Lines 15 and 16
zero out prune masks based on a hardware loss LPrune (c.f .
Section 3.2). As shown in line 14, we start and freeze the
optimization of prune masks at the epoch corresponding to
EPrune, Start and EPrune, End respectively. As part of our ex-

periments in Section 4, we discuss the training behavior for
different pruning constraints with and without the adversar-
ial setting in more detail.

3.1. Pruning

We aim for obtaining a pruning strategy directly when
optimizing the network’s weights W during the training
process and thus save the effort of additional post-train
pruning. We use binary pruning masks Mb to derive pruned
weights as W̃=W � Mb. At each layer l ∈ {1, ..., N}
of an N -layer CNN, we append a binary pruning mask
M l
b to the network’s weights W l. All but the last layer

have an input shape Ll−1 ∈ RAin×Bin×Cin , where Ain,
Bin, and Cin indicate the spatial height, width, and in-
put channels, respectively. L0 represents the input image I
and LN the classification output of the CNN. The weights
W ∈ RKh×Kw×Cin×Co are the trainable parameters of the
individual layers, where Kh, Kw, and Co refer to the ker-
nel’s dimensions, and the number of output channels/filters,
respectively.

The binary masks for irregular weight pruning are struc-
tured as M l

b = {0, 1}Kh×Kw×Cin×Co , kernel pruning re-
quires masks as M l

b = {0, 1}1×1×Cin×Co and channel
pruning requires masks M l

b = {0, 1}1×1×Cin×1. The size
of the binary mask increases as the pruning tends to become
more irregular leading to higher compression rates. How-
ever, irregular and kernel pruning demands dedicated hard-
ware implementation [29] for load balancing and additional
memory for mask indices, resulting in sub-optimal benefits
on general-purpose platforms. The masked weights are ob-
tained using the the Hadamard product � along the pruning
dimension as W̃ l as shown in Eq. (2).

Our training scheme intends to influenceMb using cross-
entropy and hardware (HW) objectives (c.f . Section 3.2),
by updating the continuous-valued, and thus trainable,
mask M with the same shape as Mb. We use tanh, scale,
and shift operations to normalize the value range of masks
Mnorm to [0, 1] as shown in Eq. (2). We apply the round op-
eration and restrict the mask values to the binary set {0, 1}.

W̃ l =W l �Mb, W̃
l ∈ RKh×Kw×Cin×Co

Mb = round(Mnorm)

Mnorm = 0.5 · tanh(M)+0.5

(2)

Any discrete parameter with a limited range set would in-
troduce zero gradients. We use Straight-Through Estima-
tors (STE) similar to [30] to overcome the vanishing gra-
dient effect and obtain updates for continuous masks M ,
later discretized to Mb for applying pruning decisions on
the weights.

4

3.2. Loss Formulation

We define the loss function that allows us to account for
hardware-specific compression objectives. The inference
complexity of the CNN depends on the number of non-zero
values in the binary pruning masks sum(M l

b) at every layer
l. We represent the shape of layer l after the masks are ap-
plied as lshape and hardware inference complexity as a func-
tion of lshape and M l

b given as ψl(lshape, M l
b). Increasing the

number of zeros in the prune masks leads to a lower num-
ber of computations and parameters. However, this impacts
accuracy Accnat for extreme compression rates.

The latent weights W are optimized to improve the task-
specific accuracy and adversarial robustness with respect to
the sum of the cross-entropy lossLce and regularization loss
Lreg . The trainable prune masks M are also considered in
the regularization loss to avoid too many binary masks Mb

elements biased at the early stages due to exploding mag-
nitude. We provide more details about the regularization
Lreg in supplementary material S.1. We optimize the train-
able masks M based on an auxiliary loss term LHW , which
captures hardware HW benefits. It is important to select
pruning masks which not only produce HW benefits but also
allow smooth minimization of cross-entropy loss during the
training process. Therefore, we formulate prune loss Liprune
at step i in Eq. (3), which is an accumulation of Lce and
LHW . The HW loss LHW is the difference between the
relative complexity of neural networks at iteration i and a
target constraint ψ∗. We accumulate the complexity of all
the N layers to obtain the complexity of neural network.

LiPrune = Lice + b× LiHW

LiHW = max(

∑N
l=1(ψ

i
l)∑N

l=1(ψ
0
l)
− ψ∗, 0)

(3)

We use the scaling factor b to control the convergence speed
for the prune masks M during the training process. For
extreme constraints such as 70% HW reductions, we use
higher b=50. The complexity of the neural network can be
represented using the number of parameters or MAC op-
erations. In Eq. (4), we represent the complexity by also
incorporating the binary prune masks Mb. We first calcu-
late the compression ratio µl for every layer l based on the
number of non zeros present in the weight matrix. For this
purpose, we introduce M l

base having the same dimensional-
ity as M l

b, consisting of all ones, representing the unpruned
model. We observe that the number of zeros in the binary
prune masks directly affect the complexity of layer l, which
can be represented using either parameters ψl(params) or
operations ψl(ops).

µl = ||M l
b||/||M l

base||
ψl(params) = Kl

w ×Kl
h × Clin × Clo × µl

ψl(ops) = Alo ×Blo ×Kl
w ×Kl

h × Clin × Clo × µl
(4)

Eq. (4) can be extended to pruning regularities such as
channel/filter pruning, where inter-layer HW benefits must
be taken into consideration. For channel pruning, we cap-
ture the inter-layer benefits by incorporating µl and µl+1,
thereby reducing Clin and Clo respectively. We use an op-
timizer similar to that of adversarial training, such as Mo-
mentum/ADAM, to update the prune masks. As shown in
Eq. (5) and Eq. (6), we approximate the gradients gmce and
gmHW derived from Lce and LHW to update the contin-
uous prune mask M , incorporating STE as mentioned in
Section 3.1.

gml
ce =

∂Lce
∂M l

=
∂Lce
∂W̃

· ∂W̃
∂M l

b

· ∂M l
b

∂M l
norm
· ∂M

l
norm

∂M l

STE!
=

∂Lce
∂W̃

· ∂W̃
∂M l

b

· ∂M
l
norm

∂M l

(5)

As shown in Eq. (6), the gradients updating prune masks
due to LHW scales depending on the baseline complex-
ity ψlbase of the layer l. We derive ψlbase by setting µl = 1.
We discuss the influence of various hyper-parameters on the
pruning efficiency in supplementary material S.1.

gml
HW =

∂LHW
∂M l

=
∂ψl

∂M l
=

∂ψl

∂M l
b

· ∂M l
b

∂M l
norm
· ∂M

l
norm

∂M l

STE!
=

∂ψl

∂M l
b

· ∂M
l
norm

∂M l
=

ψlbase

||M l
base||

· ∂M
l
norm

∂M l

(6)

4. Experiments

We evaluate the proposed in-train pruning technique on
CIFAR-10 [31] and ImageNet [32] datasets. For CIFAR-
10, we use 50K train and 10K validation images to train
and evaluate our method respectively. The images have
a resolution of 32 × 32 pixels. ImageNet consists of ∼
1.28M train and 50K validation images with a resolution
of 256 × 256 pixels. We use ResNet20 and ResNet56 as
baseline models for the CIFAR-10 dataset, and ResNet18
as a baseline model for the ImageNet dataset. If not other-
wise mentioned, all hyper-parameters specifying the task-
related training were adopted from ResNet’s base imple-
mentation [1]. For defensive training against adversarial
attacks, we use FastAT [12].

This section is organized as follows. In Section 4.1, we
analyze the effectiveness of incorporating trainable masks
during standard training without any adversarial training.
In Section 4.2, we demonstrate the effectiveness of in-
train pruning on robust models by comparing the ap-
proach against an RL-search based state-of-the-art pruning
scheme [5]. Finally, we compare our method with state-of-
the-art robust pruning techniques in Section 4.3.

5

4.1. In-Train Pruning

We investigate the effectiveness of in-train channel prun-
ing in Table 1 based on different constraints on the operation
(Ops) reduction metric. As shown in column 3 of Table 1,
we set the target reduction factor for operations ψ∗ from
Eq. (3) to {1.0, 0.4, 0.3, 0.2} for ResNet20 and ResNet56 on
the CIFAR-10 dataset, {1.0, 0.7, 0.5} for ResNet18 on the
ImageNet dataset. We observe -2.91 pp and -0.53 pp (per-
cent point) of accuracy degradation for operation constraint
ψ∗ = 0.4 in ResNet20 and ResNet56 respectively. We also
report the corresponding parameter reduction in column 5.

Table 1: In-train pruning for various operation constraints.
We use ResNet20 and ResNet56 on CIFAR-10 dataset and
ResNet18 on ImageNet dataset.

Model/ Acc Ops Reduction Param
Dataset [%] Target Actual Reduction

ResNet20
CIFAR-10

92.47 1.0 - 1.0
89.56 0.4 0.38 0.68
88.67 0.3 0.31 0.58
88.17 0.2 0.17 0.30

ResNet56
CIFAR-10

93.56 1.0 - 1.0
93.03 0.4 0.35 0.55
92.38 0.3 0.28 0.50
91.57 0.2 0.18 0.37

ResNet18
ImageNet

68.53 1.0 - 1.0
67.22 0.7 0.69 0.88
65.06 0.5 0.45 0.78

For an extreme target constraint ψ∗ = 0.2, we observe an
accuracy degradation of −4.3 and −1.99 pp for ResNet20
and ResNet56 respectively. The training behaviour which
incorporates joint optimization of trainable weights and
prune masks is analyzed in Fig. 2. We plot the Top1 ac-
curacy and HW loss LHW , detailed in Eq. (3), across the
training steps. The noisy behaviour in accuracy improve-
ment can be seen across the iterations, indicating the joint
optimization of the compression task (prune masks) and the

0 1 2 3 4

·104

0
0
.2

0
.4

0
.6

0
.8

1

Iteration

A
cc

ur
ac

y

ψ∗=0.4 Top1 Acc
ψ∗=0.3 Top1 Acc
ψ∗=0.2 Top1 Acc

·104

0
0
.2

0
.4

0
.6

0
.8

1
H

W
L

os
s

(L
H

W
)

ψ∗=0.4 HW Loss
ψ∗=0.3 HW Loss
ψ∗=0.2 HW Loss

Figure 2: Comparison of in-train pruning behaviour across
several training iterations for different operation constraints
ψ∗=0.4, 0.3, 0.2.

learning task (weights). The operation constraints of ψ∗ =
0.3 and 0.2 converge slightly slower compared to the oper-
ation constraint of ψ∗ = 0.4. In Table 1, we also investigate
the consistency of these trends on more challenging datasets
such as ImageNet. We observe a minor degradation of -1.31
and -3.47 pp for operation constraints of 0.7 and 0.5 on the
ResNet18 model trained on the ImageNet dataset. We also
extend the method for the task of object detection to high-
light its scalability in supplementary material S.3.

Table 2 evaluates the proposed in-train pruning scheme
for different pruning regularities. We observe that irregular
weight pruning produces lower accuracy degradation (-1.16
pp, -0.38 pp) compared to structured channel pruning (-4.30
pp, -2.22 pp) for ResNet20 and ResNet56. Although weight
pruning shows lower accuracy degradation for extreme tar-
get reductions, it is challenging to obtain inference benefits
from such regularities on general-purpose structured execu-
tion hardware, e.g. GPUs.

Table 2: Exploring different pruning regularities for opera-
tion reduction factor ψ∗=0.2.

Model Prune Acc Ops Reduction
Regularity [%] Target Actual

ResNet20

baseline 92.47 1.0 -
weight 91.31 0.2 0.16
kernel 89.78 0.2 0.19

channel 88.17 0.2 0.17

ResNet56

baseline 93.56 1.0 -
weight 93.18 0.2 0.19
kernel 92.25 0.2 0.21

channel 91.34 0.2 0.21

4.2. Robust Pruning

In this section, we demonstrate our proposed in-train
pruning method’s ability to achieve compressed models
which balance the trade-off between natural accuracy and
adversarial robustness.

Baseline Training As a baseline for adversarial training,
we implement FastAT [12] (see Section 3). For FastAT on
the Cifar-10 dataset, we use random FGSM with strength
ε = 8/255, step size α = 10/255 to generate adversarial
perturbations during the training process. We train for 300
epochs and set the initial learning rate to 0.1 and scale it
down by a factor of 10 every 80 epochs. For evaluating ro-
bustness of the pruned models, the PGD attack is performed
with ε = 8/255 and α = 2/255 for 20 iterations.

AMC-based Robust Pruning For the purpose of com-
parison with post-train pruning approach, we implement
the state-of-the-art reinforcement learning-based pruning

6

scheme AMC [5] to find pruning configurations generating
a trade-off between natural accuracy and adversarial accu-
racy. We constrain the number of operations to the target
specified in Table 3 and Table 4 and allow the RL-agent to
search for 500 episodes to obtain the pruning strategy. We
adversarially fine-tune the resulting network with a cyclic
learning rate of 0.1 for 30 epochs.

Improved Robustness with In-Train Pruning We aug-
ment our pruning approach with FastAT [12]-based ad-
versarial training and start zeroing the prune masks at
EPrune, Start = 20 and freeze the masks at theEPrune, End = 240.
We use an initial learning rate of 0.1 and decrease it by a
factor of 10 at the 80th and 160th epoch. We use the same
attack strength as baseline training.

In Table 3, we make a comparison between the RL-based
post-train pruning approach and the proposed in-train prun-
ing method. Across all experiments, we observe an im-
provement in natural accuracy, while maintaining similar
adversarial robustness. For a target reduction ψ∗=0.3 on
ResNet20, we obtain an improvement of 5.91 pp in natu-
ral accuracy. For ResNet56 and ψ∗=0.3, we obtain an im-
provement of 8.65 pp in natural accuracy and with similar
adversarial robustness. Similar improvements are achieved
for the ImageNet dataset, see supplementary material S.2.

Table 3: Comparison between post-train RL-based robust
pruning and the proposed in-train robust pruning for various
operation constraints.

Model Operations
Reduction

FastAT + RL Prune FastAT + In-train Prune
Acc PGD-Acc Acc PGD-Acc
[%] [%] [%] [%]

ResNet20

1.0 81.52 40.65 81.52 40.65
0.70 78.89 40.39 80.63 39.27
0.50 77.11 39.65 80.32 40.14
0.30 66.97 33.89 72.88 34.33

ResNet56

1.0 84.03 38.45 84.03 38.45
0.70 82.78 42.47 84.52 36.91
0.50 81.88 41.78 84.56 36.78
0.30 74.75 36.95 83.40 36.89

In Fig. 3, we plot the training behaviour to compare the
in-train pruning approach with (red) and without (blue) ad-
versarial robustness, for ψ∗ = 0.3. Compared to Fig. 2, we
sample more data points to clearly perform the compari-
son. We observe noisy improvement in natural accuracy
behaviour for the in-train robust pruning (red). The sudden
fluctuation in accuracy at 15K and 30K iterations indicates
the change in training behaviour due to the step learning rate
policy. During these iterations, we observe large changes in
the HW loss, indicating a phase of exploration in the binary
prune masksMb (0↔ 1). The changes in the pruning masks
result in noisy accuracy improvement but eventually stabi-
lize within 5K training iterations. We freeze the changes in

pruning masks at the 45K iteration as the pruning constraint
ψ∗ is satisfied (LHW = 0).

0 1 2 3 4

·104

0
0
.2

0
.4

0
.6

0
.8

1

Iteration

A
cc

ur
ac

y

Vanilla Pruning: Acc
Robust Pruning: Acc

·104

0
0
.2

0
.4

0
.6

0
.8

1
H

W
L

os
s

(L
H

W
)

Vanilla Pruning: Loss
Robust Pruning: Loss

Figure 3: Comparison of the proposed in-train pruning
scheme for operation constraint ψ∗ = 0.3 with (red) and
without (blue) the consideration of adversarial robustness.

We also verify the robustness of our in-train pruning
scheme with stronger adversarial attacks such as Carlini-
Wagner (C&W) [28] as shown in Fig. 4. C&W is an iter-
ative attack guided by an optimizer such as Adam, which
produces strong adversarial examples by simultaneously
minimizing perturbation distance and manipulating the pre-
dictions based on a target class. Different loss functions can
be applied in C&W attacks. In our experiments, the most ef-
ficient l2-bounded loss is used for the evaluation. We run the
attack for 100 iterations and set the C&W constant c=100,
which is responsible for controlling the trade-off between
the attacked image similarity and the success rate of the tar-
get class. We do not perform a binary search on the c value
as suggested in the paper, since our focus is not on mini-
mizing adversarial distance. Instead, we use a high value
of c to ensure that the models are subjected to the strongest
attack for reasonable image perturbations. In Fig. 4, we ob-
serve that the vanilla model trained without adversarial per-
turbations breaks very early at the 10th iteration. However,
robust models withstand the attack for more iterations (≥
20) with adversarial accuracy at least greater than 20%. Our
pruned models obtain even higher adversarial accuracy than
the unpruned RobustAT network after 30 iterations. We also
observe higher adversarial accuracy starting from the 20th

iteration for our in-train pruned model with target constraint
ψ∗ = 0.3. This indicates the generalization capability of the
in-train pruning approach as the compression rate increases.

In Table 4, we analyze the proposed in-train pruning ap-
proach with different pruning regularities in the context of
adversarial robustness. Additionally, we compare our re-
sults with the post-train RL-based pruning scheme. The
RL-agent proposed in the original work of AMC [5] is only
suited for channel-wise pruning. We adapted the RL-agent
to also perform pruning for different regularities. We ob-

7

20 40 60 80 100

0
0
.2

0
.4

0
.6

0
.8

CW Attack iterations

A
cc

ur
ac

y

Vanilla
RobustAT
Intrain-0.3
Intrain-0.5
Intrain-0.7

Figure 4: Comparison of adversarial robustness for different
CNN models using C&W attack for ResNet20.

serve that irregular weight pruning gives the best trade-
off between natural and adversarial accuracy. These ob-
servations also align with the robust pruning works in lit-
erature [13, 14]. The effectiveness of the in-train prun-
ing scheme compared to the RL-based pruning scheme be-
comes more evident as the pruning becomes more struc-
tured (weight-wise → channel-wise). Compared to RL-
based weight pruning, we observe a slight degradation in
natural accuracy (-0.65 pp) for the in-train pruning scheme
on ResNet20. However, the proposed method produces 5.91
pp, 0.44 pp better natural and adversarial accuracy respec-
tively for channel pruning. The same trend also applies to
ResNet56. As channel pruning is more advantageous on
general-purpose accelerators such as GPUs, this strengthens
the motivation for the proposed in-train pruning scheme.

Table 4: Robust pruning for various pruning regularities
with target operation constraint ψ∗ = 0.3.

Model Pruning
Regularity

FastAT + RL Prune FastAT + In-train Prune
Acc PGD-Acc Acc PGD-Acc
[%] [%] [%] [%]

ResNet20

1.0 81.52 40.65 81.52 40.65
weight 79.08 40.35 78.43 38.59
kernel 75.79 38.63 77.92 38.64

channel 66.97 33.89 72.88 34.33

ResNet56

1.0 84.03 38.45 84.03 38.45
weight 83.94 41.04 83.21 38.64
kernel 81.68 40.82 83.31 38.68

channel 74.75 36.95 83.40 36.89

4.3. Comparison with State of the Art

We compare the proposed in-train pruning approach to
the robust pruning works in literature. In Table 5, we
report the results of RobustADMM [13], Hydra [14] and
ATMC [16]. RobustADMM, Hydra and ATMC use differ-
ent baseline models, PGD evaluation parameters and adver-
sarial training schemes. RobustADMM considers an over-
parameterized ResNet as a baseline model and prunes it
for various parameter constraints. We report their channel
pruning results which achieve a model size of 0.04 × 106

(mentioned as w = 1 in [13]) and 0.17 × 106 (mentioned

as w = 2 in [13]). Differently, our approach uses the
smaller ResNet20 as a baseline model and achieves 6.21 pp
and 6.31 pp better natural accuracy while maintaining sim-
ilar adversarial robustness for model sizes with 0.04 × 106

and 0.16×106, respectively. The results from our approach
dominate in terms of natural as well as adversarial accuracy
for the same pruning constraints due to dynamic sparsity
ratios across layers and heuristic-free pruning.

Compared to the work in Hydra [14], we achieve a sig-
nificant improvement for channel pruning configurations.
Different from RobustADMM, Hydra performs a PGD at-
tack for 50 iterations to measure adversarial robustness.
Compared to a 50% constrained channel-pruned VGG-16
model, we achieve 69.08% model reduction and 29.64 pp
improvement in natural accuracy, while maintaining a simi-
lar level of adversarial robustness. The work in ATMC [16]
evaluates robustness of compressed ResNet-34 with the
PGD attack for 7 iterations. For the comparison, we use
the weight pruned configuration of ATMC-32bit model with
same attack hyper-parameters and obtain 6.63%, 14.43%
higher robustness for ε = 4/255, 8/255 respectively with
similar model size. Different from [13, 14, 16], our pruning
method does not require a pre-trained model.

Table 5: Comparing the in-train pruning scheme with SoTA
on CIFAR-10 dataset.

Work Baseline
Model

Pre-trained
Model

Pruning
Regularity

PGD Model
Size Acc

[%]
Adv. Acc

[%]attack.
ε, α, iter ×106

FastAT
Wong et al. [12] ResNet20 7 no prune 8, 2, 10 0.27 82.06 40.97

8, 2, 50 0.27 82.06 40.52

RobustADMM
Ye et al. [13] ResNet18 3

channel 8, 2, 10 0.04 64.52 38.01
channel 8, 2, 10 0.17 73.36 43.17

In-train Prune
(Ours) ResNet20 7

channel 8, 2, 10 0.04 70.73 39.31
channel 8, 2, 10 0.16 79.67 43.22

ATMC
Gui et al. [16] ResNet34 3

weight 4, 0.7, 7 0.11 84.00 62.00
weight 8, 1.4 , 7 0.11 84.00 39.00

In-train Prune
(Ours) ResNet56 7

weight 4, 0.7, 7 0.13 82.68 68.63
weight 8, 1.4, 7 0.13 82.68 53.43

Hydra
Sehwag et al. [14] VGG16 3

weight 8, 2, 50 0.76 78.90 48.70
weight 8, 2, 50 0.15 73.20 41.70
channel 8, 2, 50 7.65 52.90 38.00

In-train Prune
(Ours) VGG16 7

channel 8, 2, 50 5.51 82.54 38.36
channel 8, 2, 50 0.76 73.40 30.20

5. Conclusion
In this work, we propose an in-train pruning technique,

which eliminates the need for pre-trained models, prun-
ing heuristics and computationally expensive model explo-
ration time, traditionally required in literature. We highlight
the effectiveness of our approach by comparing it against
RL-based robust pruning method, producing improvements
in natural accuracy and maintaining similar robustness at
higher compression ratios. We also compare our approach
with state-of-the-art robust pruning schemes. Our approach
yields higher compression rates on channel pruning regu-
larity, producing significant improvements in accuracy and
adversarial robustness.

8

References
[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning

for image recognition,” in 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016.

[2] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for se-
mantic image segmentation,” in European Conference on
Computer Vision (ECCV), 2018.

[3] X. Zhou, D. Wang, and P. Krähenbühl, “Objects as points,”
in arXiv preprint arXiv:1904.07850, 2019.

[4] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerat-
ing very deep neural networks,” in International Conference
on Computer Vision (ICCV), Oct 2017.

[5] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “AMC:
AutoML for model compression and acceleration on mo-
bile devices,” in European Conference on Computer Vision
(ECCV), 2018.

[6] S. Han, H. Mao, and W. J. Dally, “Deep compression: Com-
pressing deep neural networks with pruning, trained quan-
tization and huffman coding,” International Conference on
Learning Representations (ICLR), 2016.

[7] J. Choi, Z. Wang, S. Venkataramani, P. I. Chuang, V. Srini-
vasan, and K. Gopalakrishnan, “PACT: parameterized clip-
ping activation for quantized neural networks,” CoRR,
vol. abs/1805.06085, 2018.

[8] X. Lin, C. Zhao, and W. Pan, “Towards accurate binary con-
volutional neural network,” in NIPS, 2017.

[9] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowl-
edge in a neural network,” in NIPS Deep Learning and Rep-
resentation Learning Workshop, 2015.

[10] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus, “Intriguing properties of neu-
ral networks,” in International Conference on Learning Rep-
resentations (ICLR), 2014.

[11] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu, “Towards Deep Learning Models Resistant to Ad-
versarial Attacks,” in International Conference on Learning
Representations (ICLR), 2018.

[12] E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free:
Revisiting adversarial training,” in International Conference
on Learning Representations (ICLR), 2020.

[13] S. Ye, K. Xu, S. Liu, H. Cheng, J.-H. Lambrechts, H. Zhang,
A. Zhou, K. Ma, Y. Wang, and X. Lin, “Adversarial robust-
ness vs. model compression, or both?,” in International Con-
ference on Computer Vision (ICCV), October 2019.

[14] V. Sehwag, S. Wang, P. Mittal, and S. Jana, “Hydra: Pruning
adversarially robust neural networks,” Advances in Neural
Information Processing Systems, vol. 33, 2020.

[15] M. R. Vemparala, A. Frickenstein, N. Fasfous, L. Fricken-
stein, Q. Zhao, S. Kuhn, D. Ehrhardt, Y. Wu, C. Unger,
N. S. Nagaraja, and W. Stechele, “BreakingBED – Breaking
Binary and Efficient Deep Neural Networks by Adversar-
ial Attacks,” in Intelligent Systems Conference (IntelliSys),
September 2021.

[16] S. Gui, H. Wang, H. Yang, C. Yu, Z. Wang, and J. Liu,
“Model compression with adversarial robustness: A unified
optimization framework,” in Proceedings of the 33rd Con-
ference on Neural Information Processing Systems, 2019.

[17] A. Frickenstein, M. R. Vemparala, C. Unger, F. Ayar, and
W. Stechele, “DSC: Dense-sparse convolution for vectorized
inference of convolutional neural networks,” Computer Vi-
sion and Pattern Recognition Workshops (CVPRW), 2019.

[18] Q. Huang, K. Zhou, S. You, and U. Neumann, “Learning
to prune filters in convolutional neural networks,” in 2018
IEEE Winter Conference on Applications of Computer Vision
(WACV), pp. 709–718, 2018.

[19] A. Frickenstein, M.-R. Vemparala, N. Fasfous, L. Hauen-
schild, N.-S. Nagaraja, C. Unger, and W. Stechele, “ALF:
Autoencoder-based low-rank filter-sharing for efficient con-
volutional neural networks,” Design Automation Conference
(DAC), 2020.

[20] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and
Y. Wang, “A systematic dnn weight pruning framework us-
ing alternating direction method of multipliers,” in European
Conference on Computer Vision (ECCV), 2018.

[21] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
“Distributed optimization and statistical learning via the al-
ternating direction method of multipliers,” Foundations and
Trendsin Machine Learning, 2011.

[22] T. Zhang, K. Zhang, S. Ye, J. Li, J. Tang, W. Wen, X. Lin,
M. Fardad, and Y. Wang, “ADAM-ADMM: A unified, sys-
tematic framework of structured weight pruning for dnns,”
CoRR, vol. abs/1807.11091, 2018.

[23] D. Mocanu, E. Mocanu, P. Stone, P. Nguyen, M. Gibescu,
and A. Liotta, “Scalable training of artificial neural networks
with adaptive sparse connectivity inspired by network sci-
ence,” Nature Communications, vol. 9, 2018.

[24] T. Dettmers and L. Zettlemoyer, “Sparse networks from
scratch: Faster training without losing performance,” ArXiv,
vol. abs/1907.04840, 2019.

[25] U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen, “Rig-
ging the lottery: Making all tickets winners,” in Proceedings
of Machine Learning and Systems, 2020.

[26] A. Galloway, G. W. Taylor, and M. Moussa, “Attacking Bi-
narized Neural Networks,” in International Conference on
Learning Representations (ICLR), 2018.

9

[27] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” in International Confer-
ence on Learning Representations (ICLR), 2015.

[28] N. Carlini and D. A. Wagner, “Towards Evaluating the Ro-
bustness of Neural Networks,” in IEEE Symposium on Secu-
rity and Privacy (SP), 2017.

[29] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,
and W. J. Dally, “Eie: Efficient inference engine on com-
pressed deep neural network,” in International Symposium
on Computer Architecture (ISCA), 2016.

[30] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and
Y. Bengio, “Binarized neural networks,” in Proceedings of
the 30th International Conference on Neural Information
Processing Systems, 2016.

[31] A. Krizhevsky, V. Nair, and G. Hinton, “CIFAR-10 (canadian
institute for advanced research),”

[32] J. Deng, W. Dong, R. Socher, et al., “ImageNet: A Large-
Scale Hierarchical Image Database,” in Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2009.

10

	. Introduction
	. Related Work
	. Adversarial Robust Model Compression
	. Pruning
	. Loss Formulation

	. Experiments
	. In-Train Pruning
	. Robust Pruning
	. Comparison with State of the Art

	. Conclusion

