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Real-time parameter evaluation of high-speed microfluidic
droplets using continuous spike streams

Anonymous Authors

ABSTRACT
Droplet-based microfluidic devices, with their high throughput and
low power consumption, have found wide-ranging applications
in the life sciences, such as drug discovery and cancer detection.
However, the lack of real-time methods for accurately estimating
droplet generation parameters has resulted in droplet microfluidic
systems remaining largely offline-controlled, making it challenging
to achieve efficient feedback in droplet generation. To meet the real-
time requirements, it’s imperative to minimize the data throughput
of the collection system while employing parameter estimation al-
gorithms that are both resource-efficient and highly effective. Spike
camera, as an innovative form of neuromorphic camera, facilitates
high temporal resolution scene capture with comparatively low
data throughput. In this paper, we propose a real-time evaluation
method for high-speed droplet parameters based on spike-based mi-
crofluidic flow-focusing, named RTDE, that integrates spike camera
into the droplet collection system to efficiently capture informa-
tion using spike stream. To process the spike stream effectively, we
develop a spike-based estimation algorithm for real-time droplet
generation parameters. To validate the performance of our method,
we collected spike-based droplet datasets (SDD), comprising syn-
thetic and real data with varying flow velocities, frequencies, and
droplet sizes. Experiments result on these datasets consistently
demonstrate that our method achieves parameter estimations that
closely match the ground truth values, showcasing high precision.
Furthermore, comparative experiments with image-based parame-
ter estimation methods highlight the superior time efficiency of our
method, enabling real-time calculation of parameter estimations.

CCS CONCEPTS
• Applied computing→ Imaging.

KEYWORDS
droplet generation, spike camera, real-time evaluation

1 INTRODUCTION
Over the past few decades, there has been a persistent increase
in the demand for miniaturization of liquid handling due to the
rising need for higher throughput and sensitivity in various fields,
such as biomedicine, chemistry, life sciences and environmental
science[1]. These domains cover a variety of applications, including
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the diagnosis of rare cells[2], early cancer[3], analysis of enzyme
function[4], the study of phenotypic and genetic diversity at the
single-cell leve[5]. Droplet microfluidics[6], as a commonly used
technique for minimizing sample volumes, offers unprecedented
throughput (1-10kHz) compared to robotic liquid handling and
digital microfluidics[7]. Moreover, it is cost-effective, consumes
minimal reagents, and offers enhanced sensitivity[1] due to its
large surface-to-volume ratio. Despite these advantages, achieving
rapid response and real-time control of droplet microfluidic control
systems in high-speed scenarios remains an immensely challenging
task[1]. Conventional one-dimensional acquisition methods are
often inadequate in capturing comprehensive droplet information,
while image-based acquisition methods require a trade-off between
data throughput and time-consumption[8]. Therefore, parameter
setting for droplet generation control often relies on predictive
understanding[9] of multiphase flows or numerical simulations of
fluid dynamics[10]. However, these predictions and simulations
often involve a degree of uncertainty[9], leading to an iterative
design process. Therefore, the development of a real-time parameter
evaluation method is crucial for the design, evaluation, and control
of droplet microfluidic platforms.

Real-time parameter estimation of microfluidic droplets requires
the implementation of a high throughput detection system. These
systems may be classified into conventional one-dimensional de-
tection methods[11–13] and subsequent image-based detection
methods[14–17]. Traditional detection methods. Typically, one-
dimensional detection methods employ cellular-level optical probes
for ’one-by-one’ measurements. Sample detection is typically
achieved by optical characteristics such as fluorescent light or
chromogenic reaction, and is detected using photomultiplier tubes
(PMTs) or photodiodes[18]. Although this approach allows for high-
throughput and quantitative droplet detection, it often sacrifices
spatial resolution in favour of throughput and lacks the capability to
record morphological properties of droplets with varying encapsu-
lated contents[1]. Image-based detection methods. Image-based
detection techniques can be broadly classified into two primary
categories: camera-based methods[16, 19–21] and scanning-based
methods[22–25]. Camera-based detection systems typically utilize
conventional two-dimensional arrays such as CCD or CMOS ar-
rays for data acquisition. These systems are capable of capturing
two-dimensional images given a sufficient exposure time. However,
the presence of this exposure time poses challenges when applied
to high-speed acquisition in droplet microfluidics[18]. Despite at-
tempts to mitigate these challenges by narrowing the field of view
or employing spatiotemporal multiplexing strategies[24, 25], the
high-throughput data output often impedes real-time analysis and
processing. In contrast, scanning-based methods integrate PMTs
with laser spot scanning, followed by post-processing to generate

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: (a) The spike-based microdroplet acquisition system comprises a microscope with a spike camera and a microfluidic
droplet device. The microfluidic device has two-phase inputs: oil and water, which are used to generate droplets by shearing
water with oil. (b) The spike camera outputs spike streams, which are then processed in real-time using a spike-based droplet
parameter estimation algorithm to extract information regarding droplet frequency, velocity, and size. This information is
then fed back to fine-tuning the input parameters.

intensity images[8]. In comparison to camera-based methods, scan-
ning methods offer superior bandwidth and lower dark noise. Nev-
ertheless, overall throughput is constrained by scanning speed and
achieving real-time analysis and data processing remains a signifi-
cant challenge[8]. To effectively estimate the real-time parameters
of microfluidic droplets, several factors need to be considered: (1)
Sampling rate of detection system. In the dynamic environment
of droplet microfluidics, evolving high-velocity motion, it is imper-
ative that the data acquisition system swiftly captures the scene
information. Comprehensive data collection is a prerequisite for
effective and reliable subsequent parameter analyses. (2) Band-
width of detection system. Efficient use of bandwidth in data
collection facilitates real-time analysis and processing, as opposed
to the conventional practice of data storage and subsequent pro-
cessing. (3) Real-time parameter estimation algorithm. Given
the collected data, the primary objective is to perform parameter
estimation based on the intrinsic characteristics of the data, thus
minimizing analysis time and meeting real-time requirements.

In recent years, neuromorphic cameras[26–30] have emerged as
a novel type of imaging technology, boasting asynchronous oper-
ation at each pixel and outputting data in a discrete format. This
unique design enables them to offer remarkable imaging capabil-
ities, particularly excelling in high temporal resolution with rela-
tively small bandwidth. They have shown excellent performance
in various high-speed applications. Two common types are event

cameras[26, 28, 30] and spike cameras[27, 29]. Event cameras trig-
ger events asynchronously based on set thresholds of light intensity
changes, allowing for the capture of dynamic scene information at
extremely high temporal resolutions. However, while they excel
at capturing dynamic information in scenes, their ability to fully
reconstruct scene details remains limited. Although some research
endeavours to recover intensity from event streams[31–34], the re-
construction performance still exhibits considerable gaps compared
to traditional cameras. While event cameras also hold the poten-
tial for high-frequency analysis of droplet parameters, in practical
applications, the need to obtain high-quality images at any given
moment alongside real-time parameter estimation favours spike
cameras over event cameras for this task. Spike cameras operate
by asynchronously integrating each pixel, firing a spike when a set
threshold is reached. They can record rich spatiotemporal infor-
mation with extremely high temporal resolution and subsequently
recover intensity information at any given moment[29]. Compared
to other sensors, spike cameras can capture more comprehensive
spatiotemporal information in droplet microfluidic scenes with rela-
tively small bandwidth. This facilitates precise estimation of droplet
generation parameters in subsequent stages.

In this paper, we introduce spike camera to parameter estimation
in liquid microfluidies (Figure 1(a)) for the first time, demonstrating
the potential application of spike camera in high-speed microfluidic
scenarios. In contrast to the discrete two-dimensional image output
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of traditional cameras, spike cameras generate continuous spike
streams containing rich spatiotemporal information. To fully lever-
age this advantage, we have developed a spike-based method for
real-time estimating droplet parameters (RTED) directly from the
characteristics of the spike stream (Figure 1(b)) . This innovative
approach eliminates the need for image reconstruction from spike
streams, resulting in outstanding temporal efficiency. When com-
bined with the efficient data acquisition capabilities of the spike
camera, real-time estimation and feedback of droplet parameters
become feasible. Our method demonstrates high precision through
experiments conducted on both simulated and real-world data. Fur-
thermore, comparative experiments with image-based parameter
estimation methods highlight the exceptional temporal efficiency
of our method, approaching the stringent requirements of real-time
computation. In summary, our contributions can be summarized as
follows:

• We are the first to introduce spike cameras to information
acquisition in droplet microfluidics. In contrast to existing
methods that require trade-offs between bandwidth and ac-
quisition speed, spike camera enables high temporal reso-
lution spatial information acquisition with relatively low
bandwidth. This breakthrough holds promise in overcoming
the traditional separation of data acquisition and analysis
in droplet microfluidics, achieving real-time estimation and
feedback seamlessly integrated into a single system. Ulti-
mately, this will achieve real-time, relatively high-precision
parameter estimation of droplet parameters with relatively
low bandwidth.

• We propose an end-to-end spike-based droplet parameter es-
timation method, without the need for image reconstruction
from spike streams. This method boasts exceptionally high
temporal efficiency, capable of meeting real-time processing
requirements. Experiments conducted on both synthesized
and real-world data consistently demonstrate its superior
accuracy.

• We collected and open-source the first spike-based droplet
datasets (SDD), containing both synthetic and real-world
data with varying flow velocities, frequencies, and droplet
sizes.

2 RELATEDWORK
2.1 Droplet Parameter Estimation
A droplet microfluidic system is a system capable of generating
droplets at a microscale by manipulating fluids. The precise control
of droplets relies not only on the properties of the input fluids but
also on the design of microfluidic structures[35]. To meet the prac-
tical demands of droplet generation, it’s often essential to fine-tune
input parameters and optimize the design of microfluidic structures
based on estimated parameters[1]. In traditional one-dimensional
data acquisition systems, data collection typically only allows for
quantitative analysis of the components within droplets, posing
challenges in acquiring morphological characteristic parameters
of the droplets[15], thus rendering it unsuitable for parameter es-
timation in droplet microfluidics. Image-based methods offer sig-
nificant advantages in this scenario. By utilizing captured image
data combined with conventional digital image processing methods,

relevant parameters of droplet generation can be extracted from
the images[18]. However, to achieve continuous data acquisition
in high-speed scenarios, the system requires high data throughput.
In such cases, it becomes challenging to promptly utilize the col-
lected data for practical parameter estimation, resulting in a lack
of synchronization between data collection and parameter estima-
tion, or requiring offline parameter estimation. This asynchrony
severely affects the convenience of droplet microfluidic regulation
and makes it difficult to promptly respond to fluctuations during ac-
tual operation. In recent years, the integration of deep learning into
microfluidic applications has shown promising performance in vari-
ous aspects such as microfluidic design[9, 36, 37], control[9, 38], and
analysis[39–41]. However, deep learning training typically requires
a large amount of data, and microfluidic experiments involve expen-
sive equipment and complex operations, making data acquisition
still a challenging task. This limitation results in the effectiveness
of most models remaining limited to simple or specific scenarios,
thus hindering widespread application. Additionally, the training
and inference processes of these models are often time-consuming,
failing to meet the real-time requirements essential for droplet con-
trol in microfluidics[1]. Hence, there is an urgent need for a method
capable of realizing real-time estimation and feedback of droplet
parameters.

2.2 Spike-based Image Reconstruction
Spike cameras enable continuous recording of photons in a scene
through asynchronous spike emission, offering exceptionally high
temporal resolution and dynamic range. The naive approach to
estimating droplet parameters from spike streams involves directly
reconstructing them into grayscale images and subsequently ap-
plying traditional image-based parameter extraction algorithms.
Several studies have endeavoured to reconstruct grayscale images
from spike streams, which fall into three main categories: statistic-
based methods[42], bio-inspired methods[43, 44], and deep learning
methods[45, 46]. Statistic-based methods mainly include texture
from playback (TFP) and texture from inter-spike intervals (TFI),
with TFI offering higher temporal resolution compared to TFP.
Bio-inspired methods primarily enhance reconstruction quality by
incorporating biological principles but struggle to balance noise
and motion blur simultaneously. Deep learning-based methods
can achieve superior reconstruction quality but typically require
extensive labelled datasets for training and still face challenges
in generalization. Some research[46] has attempted to achieve re-
construction quality comparable to supervised methods using self-
supervised methods, which do not require labelled data for training
and offer greater convenience. However, these methods still require
considerable time consumption, making it difficult to match the
rapid response and real-time performance requirements of droplet
control. Therefore, the development of efficient droplet parameter
estimation methods based on the inherent characteristics of spike
streams remains profoundly significant.

3 SPIKE GENERATION MECHANISMS
The spike camera converts the photons in space into an electrical
current through a photoelectric converter, which is accumulated
in capacitors, forming an integral sampling. When the voltage on
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Figure 2: A schematic diagram of the spike-based droplet parameter estimation algorithm. Based on the inherent characteristics
of (a) the spike stream, extracting (b) the frequency, velocity, and (c) size of the droplets. The frequency of the droplets is
directly extracted from the frequency domain features of the spike stream, while the velocity of the droplets is calculated based
on the correlation of signals to determine the transit time, combined with the known distance Δ𝑥 . The size of the droplets
is obtained based on statistical features of the spike stream, where 𝑑12 represents the interval between the first edges of the
droplets statistically calculated from the second pixel, and similar for others. 𝐷 represents the spike interval corresponding to
the droplet size.

the capacitor exceeds a set threshold, a spike is fired, followed by a
capacitor reset. This process can be represented as follows:∫ 𝑡+Δ𝑡

𝑡

𝐼 (𝑡)𝑑𝑡 ≥ 𝜗 (1)

where Δ𝑡 represents the readout period of the spike camera, 𝐼 (𝑡)
denotes the electric current, and 𝜗 is the set threshold. When the
current period exceeds this threshold, a spike is fired. Typically,
a spike sensor consists of an array of 𝐻 ×𝑊 pixels, and during
high-speed acquisition periods, the output spike stream forms an
𝐻×𝑊 ×𝑇 matrix. In contrast to event cameras, which focus solely on
capturing dynamic information, spike cameras provide a complete
record of scene information. The spike stream contains a wealth
of spatiotemporal information, thereby offering a more detailed
reference for subsequent processing.

4 METHOD
4.1 Droplet generation frequency evaluation
As spike streams inherently contain rich frequency information, the
droplet generation frequency information can be directly extracted
from them, as shown in Figure 2(b). To begin, a rectangular block 𝐵𝐿
with 𝐻 ×𝑊 pixels is designated at the location where the droplets
traverse the microfluidic channel. The channel position can be
identified from the image obtained by direct summation of spike
streams. Here, the length of 𝐻 should be greater than the width
of the microfluidic channel, while the size of𝑊 should be smaller
than the minimum value between the droplet spacing and droplet
size. Since the droplet spacing and droplet size are unknown, the
𝑊 is usually set as 5 pixels. Subsequently, the spike streams within
this block along the time domain are extracted, and this could be
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expressed as:
𝑆 = {𝑠1 (𝑡), 𝑠2 (𝑡), . . . , 𝑠𝑛 (𝑡)} (2)

where 𝑛 ∈ [1, 2, · · · , 𝐻 ×𝑊 ] and 𝑠𝑖 (𝑡) denotes the spike streams
at the 𝑖 − 𝑡ℎ point within block 𝐵𝐿 . To mitigate the impact of back-
ground noise on the calculation process, the spike within the block
𝐵𝐿 is accumulated at each point in time according to the following
equation:

𝑦 (𝑡) =
∑︁𝐻∗𝑊

𝑖=1
𝑆 =

∑︁𝐻∗𝑊
𝑖=1

𝑠𝑖 (𝑡) (3)

Next, the cumulative spike data 𝑦 (𝑡) is subjected to Fourier
transform to obtain the power spectrum within a designed time
range 𝑐𝑇 (where 𝑇 represents the sampling period of the spike
camera). This computation could be formulated as follows:

𝑝𝑠𝑑 (𝑤) = lim
𝑐→∞

|𝐹𝑐 (𝜔) |2
𝑐

= lim
𝑐→∞

���∑𝑐−1
𝑛=0𝑦 (𝑛𝑇 ) 𝑒−

𝑗2𝜋𝑛𝑤
𝑐

���2
𝑐

(4)

where 𝑐 is typically set to 20000 in this paper, owing to the 50 𝑢𝑠
for the data readout period of the spike camera. The power spec-
trum 𝑝𝑠𝑑 (𝑤) primarily comprises the fluctuation frequency 𝑓𝑛 of
background noise and its higher harmonics. The magnitude of this
component is generally determined by the illumination intensity
and the threshold for spike firing in the spike camera. Further-
more, the dominant frequency pertains to the droplet generation
frequency 𝑓𝑑 , which functions as a carrier wave overlying the back-
ground noise frequency 𝑓𝑛 . By analyzing the illumination intensity
in a background area, the frequency 𝑓𝑛 range associated with back-
ground noise in the power spectrum could be determined. Peaks are
then sought within the background frequency value 𝑓𝑛 in the power
spectrum. A curve fitting process is performed at the location of
the peak, and the fitted curve’s peak position corresponds to the
droplet generation frequency 𝑓𝑑 .

4.2 Droplet velocity evaluation
Based on the principle of signal correlation, the velocity of droplets
in microfluidic channels can be evaluated, as shown in Figure 2(b).
This approach entails transforming the droplet velocity into the as-
sessment of phase for spike streams at two distinct positions along
the microfluidic channel. Initially, two rectangular blocks 𝐵𝐿1 and
𝐵𝐿2 positioned on the microfluidic channel with a spacing of Δ𝑥
should be selected. The channel position can be identified from an
image obtained by direct summation of spike streams. These blocks
have uniform dimensions 𝐻 ∗𝑊 pixels, with constraints akin to
those outlined for the block 𝐵𝐿 in Section 4.1, and the spacing Δ𝑥
should not exceed the length of one droplet cycle, which is typi-
cally kept as small as possible, for example, two pixels. Extracting
the spike streams from these two blocks could yield two sets of
signals, denoted as 𝑦1 (𝑡) and 𝑦2 (𝑡), expressed as shown in Eq.(3).
Subsequently, we calculate the power spectra of 𝑦1 (𝑡) and 𝑦2 (𝑡).
By employing the method described in section 4.1, we can deter-
mine the droplet generation frequencies, 𝑓𝑑1 and 𝑓𝑑2, corresponding
to the signal 𝑦1 (𝑡) and 𝑦2 (𝑡), which typically remain reasonably
consistent.

To mitigate the impact of noise on the computation of the droplet
generation signal phase, we further perform the Fourier transform
on 𝑦1 (𝑡) and 𝑦2 (𝑡), which could be calculated by the following

formula:

𝐹1 (𝑤) =
∑︁𝑁−1

𝑛=0
𝑦1 (𝑛𝑇 ) 𝑒−

𝑗2𝜋𝑛𝑤
𝑐 (5)

𝐹2 (𝑤) =
∑︁𝑁−1

𝑛=0
𝑦2 (𝑛𝑇 ) 𝑒−

𝑗2𝜋𝑛𝑤
𝑐 (6)

where 𝑁 represents the length of the signals. Frequencies other
than droplet generation frequencies 𝑓𝑑1 and 𝑓𝑑2 are filtered out on
the frequency domains 𝐹1 (𝑤) and 𝐹2 (𝑤) respectively. This results
in frequency domain signals 𝐹1 (𝑓𝑑1) and 𝐹2 (𝑓𝑑2), which are then
inverse Fourier transformed back to the time domain and yield
signals 𝑦1 (𝑡) and 𝑦2 (𝑡) containing solely the droplet generation
frequency.

Subsequently, we calculate the cross-correlation of the signal
𝑦1 (𝑡)) and 𝑦2 (𝑡) . For 𝑦1 (𝑡) and 𝑦2 (𝑡), we perform a Fourier series
expansion, which could be calculated by the following formula:

𝑦1 (𝑡) =
∑︁𝑛

𝑖=0
Ψ𝑖𝑠𝑖𝑛 (2𝜋 𝑓𝑖𝑡 + 𝜙𝑖 ) (7)

𝑦2 (𝑡) =
∑︁𝑛

𝑗=0
Ψ𝑗𝑠𝑖𝑛

(
2𝜋 𝑓𝑗 𝑡 + 𝜙 𝑗

)
(8)

where 𝑓0 = 0 corresponds to the direct current (DC) component
(taking into account that we can filter out the DC components from
𝑦1 (𝑡) and 𝑦2 (𝑡) and not consider them later). Ψ𝑖 and Ψ𝑗 correspond
to the intensity of frequency components 𝑓𝑖 and 𝑓𝑗 of 𝑦1 (𝑡) and
𝑦2 (𝑡) respectively. These intensities can be obtained by performing
a Fourier transform on 𝑦2 (𝑡) and 𝑦2 (𝑡). 𝜙𝑖 and 𝜙 𝑗 correspond to
the phases of frequency components 𝑓𝑖 and 𝑓𝑗 of 𝑦1 (𝑡) and 𝑦2 (𝑡)
respectively. Further calculate the product of𝑦1 (𝑡) and𝑦2 (𝑡) , which
could be expressed as:

�̂�1 (𝑡 ) × �̂�2 (𝑡 )

=
∑︁𝑛

𝑖=1
Ψ𝑖𝑠𝑖𝑛 (2𝜋 𝑓𝑖𝑡 + 𝜙𝑖 ) ×

∑︁𝑛

𝑗=1
Ψ𝑗𝑠𝑖𝑛

(
2𝜋 𝑓𝑗 𝑡 + 𝜙 𝑗

)
=
∑︁𝑛

𝑖=1

∑︁𝑛

𝑗=1
Ψ𝑖𝐵 𝑗𝑠𝑖𝑛 (2𝜋 𝑓𝑖𝑡 + 𝜙𝑖 ) 𝑠𝑖𝑛

(
2𝜋 𝑓𝑗 𝑡 + 𝜙 𝑗

) (9)

According to the equation 𝑠𝑖𝑛 (𝑎)𝑠𝑖𝑛 (𝑏 ) = −1/2∗ [𝑐𝑜𝑠 (𝑎+𝑏 ) −𝑐𝑜𝑠 (𝑎−
𝑏 ) ], the Eq(9) can be further rewritten as:

�̂�1 (𝑡 ) × �̂�2 (𝑡 ) =
∑︁𝑛

𝑖=1

∑︁𝑛

𝑗=1
1
2
Ψ𝑖Ψ𝑗 [𝑐𝑜𝑠 (2𝜋 (𝑓𝑖 − 𝑓𝑗 )𝑡 + 𝜙𝑖 − 𝜑 𝑗 )

−𝑐𝑜𝑠 (2𝜋 (𝑓𝑖 + 𝑓𝑗 )𝑡 + 𝜙𝑖 + 𝜑 𝑗 ) ) ]
(10)

The sequence �̂�1 (𝑡 )×�̂�2 (𝑡 ) is then integrated over the period𝐸 = 𝑡𝑚−𝑡1,
where 𝑡1 represents the starting time of the spike stream chosen for analysis,
while 𝑡𝑚 represents the ending time, which could be expressed as:∑︁𝑡𝑚

𝑡=𝑡1
�̂�1 (𝑡 ) × �̂�2 (𝑡 )

=
∑︁𝑡𝑚

𝑡=𝑡1

∑︁𝑛

𝑖=1

∑︁𝑛

𝑗=𝑖

1
2
Ψ𝑖Ψ𝑗 [𝑐𝑜𝑠 (2𝜋 (𝑓𝑖 − 𝑓𝑗 )𝑡 + 𝜙𝑖 − 𝜑 𝑗 )

− 𝑐𝑜𝑠 (2𝜋 (𝑓𝑖 + 𝑓𝑗 )𝑡 + 𝜙𝑖 + 𝜑 𝑗 ) ) ]

=
∑︁𝑡𝑚

𝑡=𝑡1

∑︁𝑛

𝑖=1

∑︁𝑛

𝑗=𝑖

1
2
Ψ𝑖Ψ𝑗𝑐𝑜𝑠 (2𝜋 (𝑓𝑖 − 𝑓𝑗 )𝑡 + 𝜙𝑖 − 𝜑 𝑗 )

+
∑︁𝑡𝑚

𝑡=𝑡1

∑︁𝑛

𝑖=1

∑︁𝑛

𝑗≠𝑖

1
2
Ψ𝑖Ψ𝑗𝑐𝑜𝑠 (2𝜋 (𝑓𝑖 − 𝑓𝑗 )𝑡 + 𝜙𝑖 − 𝜑 𝑗 )

−
∑︁𝑡𝑚

𝑡=𝑡1

∑︁𝑛

𝑖=1

∑︁𝑛

𝑗=1
1
2
Ψ𝑖Ψ𝑗𝑐𝑜𝑠 (2𝜋 (𝑓𝑖 + 𝑓𝑗 )𝑡 + 𝜙𝑖 + 𝜑 𝑗 )

(11)

when 𝐸 is sufficiently large, the
∑𝑡𝑚

𝑡=𝑡1

∑𝑛
𝑖=1

∑𝑛
𝑗≠𝑖

1
2Ψ𝑖Ψ𝑗𝑐𝑜𝑠 (2𝜋 (𝑓𝑖 −

𝑓𝑗 )𝑡 + 𝜙𝑖 − 𝜑 𝑗 ) and
∑𝑡𝑚

𝑡=𝑡1

∑𝑛
𝑖=1

∑𝑛
𝑗=1

1
2Ψ𝑖Ψ𝑗𝑐𝑜𝑠 (2𝜋 (𝑓𝑖 + 𝑓𝑗 )𝑡 + 𝜙𝑖 + 𝜑 𝑗 )

will only accumulate the value of the last incomplete period due to the
presence of the cosine function. In comparison to the integral value of the
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Figure 3: Results on simulation datasets. (a) The estimation results of our method during the continuous variation of droplet
size. (b) The estimation results of our method during the continuous variation of droplet velocity. (c) The estimation results of
our method during the continuous variation of droplet frequency

∑𝑡𝑚
𝑡=𝑡1

∑𝑛
𝑖=1

∑𝑛
𝑗=𝑖

1
2Ψ𝑖Ψ𝑗𝑐𝑜𝑠 (2𝜋 (𝑓𝑖 − 𝑓𝑗 )𝑡 +𝜙𝑖 −𝜑 𝑗 ) , the contribution of these

terms could be considered negligible. Therefore, the equation above∑︁𝑡𝑚

𝑡=𝑡1
�̂�1 (𝑡 ) × �̂�2 (𝑡 )

≈
∑︁𝑡𝑚

𝑡=𝑡1

∑︁𝑛

𝑖=1

∑︁𝑛

𝑗=𝑖

1
2
Ψ𝑖Ψ𝑗𝑐𝑜𝑠 (2𝜋 (𝑓𝑖 − 𝑓𝑗 )𝑡 + 𝜙𝑖 − 𝜑 𝑗 )

=
∑︁𝑡𝑚

𝑡=𝑡1

∑︁𝑛

𝑖=1
1
2
Ψ𝑖Ψ𝑖𝑐𝑜𝑠 (𝜙𝑖 − 𝜑𝑖 ) =𝑚

∑︁𝑛

𝑖=1
1
2
Ψ𝑖Ψ𝑖𝑐𝑜𝑠 (𝜙𝑖 − 𝜑𝑖 )

(12)

Then, we can obtain the following approximate formula:∑︁𝑡𝑚

𝑡=𝑡1
�̂�1 (𝑡 ) ) × �̂�2 (𝑡 ) )∼𝑚

∑︁𝑛

𝑖=1
1
2
Ψ𝑖Ψ𝑖𝑐𝑜𝑠 (𝜙𝑖 − 𝜑𝑖 ) (13)

Since only the droplet generation frequency 𝑓𝑑1 and 𝑓𝑑2 is present in
signals �̂�1 (𝑡 ) and �̂�2 (𝑡 ) respectively, leting 𝛿 = 𝜙𝑖 − 𝜑𝑖 , we can further
obtain:

𝛿 = 𝜋 (𝑓𝑑1 + 𝑓𝑑2 )𝑡 (14)

letting 𝑓 = (𝑓𝑑1 + 𝑓𝑑2 )/2 , 𝑡 can be calculated by the following equation:

𝑡 = 𝛿/(2𝜋 𝑓 ) = Δ𝑥/𝑣 (15)

Finally, the velocity of droplet generation can be calculated according to
the following equation:

𝑣 = 2𝜋 𝑓
Δ𝑥

𝛿
(16)

4.3 Droplet size evaluation
The size of the droplets can be directly obtained through the statistical
characteristics of the spike stream, as shown in Figure 2(c). Two lines of
length 𝐿, parallel to the microfluidic channel are taken inside the channel,
but at a certain distance apart. This distance is typically required to be
less than half the size of the droplets, which are typically kept as small as
possible, for example, two pixels. Then, the spike streams at each pixel on
these lines are obtained, which can be expressed as:

𝑌𝑖 = {𝑦1𝑖 (𝑡 ), 𝑦2𝑖 (𝑡 ), ..., 𝑦𝑚𝑖 (𝑡 ) } (17)

where 𝑖 ∈ {1, 2} represent different lines, 𝑦𝑚𝑖 (𝑡 ) denotes the spike stream
and 𝑚 ∈ {0, 𝐿}. For each pixel’s spike stream, we can obtain the spike
interval based on the TFI principle, resulting in:

𝐷𝑖 = {𝑑1𝑖 (𝑡 ), 𝑑2𝑖 (𝑡 ), ..., 𝑑𝑚𝑖 (𝑡 ) } (18)

Due to the lower intensity of the droplet’s edge compared to the background
intensity, differences in spike intervals can arise. Therefore, by setting an
appropriate threshold Θ, we can extract the positions where the droplet’s
edge lies. Taking 𝑑1𝑖 (𝑡 ) as an example, we can obtain by:

𝑝1𝑖 (𝑡 ) = F(𝑑1𝑖 (𝑡 ) > Θ) (19)

where F( ·) is a function that sets positions that do not meet the condition
to zero and 𝑝1𝑖 (𝑡 ) contains values only at positions where the droplet’s
edge is located. Then, similarly, based on the TFI principle, we can obtain
the interval between adjacent edges 𝑞1𝑖 (𝑡 ) , and further obtain the actual
scale that the adjacent edges represent as 𝑙1𝑖 (𝑡 ) by:

𝑙1𝑖 (𝑡 ) = 𝑞1𝑖 (𝑡 ) ∗ 𝑣 (20)

In theory, we can directly derive the size of the droplet from 𝑙1𝑖 (𝑡 ) . However,
in practical scenarios where noise is present, obtaining a continuous edge
is often challenging. This can lead to biases in single-pixel statistical values.
To mitigate this issue, we can enhance the statistical features by aggregating
values from a large number of pixels, Applying the same operation to all
pixel points on 𝑌𝑖 , we can obtain:

𝐿𝑖 = {𝑙1𝑖 (𝑡 ), 𝑙2𝑖 (𝑡 ), ..., 𝑙𝑚𝑖 (𝑡 ) } (21)

we then conduct statistical analysis on the values in 𝐿𝑖 . The two values
with the highest frequency are respectively considered as the droplet size
and the droplet interval. However, directly deducing this from 𝐿1 alone is
not feasible. Therefore, by comparing the discrepancies in statistical values
between 𝐿1 and 𝐿2, along with their relative positions, we can ascertain
the droplet size. Typically, as the distance from the centre of the pipeline
increases, the two highest statistical values decrease correspondingly to the
size of the droplets, while the increase pertains to the spacing between the
droplets.
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Figure 4: Results on real-world datasets. (a) The comparison results between the droplet velocities estimated by our method and
the droplet flow velocities observed in actual measurements when the oil phase was fixed and the water phase parameters were
continuously adjusted. (b) The comparison results between the droplet frequency estimated by our method and the droplet
frequency observed in actual measurements when the oil phase was fixed and the water phase parameters were continuously
adjusted (c) The comparison results between the droplet size estimated by our method and the droplet size observed in actual
measurements when the water phase was fixed and the oil phase parameters were continuously adjusted.

5 EXPERIMENTS
5.1 The Spike-based Droplets Datasets
Synthetic Dataset:We simulate droplet morphological features using cir-
cles and then simulate the flow process of the droplets by pixel movement
to generate a video stream. Subsequently, we assign different sets of param-
eters including size, flow velocity, and frequency to the droplets, generating
multiple sets of data, each containing 20,000 frames. These datasets are then
employed as inputs to Spikingsim to simulate spike streams.
Real-world Dataset: The real-world data primarily utilized spike cameras
mounted on an electric microscope for capturing droplets microfluidics.
The microfluidic chip for droplet manipulation has two inputs: oil and wa-
ter. By shearing water with oil, droplets are formed. Adjusting the input
pressure of these two components allows for fine-tuning of droplet genera-
tion parameters. In this work, we collected data sets with different input
parameters, where the droplets encompass various generation frequencies,
flow velocities, and sizes.

5.2 Results on Simulation Datasets
To validate the accuracy of our spike-based parameter estimation method,
we conducted experiments on simulated data. The primary goal was to
confirm whether the parameter values estimated by our method were con-
sistent with the settings employed in the simulation. The simulated dataset
consisted of three sets of data, each featuring variations in droplet size, fre-
quency, and velocity. Generally, two parameters were held constant while
the third one was adjusted. For example, when adjusting droplet size, we
kept the droplet’s frequency and velocity constant while simulating various
droplet sizes. Similar procedures were followed for the other two sets. As
shown in Figure 3, the results of the experiments on simulated data demon-
strated that our method’s estimated values closely matched the simulated
preset values. However, there were slight discrepancies in the estimated
values. For instance, when estimating the droplet size, these deviations were

partially attributed to the inherent width of the droplet edge, as our statis-
tical analysis only accounted for the outermost positions. Moreover, the
finite time resolution of the camera affected the precision of droplet size es-
timation. Although our method effectively mitigated the influence of noise,
some noise near the droplet generation frequency might persist, influencing
the accuracy of the final fitting process and resulting in minor deviations in
frequency estimation. Similarly, velocity estimation was influenced by fluc-
tuations in frequency, and slight disparities in droplet frequency between
adjacent positions could lead to variations in phase difference calculations.
Nonetheless, these deviations were within a small range. Overall, these
experiments demonstrated that the results of our parameter estimation
method were consistent with theoretical expectations.

5.3 Results on Real-world Datasets
To validate the performance of our parameter estimation method on real-
world data, we collected droplet data under different input parameters
by adjusting the pressure of the oil and water phases. This included data
where the oil phase was fixed while the water phase was continuously
adjusted, as well as data where the water phase was fixed while the oil
phase was continuously adjusted. The comparison between the droplet
parameters estimated by our method and the observed droplet parameters
under different input parameters is shown in Figure 4. It demonstrated that
the parameters predicted by our method are consistent with the observed
parameters. However, due to the presence of noise, there is slight degree of
fluctuation in the predicted results, but they still remain close to the observed
values. Comparatively, the calculation of droplet size is influenced by both
velocity and time resolution. This results in the size detection resolution
being determined by the product of time resolution and velocity. Relative to
frequency and velocity, the size detection resolution is larger, making it more
robust against noise but also prone to larger detection errors. Furthermore,
experimental results reveal relationships between droplet parameters and
input parameters. For example, when fixing the water phase (CH2) and
adjusting the oil phase (CH1), the droplet velocity gradually decreases
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with increasing input pressure, while the frequency exhibits a trend of
initially increasing and then decreasing. The droplet size, on the other hand,
gradually increases when fixing the oil phase (CH1) and adjusting the water
phase (CH2). Additionally, representing the relationship between input
parameters and droplet parameters in a two-dimensional heatmap format
allows for a visual assessment of the current performance of the droplet
microfluidic chip. For further details, please refer to the supplementary
materials.

Table 1: Frequency and velocity error for different methods.

Data CH1 CH2 Method Frequency error Velocity Error

1 112 100 Spike-based 2.4925 1.3003
Image-based 2.4615 14.0818

2 110 102 Spike-based 5.3140 7.5342
Image-based 5.2894 24.4896

3 112 104 Spike-based 2.1263 5.8997
Image-based 2.0927 17.463707

4 114 106 Spike-based 5.4879 4.7059
Image-based 5.4059 8.4376

5 112 100 Spike-based 2.4925 1.8696
Image-based 2.4615 4.0531

6 122 110 Spike-based 1.7795 8.2184
Image-based 1.8441 17.8120

7 120 112 Spike-based 0.5143 2.2569
Image-based 8.1680 11.2864

8 128 114 Spike-based 7.9781 6.2824
Image-based 8.0475 33.5221

9 126 116 Spike-based 8.7242 3.3388
Image-based 8.6589 7.0166

10 128 118 Spike-based 5.0456 6.0700
Image-based 4.8788 56.1947

5.4 Comparsion with image-based method
To further validate the performance of our method, we compared the accu-
racy and efficiency of the direct spike-based droplet parameter estimation
method with the image-based droplet parameter estimation method using
real-world data. The bandwidth of actual data transmission is typically lim-
ited. Different transmission bandwidths imply different acquisition speeds.
To achieve real-time droplet parameter estimation, it’s crucial to minimize
the required bandwidth for data transmission. Therefore, in this experiment,
we set the bandwidth to the maximum required for spike camera transmis-
sion and compared the performance of the spike-based parameter estimation
method with that of the image-based method under the same bandwidth. In
this scenario, the spike-based acquisition speed can reach 20,000fps, while
the image-based acquisition speed is only 2500fps. We reconstructed the
spike stream into images with a sampling rate of 2500fps to simulate the ac-
tual image acquisition results. Then, we transferred the spike-based droplet
parameter estimation method to the image domain to perform image-based
droplet parameter estimation and compared the results with those directly
obtained from the spike. The results, as shown in Table 1, indicate that both
the image-based method and the spike-based method exhibit consistent
performance in droplet frequency estimation, with small errors compared
to actual observations. However, in droplet velocity estimation, the error of
the image-based parameter estimation method is significantly greater than
that of the spike-based method. This is mainly due to two reasons: On the
one hand, limited transmission bandwidth restricts the temporal resolution
of image acquisition, leading to decreased accuracy in velocity represen-
tation. On the other hand, exposure time makes motion blur more likely
in high-speed droplet scenes, affecting the accuracy of velocity estimation.

This result demonstrates that the spike-based droplet parameter estimation
method can achieve better parameter estimation with lower bandwidth
requirements. In addition, we tested the time consumption of our method
for a single evalution, which is approximately 20ms without acceleration.
Subsequently, with accelerated optimization, further improvements are
achievable.

6 CONCLUSION AND DISCUSSION
In this paper, we introduce spike camera into droplet microfluidics for the
first time and propose a real-time droplet parameter estimation method
based on spike stream, referred to as M-RTDE. By leveraging the advantages
of spike camera in achieving full-time scene information recording with
lower bandwidth, our method enables real-time parameter estimation in
droplet microfluidics and can also recover droplet image information at any
given moment. This innovation breaks the traditional separation of acqui-
sition and analysis, as well as the offline control paradigm. Our approach
significantly enhances the convenience of droplet microfluidics applications
and opens up new directions for related research and applications. To val-
idate the performance of this new method, we collected a dataset called
M-SDED, which contains simulated and actual data with different droplet
sizes, frequencies, and velocities. Experimental results based on M-SDED
demonstrate the outstanding efficiency and accuracy of our method.
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