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Abstract
We examine both the manifold hypothesis (Ben-
gio et al., 2013) and the union of manifold hy-
pothesis (Brown et al., 2023), and argue that, in
contrast to these hypotheses, the local intrinsic
dimension varies from point to point even in the
same connected component. We propose an alter-
native CW complex hypothesis that image data
is distributed in “manifolds with skeletons”. We
support the hypothesis by visualizing distributions
of 2D families of synthetic image data, as well
as by introducing a novel indicator function and
testing it on natural image datasets. One moti-
vation of our work is to explain why diffusion
models have difficulty generating accurate higher
dimensional details such as human hands. Un-
der the CW complex hypothesis and with both
theoretical and empirical evidences, we provide
an interpretation that the mixture of higher and
lower dimensional components in data obstructs
diffusion models from efficient learning.

1. Introduction
The manifold hypothesis was proposed in (Bengio et al.,
2013) and has been a common assumption on distributions
of natural datasets in many researches in various areas of ma-
chine learning, especially for image datasets. It states that
the distribution of data in a large data set, up to small errors,
often lies in a lower-dimensional submanifold of the ambient
Euclidean space. The dimension of this lower dimensional-
manifold is commonly referred to as the intrinsic dimension.
Previous research, such as (Schölkopf et al., 1998), (Tenen-
baum et al., 2000), (Roweis & Saul., 2000), (Brand, 2002),
(Fodor, 2002), (Ozakin & Gray, 2009), (Narayanan & Mit-
ter, 2010), (Besold & Spokoiny, 2019), (Ansuini et al., 2019)
among many others, supported this hypothesis for a wide va-
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riety of image datasets. A comprehensive work on empirical
verification of manifold hypothesis for many commonly-
used image datasets was carried out in (Pope et al., 2021).
See also (Fefferman et al., 2016) for principled algorithms
for verifying the manifold hypothesis. Many works related
manifold hypothesis to deep generative models (DGMs),
e.g.(Rezende et al., 2020), (Brehmer & Cranmer, 2020),
(Mathieu & Nickel, 2020), (Arbel et al., 2021), (Kothari
et al., 2021), (Caterini et al., 2021). The literature relevant
to this area extends beyond the references above.

The union of manifold hypothesis (Brown et al., 2023) chal-
lenged the manifold hypothesis and suggested that the data
is distributed on a disjoint union of submanifolds, which
may have different dimensions. This new hypothesis is sup-
ported by the experiments in that paper, which show that
there is indeed variation in intrinsic dimensions across dif-
ferent sample classes in the same dataset. An alternative
way of stating the hypothesis from (Brown et al., 2023) is
that each connected component of datasets is a manifold
equipped with a measure with continuous density.

The current paper examines to what extent the hypothesis
that connected components are manifolds is valid. Based on
empirical evidences and simple modeling, we find the need
of an even less restrictive hypothesis than that of (Brown
et al., 2023), so that intrinsic dimension is allowed to vary
within each connected component. In the generic setting,
we expect a dataset to be supported on a disjoint union of
“manifolds with skeletons”, a.k.a. CW complexes, where
each connected component is a CW complex consisting of
finitely many bounded submanifolds glued together along
their boundaries. In particular, the distribution of data may
show concentration on lower dimensional skeletons.

The contributions of this paper can be summarized as:

1. In Section 2.1 and Appendix A.1, we create synthetic
image data of a 2D family of randomly positioned shapes
and visualized the distribution by projecting to a 2D plane.
The visualizations show concentration along 1D skeletons.

2. In Proposition 2.2, we introduce a new indicator func-
tion Ik measuring the variance of local intrinsic dimension
across data points, and prove Ik ≈ 1 under the manifold
hypothesis. Experiments show that Ik is indeed around 1
for true manifold data, but much larger for label classes
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of natural image datasets, suggesting that even connected
components are far from satisfying the manifold hypothesis.

3. We outline reasons in Section 3.1 why image data display
high variance in local intrinsic dimensions, even between
nearby points.

4. We formulate in Section 3.2 the CW complex hypothesis,
and prove that it is compatible with deep learning with ReLu
activation function.

5.We offer an explanation on why diffusion based genera-
tive models have difficulty generating complicated higher
dimensional local features, such as hands in portraits. Based
on the CW complex hypothesis, we reason in Section 4.2.1
that the score function in diffusion models, which is the
true target function for neural networks to learn, along the
coordinates that depict extra features, has much larger mag-
nitude near lower dimensional components than near higher
dimensional ones, encouraging the neural network to ignore
the higher dimensional part. We give mathematical proofs
of such differences in magnitude, and design an experiment
in Section 4.2.2 on a modified MNIST dataset consisting of
a high dimensional component and a lower dimensional one
to support our interpretation.

Comparison with past literature The study of the manifold
hypothesis mainly focused on evidences based on the suc-
cess of using manifold-based statistics such as geodesic dis-
tances and curvatures, as well as manifold learning methods
such as Multi-dimensional Scaling (Kruskal, 1964), IsoMap
(Tenenbaum et al., 2000), Local Linear Embedding (Roweis
& Saul., 2000), Laplacian EigenMaps (Belkin & Niyogi,
2003), and Hessian EigenMap (Donoho & Grimes, 2003), in
recovering data. The challenge from (Brown et al., 2023) fo-
cused on the difference between intrinsic dimensions across
classes. Our approach in estimating intrinsic dimension in
§2 is similar to that of (Pope et al., 2021; Brown et al., 2023).
Namely we also apply the Maximal Likelihood Estimator
from (Levina & Bickel, 2004; MacKay & Zoubin, 2005).
However, our indicator function is novel and we focus on the
new observation of local intrinsic dimension variations be-
tween individual data points (within the same dataset class).
Combining this new insight with the implication of local
manifold structure from the manifold learning research list
above, we naturally derive the CW complex hypothesis.

A manifold is a structure enjoying two properties: (i) consis-
tency of local dimensions across data points, (ii) regularity
of local geometry (the local shape can be approximated by a
linear subspace). Our paper challenges property (i) in mani-
fold hypothesis for both (naturally derived) synthetic data
and natural datasets. The support to property (ii) in litera-
ture largely relied on the success of using manifold-based
statistics such as geodesic distances and curvatures, as well
as manifold learning methods such as Multi-dimensional

Scaling (Kruskal, 1964), IsoMap (Tenenbaum et al., 2000),
Local Linear Embedding (Roweis & Saul., 2000), Laplacian
EigenMaps (Belkin & Niyogi, 2003), and Hessian Eigen-
Map (Donoho & Grimes, 2003), in recovering data. While
updating assumption (i), we intend to keep assumption (ii),
and the resulting structures are exactly characterized by CW-
complexes. On the other hand, it might be of interest to view
validation of (ii) as a future research direction as well, but
that is not the main focus of the current paper.

2. Evidences for non-manifold distributions of
image data

In this section, we present two evidences that not only the
support of image datasets, but also their connected compo-
nents, fail to be manifolds. Instead, for a fixed connected
component Xi, the data distribution has different dimen-
sions at different points x ∈ Xi.

2.1. Images of random geometric objects

We produce a synthetic image dataset of grayscale images
of a continuous 2-dimensional family of geometries. We
randomly place a rectangle and a disk in the plane. The
side lengths and position of the rectangle are linearly pa-
rameterized by a single parameter t ∈ [0, 1]. Similarly, the
radius and position of the disk are linearly parameterized
by a single parameter s. For a pair (t, s), take a photo shot
of the resulting geometry in a fixed square window [0, 1]2

and save it as a gray scale image of r × r pixels. Each pixel
represents a 1

r × 1
r square, and its assigned grayscale value

is the portion of this pixel square covered by the union of
both shapes. Both shapes can overlap with each other, or be
either entirely or partially out of canvas. We sample many
(ti, si) ∈ [0, 1]2 uniformly and generate a data set S. Each
image is stored as a point xi ∈ [0, 1]r×r.

Note that the map ϕ : (ti, si) → xi is a continuous and
piecewise smooth map from [0, 1]2 to [0, 1]r×r. In partic-
ular, the distribution of S is at most 2-dimensional and
its support is connected. Thus by Marstrand’s projection
theorem (Marstrand, 1954), for a generic random linear pro-
jection π : [0, 1]r×r → [0, 1]2 the dimension of π(S) is the
same as that of S . The local geometry of S near ϕ(ti, si) is
approximately inside the image vector space of Dϕ(ti, si),
which has dimension ≤ 2. Generically, π is non-degenerate
on this vector space. Thus a random projection of S can
be understood as a geometrically faithful view of S from
random angles. Such 2D visualization is the reason that we
choose to use a 2-dimensional family of images.

Experiments with |S| = 50000 and r = 16 produced the
visualization in Figure 1. The first picture contains sample
images from S and the second depicts a random projection
of S into R2. The “skeletons” shows that there is significant
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concentration of mass along 1-dimensional submanifolds
while a large part of the distribution are scattered on 2 di-
mensional surfaces.

Figure 1. 16x16 random geometric images and their distributions

Coloring each data point xi according to its estimated local
intrinsic dimension d̂k(xi) with k = 100, which will be
defined later in (18), we produce a color enhanced visual-
ization in Figure 2. It shows that the local dimension of all
points near the 1 dimensional skeleton are around 1. Indeed,
using d̂k(xi) < 1.5 as cutoff, the 1-dimensional curve (red
colored) accounts for 27% of the entire dataset.

Figure 2. Visualization as in Figure 1, colored based on d̂100(xi)

The skeleton phenomenon in the visualization is not limited
to geometric shapes. A similar experiment using MNIST-
based shapes can be found in Appendix A.1.

2.2. Criterion on distribution of local intrinsic
dimension estimates in manifolds

We now introduce an indicator function to test whether a
distribution is supported on a manifold, and prove by ex-
periments that this criterion fails on individual label classes
from natural image datasets.

Following the approach from (Brown et al., 2023) and (Pope
et al., 2021), we use the Maximal Likelihood Estimator for
intrinsic dimensions from (Levina & Bickel, 2004) in the
corrected form due to (MacKay & Zoubin, 2005). The local
intrinsic dimension at a point xi in a dataset S ∈ RD is

approximated by d̂k(xi) = m̂k(xi)
−1 where

m̂k(xi) :=
1

k − 1

k−1∑
j=1

log
Tk(xi)

Tj(xi)
(1)

with k being a fixed parameter and Tj(xi) denoting the dis-
tance between xi and its j-th nearest neighbor. To estimate
the dimension of S, the original model from (Levina &
Bickel, 2004) uses the average 1

S
∑|S|

i=1

(
m̂k(xi)

−1
)
. The

correction in (MacKay & Zoubin, 2005) argues that m̂k(xi)
is statistically more stable than m̂k(xi)

−1 and proposes to
estimate the dimension of S by

d̂k(S) :=
(
Exi∈Sm̂k(xi)

)−1
. (2)

Because of randomness in sampling, the local dimensions
m̂k(xi) are not constant across different samples xi even
for an ideal dataset sampled from a probability distribution
of smooth density on a manifold. However one can tell
how far a dataset S is from being smoothly distributed on
a manifold, by computing the variance of m̂k(xi) for S
and comparing it to that of such an ideal dataset. We now
introduce a new indicator function that measures this.

Definition 2.1. The manifold indicator function of a
dataset S at index k is

Ik(S) :=
(k − 1)Varxi∈S(m̂k(xi))

(Exi∈S(m̂k(xi)))2
. (3)

Our main conclusion in this section is:

Proposition 2.2. Under the manifold hypothesis, when d ≪
D and k ≪ |S|, the distribution of m̂k(S) satisfies

Ik(S) ≈ 1.

The proof of Proposition 2.2 is postponed to Appendix A.2.

For the dataset in §2.1, I20 = 3.55, I50 = 8.55, I100 =
17.25, all of which are much greater than 1. This suggests
that the dataset mixes components of different dimensions,
consisting with the visualizations in Figures 1-2.

We apply Proposition 2.2 to compare natural image datasets
against synthetic datasets smoothly distributed on a con-
nected manifold. The union of manifold hypothesis (Brown
et al., 2023) suggested that different connected components
of the dataset have different dimensions by observing that
the estimated dimensions d̂(Sl) of different label classes
Sl differ from each other. Our experiments show that even
within the same label class, the variance of the local dimen-
sion estimate is much higher than what is expected under
the manifold hypothesis. This suggests that each connected
component has components of different dimensions.
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Figure 3. Values of I100 for MNIST, FMNIST, SVHN, CIFAR-10

Figure 4. Values of I100 for ImageNet

Figures 3-5 compares Ik, at k = 100, for individual label
classes in MNIST, FMNIST, SVHN, CIFAR-10, CIFAR-
100 and ImageNet, compared against the observed Ik for
synthetic datasets with smooth densities on manifolds. Each
mark in the figures represents an individual label class. For
rigorous comparison, all tested classes in each figure, in-
cluding those of synthetic manifold data, are trimmed to
the same sample size N (N = 5000 for MNIST, FMNIST,
SVHN, CIFAR-10 in Figure 3, N = 1000 for ImageNet in
4, and N = 500 for CIFAR-100 in 17, due to the smaller
size of classes in the last two). For ImageNet, we tested 100
randomly chosen classes.

The smooth manifold data used in the experiments are ran-
dom points on a randomly generated ellipsoid in RD. Their
sample sizes equal those of other experiments in the same
figure. Each figure contains results for several such ellip-
soids of different dimensions. The ambient dimension D is
the same or close to that of the datasets in the same figure:
for Figures 3 and 5 containing MNIST, FMNIST, SVHN,
CIFAR-10, CIFAR-100, D = 3×32×32, for Figures 4 con-
taining ImageNet, each image from ImageNet is rescaled to
224× 224 and D = 3× 224× 224.

Results show that synthetic datasets on manifolds do satisfy
Ik ≈ 1 in Proposition 2.2. However, the Ik values for all
classes from natural datasets are significantly greater than 1,
implying greater variance in m̂k, and hence wider distribu-
tion of the local intrinsic dimension d̂k(xi) = m̂−1

k (xi).

Note that large Ik means high variance in local dimensions
among different data points. The MNIST dataset is more
homogeneous with fewer possible variations in details than

Figure 5. Values of I100 for CIFAR-100

other visual objects (e.g. there are fewer ways for people
to write the digit “2” than to dress themselves) , thus has
relatively less dimension variation among different images
compared to SVHN, CIFAR-10, CIFAR-100 or ImageNet.
However, since it is significantly bigger than 1, it already
reflects a deviation from the manifold hypothesis.

Additional figures recording the same experiments with
smaller choices of k are included in Appendix A.2.

3. Interpretation of non-manifold distribution
CW complex hypothesis

Evidences from Section 2 suggest that the local intrinsic
dimensions may drastically change within the same con-
nected component, contradicting the manifold hypothesis as
well as the union of manifolds hypothesis in (Brown et al.,
2023). We now outline a few possible reasons behind this
phenomenon and suggest an alternative hypothesis.

3.1. Possible reasons of varying dimensions

1. Invisible features. An object in an image with s degrees of
freedom may be partially or fully blocked by other objects.
In this case, only a smaller number s′ < s of degrees of
freedom can be observed in the image. This results in a
local drop of intrinsic dimension by s−s′. For example, the
rectangle in the geometric dataset in 2.1 can be blocked by
the disk and make the image distribution locally degenerate
from 2D to 1D. An object may also be partially invisible and
cause dimension drop, by being located out of the canvas or
being observed by a special angle.

2. Optional objects. Objects may not constantly exist in
images across the same connected class. For example, por-
traits may or may not include a mustache or beard of varying
size. Objects may have a wide range of decorative details.
Whenever such optional features are present, they cause a
dimension raise compared to nearby samples without the
same features.

3. Optional global features. Optional features that add vari-
ance to local intrinsic dimensions are not limited to physi-
cal objects. For example, pixel values are simultaneously
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rescaled by lighting in the scene. The lighting configuration
can have many degrees of freedom including the number,
colors, brightness, locations, and angles of light source.
This configuration interacts with objects in the picture to
create shades and highlights. Depending on the interactions,
only a subset of the degrees of freedom can be observed
in the image. For another example, with strong contrast of
lighting, very dark shade is created and objects in the canvas
can become invisible. Such interactions change the local
intrinsic dimension in data distribution.

4. Low resolution compared to intrinsic degree of freedom.
An object of s degrees of freedom may be rescaled and
placed in different areas of an image. When the area only
provides r < s dimensions of resolution, the features de-
scribing the object are projected into Rr and forced to lose
their dimension. For example, “a school bus at far” produces
only a few pixels colored in yellow, losing all other details.

5. Concentration near lower dimensional skeletons. Instead
of exact dimension drop, almost drop may also occur when
certain degrees of freedom are still visible while making
little variation to pixel values. As an example, imagine a
picture of sunset where the sun has almost completely sunk
below the horizon except its tip. In this case, varying the
radius of the sun would change the observed pixel values in
the tip but not by a lot. Another example is that changes of
objects in very dark shades still affect pixel values but only
very slightly. In these situations, the local distribution is still
higher dimensional but they are concentrated near a lower
dimensional skeleton. This phenomenon can be observed in
Figure 1 in the areas where the 1D skeletons are connected
to the 2D part, where the thickening takes place gradually.

We validate each of these reasons on a simple synthetic
dataset by measuring the indicator function Ik proposed in
Section 2.2. The experiment details are in Appendix B.

3.2. CW complex hypothesis

Supported by the empirical evidences and reasons above,
we propose the alternative hypothesis that natural image
data are supported near unions of “manifolds with skeleton”.
Such structures are formally defined as CW complexes,
an important notion in topology whose name stands for
“Closure-finite Weak topology” (Wikipedia, 2024).

Definition 3.1. (e.g. (Lundell & Weingram, 2012)) A CW
complex X is a Hausdorff topological space, equipped with
a disjoint decomposition X =

⋃d
j=0 X

(j), such that each
X(j) is further decomposed into X(j) =

⋃
C∈C(j) C where:

(i) Every C ∈ C(j) is homeomorphic to the j-dimensional
open ball Bj via a homeomorphism ϕC : Bj → C;

(ii) ϕC extends to a homeomorphism defined on the closed
ball Bj , and the image of ϕ(∂Bj) is a disjoint union of

finitely many lower dimensional cells from
⋃j−1

j′=0 C(j′);

(iii)X is equipped with the topology induced by pasting
together the topologies on its cells.

The subset X(j) is called the j-dimensional skeleton of X .
When the maps ϕC are smooth diffeomorphisms, we say X
is a smooth CW complex.

As any bounded manifold with smooth boundaries can be
decomposed as a union of topological balls, one can use
bounded manifolds instead of balls in the definition by
adding more lower dimensional cells further dividing ex-
isting cells into balls. So we have the following heuristic
summary (see illustration in Figure 6):

Summary of Definition 3.1. A CW complex is the union
of a finite family of bounded manifolds (a.k.a. cells), where
each cell’s boundary consists of finitely many other (lower-
dimensional) cells.

Figure 6. Illustration of CW complices. Source: (Nanda, 2020)

We now formulate the alternative hypothesis.

Hypothesis 3.2 (CW complex hypothesis). For a generic
image dataset S ⊂ RD, its data distribution ν is, up to
small perturbation, supported on a union of connected CW-
complexes Xi. The restriction ν|Xi

on each connected com-
ponent Xi is a sum of measures

∑
C∈

⋃dimXi
j=0 C(j)

i

νC , where

each νC is a measure of smooth nonnegative density sup-
ported on a cell C of Xi. Note that for a fixed Xi, its cells
may have different dimensions.

4. Consequences of the CW complex
hypothesis in deep generative models

4.1. Compatibility with deep neural networks

We now prove Hypothesis 3.2 is highly compatible with the
modern deep learning framework, as deep neural networks
with ReLu activation automatically reshape smooth proba-
bility distributions in parameter spaces into CW complex-
supported probability distributions satisfying Hypothesis
3.2. This in particular means that deep generative models
(DGMs) are a priori capable of learning distributions of
image data under the hypothesis.

Proposition 4.1. Suppose F : Rn → Rm is a neural net-
work with the ReLu activation function. Then the image
set of F (Rn) is a CW complex. Moreover, if ν0 is a proba-
bility measure of smooth density function on Rn, then the
pushforward F∗ν0 of ν0 by F satisfies Hypothesis 3.2.
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The proof of Proposition 4.1 is delayed to Appendix C.1. We
believe that the conclusion is likely true in generic situations
for neural networks with real analytic activation functions
such as GELU or the sigmoid function, as the only condition
needed is that the common zeros sets of finitely many real
analytic functions (which are defined as either components
of the neural network or their higher order derivatives) are
finite unions of submanifolds. This is an open mathematical
question, but we expect it to hold in generic cases.

4.2. Obstruction for diffusion models

In the opposite direction, we investigate potential negative
consequences stemming from the necessity to substitute
manifold hypothesis with the CW complex hypothesis. Es-
pecially, we focus on a topic of practical interest in image
generation.

Diffusion models, a class of deep generative models, saw
great success recently in generating new images mimicking
the distribution of existing data sets. One well-recognized
drawback of such models is that they often have difficulty
accurately generating image areas with a large amount of
details; notably, the numbers and positions of fingers and
toes are often incorrectly configured in human portraits, see
e.g the article (Chayka, 2023) for a discussion in popular me-
dia. Sample images containing such errors can be found in
Appendix C.2. We analyze this issue based on the CW com-
plex hypothesis. (Lee et al., 2022; 2023) proved score-based
generative models can approximate any data distribution.
However, that guarantee relies on the assumption that the
neural network used by the model can approximate the train-
ing target function arbitrarily well. When the training budget
is limited, we hypothesize that the neural network would
prioritize certain samples over others based on different
intrinsic dimensions. Our interpretation is:

The inconsistency of local intrinsic dimensions make the
the deep learning models spend more efforts learning the
diffusion gradient for the lower dimensional part of data
distribution in regions, than that of the higher dimensional
part, near where lower dimensional and higher dimensional
cells are connected together. This decreases learning accu-
racy of the diffusion process along the extra dimensions in
the higher dimensional features.

In particular, human hands have remarkably high degrees of
freedom in their visual representations. In addition, they of-
ten only occupy a small part of the image and many of their
intrinsic features may not be visible because of posture. This
creates a significant local intrinsic dimension increase in
image samples with complicated hands compared to nearby
samples containing none of less hand features. Such extra
features are often not properly learned, leading to unrealistic
partially-learned hand configurations in generated images.

4.2.1. THEORETICAL INTERPRETATION

Our analysis takes as model the restriction of a dataset
S ⊂ RD to a local area U and assumes it consists of a
higher dimensional part that is smoothly supported on a
d dimensional manifold M , and a lower dimensional part
smoothly supported on a “skeleton” manifold K of dimen-
sion k < d < D. K is glued to M as a cell and may or may
not be in the boundary of M . (M is decomposed into CW
cells, and K is in the boundary of one or more of them.)
For simplicity we shall assume K is in the interior of M .
We only care about the learning efficiency within the local
area. So for simplicity, ignore curvatures and assume M
and K are flat in the neighborhood, and identify M with
Rd, and K with Rk, where Rk ⊂ Rd ⊂ RD. Let ν be a
localized probability measure representing the distribution
of data inside U . In view of the CW complex hypothesis,
assume ν decomposes as

ν = (1− γ)νM + γνK (4)

where νK (the “spine”) is a probability measure of smooth
density ρK on K and νM is a probability measure of smooth
density ρM on M and the support of νK (denoted by
supp νK in the following) is a submanifold of νM . As we
are only interested in the case where supp νK and supp νM
are not disjoint from each other, without loss of generality,
we will assume and 0 is in both supp νK and supp νM . Af-
ter rescaling coordinates if necessary, we may assume that
U contains the unit ball BRD (0, 1) in RD, and

ρK |BK(0,1) > 0, ρM |BM (0,1) > 0. (5)

We adopt the new coordinate notation

u = (u(K), u(M⊖K), u⊥), (6)

where u(K), u(M⊖K), u⊥ concatenate respectively the coor-
dinates with indices ≤ k, in [k + 1, d], and > d.

Diffusion models, such as the DDPM (Sohl-Dickstein et al.,
2015; Ho et al., 2020) and the score-based diffusion model
(Song & Ermon, 2019; Song et al., 2021), reconstruct the
distribution ν by studying an intermediate random path

xt =
√
ᾱtx0 +

√
1− ᾱtε, (7)

where x0 ∼ ν, ᾱt ∈ [0, 1] is a predetermined sched-
ule scheme and ε is an N (0, I)-distributed random noise.
In particular, a neural network is used along the noising
process to learn the conditional expectation µ̃(xt, t) :=
Ex0∼νE(xt−1|xt, x0). The learned approximation to µ̃ is
then used as a drift term determining the flow direction in
a backward stochastic PDE in the denoising process. In
practice, µ̃ was shown to be a linear interpolation between
x0 and xt, and after reparametrizing, the problem was trans-
formed into the simulating the noise ε by a neural network
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εθ(xt, t) by minimizing the loss function

Ex0∼ν,ε∼N (0,I)∥ε− εθ(xt, t)∥2. (8)

The intrinsic target noise ε̄(xt, t) is

ε̄(xt, t) = Ex0∼ν,ε∼N (0,I)

(
ε
∣∣xt =

√
ᾱtx0 +

√
1− ᾱtε

)
.

(9)
By expanding the square in (8), we know that for each given
t, minimizing (8) is equivalent to minimizing

Ex0∼ν,ε∼N (0,I)∥ε̄(xt, t)− εθ(xt, t)∥2. (10)

ε̄(xt, t) is equivalent to the score function in (Song & Er-
mon, 2019; Song et al., 2021) by arguments from those
papers and (Vincent, 2011).

As pointed out in (Ho et al., 2020) and (Wang & Vastola,
2023), most details in the denoising process are produced
when t is small and xt is close to x0, while global outlines
are generated at the earlier stage when t is larger. Thus the
small t stage is largely responsible for determining the local
dimension of the data. We claim for small t and k < j ≤ d,
the j-th coordinate of the learning target ε̄(xt, t) assumes
much larger values for xt near K. For notation simplicity,
denote δt =

1−ᾱt

ᾱt
and make a change of variable

zt =
xt√
ᾱt

= x0 +
√
δtε. (11)

The following proposition will be proved in Appendix C.3.

Proposition 4.2. As δt → 0, with the relation (11)

1. For the compact domain

ΩM = {z ∈ M : |z(M⊖K)| ∈ [
1

3
,
2

3
], |z(K)| ≤ 1

2
}

in M\K, the
√
δt neighborhood Ω

√
δt

M of ΩM in the
ambient space Rd satisfies

Px0∼ν,ε∼N (0,I)(zt ∈ Ω
√
δt

M ) ≳ 1; (12)

|ε̄(xt, t)
(M⊖K)| ≲

√
δt if zt ∈ Ω

√
δt

M . (13)

2. The cylindrical shell

Ω
√
δt

K ={z ∈ U : |z⊥| ≤
√
δt,

|z(M⊖K)| ∈ [

√
δt
2

,
√

δt]}

enclosing K satisfies

Px0∼ν,ε∼N (0,I)(zt ∈ Ω
√
δt

K ) ≳ 1; (14)

|ε̄(xt, t)
(M⊖K)| ≳ 1 if zt ∈ Ω

√
δt

K . (15)

Figure 7. Illustration of Propostion 4.2

The Proposition can be summarized by the illustration in Fig-
ure 7. When δt is small, the order of magnitude of ε̄(M⊖K),
the coordinates of the intrinsic learning target vector ε̄ along
the extra coordinates M ⊖K, is significantly greater near
the lower dimensional spine K than near generic regions in
the higher dimensional manifold M .

Moreover, these two neighborhoods carry comparable
weights in the loss function. This incentivizes the neu-
ral network εθ(·), subject to its training budget, to spend
more efforts to learn ε̄ near K and ignore the training along
the other tangent directions of M , yielding unsatisfactory
results. Because ε̄ is the score vector field used in the de-
noising process, ε̄(M⊖K) is what controls the distribution
of generated data along M away from K. This implies that
the model may not sufficiently learn the features along extra
dimensions of the higher dimensional component M , an
example of which would be the details in hands.

It is worth mentioning that in (Wang & Ponce, 2021; Chade-
bec & Allassonnière, 2022), geometry of deep generative
models have been investigated with Riemannian metric ten-
sors explicitly measured on the networks of VAE or GAN.
Another related work in that direction is (Wang & Vastola,
2023), which studied how denoising trajectories approach
the image manifold and proposes the view that size of the
score function is a softmax if the data distribution is a mix-
ture of finitely many Gaussian probabilities. Following that
view and making the Gaussians degenerate may provide an
alternative proof to Proposition 4.2 in certain cases.

4.2.2. EXPERIMENTS

Our interpretation is tested by the following experiment
steps:

1. Generate a dataset S = Shigh ∪ Slow consisting of a
higher dimensional component Shigh (think of it as νM ) and
a lower dimensional component Slow (think of it as νK),
such that the supports of both components are connected,
and supp Slow ⊂ supp Shigh.

2. Train a diffusion model separately on Shigh, Slow, S, and
generate new datasets S ′

high, S ′
low, S ′ using the model such

that |S ′
high| = |Shigh|, |S ′

low| = |Slow|, |S ′| = |S| for easier
comparison later.

7
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Figure 8. Samples from Slow (top row) and Shigh (bottom row)

3. Take the datasets S ′
sep train = S ′

high ∪ S ′
low (generated

by models separately trained on high and low dimensional
components) and S ′ (generated by model trained with mixed
data) and compare them to the original data distribution S
to see which training scheme works better.

Figure 9. Distribution of d̂k, k = 100

Our datasets contain 32×32 images divided into four 16×16
blocks, with every block being a rescaled picture of MNIST
digit “2”, “4”, “6” or “8”. For Slow, the pictures “2”, “4”, “6”
are fixed and only the picture “8” is uniformly chosen from
MNIST. For Shigh, all four pictures “2”, “4”, “6”, “8” are
uniformly chosen. Clearly, Slow has a much lower intrinsic
dimension than Shigh as the underlying distribution of the
later is the Cartesian product of 4 distributions of individual
classes. Moreover, because images in the same digit class
are deformations of each other, the data distributions Slow
and Shigh are connected. We use |Shigh| = |Slow| = 5000,
and hence |S| = 10000. We use MNIST instead of more
complicated datasets in order to generate datasets of the
same sample size as the original dataset within training
budgets.

We train three DDPM (Ho et al., 2020) models of the same
architecture from the open source implementation (Van-
degar, 2023) respectively on Shigh, Slow, and S. For fair
comparison, number of SGD training steps is 50000 for
all models, but batch size is doubled from 32 to 64 when
training the model on S so that each image in Shigh is used
approximately the same number of times when training on
Shigh and S, and similar for Slow.

To compare the generated datasets S ′
sep train, and S ′ against

S, we make two tests:

(1) We survey the distribution of local intrinsic dimension

Table 1. Classification accuracies for generated data.

Classified as: Slow Shigh

Slow validation 100% 0%
Shigh validation 0% 100%
S ′

low 100% 0%
S ′

high 0% 100%
S ′ 55.84% 44.16%

estimator (1). For k = 100, we sort d̂k(xi) for all samples
xi in each of the generated datasets S ′

sep train, S ′ and S and
plot the resulting curves. Figure 9 shows that S ′

sep train have
similar distribution of d̂k as S. But the local intrinsic di-
mension spectra of S ′ and S differ substantially right at the
middle of the spectrum where the high dimensional and low
dimensional regimes connect to each other and the distribu-
tion is twisted towards lower dimensions. Similar results for
k = 50 and k = 200 are included in Appendix C.4.

(2) We train a CNN classifier to distinguish between Shigh
and Slow. In test, the classifier is 100% accurate on vali-
dation data from the Shigh and Slow, as well as on the sep-
arately generated data S ′

high and S ′
low. But in S ′ generated

using mixed data, there is a 5.84% bias favoring Slow. More
details, as well as d̂k statistics of the classier labeled com-
ponents, can be found in Appendix C.4.

Both tests show that separately training diffusion model
on Shigh and Slow successfully learns the data distributions,
but training on the mixed dataset is less accurate. The lo-
cal intrinsic dimension values d̂k tend to be lower for S ′

compared to S , suggesting diffusion models are more likely
to miss higher dimensional features in a portion of sam-
ples and has biased generation towards lower-dimensional
components, which is consistent with our interpretation.

5. Conclusions, limitations and future
directions

We propose the CW complex hypothesis as an alternative to
the popular manifold hypothesis and the subsequent union
of manifolds hypothesis. We provide several evidences from
both theoretical and experimental angles. Our study also
exploits the relation with diffusion models and interprets
their ineffective learning of higher-dimensional details.

One direction left out in this work is the exploration of
possible ways to improve machine learning algorithms in
light of the new hypothesis. Though we exposed possible
impacts on learning outcomes for image diffusion models,
our experiments were on a synthetic dataset constructed out
of MNIST that allows a clear distinction between a high di-
mensional component and a low dimensional one. It would
be interesting to extend the study to broader natural datasets

8
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beyond images with varying local intrinsic dimensions and
investigate how a better understanding of the variation in
intrinsic dimensions can help training models. For instance,
we believe efficient clustering of different components of
the CW complex would be a future step of potential interest.

Besides consistency of intrinsic dimensions, it is also rea-
sonable to further investigate the other aspect of manifold
hypothesis, namely regularity of local geometry.
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A. Supplemental materials for Section 2
A.1. Additional Experiments for Section 2.1

We document here an experiment that is similar to the one
on moving geometric shapes in 2.1. Instead of moving a
disk and a rectangle, we construct a synthetic dataset based
on MNIST digits. We fix a picture of “2” and another of “4”
from MNIST, independently rescale them using scale factors
between 1

2 and 4 randomly chosen using a logarithmic scale.
The two resulting pictures are then overlapped and cropped
to 16× 16 pixels. We again sample 50,000 such randomly
generated images and visualize the resulting dataset as in
Figures 1 and 2. The sample images and visualizations are
in the two figures below:

Figure 10. 16x16 random images by overlapping rescaled “2” and
“4”, and their distributions

Figure 11. Visualization as in Figure 10, colored based on d̂100(xi)

Like in Figures 1 and 2, the results again show a high
concentration near a 1 dimensional curve. Again using
d̂100(xi) < 1.5 as a cutoff, the red colored low dimen-
sion skeleton contains 16.8% of the dataset. In addition,
the Ik value of the datasets are I20 = 2.47, I50 = 5.68,
I100 = 11.4, all much greater than 1, which according to
Proposition 2.2 confirms the dimension jump observed in
the visualization.

A.2. Proof of Proposition 2.2

Assume S is distributed on a d-dimensional connected
smooth manifold M ⊂ RD and is uniformly sampled ac-
cording to the volume form on M weighted by a smooth
density function. It is usually assumed that d ≪ D and

k ≪ |S|. In this regime, the local neighborhood of M
containing the k nearest neighbors of a sample xi can be
approximately viewed as a neighborhood inside a linear
subspace of dimension d, and the density function is approx-
imately constant on this flat piece. Denoting by zj(xi) the
j-th nearest neighbor of xi. then T d

j (xi) is proportional to
the volume of the ball that is centered at xi and bounded
by the sphere passing through zj(xi). It follows that the
sequence T d

1 (xi), T
d
2 (xi), · · · forms a Poisson process for

a fixed xi when the rest of points are randomly sampled.
Based on this fact, it was proved by (Denti et al., 2022) that,

Lemma A.1. (Denti et al., 2022) Under the manifold hy-
pothesis and when d ≪ D and k ≪ |S|, the ratio Tl+1(xi)

Tl(xi)

is approximately distributed according to the Pareto law
Pareto(1, ld) with scale parameter 1 and exponent ld.

Moreover, modulo the described approximation by linear
spaces, the random variables Tl(xi)

Tl−1(xi)
are jointly indepen-

dent across different l’s.

Proof of Proposition 2.2. Recall that, the distribution
Pareto(1, α) is defined by

PX∼Pareto(1,α)(X > t) =

{
t−α if t ≥ 1;

1 if t < 1.

Thus, via integration by parts,

EX∼Pareto(1,α)(logX)

=−
∫ ∞

1

log tdPX∼Pareto(1,α)(X > t)

=− (log t)t−α
∣∣∞
t=1

+

∫ ∞

1

(log t)′t−αdt

=

∫ ∞

1

t−α−1dt = −α−1t−α
∣∣∞
t=1

= α−1;

(16)

and similarly

EX∼Pareto(1,α)((logX)2)

=− (log t)2t−α
∣∣∞
t=1

+

∫ ∞

1

((log t)2)′t−αdt

=

∫ ∞

1

2(log t)t−α−1dt

=2α−1 ·
(
−
∫ ∞

1

log tdt−α
)
= 2α−2.

Thus ,

VarX∼Pareto(1,α)(logX)

=E((logX)2)− (E(logX))2 = α−2.
(17)
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Rewrite (1) as

m̂k(xi) =
1

k − 1

k−1∑
j=1

k−1∑
l=j

log
Tl+1(xi)

Tl(xi)

=

k−1∑
l=1

l

k − 1
log

Tl+1(xi)

Tl(xi)

(18)

By using Lemma A.1 and applying (16) and (17) to the
independent random variables log Tl+1(xi)

Tl(xi)
, we obtain

Exi∈S(m̂k(xi)) =

k−1∑
l=1

l

k − 1
· 1

ld
=

1

d
;

Varxi∈S(m̂k(xi)) =

k−1∑
l=1

(
l

k − 1
)2 · 1

(ld)2
=

1

(k − 1)d2
,

and conclude the proof.

A.3. Additional Figures for Section 2.2

The Figures below are results for the same experiment as in
Figures 3-17 but with smaller choices k = 20 and k = 50
for the index k, i.e. fewer neighbors are taking into account
when computing the local dimension estimator d̂k and the
indicator function Ik. Figures 12-13 correspond to Figure
3; Figures 14-15 correspond to Figure 4, Figures 16-17
correspond to Figure 5. In all tested cases, the indicator
value Ik for natural image datasets remain greater than 1,
suggesting the manifold hypothesis is not satisfied according
to Prop 2.2.

Figure 12. Values of I20 for MNIST, FMNIST, SVHN, CIFAR-10

B. Experiments validating possible reasons
from Section 3.1

To support the possible reasons listed in §3.1 that lead to
varying dimensions, we test the Ik values of several syn-
thetic datasets and compare them to a baseline dataset where
none of the reasons are present. All datasets below contain
5000 grayscale images of size 64× 64.

“Baseline”. Images of a digit “2” and a digit “4”, both
are fixed choice from MNIST. Both digits are rescaled to

Figure 13. Values of I50 for MNIST, FMNIST, SVHN, CIFAR-10

Figure 14. Values of I20 for ImageNet

32× 32 and slides horizontally, “2” in the top row and “4”
in the bottom row. Their horizontal positions are random
but never move out of the canvas.

“Block”. Similar to “Baseline”, but a 32 × 32 rectangle
is attached below the digits “2” and moves accordingly in
the bottom row. The square may block the digit “4”. This
dataset corresponds to Reason 1 in §3.1.

“Out”. The digit “2” is allowed to slide out of the canvas
through the right side. This dataset corresponds to Reason 1
in §3.1.

“Mesh”. A horizontal mesh line separating the top row and
the bottom row is added with 50% probability, the line has
uniformly random grayscale. This dataset corresponds to
Reason 2 in §3.1.

“Lighting”. A random lighting scheme is applied to images
from the baseline. A random value a ∈ [0, 3], and the
grayscale at a point (x, y) is multiplied by xa, where the
coordinates (x, y) are renormalized to [0, 1] × [0, 1]. This
dataset corresponds to Reason 3 in §3.1.

“Shrink”. A random shrinking of random scaling factor in
[1/4, 1] is applied to images from the baseline. This dataset
corresponds to Reason 4 in §3.1.

“Partial Block”. Similar to “Block”, but a 16×32 rectangle
is used instead of a 32× 32 rectangle. This new rectangle is
not wide enough to block the entire digit “4”. This dataset
corresponds to Reasons 1 and 5 in §3.1.

Each row in Figure 18 contains sample images from one of
the datasets, in the same order as they are listed above.
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Figure 15. Values of I50 for ImageNet

Figure 16. Values of I20 for CIFAR-100

Table 2 records the Ik values of the datasets, note that all
Ik values increased compared to the baseline. Therefore
all the implemented changes increased the variance in local
dimensions among data points.

C. Supplementary materials for Section 4
C.1. Proof of Proposition 4.2

Proof. Suppose F has l layers, then it takes the form

F = Ll ◦ σ ◦ Ll−1 ◦ · · ·σ ◦ L1(x),

where Li(x) = Aix+Bi are linear functions for 1 ≤ i ≤ l,
and σ(x) = ReLu(x). ReLu is a piecewise linear function,
which is only nonsmooth at 0. Thus F , as a composition
of finitely many piecewise linear functions, is a piecewise
linear function. More precisely, Rn is cut into finitely many
domains Ωi by hyperplanes and F |Ωi

is linear for each i.
Its differential DF is a constant matrix on each Ωi, whose
rank is thus a constant on Ωi but may vary from piece to
piece. This implies the image set F (Ωi) is a subset of an
r-dimensional subspace, where r = rankDF |Ωi . Thus the
image F (Rn) is a CW complex whose cells include the sets
F (Ωi). The boundaries between Ωi’s and their intersecting
boundaries, and so on, are also subsets of linear subspaces.
The images of them by F are still subsets of linear subspaces
and form the other cells of X .

The pushforward measure F∗ν0 is supported on the F (Rn)
and it preserves the total mass of ν0. F∗ν0 restricted to
F (Ωi) is smooth with respect to the volume measure along
the linear subspace F (Ωi). The images of the boundaries be-

Figure 17. Values of I50 for CIFAR-100

Figure 18. Sample images representing different reasons

tween Ωi’s and their recursively defined lower dimensional
boundaries do not support components of F∗ν0.

C.2. Examples of AI-generated images with wrong
details in fingers

Figure 19 contains examples of images with hands were
generated by the open-source text-to-image diffusion model
OpenDalle V1.1 (Izquierdo, 2023). Despite being highly
realistic otherwise, they contain errors in various details of
the fingers: number (a, b), texture (c) and shape (d).

C.3. Proof of Proposition 4.2

Denote by ρ0(z) = (2π)−
D
2 e−

1
2 |z|

2

the density function of
the standard normal distribution ε ∼ N (0, I) on RD. Then
the density function of

√
δtε is

(
√

δt)
−Dρ0(

z√
δt
). (19)

Retain the notations from notations from Proposition 4.2
and relation (11) for all the discussions below. It will always
be assumed that δt ≈ 0. Recall that we identify M with Rd

and K with Rk.
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Table 2. Ik values of datasets

Dataset I10 I20 I50

Baseline 1.04 1.07 1.26
Block 2.33 4.57 21.2
Out 1.94 2.97 5.59
Mesh 1.50 1.67 2.34
Lighting 1.16 1.46 3.04
Shrink 1.57 2.11 3.44
Partial Block 1.12 1.54 5.26

(a) (b)

(c) (d)

Figure 19. AI-generated images with mistakes in fingers. Source:
OpenDalle V1.1 (Izquierdo, 2023)

Lemma C.1. For all z ∈ Ω
√
δt

M ,

Ex0∼νM
(
√
δt)

−Dρ0(
z − x0√

δt
) ≳ (

√
δt)

−(D−d), (20)

Ex0∼νK
(
√

δt)
−Dρ0(

z − x0√
δt

)

≲e−O(δ−1
t )(

√
δt)

−(D−d),

(21)

and
Ex0∼νK

(
√

δt)
−Dρ0(

z − x0√
δt

)
∣∣z − x0√

δt

∣∣
≲e−O(δ−1

t )(
√

δt)
−(D−d).

(22)

Proof. By the assumption (5), νM (ΩM ) ≳ 1 and νM has a
uniformly positive density on ΩM . As z ∈ Ω

√
δt

M , the set

B(z, 2
√
δt) ∩M = {x0 ∈ M : |x0 − z| ≤ 2

√
δt} (23)

has at least radius ≳
√
δt and is located within the unit

ball BM (0, 1) in M . Because of assumption (5), the νM

measure of this set is ≳ (
√
δt)

d. Furthermore, the value of
ρ0(

z−x0√
δt

) is ≳ 1 for all x0 ∈ B(x0, 2
√
δt) ∩ M . The in-

equality (20) then follows by only counting the contribution
of x0 ∈ B(x0, 2

√
δt) ∩M .

For (21), notice that if x0 ∈ supp νK ⊂ K and z ∈ Ωδt
M ,

then |z − x0| ≥ 1
3 − 2

√
δt ≥ 1

6 . Hence z−x0√
δt

≳ 1√
δt

and

ρ0(
z − x0√

δt
) ≲ e−O(δ−1

t ).

After integrating and adjusting the implicit coefficient in
O(δ−1

t ), this implies (21). Again by adjusting the implicit
coefficient, we also have

ρ0(
z − x0√

δt
)

1√
δt

≲ e−O(δ−1
t ),

which leads to (22).

Corollary C.2. The set Ω
√
δt

M satisfies

Px0∼νM ,ε∼N (0,I)(zt ∈ Ω
√
δt

M ) ≳ 1,

and

Px0∼νK ,ε∼N (0,I)(zt ∈ Ω
√
δt

M ) ≲ e−O(δ−1
t ).

Proof. Notice that the volM (ΩM ) ≍ 1 and hence
vol(Ω

√
δt

M ) ≍ (
√
δt)

(D−d). The rest of proof is straight-
forward, by integrating Lemma C.1.

Lemma C.3. For all z ∈ U∣∣∣Ex0∼νM ,ε∼N (0,I)(ε
(M)

∣∣zt = z
)∣∣∣ ≲ √

δt

Proof. Following the coordinate system (6), we write z =
(z(K), z(M⊖K), z⊥) = (z(M), z⊥). Similarly, we decom-
pose the noise ε as (ε(K), ε(M⊖K), ε⊥) = (ε(M), ε⊥),
where z(M) and ε(M) are the projections to M = Rd. Then

Ex0∼νM ,ε∼N (0,I)

(
ε(M)

∣∣zt = z
)

=Ex0∼νM ,ε∼N (0,I)(
ε(M)

∣∣√δtε
⊥ = z⊥, x0 +

√
δtε

(M) = z(M)
)

=Eε∼N (0,I)ρM (z(M) −
√

δtε
(M))ε(M).

Here we used the fact that ε⊥ and ε(M) are independent
noises. By Taylor expansion, the expression above further
equals

Eε∼N (0,I)ρM (z(M) −
√
δtε

(M))ε(M)

=Eε∼N (0,I)

[
ρM (z(M))ε(M)+

+∇MρM (z(M))(
√

δtε
(M))⊤ε(M)

+O(δt)
]
,
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where ∇M denotes the gradient operator along M .

Note that as ε ∼ N (0, I) on RD, Eε(M) =
(Eε)(M) = 0. It follows that Eε∼N (0,I)(ρM (z(M))ε(M)) =

ρM (z(M))Eε∼N (0,I)(ε
(M)) = 0, and the expression at

hand is of order O(
√
δt). This proves the lemma.

Lemma C.4. For all z ∈ Ω
√
δt

K ,

Ex0∼νM
(
√
δt)

−Dρ0(
z − x0√

δt
) ≲ (

√
δt)

−(D−d), (24)

Ex0∼νK
(
√

δt)
−Dρ0(

z − x0√
δt

) ≳ (
√
δt)

−(D−k). (25)

Proof. The proof of (25) is similar to that of (20) in Lemma
C.1 and is omitted. That of (24) is more delicate and is
presented below.

Define B(z, 2
√
δt) ∩ M as in (23). The volume in M ,

and hence νM measure, of B(z, 2
√
δ) ∩M , is O((

√
δt)

d).
Thus the contribution of x0 ∈ B(z, 2

√
δt) ∩M to (24) is

≲ (
√
δt)

d · (
√
δt)

−D = (
√
δt)

−(D−d) because |ρ0| ≤ 1.
It remains to estimate the contribution of the complement
set {x0 ∈ M : |z − x0| ≥ 2

√
δ}. For such x0, |z −

x0| ≥ 1
2 |z

(M) − x0|, where z(M) is the projection of z to
M in the coordinate system (6). Therefore, ρ0( z−x0√

δt
) ≤

ρ0(
z(M)−x0

2
√
δt

). Hence the contribution of this part is bounded
by

Ex0∼νM
(
√
δt)

−Dρ0(
z(M) − x0

2
√
δt

)

≲(
√
δt)

−(D−d)Ex0∼νM
(
√
δt)

−dρ0(
z(M) − x0

2
√
δt

)

≲(
√
δt)

−(D−d)

∫
M

(
√
δt)

−dρ0(
z(M) − x0

2
√
δt

)dx0

≲(
√

δt)
−(D−d).

Here we used the fact that νM has smooth density on M and
is hence bounded by a multiple of the volume form on M ,
and the fact that

∫
M
(
√
δt)

−dρ0(
z(M)−x0

2
√
δt

)dx0 is an absolute
constant (this is because an easy computation shows that
(2π)

D−d
2 (2

√
δt)

−dρ0(
z(M)−x0

2
√
δt

) is the density function of
the normal distribution on M = Rd, with standard deviation
2
√
δt centered at z(M)). The proof is completed.

Corollary C.5. The set Ω
√
δt

K satisfies

Px0∼νK ,ε∼N (0,I)(zt ∈ Ω
√
δt

K ) ≳ 1.

Proof. Like in Corollary C.2, this is established by
integrating the previous lemma using vol(Ω

√
δt

K ) ≍
(
√
δt)

(D−k).

Lemma C.6. For all z ∈ Ω
√
δt

K ,∣∣∣Ex0∼νK ,ε∼N (0,I)(ε
(M⊖K)

∣∣zt = z
)∣∣∣ ≍ 1

Proof. For generic x0 ∼ νK and ε ∼ N (0, I), if zt =
x0 +

√
δtε is equal to z, then z(M⊖K) =

√
δtε

(M⊖K) be-
cause x0 ∈ suppK = K projects to 0 along the (M ⊖K)

coordinates. Hence the left hand side is equal to z(M⊖K)
√
δt

,

which is in [ 13 ,
2
3 ] by the definition of Ω

√
δt

K .

Proof of Proposition 4.2. As ν = (1 − γ)νM + γνK , by
Bayes’ rule,

ε̄(xt, t)
(M⊖K)

=Ex0∼ν,ε∼N (0,I)

(
ε(M⊖K)

∣∣zt = x0 +
√
δtε

)
=
[
(1− γ)Ex0∼νM

(
√

δt)
−Dρ0(

zt − x0√
δt

)

· Ex0∼νM ,ε∼N (0,I)

(
ε(M⊖K)

∣∣zt = x0 +
√
δtε

)
+ γEx0∼νK

(
√

δt)
−Dρ0(

zt − x0√
δt

)

· Ex0∼νK ,ε∼N (0,I)

(
ε(M⊖K)

∣∣zt = x0 +
√
δtε

)]
/[

(1− γ)Ex0∼νM
(
√

δt)
−Dρ0(

zt − x0√
δt

)

+ γEx0∼νK
(
√
δt)

−Dρ0(
zt − x0√

δt
)
]

(26)

1. The case of zt ∈ Ω
√
δt

M . The inequality (12) is given
by Corollary (C.2), and it remains to prove (13). By the
inequalities in Lemmas C.1 to C.6, the numerator in (26)
has upper bound

|numerator| ≲(1− γ)(
√

δt)
−(D−d)

√
δt

+ γe−O(δ−1
t )(

√
δt)

−(D−d)

≲(
√

δt)
−(D−d)

√
δt.

And denominator has lower bound

|denominator| ≳(1− γ)(
√

δt)
−(D−d)

− γO
(
e−O(δ−1

t )(
√

δt)
−(D−d)

)
≳(

√
δt)

−(D−d)

We obtain (13) by taking quotient.

2. The case of zt ∈ Ω
√
δt

K . Again, Corollary (C.5) gives
(14) and we now prove (15). This time, by Lemma C.4,
the second terms in the denominator is dominating as k <
d, hence one can ignore the first term. In other words, it
suffices to prove
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∣∣∣∣∣1− γ

γ

Ex0∼νM
(
√
δt)

−Dρ0(
zt−x0√

δt
)

Ex0∼νK
(
√
δt)−Dρ0(

zt−x0√
δt

)

· Ex0∼νM ,ε∼N (0,I)

(
ε(M⊖K)

∣∣zt = x0 +
√
δtε

)
+ Ex0∼νK ,ε∼N (0,I)

(
ε(M⊖K)

∣∣zt = x0 +
√

δtε
)∣∣∣∣∣

≳1.

(27)

Which is true because the second term’s norm is ≳ 1 by
Lemma C.6 and that the first term’s norm has an upper
bound of order

≲
(
√
δt)

−(D−d)

(
√
δt)−(D−k)

·
√
δt ≪ 1

by Lemma C.3 and C.4.

C.4. Additional information on experiments from §4.2.2

The next two figures complements Figure 9 with two other
choices of k.

Figure 20. Distribution of d̂k, k = 50

Figure 21. Distribution of d̂k, k = 200

Implementation of the classifier in Table 1. The classifier
is a convolutional neural network with 2 convolution layers
and 2 linear layers and has 24,502 parameters. 3, 000 sam-
ples from each of Slow and Shigh are used as training data
respectively for labels “low” and “high”, and the rest are
used as validation data.

Dimension statistics of generated data after classification.
The classifier labeled 5584 images from S ′

sep train as Slow
and 4416 as Shigh, we denote these two sets respectively as

S ′
sep train,low, and S ′

sep train,high. It turns out the distributions
of local intrinsic dimensions of these two classifier-labeled
sets are similar to those of Slow and Shigh, respectively.

Because |S ′
sep train,low| = 5584 and |S ′

sep train,high| = 4416 but
|Slow| = |Shigh| = |S ′

low| = |S ′
high| = 5000, for equal com-

parison we randomly truncate the datasets so that they all
have size 4000, while keeping their names without further
notice. Local intrinsic dimension estimates d̂k(xi) are mea-
sured for each of these datasets. These estimates count only
neighbors from the same dataset, instead of the larger mixed
datasets S, S ′ or S ′

sep train. Plots in Figures 22-27 of sorted
values of d̂k show that S ′

sep train,low, S ′
low and Slow share sim-

ilar intrinsic dimension statistics, and so do S ′
sep train,high,

S ′
high and Shigh.

Figure 22. Distribution of d̂k, k = 20 for low dim components

Figure 23. Distribution of d̂k, k = 50 for low dim components

Figure 24. Distribution of d̂k, k = 100 for low dim components
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Figure 25. Distribution of d̂k, k = 20 for high dim components

Figure 26. Distribution of d̂k, k = 50 for high dim components

Figure 27. Distribution of d̂k, k = 100 for high dim components
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