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ABSTRACT

Micro-action Recognition (MAR) is vital for psychological assessment and
human-computer interaction. However, existing methods often fail in real-world
scenarios due to inter-person variability, e.g., differences in motion styles, execu-
tion speed, and physiques, cause the same action to manifest differently, hindering
robust generalization. To overcome this, we propose the Person Independence
Universal Micro-action Recognition Framework (PIUmr), which embeds Distri-
butionally Robust Optimization (DRO) principles to learn person-agnostic repre-
sentations. PIUmr achieves this through two synergistic, plug-and-play compo-
nents that operate at the feature and loss levels, respectively. First, at the feature
level, the Temporal–Frequency Alignment Module (TFAM) normalizes person-
specific motion characteristics. It employs a dual-branch architecture to disentan-
gle motion patterns. The temporal branch uses Wasserstein-regularized alignment
to create a stable dynamic trajectory, mitigating variations caused by different mo-
tion styles and speeds. The frequency branch uses variance-guided perturbations
to build robustness against person-specific spectral signatures arising from differ-
ent physical attributes (e.g., skeleton size). A consistency-driven mechanism then
adaptively fuses these branches. Second, at the loss level, the Group-Invariant
Regularized Loss (GIRL) is applied to the aligned features to guide robust learn-
ing. It simulates challenging, unseen person-specific distributions by partitioning
samples into pseudo-groups. By up-weighting hard boundary cases and regulariz-
ing subgroup variance, it forces the model to generalize beyond easy or frequent
samples, thus enhancing its robustness against the most difficult person-specific
variations. Extensive experiments on the large-scale MA-52 dataset demonstrate
that PIUmr significantly outperforms existing methods in both accuracy and ro-
bustness, achieving stable generalization under fine-grained conditions.

1 INTRODUCTION

Micro-action recognition (MAR) focuses on modeling short-lived, low-amplitude human move-
ments that often occur unconsciously (Guo et al., 2024), such as brief eye twitches, subtle pos-
ture adjustments, or fine-grained micro-gestures. These subtle behaviors are closely tied to latent
cognitive or affective states (Chen et al., 2023; Wang et al., 2024) and thus play an essential role
in applications ranging from psychological assessment and deception detection to human–machine
empathy (Allaert et al., 2022; Lu et al., 2025). Compared with conventional action recognition tasks
(Kay et al., 2017), MAR is considerably more challenging due to the subtle movements during the
short time period. Its signals are inherently weak, easily obscured by contextual noise, and ex-
hibit high inter-class similarity alongside pronounced intra-class variability (Gu et al., 2025a), all of
which amplify its susceptibility to distributional shifts.

A particularly critical source of distributional shift in MAR is inter-person variability. In real-world
settings, the same micro-action may manifest with different temporal rhythms, spectral patterns, or
intensity levels depending on individual motion styles, execution speed, and skeleton size. Such
heterogeneity causes unstable feature representations and poor generalization in cross-person eval-
uation, making person independence a fundamental yet underexplored challenge for MAR.

1
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Figure 1: Illustration of representation shift in micro-action recognition. Spatial perturbations desta-
bilize temporal features, and temporal perturbations disrupt frequency features. Together with mar-
gin collapse that reflects inter-class confusion and unstable boundaries, these shifts give rise to sharp
minima in the loss landscape, ultimately leading to fragile optimization.

Although recent advances in spatiotemporal modeling and fine-grained supervision (Lin et al., 2019;
Feichtenhofer et al., 2019) have improved recognition accuracy, these methods are primarily based
on empirical architectural designs or heuristic training tricks, without principled mechanisms to
ensure robustness across individuals. Consequently, these models inevitably overfit to dominant
persons, fail to reconcile heterogeneous cues across people, and generalize poorly to ambiguous or
boundary cases (Li et al., 2025; Gu et al., 2025a).

As illustrated in Fig. 1, we argue that these limitations can be systematically understood under the
lens of distributional shift in person-independent MAR, which manifests in three interrelated forms:
1) Temporal–frequency inconsistency. Temporal representations are easily perturbed by frame
jitter, rhythm variations, and occlusions, while frequency representations, though more structural,
are highly sensitive to person-specific factors such as motion amplitude and style. This asymmetric
vulnerability destabilizes time–frequency modeling across different individuals. 2) Cross-modal
imbalance under inter-person perturbations. Person variability often induces uneven drifts be-
tween temporal and frequency pathways. Static or heuristic fusion cannot adaptively correct such
an imbalance, and may even amplify unreliable modalities, thereby weakening person-independent
discrimination. 3) Subgroup vulnerability. Owing to their transient and subtle nature, many micro-
actions appear near inter-class decision boundaries, especially for minority or person-specific sub-
groups. Pioneer optimization tends to emphasize frequent and easy instances, while neglecting rare
or ambiguous ones, resulting in fragile boundaries and reduced robustness in cross-person scenarios.

To address this fundamental lack of robustness against inter-person variability, we introduce the
Person Independence Universal Micro-action Recognition Framework (PIUmr). Our framework
systematically embeds principles from Distributionally Robust Optimization (DRO) to learn person-
agnostic representations that remain stable even in worst-case scenarios dominated by heteroge-
neous motion styles. PIUmr achieves this through two synergistic modules. Firstly, the Tempo-
ral–Frequency Alignment Module (TFAM) normalizes feature representations to make them invari-
ant to individual motion signatures. Its dual-branch architecture explicitly disentangles and aligns
motion characteristics. The temporal branch uses Wasserstein-regularized alignment to stabilize
dynamic trajectories, mitigating variations caused by different execution styles and speeds. The
frequency branch employs variance-guided perturbations to counteract person-specific spectral dis-
tortions arising from different physiques, e.g., different skeleton sizes. These branches are then
adaptively integrated via a consistency-driven fusion mechanism that prioritizes the more robust
representation. Secondly, the Group-Invariant Regularized Loss (GIRL) guides the training pro-
cess to generalize across diverse, unseen individuals. It simulates latent person-specific distributions
by creating pseudo-groups and then up-weights challenging boundary samples. By regularizing sub-
group variance, GIRL prevents the model from overfitting to common motion patterns and ensures
it learns effectively from rare or atypical examples, thereby enhancing its worst-case robustness.
Totally, our main contributions are summarized as follows:

• As best of our knowledge, we are the first to introduce the principle of DRO into MAR explicitly
from the perspective of person independence. By unifying temporal inconsistency, cross-modal
imbalance, and subgroup vulnerability as manifestations of inter-person distributional variabil-
ity, we provide a principled explanation of MAR’s core bottlenecks and formulate a systematic
solution grounded in robustness theory.
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• To create feature representations that are invariant to individual motion signatures, a plug-and-
play module TFAM is designed, which has a dual-branch architecture explicitly disentangling and
normalizing person-specific characteristics. The temporal branch mitigates variations in motion
style and speed by using a local–global Wasserstein regularization to produce a stable, aligned
dynamic representation. The frequency branch suppresses person-specific spectral distortions,
often caused by different physiques, through a novel variance-guided perturbation and adaptive
activation strategy. Furthermore, a consistency-driven fusion mechanism intelligently re-weights
and integrates the two branches, ensuring the final representation is robust even when an individual
exhibits strong, asymmetric perturbations.

• To ensure the model generalizes robustly across all individuals, especially those with atypical mo-
tion patterns, we introduce a novel training objective GIRL. To improve worst-case performance,
GIRL first partitions samples into pseudo-groups to simulate latent, person-specific data distri-
butions. It then up-weights the most challenging and ambiguous samples on the boundaries of
these groups using a Gaussian-based function, thereby forcing the model to focus its learning on
”hard” cases. Finally, by regularizing the risk variance across these groups, the objective prevents
the model from simply overfitting to the majority (or ”easy”) individuals. This strategy achieves
robust, subgroup-invariant optimization and significantly improves generalization to unseen, het-
erogeneous populations.

• Extensive experiments on the large-scale MA-52 benchmark validate the effectiveness of our
framework. PIUmr consistently outperforms state-of-the-art methods in both accuracy and ro-
bustness, with particularly strong gains in cross-subject evaluations and distribution-shifted con-
ditions, confirming its ability to generalize across diverse individuals.

2 RELATED WORK

2.1 MICRO-ACTION RECOGNITION AND TEMPORAL–FREQUENCY MODELING

MAR aims to identify short-lived, low-amplitude movements that convey unconscious behavioral
cues and subtle affective states (Liu et al., 2021a). Compared with conventional action recognition
benchmarks such as Kinetics (Kay et al., 2017), MAR is far more challenging due to its short dura-
tion, weak motion signals, high inter-class similarity, and pronounced intra-class variability (Chen
et al., 2023), which make it highly sensitive to contextual noise and person-dependent variability.
A major bottleneck lies in the person-independence setting, where differences in rhythm, style, and
motion scale across individuals cause unstable representations and poor cross-subject generaliza-
tion. Recent benchmarks such as MA-52 (Guo et al., 2024) further expose the challenges of MAR,
showing that large-scale settings are still dominated by cross-subject heterogeneity and class imbal-
ance. These issues make it difficult for models to generalize across individuals and to handle rare
or ambiguous categories. On the modeling side, approaches such as MMN (Gu et al., 2025a) incor-
porate motion-guided cues, while transformer-based models (Li et al., 2025) and relation reasoning
strategies improve fine-grained discrimination. However, these methods often remain heuristic and
lack principled mechanisms to ensure robustness across heterogeneous subjects and boundary cases.

Parallel to MAR-specific architectures, video representation learning has revealed the complemen-
tary value of temporal and frequency-domain cues. Temporal models (Wang et al., 2021; Liu
et al., 2024) capture motion dynamics at multiple scales, while frequency features derived from
DCT or Fourier transforms provide stability against short-term noise, compression artifacts, and
person-specific appearance variations (Cui et al., 2025; Liu et al., 2021c). Although joint tempo-
ral–frequency learning, as in dual-branch DCT networks (Chen et al., 2021a) or broader spatio-
temporal-frequency fusion (Chen et al., 2024), has shown potential, these methods still treat the
two domains independently and lack principled alignment. Without explicitly reconciling temporal
rhythms and spectral structures, models fail to robustly represent differences induced by individual
variations in style, speed, or body size, leading to unstable generalization across subjects.

To bridge this gap, we argue that lacking explicit temporal–frequency integration causes unstable
representations, weakening the generalization of representation learning under inter-person variabil-
ity. Our TFAM mitigates this by disentangling temporal dynamics and frequency structures and
adaptively aligning them, yielding more stable and invariant representations for person-independent
MAR. Further empowered by modules GIRL, this forms the core of PIUmr.

3
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Figure 2: An overview of the proposed PIUmr.

2.2 DISTRIBUTIONALLY ROBUST OPTIMIZATION IN VISION

From the perspective of person-independent MAR systems, it is necessary to identify the samples
with the largest person span and the largest difference in micro-motion features of the same category,
which means the system is capable of acquiring person-invariant micro-movement features. DRO
provides a principled paradigm for learning under uncertainty, where the objective is to minimize
the maximum expected loss over a neighborhood of plausible distributions (Lin et al., 2022a;b). By
construction, DRO focuses on worst-case risks rather than average performance, offering strong the-
oretical guarantees against distributional shifts. The central challenge of MAR lies in inter-person
variability, where the same micro-action may exhibit diverse rhythms, spectral patterns, or intensi-
ties across individuals. From a robustness view, such variability can be regarded as hidden distribu-
tions or adversarial perturbations. This naturally aligns with DRO, which optimizes for worst-case
risks over distributional neighborhoods, providing a principled basis for person-independent MAR
and unifying the handling of heterogeneous styles, modality drifts, and boundary cases. On the
other hand, DRO has already shown its potential in computer vision areas. For instance, the group
DRO with strong regularization improves minority group accuracy while preserving overall perfor-
mance (Wu et al., 2023; Sagawa et al., 2020), hardness-aware sampling incorporates DRO princi-
ples into mini-batch optimization to prioritize difficult examples (Fidon et al., 2020), and adaptive
DRO-aware optimizers dynamically reweight samples to stabilize training in deep networks (Feok-
tistov et al., 2025). These successes also demonstrate the effectiveness of DRO in mitigating imbal-
ance and instability. Despite these advances, DRO remains unexplored in video-based fine-grained
recognition, especially MAR. Thus, to the best of our knowledge, we are the first to apply DRO in
MAR, unifying temporal–frequency alignment and subgroup-invariant optimization within a coher-
ent framework for fine-grained person-independence MAR.

3 METHODOLOGY

AvgPool

Adaptive 
Temperature

Softmax Symmetrize
Sinkhorn

Fusion

W
as

se
rs

te
in

A
ff

in
e

Sc
al

in
g

Si
gm

oi
d

T
T

MaxPool

T
T

L
in

ea
r

A
tt

en
tio

n

Symmetrize
Sinkhorn

Softmax

Temporal Robust Branch

W
H

Mean

D
C

T

C
on

v2
D Variance

Perturb 𝜶

𝜷

Ta
nh

A
tt

en
tio

n

Si
gm

oi
d

Frequency Robust Branch

R
an

do
m

 
Fr

am
e 

M
as

k

Fu
si

on

Consistent Fusion

Temporal–Frequency Alignment Module

HW
T

Cosine Similarity

Frequency
Robust Branch

Temporal
Robust Branch

Cosine Similarity

Figure 3: The pipeline of TFAM in PIUmr.

In this section, we propose PIUmr, a
framework tailored to mitigate representa-
tion instability in MAR tasks under distri-
butional shifts and cross-person variabil-
ity. Fig. 2 depicts the overall architec-
ture of PIUmr. Built upon the X3D (Fe-
ichtenhofer, 2020) backbone, it integrates
two plug-and-play modules that enhance
robustness at the representation and op-
timization levels. The TFAM employs
a dual-branch temporal–frequency align-
ment with perturbation-aware fusion to sta-
bilize cross-modal features across individ-
uals, while the GIRL partitions samples into pseudo-groups and regularizes subgroup risks to achieve
person-independent discrimination on hard and boundary cases.

3.1 TEMPORAL–FREQUENCY ALIGNMENT UNDER PERSON-INDEPENDENT ROBUSTNESS

To accurately identify the same type of micro-movements of different persons, as shown in Fig. 3, a
dual-pathway architecture TFAM is explicitly designed to align temporal and frequency cues under
distributional uncertainty. Unlike conventional empirical risk minimization, which tends to empha-
size dominant modes and overlook rare or ambiguous micro-actions, TFAM simulates worst-case
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shifts in both temporal and frequency pathways and adaptively aligns them via consistency-guided
fusion. This design enhances stability and person-independent generalization across heterogeneous
MAR scenarios.

3.1.1 FREQUENCY BRANCH: SPECTRAL ROBUSTNESS WITH PERTURBATION

By explicitly regularizing against person-specific heterogeneity in amplitude, rhythm, and style, the
frequency pathway in TFAM aims to extract discriminative yet invariant spectral cues. Given an
input sequence x ∈ RB×T×C×H×W , we first average across the temporal dimension and apply a
bank of DCT filters {Dd}Dd=1 to generate spectral embeddings, which can be expressed as:

E = Conv2D
(

1
T

∑T

t=1
xt, {Dd}

)
∈ RB×D×H×W . (1)

To emulate adversarial inter-person shifts, we inject two complementary perturbations at the spec-
tral channel level. The first is variance-weighted modulation, emphasizing channels with unsta-
ble energy dispersion: Evar = β · Varh,w(E) ⊙ sign(E). Then, the second perturbation intro-
duces stochastic perturbations scaled adaptively by spectral variance statistics: Epert = α · ϵ ⊙ η,
ϵd = clamp

(
Varh,w(Ed), ϵ, ϵ

)
, where η ∼ N (0, I), and Ed ∈ RB×H×W is the d-th spectral

slice. Totally, the perturbed spectrum is reconstructed as: Erob = tanh
(
E + Evar + Epert

)
, where

an adaptive Tanh (Zhu et al., 2025) enforces bounded activations and mitigates spectral collapse.
To further refine invariance, a lightweight convolutional operator produces the attention map as:
As = σ

(
Conv2D(Erob)

)
, which is broadcast along the temporal axis and injected back to the origi-

nal tensor through residual masking and can be represented as:
xs = x · BroadcastCT (As) + x. (2)

Thus, the frequency branch constructs a distributionally robust spectral representation that resists
person-specific distortions and preserves person-independent invariance.

3.1.2 TEMPORAL BRANCH: CONSISTENT DYNAMICS VIA REGULARIZED TRANSPORT

In TFAM, the temporal pathway focuses on enforcing consistency in dynamic evolution across het-
erogeneous individuals, aiming to suppress frame-level jitter, rhythm perturbations, and person-
dependent irregularities. To achieve this, we construct a regularized transport kernel that jointly
models global and local temporal correlations while explicitly controlling distributional sharp-
ness and imbalance. In particular, given the input sequence x ∈ RB×T×C×H×W , two tempo-
ral affinity maps are derived via average- and max-pooling along spatial channels, denoted as:
Mavg,Mmax ∈ RB×T×T . After mean-centering each map, an adaptive temperature τ is estimated
from their joint variance, which can be denoted as:

τ = τmin + τscale ·
√

1
2

(
Var(Mavg) + Var(Mmax)

)
+ ε, (3)

where higher variance enlarges τ , producing smoother transition probabilities under unstable tem-
poral dynamics. The transport matrices are then constructed as: Kg = Softmax

(
− (M̄avg)

2

τ

)
,

Kl = Softmax
(
− (M̄max)

2

τ

)
, and further symmetrized to preserve temporal reciprocity: Kg ←

1
2 (Kg +K⊤

g ), Kl ← 1
2 (Kl +K⊤

l ). By using the Sinkhorn–Knopp (Oquab et al., 2024) algorithm
to approximate doubly-stochastic kernels, both matrices are subsequently normalized to ensure bal-
anced transport across frames. To integrate local and global correlations, adaptive weights λg, λl are
predicted from row–column variances, yielding: Kmix = λgKg + λlKl. To avoid degenerate peaky
alignments that overfit dominant transitions, a Wasserstein-style (Arjovsky et al., 2017) deviation
penalty is applied: Kmix ← Kmix−γW ·

(
Kmix−meanj(Kmix)

)
1
, where (·)1 denotes the absolute

deviation averaged over index j. The regularized kernel is finally transformed into an attention map:
At = σ(ΓKmix + β), which undergoes a linear projection and refinement through a self-attention
block to capture higher-order temporal dependencies. The attended features are injected back into
the sequence by residual broadcasting:

xt = x · BroadcastH,W
C

(
SelfAttn(Linear(At))

)
+ x. (4)

Totally, the temporal branch establishes stable and invariant temporal interactions, effectively align-
ing dynamics across diverse individuals under distributional uncertainty.
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Table 1: Quantitative comparison on Micro-Action 52. Bold: Best, Underline: Second best.

Method Body Action Body Action All
Top-1 Top-1 Top-5 F1macro F1micro F1macro F1micro F1mean

TIN (Shao et al., 2020) AAAI 73.26 52.81 85.37 66.99 73.26 39.82 52.81 58.22
TimesFormer (Bertasius et al., 2021) ICML 69.17 40.67 82.67 61.90 69.17 34.38 40.67 51.53

Video Swin T (Liu et al., 2021b) CVPR 77.95 57.23 87.99 71.25 77.95 38.53 57.23 61.24
AAGCN (Shi et al., 2020) T-IP 74.13 56.96 84.37 65.88 74.13 41.36 56.96 59.58
MS-G3D (Liu et al., 2020) CVPR 71.21 52.70 82.33 63.16 71.21 38.78 52.70 56.46

CTR-GCN (Chen et al., 2021b) ICCV 76.01 59.06 86.05 68.46 76.01 43.38 59.06 61.73
ST-GCN++ (Duan et al., 2022) ACM MM 72.04 53.78 82.04 62.95 72.04 37.52 53.78 56.57

HD-GCN (Lee et al., 2022) ICCV 75.76 60.19 86.90 67.32 75.76 44.50 60.19 61.94
Koopman (Wang et al., 2023) CVPR 75.04 59.70 86.79 66.48 75.04 44.57 59.70 61.45
FR-Head (Zhou et al., 2023) CVPR 76.35 61.17 86.99 68.88 76.35 47.43 61.17 63.46

SkateFormer (Do & Kim, 2025) ECCV 75.67 59.76 87.27 68.33 75.67 45.58 59.76 62.34
Uniformer (Li et al., 2023) T-PAMI 79.03 58.89 87.29 71.80 79.03 48.01 58.89 64.43
MANet (Guo et al., 2024) T-CSVT 78.95 61.33 88.83 72.87 78.95 49.22 61.33 65.59
MMN (Gu et al., 2025b) ACM MM 78.52 62.71 89.83 71.86 78.52 48.27 62.71 65.34

PIUmr (Ours) 80.95 63.18 89.87 75.51 80.95 52.79 63.18 68.11

3.1.3 CONSISTENCY-DRIVEN ALIGNMENT FOR PERSON INDEPENDENCE

To avoid representation drift and effectively enhance person-independent robustness, we intro-
duce a perturbation-stability alignment scheme that adaptively weights temporal and frequency
branches. The key idea is to evaluate each branch’s invariance under characteristic perturba-
tions and assign higher importance to the more stable one. For the temporal pathway, we
generate a perturbed sequence x̂t via random masking or shuffling, which can be expressed
as: st = cos

(
mean(ϕt(x)), mean(ϕt(x̂t))

)
, where ϕt(·) is the temporal encoder. For the

frequency pathway, variance-scaled Gaussian noise is injected into spectral channels: x̂s =

ψs(x) +
∑D

d=1 ϵd · ηd, where ηd ∼ N (0, I), and the corresponding stability is measured as:

ss = cos
(
mean(ψs(x)), mean(x̂s)

)
. Then, the Normalized scores are designed to yield adaptive

fusion weights as follows: λt = st
st+ss+ε , and λs = ss

st+ss+ε , and the final representation is:

xout = λt · xt + λs · xs. (5)

This consistency-driven alignment privileges the more perturbation-resilient branch, mitigating
asymmetric drift and ensuring robust integration across individuals.

3.2 GROUP-INVARIANT REGULARIZED LOSS FOR ROBUST DISCRIMINATION

To further promote person-independent robustness to a high level, we introduce GIRL, which in-
terprets each mini-batch as a stochastic mixture of latent person-specific subgroups and imposes
an optimization criterion that jointly emphasizes boundary instances and equalizes subgroup risks.
Specifically, let {(fi, yi)}Bi=1 denote the mini-batch, where fi ∈ RC are ℓ2-normalized pre-classifier
features and yi the ground-truth labels. Then, the pairwise similarity is defined as sij = 1

τ f⊤i fj ,
with the indicator Iij = ⊮[yi = yj ] specifying positive relations. To effectively approximate hid-
den heterogeneity, indices are randomly permuted and partitioned intoG pseudo-groups {Ig}Gg=1 of
size ≈ B/G, where all subsequent computations are restricted within each subgroup, thereby truly
simulating person-dependent distributional subsets.

Within a group Ig , to accentuate moderately hard positives and suppress trivial ones, we design a
Gaussian-shaped reweighting (Wu et al., 2023) on pairwise similarities. Specifically, for the anchor

i ∈ Ig , w(g)
ij =

exp

(
− 1

2

(
sij−η

η

)2)
∑

k∈Ig
exp

(
− 1

2

(
sik−η

η

)2) , η specifies the adversarial neighborhood around where

the emphasis is applied. The weighted group objective can then be represented as:

Lg =
1

|Ig|
∑
i∈Ig

−
∑

j∈Ig
Iij w(g)

ij

(
sij − log

∑
k∈Ig

esik
)∑

j∈Ig
Iij + ε

. (6)
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Table 2: Ablation study of TFAM and GIRL in the proposed PIUmr on MA-52

Setting PIUmr Body Action All

TFAM GIRL F1micro F1macro F1micro F1macro F1mean

a ✗ ✗ 73.74 79.99 52.39 62.30 67.11
b " ✗ 74.79 80.45 51.80 62.85 67.47
c ✗ " 74.67 80.76 52.46 62.87 67.69
d " " 75.51 80.95 52.79 63.18 68.11

Next, the group-contrastive risk is aggregated over all groups as: Lgrp = 1
G

∑G
g=1 Lg. To prevent

collapse onto dominant subgroups and to balance learning difficulty across heterogeneous subsets,
we introduce a group-invariant regularizer that penalizes the dispersion of group-wise risks. Let
rg = stopgrad(Lg) be the detached risk of group g, the variance penalty is then defined as: Rvar =
Var

(
{rg}Gg=1

)
. The final GIRL objective thus becomes:

LGIRL = Lgrp + λvarRvar. (7)

This formulation effectively steers optimization toward ambiguous and boundary samples that dom-
inate generalization errors, while the variance penalty enforces equilibrium across pseudo-groups as
a proxy for worst-case regularization. Therefore, GIRL achieves subgroup-invariant risk minimiza-
tion, enhancing person-independent discrimination without relying on explicit subject identities.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. We evaluate the system performance on the large-scale Micro-Action 52 (MA-52)
dataset (Guo et al., 2024), which contains 22422 samples across 52 fine-grained action categories
and 7 body-level categories. Captured from professional interview scenarios, MA-52 emphasizes
subtle whole-body dynamics and provides a comprehensive benchmark for distributional robustness
in micro-action recognition. For a fair comparison, we follow the official split with 11250 training,
5586 validation, and 5586 test instances.

Evaluation Metrics. To comprehensively demonstrate the performance, we report Top-1/Top-5
accuracy and F1 score. For F1, both macro (unweighted average across classes) and micro (sample-
level average) are computed at body- and action-levels. To provide a unified measurement, we

define F1mean =
F1bodymacro+F1bodymicro+F1action

macro+F1action
micro

4 , which jointly evaluates recognition across
both granularities.

Implementation Details. All models are trained on NVIDIA RTX A6000 GPUs using PyTorch
with mixed precision. Each video clip contains 16 frames, resized to 224×224. We use the AdamW
optimizer with an initial learning rate of 1×10−3, weight decay of 1×10−4, batch size of 80, and
train for 120 epochs. The learning rate is reduced by a factor of 0.1 at the 30th and 60th epochs. The
training objective is the sum of cross-entropy loss and GIRL.

4.2 COMPARISON WITH THE STATE-OF-THE-ART METHODS

As shown in Tab. 1, although existing 3D CNNs, Transformers, and GCN-based approaches achieve
reasonable results, they inevitably suffer clear degradation when transferring from body-level to
action-level evaluation. Since body-level emphasizes cross-person recognition and action-level
highlights fine-grained category discrimination, this gap indicates that conventional architectures
cannot simultaneously generalize across individuals and handle subtle intra-class variations. In con-
trast, our proposed PIUmr delivers consistent improvements on both levels. The gains at the body-
level demonstrate that disentangling temporal and frequency signals with alignment under perturba-
tions effectively reduces inter-person variability, leading to stronger person-independent generaliza-
tion. At the same time, the advantages at the action-level confirm the benefit of subgroup-invariant
risk regularization, which enhances robustness on boundary and uncertain cases. Overall, PIUmr im-
proves recognition accuracy while achieving a more balanced robustness across person-independent
and fine-grained evaluations, validating its capacity to mitigate representation shift beyond what
backbone scaling alone can achieve.
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Table 3: Ablation study of frequency, temporal branches, and fusion mechanism in TFAM.

Setting TFAM Body Action All
Fre. Tim. Fus. F1micro F1macro F1micro F1macro F1mean

a ✗ ✗ ✗ 74.67 80.76 52.46 62.87 67.69
b " ✗ ✗ 74.79 80.65 52.54 62.84 67.71
c ✗ " ✗ 74.58 80.43 52.60 62.41 67.51
d " " ✗ 75.09 80.84 52.79 62.94 67.92
e " " " 75.51 80.95 52.79 63.18 68.11

4.3 ABLATION STUDIES

Effectiveness of Each Module. As shown in Tab. 2, removing either module causes clear per-
formance degradation, especially at the action level where subtle distinctions are most sensitive to
representation shift. Introducing TFAM alone improves body-level results by aligning temporal and
frequency signals, effectively reducing inter-person variability and enhancing person-independent
generalization. However, without explicit risk balancing, decision boundaries for ambiguous sam-
ples remain fragile. Conversely, applying only GIRL improves action-level recognition by enforc-
ing subgroup-invariant optimization, but the absence of robust temporal–frequency disentanglement
leaves subject-specific perturbations unresolved. The best results arise when both modules are inte-
grated in PIUmr, where TFAM stabilizes representation learning against person-dependent noise and
GIRL balances risks across latent subgroups, yielding consistent gains across body- and action-level
metrics and the most robust performance.

Effectiveness of Temporal–Frequency Alignment in TFAM. As shown in Tab. 3, relying only
on the temporal branch reduces rhythm jitter but fails to address spectral sensitivity, while focus-
ing only on the frequency branch mitigates structural drift but overlooks dynamic inconsistencies.
Simply combining the two improves robustness, yet naive fusion cannot adapt to asymmetric pertur-
bations across modalities. With the proposed consistency-driven alignment, temporal dynamics and
spectral features are adaptively balanced, harmonizing stability across individuals and suppressing
residual cross-modal drift. This design achieves the most reliable gains at both body- and action-
level evaluations, confirming that temporal modeling, frequency modeling, and consistency-based
fusion are mutually complementary. Their joint integration is essential for person-independent and
fine-grained robustness in MAR.

4.4 VISUALIZATION.

4.4.1 T-SNE VISUALIZATION

body head upper limb lower limb body-hand body-hand leg-hand

(a) baseline (b) PIUmr (Ours)

Clearer coarse-level 
separation with multiple 
fine-grained sub-centers.

Figure 4: Illustration of feature distribution learned by the base-
line and our PIUmr on MA-52.

We present t-SNE (van der
Maaten & Hinton, 2008) plots
of the learned embeddings in
Fig. 4. Compared with the
baseline, where categories over-
lap heavily, our PIUmr yields
more distinct and clearly sepa-
rated clusters, reflecting stronger
inter-class discrimination and ro-
bustness under subject variabil-
ity. Notably, some coarse cat-
egories under PIUmr exhibit
multi-centric patterns rather than
forming a single compact cluster.
This arises because visualization
is based on coarse-grained an-
notations, whereas training uses
fine-grained labels, naturally producing sub-cluster structures. In addition, the subgroup modeling
in GIRL partitions samples into pseudo-groups to approximate hidden person-specific distributions,
further encouraging multi-center formations. Importantly, these sub-clusters remain tightly bounded
within their respective coarse categories, showing that intra-class cohesion is preserved despite finer
structural divisions. These results confirm that PIUmr not only enlarges inter-class margins but also
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maintains stable intra-class compactness, thereby supporting fine-grained recognition and person-
independent generalization simultaneously.

4.5 ANALYSIS OF SIMILARITY DISTRIBUTIONS

Baseline: Higher inter-class 
similarity (right-shifted) ,
blurred boundaries.

Ours: Higher and more 
concentrated similarity, 
robust intra-class cohesion.

Baseline: Scattered 
similarity, unstable intra-
class consistency.

Ours: Lower inter-class 
similarity (left-shifted), larger 
margins, better separability.

Figure 5: Visualization of inter- and intra-class
cosine similarity distributions on MA-52.

To further analyze the representational behavior of
our framework, we compare the cosine similarity
distributions of inter- and intra-class pairs in Fig. 5.
The baseline shows a right-shifted inter-class dis-
tribution, indicating excessive similarity across cat-
egories and blurred decision boundaries under sub-
ject variability. In contrast, PIUmr produces a left-
shifted inter-class distribution with enlarged mar-
gins, suggesting stronger separability even when
individuals exhibit diverse motion styles. On the
intra-class side, baseline features present dispersed
similarity values, reflecting weak cohesion and
sensitivity to person-specific noise. Our frame-
work instead yields a sharper, more concentrated
distribution, demonstrating improved intra-class
compactness and robustness against perturbations.
These findings confirm that by combining tempo-
ral–frequency alignment in TFAM with subgroup-
invariant regularization in GIRL, PIUmr not only
enlarges inter-class margins but also stabilizes intra-class clustering, thereby enabling fine-grained
discrimination and reliable person-independent generalization.

4.6 VISUALIZATION OF LOSS LANDSCAPE

-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8

-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8

0.80.60.40.20-0.2-0.4-0.6

0.80.60.40.20-0.2-0.4-0.6

(a) baseline (b) PIUmr (Ours)

Figure 6: The visualization of loss landscape.

We further compare the loss land-
scapes (Li et al., 2024) of the base-
line and PIUmr on MA-52 in Fig. 6.
The baseline exhibits a rugged and
sharply curved surface with irregular
local minima, reflecting unstable opti-
mization and vulnerability to subject-
specific perturbations. In contrast, PI-
Umr yields a smoother and flatter land-
scape with wider basins, suggesting
more stable convergence and improved
generalization across heterogeneous individuals. This evidence confirms that explicitly mitigating
representation shift through temporal–frequency alignment and subgroup-invariant regularization
regularizes the learning dynamics, thereby enhancing person-independent robustness in MAR.

5 CONCLUSION

We propose PIUmr, a person-independence universal framework for MAR that explicitly addresses
representation instability arising from inter-subject variability. The framework incorporates two
plug-and-play modules, i.e., the TFAM, which disentangles temporal dynamics and frequency struc-
tures and adaptively aligns them via consistency-driven fusion, thereby producing more stable rep-
resentations under heterogeneous perturbations; and the GIRL, which enforces subgroup-invariant
regularization by reweighting hidden subsets and constraining variance across pseudo-groups, thus
enhancing robustness on boundary and uncertain cases. Through organic combination, these com-
ponents form a unified DRO-inspired paradigm that improves both stability and discriminability in
fine-grained, cross-subject recognition. Extensive experiments on MA-52 confirm the effectiveness
of PIUmr, yielding state-of-the-art performance with smoother optimization behavior. In future
work, we plan to extend this framework to broader multi-modal behavioral analysis and explore
lightweight variants for real-world deployment.
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ETHICS STATEMENT

This work strictly follows the ICLR Code of Ethics. All experiments are conducted on the publicly
available MA-52 dataset, which was released for academic research purposes. No new data collec-
tion or human subject experiments were performed. The dataset contains no personally identifiable
information, and our study involves no privacy or security risks. The proposed framework aims to
improve robustness and person-independence in micro-action recognition, with potential applica-
tions in areas such as psychological assessment and human–computer interaction. We confirm that
the research complies with standards of research integrity and responsible data usage, and does not
pose harmful or discriminatory implications.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of this work. The architecture of the model,
as well as the implementation details and mathematical formulations of the TFAM and GIRL mod-
ules, are described in detail in the methodology section. The experimental setup systematically
specifies the use of the publicly available MA-52 dataset, including the dataset splits, evaluation
metrics, training settings, and preprocessing steps, all of which are clearly documented in the main
text. To further facilitate reproducibility, our source code and training scripts will be released upon
acceptance of the paper. With these resources, researchers will be able to reproduce the main results
and findings of this work under the same dataset and experimental settings.
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USE OF LARGE LANGUAGE MODELS (LLMS)

We used Large Language Models (LLMs) solely as an auxiliary tool to aid and polish the writing of
this manuscript. The models were not involved in research ideation, experimental design, data anal-
ysis, or result interpretation. Their role was limited to improving clarity, grammar, and readability
of the text.
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